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Abstract

Statistical independence is one of the most desirable properties of a coordinate system for representing and modeling
images. In reality, however, truly independent coordinates may not exist for a given set of images, or it may be too
di$cult to compute them in practice. Therefore, we propose a new method to rapidly compute the least statistically
dependent basis (LSDB) from a basis dictionary (e.g., the local cosine or wavelet packet dictionaries) containing a huge
number of orthonormal (or biorthogonal) bases. Our new basis selection criterion is minimization of the mutual
information of the distributions of the basis coe$cients as a measure of statistical dependence, which in turn is equivalent
to minimization of the sum of the di!erential entropy of each coordinate in the basis dictionary. In this sense, we can view
this LSDB algorithm as the best-basis version of the Independent Component Analysis (ICA), which is increasingly
gaining popularity. This criterion is di!erent from that of the Joint Best Basis (JBB) proposed by Wickerhauser, which
can be viewed as the best-basis version of the Karhunen}Loève basis (KLB). We demonstrate the usefulness of the LSDB
for image approximation and modeling and compare its performance with that of KLB and JBB using a collection of
real geophysical acoustic waveforms and an image database of human faces. � 2001 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Suppose we are given a set of similar images such as
human faces (or a set of "nger prints or a set of mammo-
grams) and we want to learn the characteristics of those
images, i.e., to represent or approximate them e$ciently,
analyze certain features, and build a stochastic model
that can generate new images that are similar to those
given images. What should we do, then? The best pos-
sible scenario would be to "nd a statistically independent
coordinate system (basis) of that class of images. With
this coordinate system we could achieve optimal

compression of the images in that class by transmitting
each coordinate (feature) separately using quantization
scheme depending on the statistics of each coordinate.
Moreover, a complete probabilistic description of an
image class would be made possible by simply character-
izing the probability distributions of each coordinate. We
could sample or simulate as many new images from this
stochastic model as we want so that we can examine
variability of images in this class and how they look like.
This would be a great tool for image diagnostics. In
reality, however, it may not be possible to obtain truly
independent coordinates because (1) the data may not be
composed of truly independent features in the "rst place,
and (2) even if the images consist of independent features,
it may be too di$cult to construct a feasible algorithm to
extract such features because of the high dimensionality
of the problem (imagine a large database consisting of
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512�512 pixel images). Therefore, it makes sense to
devise an algorithm to rapidly compute a good coordi-
nate system which is `closesta to the statistically indepen-
dent one, and to examine how much we can achieve in
approximation and stochastic modeling using such coor-
dinates by assuming that they are truly independent.

In fact, the importance of the independent coordinates
has long been recognized by several researchers in the
various "elds including statistics, signal and image pro-
cessing, and pattern recognition. In the seminal paper by
Watanabe [1] about the Karhunen}Loève (KL) expan-
sion * also known as Principal Component Analysis
(PCA) * and its application to pattern recognition, he
argued the justi"cation of the use of the KL coordinates
for `feature compressiona as follows:

It would be desirable, from the viewpoint that
information compression means elimination of re-
dundancy, to use variables which are statistically
independent, but in the absence of such variables,
statistically uncorrelated variables may be the next
best.

Then, he went on to show that the KL basis (KLB) is
the minimum entropy basis among all the orthonormal
bases in ��, where n is a number of pixels in images under
consideration. This was a great achievement around
1965, and in fact, KLB was probably the best available
feature extraction tool around that time. However,
KLB-PCA only provides the decorrelated coordinates,
and only takes care of the second-order statistics. Of
course, if the underlying data obeys the multivariate
Gaussian distribution, decorrelation implies indepen-
dence. But in general, the natural images such as faces are
far from Gaussian (see, e.g., [2]). Moreover, KLB-PCA
has other drawbacks such as high computational cost
and inaccuracy of sample estimate of covariance matrices
which will be described in detail in Section 2.

More recently, the concept called Independent Com-
ponent Analysis (ICA) has become popular, in particular,
in the "eld of signal processing [3] and computational
neuroscience [4]. The ICA incorporates higher-order
statistics than KLB-PCA; it tries to obtain the statist-
ically independent coordinate system more directly than
KLB-PCA. It is very di$cult, however, to compute
it numerically, in particular for high-dimensional data,
since they rely on the higher-order cumulants.

Thirty years since Watanabe's work has changed the
landscape. We have now a library of local bases, which
consists of various dictionaries of bases such as wavelet
packet bases and local cosine bases, at our disposal as
feature extraction tools. These are adaptable and #exible
set of bases that can be tailored to one's needs very
e$ciently. They have been increasingly popular in vari-
ous feature extraction business such as denoising [5}7],
classi"cation and regression [8}10]. The author and

his colleagues, in particular, R.R. Coifman and M.V.
Wickerhauser, have been advocating the use of the so-
called `best basis paradigma consisting of the following
three steps: (1) Select a best possible basis from a diction-
ary or library of bases by optimizing a certain functional
that quickly evaluates the e$cacy of each basis in the
dictionary/library for the problem at hand; (2) Discard
the unimportant coordinates from the selected basis; and
(3) Use the survived coordinates to solve the problem.
Depending on the problem at hand, we need to use
a di!erent e$cacy measure for the basis evaluation, and
it is of critical importance to choose an appropriate
measure.

Wickerhauser proposed the so-called `joint best basisa
(JBB) with which he tried to alleviate some of the draw-
backs of the KLB-PCA [11]. Independently from
Watanabe, he proposed to "nd a basis from a dictionary
that minimizes entropy of the energy distribution over its
coordinates. Watanabe's argument is that a KLB is the
best basis over all possible orthonormal bases of �� with
respect to the minimum entropy criterion whereas
Wickerhauser's algorithm can quickly compute an ap-
proximate KLB that is the best basis over all bases
selectable from the dictionary or library of orthonormal
bases with the same criterion. Thus, the JBB corresponds
to the KLB-PCA, but not to the ICA: it does not address
the statistical independence of the coordinates explicitly.

In this paper, we propose yet another best basis aiming
more directly to the statistical independence than KLB
and JBB. Since there is no guarantee that the images
under consideration consist of truly independent coordi-
nates, a compromised but e$cient strategy is to extract
a basis whose coordinates are least statistically dependent
from the dictionary or library of bases. We call this basis
the least statistically dependent basis (LSDB).

This paper is organized as follows. In Section 2, we set
up our notation and brie#y review the KLB-PCA, ICA,
and JBB using our notation. In Section 3, we consider
a measure of statistical dependence of a given basis and
propose the LSDB algorithm. In Section 4, we apply
LSDB to an important problem of signal and image
approximation and compare our method with KLB and
JBB using the geophysical acoustic waveforms and the
human face images. Then in Section 5, we consider how
to build a stochastic models given a collection of similar
signals or images. We propose a few simple models using
the LSDB coordinates. We end this paper with dis-
cussion of the relation of the LSDB to the other methods
and describe some of our ongoing and future work in
Section 6.

2. Feature extraction and basis search

Let X3�� be an input image space, i.e., a set of all
images of a particular class under consideration, where

1766 N. Saito / Pattern Recognition 34 (2001) 1765}1784



n is a number of pixels in each image. Suppose we are
given N training (sample) images, T"�x

�
,2, x

�
�LX,

and let us assume that these images are N independent
realizations of a random vector X3X whose unknown
probability density function (pdf ) is fX . The ultimate
characterization of a given image class entails estimating
fX from the training dataset T. Estimating the empirical
pdf from the available samples in T, however, is very
di$cult because of the curse of dimensionality; we need
a huge number of training samples to estimate fX reliably,
which we normally cannot access or handle. In our typi-
cal situation, we have n<N. Therefore, we need to
reduce the dimensionality of the problem without losing
important information for image approximation and
modeling. As Scott mentions in his book [12, Chapter 7],
this strategy is also supported by the empirical observa-
tion that multivariate data in �� are almost never n-
dimensional and there often exist lower-dimensional
structures of data. That is, a class of images often has an
intrinsic dimension m(n (often m;n). Therefore, it
would be much more e$cient and e!ective to analyze the
data in the smaller-dimensional subspace F of X, if
possible. We call F a feature space, and a map � :XPF

a feature extractor. Then, the key is how to construct this
`gooda feature space F consisting of important features
and to design the corresponding feature extractor �.

Now, let us consider what are the `gooda features for
approximation and modeling of images. In this study, we
de"ne image features as the expansion coe$cients (or
their nonlinear functions) of an image relative to some
basis. Let B be any basis spanning XL��. We also view
B as a matrix whose columns are the basis vectors repres-
enting B, and assume B3GL(n,�), a collection (in fact
a group) of all invertible real-valued matrices of size n�n.
Let C(B �T) be a certain functional measuring the cost or
ine$ciency of the basis B for approximation and
modeling of the image class given the training dataset T.
Then, we seek the best coordinates B

H
:

B
H

"arg min
��L

C(B �T),

whereL is a set of all possible bases under consideration.
Whether we constrain our search by restricting L or not
makes a big di!erence as we will see soon. Now the
feature extractor � can be de"ned as the selection of
m coordinates from the basis B

H
potentially followed

by some nonlinear mapping of them (e.g., computing
energy).

2.1. Karhunen}Loève basis * principal component
analysis

The Karhunen}Loève basis (KLB), also known as
Principal Component Analysis (PCA), provides a decor-
related coordinate system. The KLB vectors are the
eigenvectors of the covariance matrix of the process

obeying fX . The KLB satis"es a number of optimality
criteria, and in particular, it is the minimum entropy basis
among all the orthonormal bases O(n), i.e., all the rota-
tions of the coordinates in �� [1]. Let B be any basis
B3O(n), and let Y"B�X be the coordinates of the image
X relative to the basis B. Entropy of the energy distribu-
tion over the coordinate axes can be considered as the
ine$ciency of that coordinate system since the entropy of
the energy distribution measures the &evenness' or &#at-
ness' of that distribution. Hence, in general, the larger the
entropy, the less e$cient for image approximation. Note
that this entropy is di!erent from the Shannon entropy of
the process X, which we discuss in the next section in
details. Watanabe's viewpoint is to interpret the energy
distribution over the coordinates (after normalization) as
the discrete probability distribution. Let us now de"ne
the entropy function as

h(�[B])O!

�
�
���

�
�
[B] log �

�
[B],

where �
�
[B] is a normalized energy (or variance) of the

ith coordinate of B, i.e., �
�
[B]"E[>�

�
]/��

���
E[>�

�
], or

�
�
[B]"Var[>

�
]/��

���
Var[>

�
]. In practice, we need to

use the sample estimates �(
�
[B] of �

�
[B] using the training

dataset T. Then, the KLB is characterized by

B
���

"arg min
������

h(�( [B]). (1)

On the other hand, the KLB has several drawbacks.
First of all, criterion (1) does not measure the statistical
independence of the coordinates. The KLB only takes
care of the second-order statistics: it does just `decorrela-
tiona, and gives us only `the next besta coordinates as
Watanabe put it. Therefore, the KLB provides a statist-
ically independent coordinate system* which is the best
thing one can hope for description and modeling* only
for the multivariate Gaussian data since the decorrela-
tion implies the independence for Gaussian data. The
next serious problem is an inaccuracy of the sample
estimate of the covariance matrix of the underlying pro-
cess fX . In general, we do not know this matrix a priori,
therefore, we need to estimate it using the available
training samples. This inaccuracy is particularly severe
for large n (dimension of the problem) with small N
(the number of training samples). This entangles
with the computational complexity as follows. Let x� be
the sample mean of the training dataset T, and let
X"(x

�
!x� ,2, x

�
!x� )3����. Then, the sample cov-

ariance matrix is (1/N)XX�. Suppose the singular value
decomposition (SVD) of X is X";�<�. (There is no
need to perform full SVD in practice. This is just for the
explanation of the KLB computation.) Note that the
rank of X is min(n, N). Therefore, if n(N (this is a classi-
cal situation in statistics where the dimensionality is
small and the large number of samples are available), the
KLB is B

���
";3O(n) and its computational cost is
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O(n	) for solving the eigenvalue problem, XX�;"

;���. Now if n'N (most of our problems of interest
are under this category), the column vectors of X< are
the "rst N eigenvectors of the sample covariance matrix
(1/N)XX� because XX�X<"X<���. We then need to
solve the eigenvalue problem X�X<"<��� which is
simply an N�N problem, i.e., requires O(N	) computa-
tion. In summary, the KLB computation costs
O(min(n,N)	). Note that having a small N is advantage-
ous only for computational speed, not for the statistical
accuracy. On the other hand, if N increases, then the
computational cost increases cubically. This is a dilemma
of the KLB computation.

2.2. Independent component analysis

To lift the PCA from its limitation to the second-order
statistics, Comon [3] proposed the so-called Indepen-
dent Component Analysis (ICA). Bell and Sejnowski
discussed the closely related concept of `information
maximizationa and its neural network implementation
[4].

Given a training dataset T, the ICA tries to "nd an
invertible linear transformation in GL(n,�) that minim-
izes the statistical dependence among its coordinates. In
our notation, ICA can be written as

B
�	


"arg min
��
������

C
�	


(B�T),

where C
�	


(B �T) measures the degree of statistical de-
pendence of the coordinate system B using the training
dataset T. Let us now de"ne di!erential entropy H(X) of
the process obeying fX .

H(X)O!� fX(x) log fX (x) dx. (2)

A convenient measure to quantify the statistical depend-
ence among the components of X is the so-called mutual
information:

I(X)O� fX (x) log
fX(x)

��
���

f
��

(x
�
)
dx

"!H(X)#
�
�
���

H(X
�
),

which is simply relative entropy between fX and the prod-
uct of the marginal pdf 's � f

��
�. We note that I(X)"0 if

and only if the components X
�
,2, X

�
are mutually

independent. Now, we can write the ine$ciency of the
coordinate system B3GL(n,�) as

C
�	


(B �T)"IK (Y)"!HK (Y)#
�
�
���

HK (>
�
), (3)

where Y"B
�X, and the HK (Y) and �HK (>
�
)� are the

empirical estimates of the corresponding entropies using

the training dataset T. It is extremely di$cult, however,
to have a good estimate of H(Y) via the empirical pdf
fK Y for large n, and even the case with n'3 is di$cult in
practice. Therefore, Comon proposed to approximate
Eq. (3) using the Edgeworth expansion of fY around the
multivariate normal distribution with the same mean and
variance as the original process, and this amounts to
using the higher-order cumulants of Y. This computa-
tional procedure is even more complicated and expensive
than that of KLB; it costs O(n���N). Therefore, the direct
application of the ICA of Comon is not feasible for the
problems with very high dimension, n<N.

2.3. A dictionary and library of bases

Throughout this study we will use the local basis
library as a basic tool to extract features since this library
can resolve the problems of the PCA and the ICA. Below
we will summarize the characteristics of this library. For
the details, see [13}17]. This basis library consists of
a collection of the local basis dictionaries, such as wavelet
packets, local cosine/sine bases, local Fourier bases, and
brushlets. Each dictionary consists of a redundant num-
ber (e.g., n log n) of the basis vectors with the speci"c
characters in scale, position, and frequency. These basis
vectors are organized as a quadtree in a hierarchical
manner ranging from very localized spikes to global
oscillations with di!erent frequencies (and orientations in
the local Fourier and brushlet dictionaries). Expanding
an image into such a dictionary is fast, O(n[logn]�),
where p"1 for a wavelet packet dictionary and p"2 for
the local cosine/sine/Fourier and brushlet dictionaries.
Thanks to this tree structure, each dictionary contains
a huge number of possible bases (e.g., more than 2� bases).
Moreover, one can use the bottom-up procedure to e$-
ciently search a good basis tailored to a speci"c applica-
tion from such a huge number of possible bases by
optimizing a certain criterion. This search algorithm,
using the divide-and-conquer (i.e., split-and-merge) algo-
rithm, is called the best-basis algorithm [13]. Therefore,
this dictionary provides an adaptive, #exible, hierarchi-
cal, and computationally e$cient set of features at our
disposal. With a library of bases in our hands, our pat-
tern descriptive power are enhanced, yet we can keep its
computational complexity low. This strategy* viewing
an image as a collection of more meaningful features
rather than a collection of pixels * also appears to be
employed in the primate vision-brain systems [18,19].

2.4. Joint best basis

Under the best-basis paradigm Wickerhauser [11]
proposed (independent of Watanabe) a concept of a Joint
Best Basis (JBB) that is the minimum entropy basis
among all the bases in a dictionary of orthonormal bases.
Wickerhauser's original motivation was to compute
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the KLB vectors and coe$cients approximately but
e$ciently. The JBB criterion is simply written as:

B

��

"arg min
��D

h(�( [B]).

A key di!erence from Eq. (1) is that B is searched within
a speci"ed dictionary of orthonormal bases D instead of
all possible rotations O(n). Therefore, its computational
complexity is reduced to O(n[log n]�), p"1, 2. Recall
that a dictionary D contains more than 2� di!erent or-
thonormal bases [15]. Moreover, since each feature is
localized both in space and spatial frequency, the analysis
and interpretation of the images become easier and more
intuitive.

3. Least statistically dependent basis

Faced with the di$culty of ICA, it makes sense to "nd
a basis from a dictionary or library of bases that minim-
izes the statistical dependency among its coordinates. To
do this, let us consider a change of the basis of X in the
de"nition of the di!erential entropy (2). We can easily get

H(Y)"H(B
�X)"H(X)#log �det(B
�)�

"H(X)!log �det(B)�.

Therefore, if B is a volume-preserving linear transforma-
tion, or more speci"cally, B3SL(n,�), then the di!eren-
tial entropy is invariant under such a transformation:

H(Y)"H(B
�X)"H(X).

This invariance property is the key for our algorithm.
The degree of the statistical dependence among the coor-
dinates in a basis in SL(n,�) can be quanti"ed by only
considering the second term in Eq. (3), i.e., the sum of the
di!erential entropy of the individual coordinates. Esti-
mating H(X) of high dimensional images is an extremely
di$cult task, but we do not need to estimate it as long as
we compare the e$cacy of the bases in SL(n,�). Our
recent discussion with J.O. StroK mberg clari"ed that
SL(n,�) contains all the biorthogonal wavelet packet dic-
tionaries if they are realized by the fast rotation algo-
rithms described in Ref. [20, Chapter 2]. These biorthog-
onal dictionaries signi"cantly increase our `vocabularya
for pattern description.

Now, we can state the selection criterion of our Least
Statistically Dependent Basis (LSDB):

B
����

"arg min
��D

�
�
���

HK (>
�
). (4)

The LSDB is thus obtained by minimizing the sum of the
coordinate-wise di!erential entropy among all possible
(bi)orthogonal bases in a speci"ed basis dictionary D. We

note that the basis search in Eq. (4) is fast since the sum of
the coordinate-wise di!erential entropy is an additive
measure. In practice, as Hall and Morton [21] suggests,
the empirical estimate HK (>

�
) of the entropy H(>

�
) can be

obtained by

HK (>
�
)"!

1

N

�
�
���

log f K
��

(y
���

), (5)

where f K
��

is an empirical estimate of f
��

using the training
dataset T by either histograms or kernels, and y

���
is the

ith expansion coe$cient (relative to B) of the training
vector x

�
, k"1,2, N. Since the histogram computation

is relatively cheap, i.e., O(n), the computational complex-
ity of the entire algorithm is dominated by the cost
of expanding input images in a basis dictionary,
i.e., O(n[logn]�).

Remark 3.1. We can contrast our LSDB with KLB and
JBB now. In the LSDB criterion (4), we have

�
�
���

H(>
�
)"

�
�
���

E�log
1

f
��
�.

On the other hand, for KLB and JBB assuming that
��

���
E[>�

�
]"1, we have

�
�
���

h(E[>�
�
])*

�
�
���

E[h(>�
�
)]"

�
�
���

E�log
1

>���
�

�
� ,

where we used Jensen's inequality. We can easily see that
the criterion used in KLB and JBB is not suitable for
measuring dependency among the coordinates in a basis.
To illustrate this point, we conducted the following
simple experiments. Let X be a two-dimensional random
vector that is generated by two independent uniform
random variable on [!1,1] followed by 453 rotation, and
we generated 1000 samples as displayed in Fig. 1(a).
Then, we computed the KLB, JBB, and LSDB. Both the
JBB and LSDB were obtained using the Haar-Walsh
dictionary since we have only n"2 in this example. The
original points were projected onto these coordinates
that are shown in Figs. 1(b)}(d).

The LSDB recovered the independent coordinates.
The JBB selected the standard basis (i.e., no change). The
KLB selected some rotated coordinate system, which is
similar to the standard basis rather than the 453 rotation.
Because the original distribution was not Gaussian, the
KLB could not give us the independent coordinates. We
tested the 153 and 303 rotations instead of 453 rotation so
that the LSDB with Haar-Walsh dictionary cannot
exactly capture the independent coordinates. In these
cases, the LSDB selected the standard basis for 153 rota-
tion, and 453 rotation for 303 rotation. The JBB still
selected the standard basis, and the KLB selected the one
similar to the standard basis, for both cases. Hence, the
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Fig. 1. Comparison of the KLB, JBB, and LSDB coordinates
for the simple two-dimensional distribution. Points obeying
a simple two-dimensional probability distribution are shown
relative to (a) the standard basis; (b) the KLB; (c) the JBB; and (d)
the LSDB.

Fig. 2. The acoustic waveforms propagated through sandstone
layers: (a) Original 201 waveforms displayed as gray scale im-
ages. The horizontal axis represents time samples (with sampling
rate 10 �s). (b) Ten waveforms randomly selected from the 201
waveforms are displayed as wiggles (the positive parts are
painted in black). (c) The mean waveform of the training dataset
consisting of 101 randomly picked waveforms.

Fig. 3. (a) Top 20 KLB vectors. (b) Top 20 JBB/LSDB vectors.
The basis vectors are sorted in the energy-decreasing order.

LSDB provided the better (less dependent) coordinates
than the KLB and JBB.

4. Signal and image approximation by LSDB

In this section we apply the LSDB to signal and image
approximation and compression problems, and compare
its performance with that of the KLB and the JBB. Since
the redundancy is reduced explicitly using criteria (4), our
strategy for approximation is simple: sort the LSDB
coordinates in energy decreasing order, keep only the top
m coordinates instead of n, and apply the inverse trans-
form. For the KLB and JBB, we use the same strategy.
We use geophysical acoustic waveforms and face images
for our experiments.

4.1. Geophysical acoustic waveforms

For the detailed background of this dataset, see Ref.
[10]. Here, we want to approximate/compress the acous-
tic waveforms (recorded in a borehole with 256 time
samples per waveform) propagated through sandstone
layers in the subsurface. We have 201 such `sand wave-
formsa as shown in Fig. 2. First we randomly split them
into the training dataset consisting of 101 waveforms and
the test dataset consisting of 100 waveforms.

First, we computed the mean signal of the training
dataset and removed this mean waveform from both the

training and test datasets. Then, we computed the KLB,
JBB, and LSDB of the training dataset. We used the local
cosine dictionary for computing the JBB and LSDB since
the local cosine dictionary allows us to segment time
axis more easily than the wavelet packet dictionaries. It
turned out that both the JBB and LSDB selected exactly
the same basis. Top 20 most energetic basis vectors are
shown in Fig. 3.

We then computed the relative l� error of the approxi-
mation using these basis vectors as a function of the
number of terms retained for approximating the original
signals. Fig. 4 compares the performance of the KLB
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Fig. 4. Relative l� approximation errors of the geophysical
acoustic waveforms using DCT, KLB, LSDB plotted as func-
tions of the number of terms used for approximation: (a) average
errors over all the training signals; (b) average errors over all the
test signals.

with that of the LSDB/JBB as well as DCT for the
training and test datasets.

For the training dataset, the KLB approximation was
perfect. In fact, the KLB approximation with 86 terms
already reached the relative l� error of 2.425�10
�	 on
average. The same KLB approximates the test dataset
better than the LSDB only up to 89 terms. If we try to
have more accuracy by increasing the number of terms, it
got worse than the LSDB approximation. This implies
that these geophysical acoustic waveforms do not obey
the multivariate Gaussian distribution, and the sample
mean and the covariance matrices computed from the
training dataset were not enough to capture the statistics
of the test dataset. On the other hand, the LSDB/JBB
and DCT approximations are quite consistent for both
the training and the test datasets. The locality of the basis
functions of the LSDB/JBB in this case clearly gave
a better performance than the DCT basis functions that
are completely global in time.

4.2. `Rogues' gallerya problem

We now examine the approximation capability of
LSDB for a set of face images, the so-called `Rogues'
gallerya problem. This dataset consists of digitized pic-
tures of faces of 143 people. These 143 people are a
speci"c group of people; Caucasian students (and some
faculty) at Brown University, without glasses, mustache,
beard. The dataset was provided to us by L. Sirovich via
M.V. Wickerhauser. For more detailed description of
these images, see Ref. [22]. We note that horizontal
dilation has been applied so that the pupils are placed on
two "xed points if necessary. Fig. 5 displays some sam-

ples from this dataset as well as the `averagea face, i.e.,
the mean of the 143 faces.

In the following experiments, we split the available 143
faces randomly into the training dataset T containing 72
face images and the test dataset containing 71 faces. We
now examine how the KLB, JBB, and LSDB approxim-
ate the faces of the training and test datasets. We "rst
removed the `average facea of the training dataset (which
is quite similar to the average face of the all 143 faces
displayed in Fig. 5) from each face in both the training
and test datasets to make `caricaturesa, as Kirby and
Sirovich put it [22]. All of our basis computations and
processing are based on these caricatures.

For all the JBB and LSDB computations below, we
use the multiple folding 2D local cosine dictionary (with
DCT IV) [23] because their compression capability is
superior to the "xed folding local cosines as Fang and
SeH reH demonstrated in [23].

Fig. 6 compares the performance of the KLB, JBB, and
LSDB using the top 72 terms.

Since the number of training images is 72, the KLB
approximation here is simply a projection of a target
image onto the 72 dimensional subspace spanned by the
72 `eigenfacesa (the computable KLB vectors). This orig-
inal image in Fig. 6 belongs to the test dataset, not to the
training dataset. If the target image were in the training
dataset, then the KLB approximation would be perfect.
However, because the target image is not in the training
dataset, the approximation using these 72 KLB vectors is
not impressive. In fact, it is not clear whether one can
judge whether this approximation represents the same
person as the original image. Using this standard KLB,
we cannot do better than this. This essentially implies
that the faces in the `Rogues' gallerya dataset do not
obey the multivariate Gaussian distribution, and the
mean and the covariance matrix computed from
the training dataset did not capture the variability of the
faces in the test dataset. Now, let us examine the JBB and
LSDB approximations. Compared to the KLB, which
has only 72 meaningful vectors in this case, we can
compute a complete basis for both the JBB and the
LSDB. Let us "rst note that the LSDB nicely split
the faces into a set of meaningful regions. In particular,
the regions around the eyes are split into a set of small
segments, and most of the background regions are split
into a larger segments. It is interesting to note that Kirby
and Sirovich carefully cropped the oval-shaped portion
of the faces containing the eyes, noses, and mouths and
removed all the background and most of the hair portion
for their approximations since `it signi"cantly reduced
the accuracy of the expressiona [22]. We note that this
natural splitting was done automatically in our case. On
the other hand, JBB simply splits the images into four
quadrants. The 72 term approximations by the JBB and
LSDB shown in Fig. 6 are not necessarily better than the
one by the KLB. However, they o!er much more than
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Fig. 5. Eight random samples from the `Rogues' gallerya dataset. The last (bottom right) "gure shows the average face of the 143 faces.

the KLB. With the JBB and LSDB, we can use more
terms to perform better approximation. With the most
energetic 800 terms (i.e., about 6% of the total number of
dimensions) instead of 72 terms, we can get the very good
approximation as shown in Fig. 7.

In this "gure, we compare the performance of the
various adaptive and non-adaptive bases. As non-adap-
tive bases, we used the wavelet basis with the 12-tap
Coi#et "lter and the "xed folding local cosine transform
(FLCT) by splitting the images homogeneously into a set
of subimages of 8�8 pixels. The latter is very close to the
block DCT algorithm used in the JPEG compression,
although the FLCT has less edge e!ect than the block
DCT. As adaptive bases, we used the JBB with multiple
folding local cosine transform (MFLCT), and the LSDB
with MFLCT. We observe that the LSDB approxima-
tion perceptually performs best, especially around impor-
tant signatures such as the eyes, nose, and mouth.

Fig. 8 shows the top 5 most energetic basis vectors in
each of the bases, i.e., KLB, C12-wavelet basis, FLCT

8�8, JBB, and LSDB. As one can see, the KLB vectors,
of course, resemble actual faces. The basis vectors of the
wavelet basis and JBB both show relatively global behav-
ior. The FLCT 8�8 shows extremely local behavior:
they are DC components at the particular blocks.
The LSDB with MFLCT shows intermediate behavior
featuring multiple folding, i.e., some `shadowsa in the
symmetric manner.

We computed the e$ciency of the approximation of
these bases in terms of average relative l� error versus the
number of coordinates retained. Fig. 9 compares their
performance of the top 72 terms with that of the KLB.
The KLB performed best for both the training and test
datasets. As explained above, although the KLB worked
perfectly for the training dataset, the other bases per-
formed closely to the KLB for the test dataset. Moreover,
the KLB approximation only allows us to use 72 terms in
this case whereas the other bases allows us as many terms
as we wish up to 128�128. As shown in Fig. 10, if we
want to have better approximations, then we need to
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Fig. 6. Comparison of KLB, JBB, and LSDB using the top 72 terms. The original data was not in the training dataset.

Fig. 7. Comparison of the approximations with 800 terms of
various bases.

use the other bases with more terms. From this "gure,
we observe that the LSDB performs best if one keeps
more than 315 terms. Another interesting observation is

the stability of the adaptive bases. The behavior of the
KLB was drastically di!erent between the training and
test datasets. On the other hand, the LSDB and the JBB
behaved consistently, just like the other non-adaptive
bases such as the wavelets and FLCT.

4.3. &Second rotation' by KLB

As discussed in Section 2 and demonstrated above
with `Rogues' gallerya problem, we can compute only
N KLB vectors if we have only N training images. We
cannot go beyond this number and this can be a serious
limitation for the KLB. We can compute more than
N KLB vectors by the following idea. First, we compress
the training images using some good basis, say LSDB.
Then, using the top k coordinates of that basis, where
N(k(n, we can compute the KLB on top of those
k coordinates. In other words, we perform the second
rotation of the coordinates (the basis used for compres-
sion does the "rst rotation). Of course, the rank of the
covariance matrix is still N in this case, but nothing
except the limitation on our computational resources
prevents us from computing the k-dimensional KLB. For
example, on a desktop PC or a workstation, one can
easily use k"800 to k"1000. Fig. 11 demonstrates this
idea.
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Fig. 8. Comparison of the "ve most energetic basis vectors in the "ve bases. First row: KLB, second row: C12 wavelet basis, third row:
FLCT 8�8, fourth row: JBB, and the last row: LSDB.

Fig. 9. Relative l� approximation errors of the `Rogues' gal-
lerya dataset using various bases versus the number of terms
used for approximation for the "rst 72 terms: (a) average errors
over all the training images; (b) average errors over all the test
images.

Fig. 10. Relative l� approximation errors of the `Rogues' gal-
lerya dataset using various bases versus the number of terms
used for approximation: (a) average over all the training images;
(b) average over all the test images.
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Fig. 11. Relative l� approximation errors versus the number of
terms used for approximation for the "rst 800 terms: (a) average
over all the training images; (b) average over all the test images.
Now we compare the performance of the KLB (only 72 terms
available), LSDB, and the KLB computed on top of the 800
LSDB coordinates.

As one can see, the second rotation by KLB computed
from the 800 LSDB coordinates (we abbreviate this as
KLB-LSDB800) gives us the same performance as the
KLB up to the "rst 60 terms or so. But this does not end
with 72 terms. It continues until it reaches to k"800,
where the approximation error is exactly the same as the
LSDB. For the training dataset, the KLB-LSDB800
reaches to the minimum with the 72 terms and does not
improve anymore, as expected. For the test dataset, how-
ever, it performs better than the LSDB up to 182 terms;
then the LSDB takes over. This indicates that the second
rotation by the KLB may not always be advantages for
image approximation. It turned out, however, that such
rotations can be quite useful for image modeling, which
will be discussed in the next section.

5. Stochastic model building using LSDB

Image modeling is an important application area
where LSDB may contribute. As mentioned in Introduc-
tion, if we can successfully build a good stochastic model
of a speci"c image class, then we can sample and simulate
as many new images from the model as we wish. Such
simulation may be particularly useful for image diagnos-
tics. In this section, we propose two stochastic models of
an image class using the LSDB coordinates.

5.1. Image models with LSDB as independent coordinates

We start with the simplest possible model. This model
assumes that the LSDB coordinates of a given image
class are truly statistically independent, i.e., a probabilis-

tic description of that image class is a product of empiri-
cal marginal pdf 's of the LSDB coordinates. Let Y"

B
�
����

X be a random vector representing an input ran-
dom vector X in the LSDB coordinates. (Note that if
B
����

3O(n), then B
�
����

"B�
����

.) Now this simplest
model can be written as

fY(y)"fY(y
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,2, y

�
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�
�
���

f K
��

(y
�
). (6)

Therefore, this model can be described as

Image Model"Description of the LSDB

#Statistics of each LSDB coordinate.

(7)

Here, the description of the LSDB consists of the speci-
"cation of the basis dictionary used and the speci"cation
of the LSDB vectors obtained via (4) in that dictionary.
The statistics of each LSDB coordinate means either its
empirical pdf (epdf ) or empirical cumulative distribution
function (ecdf ). Sampling new images from this model is
easy. We use the inversion method for each coordinate to
sample a typical coe$cient of that coordinate. Let F

���
(y)

be an ecdf of the ith LSDB coordinate>
�
and let F

�
(y) be

an interpolated version of F
���

so that the inverse exists.
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�
are di!erent realiza-

tions of the unif (0,1) distribution, then we can synthesize
an typical image by the inverse transform X

���
"

B
����

Y
���

. See Ref. [24] for simulation methods other
than the inversion method.

If the images of the class contain noise and the noise
model is known a priori, e.g., additive white Gaussian
noise (WGN), then we can set up a better model includ-
ing denoising as follows:

Image Model"Description of the LSDB

#Statistics of the top m LSDB coordinates

#Statistics of the remaining (n!m)

LSDB coordinates. (8)

Here, the m coordinates to be kept as a part of the signal
(meaningful) component can be selected via a certain
criterion such as the MDL criterion developed in
Ref. [6]. The last (n!m) terms correspond to noise. So if
we do not want to include noise in the model, we can
throw away this part.

5.1.1. Geophysical acoustic waveforms
Here, we want to model the sandstone waveforms used

in the previous section. Fig. 12 shows 10 synthesized
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Fig. 12. (a) 10 example sand waveforms randomly selected from the training dataset; (b) 10 synthesized waveforms using the KLB; (c) 10
synthesized waveforms using the LSDB.

waveforms by assuming that the basis coordinates are all
statistically independent, sampling each coe$cient separ-
ately, and reconstructing them. For each case, we used all
256 coordinates.

As we can see from Fig. 12, the waveforms using the
KLB and the LSDB both visually look similar to
the original waveforms shown in Fig. 2(b). Although we
cannot quantify how close to the true independence un-
less we can compute the entropy of the process H(X) in
Eq. (3), this experiment indicates that both the KLB and
the LSDB coordinates are almost statistically indepen-
dent for this dataset. On the other hand, considering the
physics of the wave propagation, there should be some
dependency between the so-called P wave components
(compressional waves) around time samples 80 and the
so-called S wave components (shear waves) around time
samples 160, and this dependency is characteristic to the
underlying media where the waves propagated [10]. Ex-
ploring such dependency is one of our future projects as
will be discussed in Section 6.

5.1.2. `Rogues' gallerya problem
Similar to the examples of the geophysical acoustic

waveforms, we compare the simple independence model
(7) built on the pixel basis (i.e., the standard basis), the
KLB, and the LSDB in Fig. 13.

These are the `new facesa generated by sampling from
the models. The model assuming the independence of the
pixel coordinates are clearly worst. They are simply
the average face plus noise, and this validates the fact that
the pixel coordinates are strongly statistically dependent.
The independence model using the KLB, which we call
the KLB-STD model for clari"cation, worked quite well
although its coordinates are only guaranteed to be un-
correlated. The synthesized faces using the LSDB are
`cloudeda and do not look like representative faces of
this class of images. This experiment indicates that the
LSDB coordinates are not really mutually independent
for this dataset. Synthesis using the JBB coordinates (not
shown) does not work well either. This failure took us to
the next level of the modeling.
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Fig. 13. Sampled images from the simple independence model (7) using the pixel basis (the "rst row), the KLB (the second row) and the
LSDB (the last row).

5.2. `Second rotationa by KLB

Fig. 13 is somewhat discouraging for the image
modeling using the LSDB. How can we improve the
model using the LSDB? Can we do more with the LSDB
than with KLB-STD? These questions, in fact, drove us
to examine the `second rotationa by KLB, which was
used for image approximation in Section 4.3: we form
m-dimensional feature space F by selecting the top
m LSDB coordinates, then rotate this feature space coor-
dinates further to have decorrelated coordinates. Now we
have the following image model:

Image Model"Description of the LSDB

#Description of the KLB of

the top m LSDB coordinates

#Statistics of these m KLB coordinates

#Statistics of the (n!m) LSDB coordinates. (9)

The last term is again optional. It may be better not to
include this term for noisy image classes. This model can
be quite powerful since these m coordinates are already
statistically less dependent than the original coordinates
and we can compute the m-dimensional KLB rather
quickly if m;n. The assumption here is that the decor-
related KLB coordinates computed on top of the
m LSDB coordinates are now statistically independent.
Fig. 14 shows nine realizations from the KLB-LSDB800
model (9) with m"800.

We can see some dramatic improvements over the last
row of Fig. 13. Of course, these decorrelated coordinates
may not necessarily be statistically independent, but
they should be much less dependent than the LSDB
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Fig. 14. Nine sampled faces from the KLB-LSDB800 model. Compare with Fig. 13.

coordinates. Fig. 14 testi"es this. Do the underlying coor-
dinates before the second rotation matter? The answer is
yes. In order to see this, we computed the second rotation
from the top 800 JBB (i.e., the KLB-JBB800 model), and
follow the same sampling and reconstruction procedure
to get the realizations shown in Fig. 15.

We can see that the realizations from the KLB-JBB800
model is blurred compared to those from the KLB-
LSDB800 model shown in Fig 14. This di!erence is
inherited from the approximation quality of the "rst
stage (i.e. the top 800 LSDB versus the top 800 JBB).

Note here that out of 800 KLB-LSDB800 vectors, the
"rst 72 vectors (when they are transformed back to the
pixel basis) are essentially the same as the eigenfaces
computed directly from the pixel basis representations.
The question here is that what the other 728 basis vectors
we computed are and whether these help simulation or
not. To understand this e!ect, we synthesized the faces
using only the last 728 terms of the KLB-LSDB800
model and obtained the new faces shown in Fig. 16.

As we can see here, these are better than the LSDB
model shown in the last row of Fig. 13, and show the
variations in facial expressions, which may have contrib-
uted to the good realization quality of the full
KLB-LSDB800 model shown in Fig. 14.

6. Discussion

In this section, we discuss the relations of our proposed
methods to the other methods and describe some of our
ongoing and future projects.

6.1. Relation with local Karhunen}Loève bases

As we demonstrated in Section 5, the second rotation
by the KLB computed from the selected LSDB coordi-
nates was useful for stochastic image modeling. Over
there, we simply selected the most energetic 800 LSDB
coordinates from the total 16,834 LSDB coordinates. We
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Fig. 15. Nine sampled faces from the KLB-JBB800 model. Compare with Fig. 14.

can select the LSDB coordinates in completely di!erent
manner. For example, we can select the LSDB coordi-
nates only related to a speci"c region. Such selection is
easy for our case because the coe$cients expanded by the
local cosine/Fourier dictionaries are nicely organized
according to their spatial locations. (Note that it is
also possible to select such coe$cients in the wavelet
packets/brushlets dictionaries with a little bit of extra
e!ort of organizing their indices.) The selection of the
LSDB coordinates in the local regions and the computa-
tions of the KLBs on those regions is closely related to
the notion of the local Karhunen}Loève basis
(LKLB) that Coifman and the author proposed in Ref.
[25]. The idea of LKLB is to split the signals/images into
tree-structured segments by the smooth orthogonal pro-
jections [26], compute the KLB locally within each seg-
ment, then invoke the best-basis algorithm to prune the
tree and merge the segments. As a result, we can have a
basis consisting of localized and spatially adapted ver-
sions of the KLBs. Computing the localized KLBs makes

sense both computationally and statistically since split-
ting the images into segments provides better statistics.
That is, the number of available samples N and the
dimension of the problem for each segment get closer.
For the smaller segments, N can be even larger than
their dimensions. In Ref. [25], however, we had
di$culty in deciding the basis selection (i.e., tree-
pruning) criterion. We examined a few alternative cri-
teria, but all of them were based on the eigenvalues of the
autocorrelation or covariance matrices computed at
those segments. But now, the LSDB o!ers a sound and
justi"able (we are selecting a least statistically dependent
basis) split of signals and images into segments, we can
further compute all sorts of bases in each segment. In
particular, we can compute a KLB in each segment.
These operations are, in fact, a set of local second rota-
tions. Compared to the original LKLB algorithm that
uses the pixel coordinates to compute each local KLBs,
this new version via the LSDB is much more computa-
tionally e$cient since we can reduce the dimension of

N. Saito / Pattern Recognition 34 (2001) 1765}1784 1779



Fig. 16. Nine sampled faces using only the 73rd to 800th coordinates of the KLB-LSDB800 model. Compare with Fig. 14.

Fig. 17. Top 3 `eigen-eyesa computed from the LSDB coe$cients belonging to a small region around right eyes of the `Rogues' gallerya
dataset.

each segment using the LSDB coordinates prior to the
KLB computation.

Fig. 17 shows one interesting example. This shows the
top 3 KLB vectors computed from the LSDB coe$cients

belonging to a small segment around the right eye region
of the `Rogues' gallerya dataset. This segment is one of
the small segments (4�4 pixels) around the right eye
shown in the LSDB partition pattern in Fig. 6. The "rst
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`eigen-eyea checks the symmetry between the upper and
lower part of the right eyes and left eyes. Recall that we
used the 2D local cosine basis dictionary with multiple
folding. That is why the eigen-eyes have activities outside
of this right eye region. Then the subsequent eigen-eyes
reveal more detailed structures of the eyes. For example,
the second eigen-eye analyzes the pupils. One can view
these as `tailor-madea local orthonormal basis vectors. If
we operate these local second rotations in the frequency
domain, this amounts to constructing `tailor-madea
wavelets and wavelet packets whose details we will report
at a later date.

6.2. Relation with other work

Moreau and Pesquet [27] independently and concur-
rently proposed a similar algorithm. The di!erence be-
tween theirs and ours lies in two aspects. One is the
measure of the statistical independence, and the other is
the motivation. First, their measure of statistical indepen-
dence is a generalized version of the measures proposed
by Comon [3], which is based on the higher-order cumu-
lants, whereas ours is based on the empirical entropy
estimation using the histogram or kernel pdf estimators.
There are pros and cons on the estimation of entropy
using the empirical pdf estimation using histograms or
kernels. First, if we restrict the search of the best basis
within the group SL(n,�), as we discussed in Section 3,
the sum of the coordinate-wise entropy estimate using
the pdf correctly and directly measures the statistical
dependence of the data relative to that coordinate sys-
tem. The estimation error solely comes from that of the
pdf estimation from available samples. On the other
hand, the convergence of the estimate to the true entropy
is not necessarily fast, i.e., o(1/�N) as the number of
available samples NPRas shown by Hall and Morton
[21]. Furthermore, this convergence rate is only guaran-
teed for the low-dimensional cases (n"1 for the
histograms, and n"1, 2, 3 for the special kernel-based
estimators with heavy tails). The cumulant-based
estimators can have faster convergence rate, i.e., O(N
	��)
[28], and in principle, can handle any high-dimensional
problems; however, the cumulant-based entropy estima-
tion is always dependent on the number of terms in the
Edgeworth expansions used for approximating the pdf,
and for the higher-order terms and higher-dimensional
problems, the mathematical expressions become ex-
tremely cumbersome as shown in [28]. For our LSDB
algorithm, we do not need to evaluate the high dimen-
sional pdf 's; we only need to evaluate 1D coordinate-
wise pdf 's. From this point of view, the histogram-based
pdf estimation should give very good estimates of the
coordinate-wise entropy, and there is no need to use the
cumulant-based estimators. In fact, the reason why
people developed the cumulant-based estimators seems
that they need to estimate the entropy for higher-dimen-

sional distributions [29]. As for the di!erence in motiva-
tions, ours is to e$ciently approximate and model a spe-
ci"c class of images whereas theirs is to separate mixed
signal sources.

Also, related is the work of Buckheit and Donoho
[30]. They proposed several measures to "nd an or-
thonormal basis from a dictionary whose coordinates are
maximally non-Gaussian. Searching the maximally non-
Gaussian basis is advocated by Diaconis and Freedman
[31] who showed that most low-dimensional projections
of high-dimensional datasets are approximately Gaus-
sian. Therefore, the non-Gaussian projections reveal
some intrinsic features of the datasets. This argument is
also the basis of the projection pursuit [29,32]. Now,
in order to evaluate a `non-Gaussiannessa of a basis in
the dictionary, they proposed to maximize either (1) the
sum of the kurtosis of each coordinate; or (2) the sum of
the certain statistical distances or information measures
(such as the Anderson}Darling, Kolmogorov}Smirnov,
Kullback}Leibler distances, or Fisher information)
between the empirical distribution and the Gaussian dis-
tribution with the same mean and variance as that empiri-
cal distribution. If the Kullback}Leibler distance (i.e., rela-
tive entropy) is used for the measure of non-Gaussianness,
the relationship between the LSDB and the maximally
non-Gaussian basis (MNGB) of Buckheit and Donoho
can be made precise. Let D(f
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��
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share the same mean and variance. Therefore, the
MNGB is obtained by the following criterion:
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whereas the LSDB criterion (4) does not have the second
term of !�

�
log Var[>

�
]. This implies that the MNGB

prefers the coordinates with small entropy and large
variance, whereas the LSDB prefers the coordinates with
small entropy only.
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6.3. Further challenge

6.3.1. Nonlinear representations
All we have considered so far as a set of possible bases

for image approximation and modeling are just a subset
of invertible linear transformations GL(n, �), in fact,
a subset of O(n) or SL(n, �), which can be searchable via
the LSDB algorithm. Potentially, there may be a nonlin-
ear transformation that outperforms any of these linear
transformations in terms of image approximation and
modeling. Along this line, we are currently investigating
algorithms to "nd such nonlinear transformations [33].
One of the algorithms tries to "nd a nonlinear trans-
formation that maps data to the new coordinates where
the transformed data obey the standard multivariate
Gaussian distribution, N(0, I), which, of course, has inde-
pendent coordinates. Although it is more computation-
ally expensive than the LSDB algorithm, it may provide
a coordinate system which is much closer to the statist-
ical independence than the LSDB.

6.3.2. Image models with the LSDB with pairwise
conditioning

As our experiments showed, the LSDB does not
guarantee a truly independent coordinate system in gen-
eral. So, we considered model (9) using the KLB of the
top m LSDB coordinates as an attempt to make them
more independent (in this case only decorrelation is
achieved, of course). Alternatively, we can examine the
dependency among the selected LSDB coordinates more
explicitly. We cannot a!ord to examine and model the
deep statistical dependence among the coordinates if we
need the computational e$ciency and algorithmic sim-
plicity. The simplest dependency we can model is perhaps
the pairwise dependency model that approximates the
true pdf by a product of bivariate pdf 's:

fY(y
�
,2, y

�
)+�

���

fK
����

(y
�
, y

�
). (11)

Currently, we are working on algorithms to check this
pairwise dependency among the LSDB coordinates and
to sample the LSDB coe$cients conditionally using 2D
pdf estimation techniques such as ASH2D [12, Chapter
5]. We are also investigating the Markov chain model
on the LSDB coordinates, which we hope to report at
a later date.

7. Conclusion

We have presented a new criterion for the best-basis
algorithm to "nd the least statistically dependent coordi-
nate system from a given basis dictionary for a given
collection of signals or images. This criterion is to minim-
ize the mutual information of the coordinates, which is

a measure of the statistical dependence among them. In
this sense, this proposed algorithm can be viewed as the
best-basis version of ICA. This basis (LSDB) can be
computed rapidly, i.e., O(n[log n]�), where n is the dimen-
sion of the problem, and p"1 for the wavelet packet
dictionaries, and p"2 for the local cosine/Fourier/
brushlet dictionaries. Using the geophysical acoustic
waveforms and the `Rogues' gallerya dataset, we have
demonstrated that LSDB performed best among a var-
iety of bases including the KLB, JBB, DCT, and wavelets,
for image approximation in terms of the average relative
l� error. We have also proposed simple stochastic mod-
els for a given class of signals or images based on the
LSDB coordinates. The "rst model is to assume the
statistical independence among the LSDB coordinates,
which allows us to sample typical coe$cients of each
coordinate separately using the empirical distribution
estimated from the available training coe$cients of that
coordinate, which in turn easily allows us to simulate
new images at our disposal. This strategy worked well for
the geophysical acoustic waveforms. Because the LSDB
does not necessarily provide the truly statistically inde-
pendent coordinates, this "rst model did not work well
for the `Rogues' gallerya dataset. To deal with this prob-
lem, we have introduced the second model based on the
`second rotationa by the KLB computed from the top
m LSDB coordinates. This model gives us the decor-
related coordinates built on top of the localized least
statistically dependent features. The simulation results
using the second model suggest that this second rotation
further reduced the statistical dependency among the
coordinates. We believe that exploring the statistical de-
pendency among the LSDB coordinates is likely to be
a key for building a better stochastic image models,
which we will tackle in our future project.
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