Problem 2: Everyone got Part (a) correct. However, to show the claim of Part (b), what you really need to show is:

1. Compute the eigenvalues of the covariance matrix Γ, which is 0 and $1/n$ with geometric multiplicity 1 and $n-1$, respectively.
2. Γ is a real symmetric matrix; thus it can be *unitarily* diagonalizable, i.e., there exists an orthonormal basis diagonalizing Γ.
3. The above two also means that the eigenspace corresponding to the eigenvalue 0 and the one corresponding to $1/n$ are orthogonal.

For more information and the origin of the interest of this process, please read my own paper [1], [8], [7], and references therein.

Problem 3: Everyone got Part (a) correct. However, many people did Part (b) unsatisfactorily. Many people simply substituted $\phi_k(t) = \sqrt{2} \sin(k\pi t)$ into the integral equation, computing the eigenvalues, and claimed they are the eigenfunctions. With this argument, you cannot be sure whether there exists other eigenfunctions. The correct argument is to derive the eigenvalue problem in the ordinary differential equation from the integral equation, that is:

$$\lambda \phi(t) = \int_0^1 \Gamma(t, s) \phi(s) \, ds$$

$$= \int_0^1 (\min(t, s) - ts) \phi(s) \, ds$$

$$= \int_0^t (s - ts) \phi(s) \, ds + \int_t^1 (t - ts) \phi(s) \, ds$$

$$= \int_0^t s \phi(s) \, ds - t \int_0^t s \phi(s) \, ds + t \int_t^1 (1 - s) \phi(s) \, ds$$

Now, differentiating both sides with respect to t leads to the following ODE:

$$\phi''(t) = -\frac{1}{\lambda} \phi(t)$$

The boundary condition can be derived by setting $t = 0$ and $t = 1$ in the above integral equation. It turns out to be the *Dirichlet* boundary condition:

$$\phi(0) = \phi(1) = 0.$$

From these, we can derive the desired solution.
For Part (c), some people used \texttt{svd} instead of \texttt{eig} and claimed that \texttt{svd} gave them better or closer eigenvectors to the analytical ones compared to \texttt{eig}. OK, why does this happen? It’s a good exercise to think about it!

Also, note that the eigenvectors are not always uniquely determined for a given matrix. There is always an uncertainty about its signum. In other words, if \(\phi \) is an eigenvector, you may get \(-\phi\) depending on what software package you use.

For more information about this stochastic process, please read the following papers [2], [3], [5, p. 19], [9].

Problem 4: Here, I would like to point out the two major mistakes several people made.

- Several people treated each face as a matrix, and a set of faces as 3D array, which make many procedures and computations more cumbersome than necessary. It is much easier on MATLAB to treat each face as a vector of length 128\(^2\) and a training dataset as a matrix of size 128\(^2\) \(\times\) 72. Then you can always convert a resulting vector after processing (e.g., reconstruction or approximation) as a matrix by the \texttt{reshape} command, which you can use to display as a face.

- Suppose \(X \) is a training dataset (matrix) of size 128\(^2\) \(\times\) 72. Many people computed the mean or the average face either by \texttt{mean}(\(X' \)') or \texttt{sum}(\(X' \)') \(\div\) \(N \), but you can do this by one shot: \texttt{mean}(\(X \), 2), which immediately gives you the average face.

- If you use the function \texttt{DCTMTX}, then specifying the lowest 72 frequency DCT coefficients are trickier than using \texttt{DCT2}. Several people used 72\(^2\) \(=\) 5184 coefficients. That’s why the DCT reconstructions were so good for some of you.

- Suppose \(\tilde{X} \) is the data matrix after subtracting the mean column vector (i.e., the mean face) from each column vector. \(\tilde{X} \) can be quickly computed by the following MATLAB construct: \texttt{X-mean(X,2)*ones(1,N) or X-repmat(mean(X,2),1,N)}.

Now, the sample covariance matrix is \(\hat{\Gamma} \overset{\triangle}{=} \left(\frac{1}{N} \right) \tilde{X} \tilde{X}^T \). (Note that several people forgot the factor \(1/N = 1/72 \) here.) Then, suppose the SVD of \(\hat{\Gamma} \) is \(\hat{\Gamma} = U \Sigma V^T \).

Then, as I mentioned in the class, \((1/\sqrt{N}) \tilde{X} V \) provides the first \(N \) KLB vectors of \(\hat{\Gamma} \). But you need to be careful. The column vectors of \((1/\sqrt{N}) \tilde{X} V \) are orthogonal but clearly not orthonormal! In order to make it orthonormal, you need to divide the \(k \)th column vector by \(\sigma_k \) or the norm of that column.

Another simple way to compute the top \(N \) KLB is to use the MATLAB function \texttt{svds} as follows: \([U, S, V] = \texttt{svds}(\texttt{Xtilde/sqrt(N)}, N) \); where \texttt{Xtilde} represents \(\tilde{X} \) in MATLAB of course. Then, the column vectors of \(U \) is the KLB, which are orthonormal.

- It is very important to know that the MATLAB \texttt{eig} function sorts the eigenvalues and eigenvectors in the *increasing order*, i.e., from the smallest to the largest. Thus, to use the top \(k \) KLB vectors means that you need to use the last \(k \) KLB vectors in the KLB matrix if you do not reorder it immediately after getting it from \texttt{eig}. That is why the
relative ℓ^2 curves for KLT were worse than those of DCT for some of you. For those of you made that mistake, I would strongly suggest that you recompute the error curve and plot against those of the DCT!

- Suppose \tilde{X}_{recon} be the reconstructed or approximated version of \tilde{X}. Then, the relative ℓ^2 error of the kth face is defined as

$$\text{Relerr}(k) = \frac{\|\tilde{X}(\cdot, k) - \tilde{X}_{\text{recon}}(\cdot, k)\|}{\|\tilde{X}(\cdot, k)\|}, \quad k = 1, \ldots, N,$$

from which you can compute the average error easily by mean(Releer).

- The other thing I want to point out is that one should use the inverse transform routines to compute the basis functions. Note that if the input signal is one of the basis functions/vectors, then the output is one of the standard basis vector. This means that if you apply the inverse transform to the identity matrix, you get all the basis functions. Thus, use IDCT2 to compute the DCT basis vectors! That’s much faster and nicer than the code segments some of you wrote.

- Finally, the most important thing I wanted to convey to you by this problem is the following: The KLB is an excellent tool for compressing the training dataset, but not necessarily for the test dataset unless the covariance matrix of the test dataset is the same as or very close to that of the training dataset. With a relatively small number of the signals in the training and test datasets, this usually won’t happen. On the contrary, the DCT performs on both the training and test datasets in the same way. There should be no essential difference between its performance on the training dataset and that on the test dataset.

For more information about this dataset, please read the following papers [4], [6].

References

