
MAT 271: Applied & Computational Harmonic
Analysis Comments on Homework 3

Problem 2: Almost everyone got Part (a) correct. However, some people did not give enough
explanations. You need to explain and justify your derivations!

For Part (b), what you really need to show is:

1. Compute the eigenvalues of the covariance matrix Γ, which is 0 and 1/n with geometric
multiplicity 1 and n − 1, respectively, which can be done by explicitly deriving the
characteristic equation, det(Γ − λI) = λ(1/n − λ)n−1 = 0. Not all of you did this
way, but in my opinion, this should be the easiest way to conclude this. Please review
your linear algebra textbooks, in particular, how to compute the determinant of a given
matrix, and how to simplify the computation!

2. Γ is a real symmetric matrix; thus it can be unitarily diagonalizable, i.e., there exists an
orthonormal basis diagonalizing Γ. This is very important to state explicitly!

3. The above two also means that the eigenspace corresponding to the eigenvalue 0 and
the one corresponding to 1/n are orthogonal.

For more information and the origin of the interest of this process, please read my own paper
[1], [8], [7], and references therein.

Problem 3: Part (a) should be done in the expectation in the integration w.r.t. the uniform proba-
bility density function, i.e., 1 over the unit interval [0, 1]. So,

E[X(t)] =

∫ 1

0

(t−H(t− τ)) · 1 dτ = t−
∫ 1

0

H(t− τ) dτ = t−
∫ t

0

1 dτ = 0.

So, the mean is always 0. Using the same strategy, you should be able to derive Γ(s, t) =
min(s, t)− st.

As for Part (b), several people derived the conclusion unsatisfactorily, i.e., those of you sim-
ply substituted ϕk(t) =

√
2 sin(kπt) into the integral equation, computing the eigenvalues,

and claimed they are the eigenfunctions. With this argument, you cannot be sure whether
there exists other eigenfunctions. The correct argument is to derive the eigenvalue problem
in the ordinary differential equation from the integral equation, that is:

λϕ(t) =

∫ 1

0

Γ(t, s)ϕ(s) ds

=

∫ 1

0

(min(t, s)− ts)ϕ(s) ds

=

∫ t

0

(s− ts)ϕ(s) ds+

∫ 1

t

(t− ts)ϕ(s) ds

=

∫ t

0

sϕ(s) ds− t

∫ t

0

sϕ(s) ds+ t

∫ 1

t

(1− s)ϕ(s) ds



Now, differentiating both sides with respect to t leads to the following ODE:

ϕ′′(t) = −1

λ
ϕ(t)

The boundary condition can be derived by setting t = 0 and t = 1 in the above integral
equation. It turns out to be the Dirichlet boundary condition:

ϕ(0) = ϕ(1) = 0.

Several of you derived this boundary condition by saying that X(0) = X(1) = 0, which
is not true! X(0) could be nonzero because τ ∼ unif[0, 1) and consequently a jump could
happen at τ = 0. From these, we can derive the desired solution. Also, note that you need
to justify that λ > 0 is of our only interest, and the λ ≤ 0 case does not provide us the
eigenfunctions. By the way, if you took MAT 207B, then you may have noticed that this
covariance function is exactly the same as the Green’s function for this Dirichlet boundary
value problem!

For Part (c), some people used svd instead of eigen and claimed that svd gave them
better or closer eigenvectors to the analytical ones compared to eigen. OK, why does this
happen? It’s a good exercise to think about it!

Also, note that the eigenvectors are not always uniquely determined for a given matrix. There
is always an ambiguity about its sign. In other words, if ϕ is an eigenvector, you may get
−ϕ depending on what software package you use.

Finally, some of you used cov function in Julia erroneously. This is very important: Julia’s
cov function assumes the row vectors of a data matrix X are the realizations (or observa-
tions), which follows the convention in Statistics. We have been following the convention of
the Signal Processing literature, i.e., the column vectors are the realizations/observations.
Hence, if you followed Problem 3’s setup, you need to run cov(X’) or cov(X, dims=2)
instead of just cov(X). But the best approach is not to compute the covariance matrix fol-
lowed by eigen; as I explained in the class, you should compute the SVD of X. Please see
my Lecture 10 slides.

Also, to compute the error of given two matrices A, B, it is usually best to use the relative
Frobenius norm error, i.e., norm(A-B)/norm(A). Note that this norm function in Julia
behaves differently from that of MATLAB. So, you have to be careful. See any numerical
linear algebra textbook such as [10] for more about the matrix/operator norms.

Finally, if you compute the error between the theoretical eigenvectors (sinusoids in this case)
and the computed eigenvectors, you need to realize one important thing: there is a sign
ambiguity in each computed eigenvector. In other words, we do not know a priori if an
eigenvector ϕk is computed or −ϕk is computed. Hence, you need to compute the error
between the kth theoretical vector and ϕk as well as the error between that theoretical vector
and −ϕk, then pick the smaller one as the real error; otherwise the true error could not be
computed.



For more information about this stochastic process, please read the following papers: [2],
[3], [5, p. 19], [9].

Problem 4: Here, I would like to point out some major mistakes several people made.

• Some of you treated each face as a matrix, and a set of faces as 3D array, which make
many procedures and computations more cumbersome than necessary. It is much easier
on Julia to treat each face as a vector of length 1282 and a training dataset as a matrix of
size 1282 × 72. Then you can always convert a resulting vector after processing (e.g.,
reconstruction or approximation) as a matrix by the reshape command, which you
can use to display as a face.

• Suppose X is a training dataset (matrix) of size 1282 × 72. mean(X, dims=2),
which immediately gives you the average face vector. No need to compute the mean
using a for loop.

• It is good to note that the function dct in the FFTW.jl package computes the 2D
version of DCT if you just give a matrix input without any option. If you want to
compute the 1D DCT of each column vector of an input matrix, then you should run
dct(X, dims=1).

• Suppose X̃ is the data matrix after subtracting the mean column vector (i.e., the mean
face) from each column vector. X̃ can be quickly computed by the following Julia con-
struct: X-mean(X, dims=2)*ones(1,N) or X-repeat(mean(X, dims=2),1,N).
Now, the sample covariance matrix is Γ̂ := (1/N)X̃X̃T. (Note that several people
forgot the factor 1/N = 1/72 here.) You can compute the eigenvectors of Γ̂ us-
ing MATLAB’s eigen function. Alternatively, you can use the SVD of X̃ , via U,
S, V = svd(Xtilde); where Xtilde represents X̃ in Julia of course, and use
Xtilde * V for the KLB basis vectors. However, you should be careful! The col-
umn vectors of Xtilde * V are orthogonal but clearly not orthonormal. In order to
make them orthonormal, you need to divide its jth column vector by either σj or the
norm of that column, as I discussed in Lecture 10. The best way to compute the top k
KLB, however, is to use the tsvd in the TSVD.jl package as follows: U, S, V =
tsvd(Xtilde, k); Then, the column vectors of U is the KLB, which are already
orthonormal, as I showed in my Lecture 10.

• It is very important to know that the eigen function in Julia sorts the eigenvalues and
eigenvectors in the nondecreasing order, i.e., from the smallest to the largest. Thus, to
use the top k KLB vectors means that you need to use the last k KLB vectors in the
KLB matrix if you do not reorder it immediately after getting it from eigen. That is
why the relative ℓ2 curves for KLT were worse than those of DCT for some of you. For
those of you made that mistake, I would strongly suggest that you recompute the error
curve and plot against those of the DCT! Note that if you use svd or tsvd to compute
the top k KLB via the column vectors of U or Xtilde * V, then you can use the first
k column vectors. This is because svd and tsvd sort the singular values and singular
vectors in the nonincreasing order, i.e., from the largest to the smallest!



• Suppose X̃recon be the reconstructed or approximated version of X̃ . Then, the relative
ℓ2 error of the kth face is defined as

Relerr[k] =
∥X̃[:, k]− X̃recon[:, k]∥

∥X̃[:, k]∥
, k = 1, . . . , N,

from which you can compute the average error easily by mean(Relerr).

• The other thing I want to point out is that one should use the inverse transform rou-
tines to compute the basis functions. Note that if the input signal is one of the basis
functions/vectors, then the output is one of the standard basis vector. This means that
if you apply the inverse transform to the identity matrix, you get all the basis functions.
Thus, use idct to compute the DCT basis vectors! That’s much faster and nicer than
the code segments some of you wrote.

• Finally, the most important thing I wanted to convey to you by this problem is the
following: The KLB is an excellent tool for compressing the training dataset, but not
necessarily for the test dataset unless the covariance matrix of the test dataset is the
same as or very close to that of the training dataset. With a relatively small number of
the signals in the training and test datasets, this usually won’t happen. On the contrary,
the DCT performs on both the training and test datasets in the same way. There should
be no essential difference between its performance on the training dataset and that on
the test dataset.

For more information about this dataset, please read the following papers [4], [6].

Problem 5:

References
[1] B. BÉNICHOU AND N. SAITO, Sparsity vs. statistical independence in adaptive signal rep-

resentations: A case study of the spike process, in Beyond Wavelets, G. V. Welland, ed.,
vol. 10 of Studies in Computational Mathematics, Academic Press, San Diego, CA, 2003,
ch. 9, pp. 225–257.

[2] J. B. BUCKHEIT AND D. L. DONOHO, Time-frequency tilings which best expose the non-
Gaussian behavior of a stochastic process, in Proc. International Symposium on Time-
Frequency and Time-Scale Analysis, IEEE, 1996, pp. 1–4. Jun. 18–21, 1996, Paris, France.

[3] D. L. DONOHO, M. VETTERLI, R. A. DEVORE, AND I. DAUBECHIES, Data compression
and harmonic analysis, IEEE Trans. Inform. Theory, 44 (1998), pp. 2435–2476. Invited
paper.

[4] M. KIRBY AND L. SIROVICH, Application of the Karhunen-Loève procedure for the charac-
terization of human faces, IEEE Trans. Pattern Anal. Machine Intell., 12 (1990), pp. 103–108.



[5] Y. MEYER, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,
vol. 22 of University Lecture Series, Amer. Math. Soc., Providence, RI, 2001.

[6] N. SAITO, Image approximation and modeling via least statistically dependent bases, Pattern
Recognition, 34 (2001), pp. 1765–1784.

[7] , The generalized spike process, sparsity, and statistical independence, in Modern Signal
Processing, D. Rockmore and J. D. Healy, eds., vol. 46 of MSRI Publications, Cambridge
University Press, 2004, pp. 317–340.

[8] N. SAITO AND B. BÉNICHOU, The spike process: a simple test case for independent or
sparse component analysis, in Proc. 3rd International Conference on Independent Component
Analysis and Signal Separation, T.-W. Lee, T.-P. Jung, S. Makeig, and T. J. Sejnowski, eds.,
IEEE, 2001, pp. 698–703. Dec. 10–12, 2001, San Diego, CA.

[9] N. SAITO, B. M. LARSON, AND B. BÉNICHOU, Sparsity and statistical independence from
a best-basis viewpoint, in Wavelet Applications in Signal and Image Processing VIII, A. Al-
droubi, A. F. Laine, and M. A. Unser, eds., vol. Proc. SPIE 4119, 2000, pp. 474–486. Invited
paper.

[10] L. N. TREFETHEN AND D. BAU, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.


