MAT 271: Applied & Computational Harmonic
Analysis Comments on Homework 3

Problem 2: Everyone got Part (a) correct. However, to show the claim of Part (b), what you really
need to show is:

1. Compute the eigenvalues of the covariance matrix I', which is 0 and 1 /n with geometric
multiplicity 1 and n — 1, respectively.

2. I' is a real symmetric matrix; thus it can be unitarily diagonalizable, i.e., there exists an
orthonormal basis diagonalizing I'.

3. The above two also means that the eigenspace corresponding to the eigenvalue 0 and
the one corresponding to 1/n are orthogonal.

For more information and the origin of the interest of this process, please read my own paper
[1], [8], [7], and references therein.

Problem 3: Everyone got Part (a) correct. However, many people did Part (b) unsatisfactorily.
Many people simply substituted ¢ () = v/2sin(knt) into the integral equation, computing
the eigenvalues, and claimed they are the eigenfunctions. With this argument, you cannot
be sure whether there exists other eigenfunctions. The correct argument is to derive the
eigenvalue problem in the ordinary differential equation from the integral equation, that is:
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Now, differentiating both sides with respect to ¢ leads to the following ODE:

#(t) = 5001

The boundary condition can be derived by setting ¢ = 0 and ¢ = 1 in the above integral
equation. It turns out to be the Dirichlet boundary condition:

From these, we can derive the desired solution.



For Part (c), some people used svd instead of eig and claimed that svd gave them better
or closer eigenvectors to the analytical ones compared to eig. OK, why does this happen?
It’s a good exercise to think about it!

Also, note that the eigenvectors are not always uniquely determined for a given matrix. There
is always an uncertainty about its signum. In other words, if ¢ is an eigenvector, you may
get —¢ depending on what software package you use.

For more information about this stochastic process, please read the following papers [2], [3],
(5, p. 191, [9].

Problem 4: Here, I would like to point out the two major mistakes several people made.

e Several people treated each face as a matrix, and a set of faces as 3D array, which make
many procedures and computations more cumbersome than necessary. It is much eas-
ier on MATLAB to treat each face as a vector of length 1282 and a training dataset as
a matrix of size 1282 x 72. Then you can always convert a resulting vector after pro-
cessing (e.g., reconstruction or approximation) as a matrix by the reshape command,
which you can use to display as a face.

e Suppose X is a training dataset (matrix) of size 1282 x 72. Many people computed the
mean or the average face either by mean (X’ )’ or sum (X’ )’ /N, but you can do this
by one shot: mean (X, 2), which immediately gives you the average face.

e If you use the function DCTMTX, then specifying the lowest 72 frequency DCT coef-
ficients are trickier than using DCT2. Several people used 722 = 5184 coefficients.
That’s why the DCT reconstructions were so good for some of you.

e Suppose X is the data matrix after subtracting the mean column vector (i.e., the mean

face) from each column vector. X can be quickly computed by the following MATLAB
construct: X-mean (X, 2) xones (1,N) or X—-repmat (mean (X, 2),1,N).
Now, the sample covariance matrix is I' = (1/N)X XT. (Note that several people
forgot the factor 1/N = 1/72 here.) Then, suppose the SVD of TisT = UsVT.
Then, as I mentioned in the class, (1/v/N)XV provides the first N KLB vectors of
T. But you need to be careful. The column vectors of (1/v/N)XV are orthogonal but
clearly not orthonormal! In order to make it orthonormal, you need to divide the kth
column vector by o, or the norm of that column.
Another simple way to compute the top N KLB is to use the MATLAB function svds
as follows: [U, S, V] = svds(Xtilde/sqgrt (N), N); where Xtilde rep-
resents X in MATLAB of course. Then, the column vectors of U is the KLLB, which
are orthonormal.

e It is very important to know that the MATLAB eig function sorts the eigenvalues and
eigenvectors in the increasing order, i.e., from the smallest to the largest. Thus, to use
the top k KLB vectors means that you need to use the last £ KLLB vectors in the KLB
matrix if you do not reorder it immediately after getting it from eig. That is why the



relative ¢? curves for KLT were worse than those of DCT for some of you. For those
of you made that mistake, I would strongly suggest that you recompute the error curve
and plot against those of the DCT!

e Suppose )?recon be the reconstructed or approximated version of X. Then, the relative
¢? error of the kth face is defined as
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from which you can compute the average error easily by mean (Relerr).

e The other thing I want to point out is that one should use the inverse transform routines
to compute the basis functions. Note that if the input signal is one of the basis func-
tions/vectors, then the output is one of the standard basis vector. This means that if you
apply the inverse transform to the identity matrix, you get all the basis functions. Thus,
use IDCT2 to compute the DCT basis vectors! That’s much faster and nicer than the
code segments some of you wrote.

e Finally, the most important thing I wanted to convey to you by this problem is the
following: The KLB is an excellent tool for compressing the training dataset, but not
necessarily for the test dataset unless the covariance matrix of the test dataset is the
same as or very close to that of the training dataset. With a relatively small number of
the signals in the training and test datasets, this usually won’t happen. On the contrary,
the DCT performs on both the training and test datasets in the same way. There should
be no essential difference between its performance on the training dataset and that on
the test dataset.

For more information about this dataset, please read the following papers [4], [6].
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