Properties of Graph Laplacian Eigenvalues

Algebraic Connectivity $a(G) := \lambda_1(G)$

Wiener Index
1. Properties of Graph Laplacian Eigenvalues

2. Algebraic Connectivity $a(G) := \lambda_1(G)$

3. Wiener Index
In this lecture, we only consider **undirected** and **unweighted** graphs and their **unnormalized** Laplacians \(L(G) = D(G) - A(G) \).

It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.

Let \(|V(G)| = n, |E(G)| = m \), and assign each edge an arbitrary orientation to turn \(G \) into a directed graph temporarily. Then let us define the **directed incidence matrix** \(R = R(G) = (r_{ij}) \in \mathbb{R}^{n \times m} \) of \(G \) by

\[
 r_{ij} = \begin{cases}
 1 & \text{if } e_j = [v_i', v_i] \text{ for some } i'; \\
 -1 & \text{if } e_j = [v_i, v_i'] \text{ for some } i'; \\
 0 & \text{otherwise.}
 \end{cases}
\]

Then, we can show that \(L(G) = R(G)R(G)^\top \); hence it is **positive semi-definite**. Note that \(L(G) \) is orientation independent.
In this lecture, we only consider **undirected** and **unweighted** graphs and their **unnormalized** Laplacians $L(G) = D(G) - A(G)$.

It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.

Let $|V(G)| = n$, $|E(G)| = m$, and assign each edge an arbitrary orientation to turn G into a directed graph temporarily. Then let us define the directed incidence matrix $R = R(G) = (r_{ij}) \in \mathbb{R}^{n \times m}$ of G by

$$r_{ij} = \begin{cases}
1 & \text{if } e_j = [v_{i'}, v_i] \text{ for some } i'; \\
-1 & \text{if } e_j = [v_i, v_{i'}] \text{ for some } i'; \\
0 & \text{otherwise}.
\end{cases}$$

Then, we can show that $L(G) = R(G)R(G)^T$; hence it is **positive semi-definite**. Note that $L(G)$ is orientation independent.
In this lecture, we only consider **undirected** and **unweighted** graphs and their **unnormalized** Laplacians \(L(G) = D(G) - A(G) \).

It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.

Let \(|V(G)| = n, |E(G)| = m\), and assign each edge an arbitrary orientation to turn \(G \) into a directed graph temporarily. Then let us define the **directed incidence matrix** \(R = R(G) = (r_{ij}) \in \mathbb{R}^{n \times m} \) of \(G \) by

\[
 r_{ij} = \begin{cases}
 1 & \text{if } e_j = [v_i', v_i] \text{ for some } i' ; \\
 -1 & \text{if } e_j = [v_i, v_i'] \text{ for some } i' ; \\
 0 & \text{otherwise} .
 \end{cases}
\]

Then, we can show that \(L(G) = R(G)R(G)^T \); hence it is **positive semi-definite**. Note that \(L(G) \) is orientation independent.
In this lecture, we only consider **undirected** and **unweighted** graphs and their **unnormalized** Laplacians \(L(G) = D(G) - A(G) \).

It is your exercise to see how the statements change for the normalized or symmetrically-normalized graph Laplacians.

Let \(|V(G)| = n\), \(|E(G)| = m\), and assign each edge an arbitrary orientation to turn \(G \) into a directed graph temporarily. Then let us define the **directed incidence matrix** \(R = R(G) = (r_{ij}) \in \mathbb{R}^{n \times m} \) of \(G \) by

\[
 r_{ij} = \begin{cases}
 1 & \text{if } e_j = [v_{i'}, v_i] \text{ for some } i'; \\
 -1 & \text{if } e_j = [v_i, v_{i'}] \text{ for some } i'; \\
 0 & \text{otherwise.}
\end{cases}
\]

Then, we can show that \(L(G) = R(G)R(G)^T \); hence it is **positive semi-definite**. Note that \(L(G) \) is orientation independent.
Hence, we can sort the eigenvalues of $L(G)$ as $0 = \lambda_0(G) \leq \lambda_1(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalue by $\Lambda(G)$.

- $m_G(\lambda) :=$ the multiplicity of λ.
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}$.
Hence, we can sort the eigenvalues of $L(G)$ as $0 = \lambda_0(G) \leq \lambda_1(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalue by $\Lambda(G)$.

$m_G(\lambda) :=$ the multiplicity of λ.

Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}$.
Hence, we can sort the eigenvalues of $L(G)$ as $0 = \lambda_0(G) \leq \lambda_1(G) \leq \cdots \leq \lambda_{n-1}(G)$ and denote the set of these eigenvalue by $\Lambda(G)$.

$m_G(\lambda) :=$ the multiplicity of λ.

Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}$.
Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_1 and G_2 are isomorphic iff there exists a permutation matrix P such that

$$L(G_2) = P^T L(G_1) P.$$

rank $L(G) = n - m_G(0)$ where $m_G(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_G(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

In particular, $\lambda_1 \neq 0$ iff G is connected.

This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G) := \lambda_1(G)$, viewing it as a quantitative measure of connectivity.
Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_1 and G_2 are isomorphic iff there exists a permutation matrix P such that

$$L(G_2) = P^T L(G_1) P.$$

$\text{rank } L(G) = n - m_G(0)$ where $m_G(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_G(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

In particular, $\lambda_1 \neq 0$ iff G is connected.

This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G) := \lambda_1(G)$, viewing it as a quantitative measure of connectivity.
Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_1 and G_2 are isomorphic iff there exists a permutation matrix P such that

$$L(G_2) = P^T L(G_1) P.$$

$\text{rank } L(G) = n - m_G(0)$ where $m_G(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_G(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

In particular, $\lambda_1 \neq 0$ iff G is connected.

This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G) := \lambda_1(G)$, viewing it as a quantitative measure of connectivity.
Graph Laplacian matrices of the same graph are permutation-similar. In fact, graphs G_1 and G_2 are isomorphic iff there exists a permutation matrix P such that

$$L(G_2) = P^T L(G_1) P.$$

$\text{rank } L(G) = n - m_G(0)$ where $m_G(0)$ turns out to be the number of connected components of G. Easy to check that $L(G)$ becomes $m_G(0)$ diagonal blocks, and the eigenspace corresponding to the zero eigenvalues is spanned by the indicator vectors of each connected component.

In particular, $\lambda_1 \neq 0$ iff G is connected.

This led M. Fiedler (1973) to define the algebraic connectivity of G by $a(G) := \lambda_1(G)$, viewing it as a quantitative measure of connectivity.
Denote the complement of G (in K_n) by G^c. Then, we have

$$L(G) + L(G^c) = L(K_n) = nI_n - J_n,$$

where J_n is the $n \times n$ matrix whose entries are all 1.

We also have:

$$\Lambda(G^c) = \{0, n - \lambda_{n-1}(G), n - \lambda_{n-2}(G), \ldots, n - \lambda_1(G)\}.$$
Denote the complement of G (in K_n) by G^c.

The Petersen graph and its complement in K_{10} (from Wikipedia)

Then, we have

$$L(G) + L(G^c) = L(K_n) = nl_n - J_n,$$

where J_n is the $n \times n$ matrix whose entries are all 1.

We also have:

$$\Lambda(G^c) = \{0, n - \lambda_{n-1}(G), n - \lambda_{n-2}(G), \ldots, n - \lambda_1(G)\}.$$
Denote the complement of G (in K_n) by G^c.

The Petersen graph and its complement in K_{10} (from Wikipedia)

Then, we have

$$L(G) + L(G^c) = L(K_n) = nl_n - J_n,$$

where J_n is the $n \times n$ matrix whose entries are all 1.

We also have:

$$\Lambda(G^c) = \{0, n - \lambda_{n-1}(G), n - \lambda_{n-2}(G), \ldots, n - \lambda_1(G)\}.$$
From the above, we can see that

$$\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \leq n,$$

and $$m_G(n) = m_{G^c}(0) - 1.$$

On the other hand, Grone and Merris showed in 1994

$$\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \geq \max_{1 \leq j \leq n} d_j + 1.$$

Let $$G$$ be a connected graph and suppose $$L(G)$$ has exactly $$k$$ distinct eigenvalues. Then

$$\text{diam}(G) \leq k - 1.$$
From the above, we can see that

\[\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \leq n, \]

and \(m_G(n) = m_{G^c}(0) - 1 \).

On the other hand, Grone and Merris showed in 1994

\[\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \geq \max_{1 \leq j \leq n} d_j + 1. \]

Let \(G \) be a connected graph and suppose \(L(G) \) has exactly \(k \) distinct eigenvalues. Then

\[\text{diam}(G) \leq k - 1. \]
From the above, we can see that

\[\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \leq n, \]

and \(m_{G}(n) = m_{G^c}(0) - 1 \).

On the other hand, Grone and Merris showed in 1994

\[\lambda_{\text{max}}(G) = \lambda_{n-1}(G) \geq \max_{1 \leq j \leq n} d_j + 1. \]

Let \(G \) be a connected graph and suppose \(L(G) \) has exactly \(k \) distinct eigenvalues. Then

\[\text{diam}(G) \leq k - 1. \]
Now define a **cut vertex** by any vertex that increases the number of connected components of G when removed.

The vertices with mixed color are the cut vertices here (from Wikipedia).

Let u be a cut vertex of the connected graph G. If the largest component of $G \setminus \{u\}$ contains k vertices, then $\lambda_{n-2}(G) \leq k + 1$.
Now define a cut vertex by any vertex that increases the number of connected components of G when removed.

Let u be a cut vertex of the connected graph G. If the largest component of $G \setminus \{u\}$ contains k vertices, then $\lambda_{n-2}(G) \leq k + 1$.

The vertices with mixed color are the cut vertices here (from Wikipedia)
A vertex of degree 1 is called a **pendant** vertex; a vertex adjacent to a pendant vertex is called **pendant neighbor**.

Let $p(G)$ and $q(G)$ be the number of pendant vertices and that of pendant neighbors, respectively.

The number of pendant neighbors of G is bounded as:

$$p(G) - m_G(1) \leq q(G) \leq m_G(2, n],$$

where the second inequality holds if G is connected and satisfies $2q(G) < n$.
A vertex of degree 1 is called a **pendant** vertex; a vertex adjacent to a pendant vertex is called **pendant neighbor**.

Let $p(G)$ and $q(G)$ be the number of pendant vertices and that of pendant neighbors, respectively.

The number of pendant neighbors of G is bounded as:

$$p(G) - m_G(1) \leq q(G) \leq m_G(2, n],$$

where the second inequality holds if G is connected and satisfies $2q(G) < n$.
A vertex of degree 1 is called a **pendant** vertex; a vertex adjacent to a pendant vertex is called **pendant neighbor**.

Let $p(G)$ and $q(G)$ be the number of pendant vertices and that of pendant neighbors, respectively.

The number of pendant neighbors of G is bounded as:

$$p(G) - m_G(1) \leq q(G) \leq m_G(2, n],$$

where the second inequality holds if G is connected and satisfies $2q(G) < n$.
1. Properties of Graph Laplacian Eigenvalues

2. Algebraic Connectivity $a(G) := \lambda_1(G)$

3. Wiener Index
Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
- A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.
- The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.
- Similarly, we can define the k-edge-connectedness and the edge-connectivity $\epsilon(G)$.
Some Graph Operations

- G is said to be **k-vertex-connected** if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.

- A 1-vertex-connected graph is called **connected** while a 2-vertex-connected graph is said to be **biconnected**.

- The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.

- Similarly we can define the **k-edge-connectedness** and the **edge-connectivity** $\epsilon(G)$.
G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.

A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.

The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.

Similarly we can define the k-edge-connectedness and the edge-connectivity $\epsilon(G)$.
Some Graph Operations

- G is said to be k-vertex-connected if k is the size of the smallest subset of vertices such that the graph becomes disconnected if they are deleted.
- A 1-vertex-connected graph is called connected while a 2-vertex-connected graph is said to be biconnected.
- The vertex-connectivity $\kappa(G)$ of G is the largest k for which G is k-vertex-connected.
- Similarly we can define the k-edge-connectedness and the edge-connectivity $\epsilon(G)$.

saito@math.ucdavis.edu (UC Davis)
Some Graph Operations . . .

- The **Edge-union** \(G(V, E) \) of \(G_1(V, E_1) \) and \(G_2(V, E_2) \) is defined as \(E = E_1 \cup E_2 \) and \(V \) is common among \(G \), \(G_1 \), and \(G_2 \).

- The **Cartesian product** \(G = G_1 \times G_2 \) (or also written as \(G = G_1 \Box G_2 \)):

- \(G_1(V_1, E_1) \) and \(G_2(V_2, E_2) \) are said to be obtained from a **vertex decomposition** of \(G(V, E) \) if \(V = V_1 \cup V_2 \) and \(V_1 \cap V_2 = \emptyset \).

- If \(L(G) = \begin{bmatrix} L(G_1) & O \\ O & L(G_2) \end{bmatrix} \), then \(G \) is said to be the **direct sum** of \(G_1 \) and \(G_2 \) and written as \(G = G_1 \oplus G_2 \).
Some Graph Operations . . .

- The **Edge-union** $G(V, E)$ of $G_1(V, E_1)$ and $G_2(V, E_2)$ is defined as $E = E_1 \cup E_2$ and V is common among G, G_1, and G_2.

- The **Cartesian product** $G = G_1 \times G_2$ (or also written as $G = G_1 \square G_2$):

![Cartesian product diagram](image)

The Cartesian product of two graphs (from Wikipedia)

- $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are said to be obtained from a **vertex decomposition** of $G(V, E)$ if $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.

- If $L(G) = \begin{bmatrix} L(G_1) & O \\ O & L(G_2) \end{bmatrix}$, then G is said to be the **direct sum** of G_1 and G_2 and written as $G = G_1 \oplus G_2$.

saito@math.ucdavis.edu (UC Davis) | Graph Laplacian Eigenvalues | April 16, 2012 | 13 / 20
Some Graph Operations . . .

- The **Edge-union** $G(V, E)$ of $G_1(V, E_1)$ and $G_2(V, E_2)$ is defined as $E = E_1 \cup E_2$ and V is common among G, G_1, and G_2.

- The **Cartesian product** $G = G_1 \times G_2$ (or also written as $G = G_1 \Box G_2$):

The Cartesian product of two graphs (from Wikipedia)

- $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are said to be obtained from a **vertex decomposition** of $G(V, E)$ if $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.

- If $L(G) = \begin{bmatrix} L(G_1) & O \\ O & L(G_2) \end{bmatrix}$, then G is said to be the **direct sum** of G_1 and G_2 and written as $G = G_1 \oplus G_2$.

saito@math.ucdavis.edu (UC Davis) Graph Laplacian Eigenvalues April 16, 2012 13 / 20
The Edge-union $G(V, E)$ of $G_1(V, E_1)$ and $G_2(V, E_2)$ is defined as $E = E_1 \cup E_2$ and V is common among G, G_1, and G_2.

The Cartesian product $G = G_1 \times G_2$ (or also written as $G = G_1 \square G_2$):

$G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are said to be obtained from a vertex decomposition of $G(V, E)$ if $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.

If $L(G) = \begin{bmatrix} L(G_1) & O \\ O & L(G_2) \end{bmatrix}$, then G is said to be the direct sum of G_1 and G_2 and written as $G = G_1 \oplus G_2$.
<table>
<thead>
<tr>
<th>Operations</th>
<th>Relations of $a(G)$, $a(G_i)$, $i = 1, 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G^c</td>
<td>$a(G^c) = n - \lambda_{n-1}$</td>
</tr>
<tr>
<td>$G_1 = G \setminus {e}$</td>
<td>$a(G_1) \leq a(G)$</td>
</tr>
<tr>
<td>$G_1 = G \setminus {v_{i_1}, \ldots, v_{i_k}}$</td>
<td>$a(G) \leq a(G_1) + k$</td>
</tr>
<tr>
<td>$G_1 = G \cup {e}$</td>
<td>$a(G) \leq a(G_1) \leq a(G) + 2$</td>
</tr>
<tr>
<td>G: edge-union of G_1, G_2</td>
<td>$a(G_1) + a(G_2) = a(G)$</td>
</tr>
<tr>
<td>$G = G_1 \times G_2$</td>
<td>$a(G) = \min{a(G_1), a(G_2)}$</td>
</tr>
<tr>
<td>G_1, G_2: vertex decomposition of G</td>
<td>$a(G) \leq \min{a(G_1) +</td>
</tr>
<tr>
<td>$G = G_1 \oplus G_2$</td>
<td>$a(G_1) + a(G_2) \leq a(G_1 \oplus G_2)$</td>
</tr>
</tbody>
</table>
Algebraic Connectivities of Specific Graphs (de Abreu, 2007)

<table>
<thead>
<tr>
<th>Graph G</th>
<th>Algebraic Connectivity $a(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete graph K_n</td>
<td>$a(K_n) = n$</td>
</tr>
<tr>
<td>Path P_n</td>
<td>$a(P_n) = 2 \left(1 - \cos \frac{\pi}{n}\right)$</td>
</tr>
<tr>
<td>Cycle C_n</td>
<td>$a(C_n) = 2 \left(1 - \cos \frac{2\pi}{n}\right)$</td>
</tr>
<tr>
<td>Bipartite complete graph $K_{p,q}$</td>
<td>$a(K_{p,q}) = \min{p, q}$</td>
</tr>
<tr>
<td>Star $K_{1,q}$</td>
<td>$a(K_{1,q}) = 1$</td>
</tr>
<tr>
<td>Cube m-dimension Cb_m</td>
<td>$a(Cb_m) = 2$</td>
</tr>
<tr>
<td>Petersen Graph P</td>
<td>$a(P) = 2$</td>
</tr>
</tbody>
</table>
Fiedler showed in 1973 the following bounds to $a(G)$:

- For $G \neq K_n$, $a(G) \leq n - 2$;
- $2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j$;
- $2\epsilon(G) \left(1 - \cos \frac{\pi}{n}\right) \leq a(G)$;
- $2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n}\right) \kappa(G) - 2 \cos \frac{\pi}{n} \left(1 - \cos \frac{\pi}{n}\right) \max_j d_j \leq a(G)$.
Fiedler showed in 1973 the following bounds to \(a(G) \):

- For \(G \neq K_n \), \(a(G) \leq n - 2 \);
- \(2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j \);
- \(a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j \);
- \(2\epsilon(G) \left(1 - \cos \frac{\pi}{n} \right) \leq a(G) \);
- \(2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n} \right) \kappa(G) - 2 \cos \frac{\pi}{n} \left(1 - \cos \frac{\pi}{n} \right) \max_j d_j \leq a(G) \).
Fiedler showed in 1973 the following bounds to $a(G)$:

- For $G \neq K_n$, $a(G) \leq n - 2$;
- $2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j$;
- $2\epsilon(G) \left(1 - \cos \frac{\pi}{n}\right) \leq a(G)$;
- $2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n}\right) \kappa(G) - 2 \cos \frac{\pi}{n} \left(1 - \cos \frac{\pi}{n}\right) \max_j d_j \leq a(G)$.
Fiedler showed in 1973 the following bounds to $a(G)$:

- For $G \neq K_n$, $a(G) \leq n - 2$;
- $2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j$;
- $2\epsilon(G) \left(1 - \cos \frac{\pi}{n}\right) \leq a(G)$;
- $2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n}\right) \kappa(G) - 2 \cos \frac{\pi}{n} (1 - \cos \frac{\pi}{n}) \max_j d_j \leq a(G)$.
Fiedler showed in 1973 the following bounds to $a(G)$:

- For $G \neq K_n$, $a(G) \leq n - 2$;
- $2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j$;
- $2\epsilon(G) \left(1 - \cos \frac{\pi}{n}\right) \leq a(G)$;
- $2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n}\right) \kappa(G) - 2 \cos \frac{\pi}{n} \left(1 - \cos \frac{\pi}{n}\right) \max_j d_j \leq a(G)$.
Fiedler showed in 1973 the following bounds to $a(G)$:

- For $G \neq K_n$, $a(G) \leq n - 2$;
- $2 \min_j d_j - n + 2 \leq a(G) \leq \frac{n}{n-1} \min_j d_j$;
- $a(G) \leq \kappa(G) \leq \epsilon(G) \leq \min_j d_j$;
- $2\epsilon(G) \left(1 - \cos \frac{\pi}{n}\right) \leq a(G)$;
- $2 \left(\cos \frac{\pi}{n} - \cos \frac{2\pi}{n}\right) \kappa(G) - 2 \cos \frac{\pi}{n} \left(1 - \cos \frac{\pi}{n}\right) \max_j d_j \leq a(G)$.
A cycle is a connected graph where every vertex has exactly two neighbors.

A tree T is a connected graph without cycles.

Grone, Merris, and Sunder showed in 1990:

$$a(T) \leq 2 \left(1 - \cos \left(\frac{\pi}{\text{diam}(T) + 1}\right)\right).$$

They also showed: if $T \neq K_{1,n-1}$ with $n \geq 6$, then $a(T) < 0.49.$
Algebraic Connectivity of Trees

- **A cycle** is a connected graph where every vertex has exactly two neighbors.
- **A tree** T is a connected graph without cycles.
- Grone, Merris, and Sunder showed in 1990:

 \[a(T) \leq 2 \left(1 - \cos \left(\frac{\pi}{\text{diam}(T) + 1} \right) \right). \]

- They also showed: if $T \neq K_{1,n-1}$ with $n \geq 6$, then $a(T) < 0.49$.

saito@math.ucdavis.edu (UC Davis)

Graph Laplacian Eigenvalues

April 16, 2012 17 / 20
A cycle is a connected graph where every vertex has exactly two neighbors.

A tree T is a connected graph without cycles.

Grone, Merris, and Sunder showed in 1990:

$$a(T) \leq 2 \left(1 - \cos \left(\frac{\pi}{\text{diam}(T) + 1} \right) \right).$$

They also showed: if $T \neq K_{1,n-1}$ with $n \geq 6$, then $a(T) < 0.49$.
A cycle is a connected graph where every vertex has exactly two neighbors.

A tree T is a connected graph without cycles.

Grone, Merris, and Sunder showed in 1990:

$$a(T) \leq 2 \left(1 - \cos \left(\frac{\pi}{\text{diam}(T) + 1} \right) \right).$$

They also showed: if $T \neq K_{1,n-1}$ with $n \geq 6$, then $a(T) < 0.49$.
Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S := \{ e = (u,v) \in E(G) \mid u \in S, v \notin S \}$, which is called the boundary of S.
- The isoperimetric number of G is defined as
 $$i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \mid \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right\},$$
 which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.
- For $n \geq 4$, the isoperimetric number $i(G)$ satisfies
 $$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - a(G)\right) a(G)}.$$
Let $S \subset V(G)$ be a nonempty subset of vertices of G.

$\partial S := \{ e = (u, v) \in E(G) \mid u \in S, v \notin S \}$, which is called the boundary of S.

The isoperimetric number of G is defined as

\[
i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \mid \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right\},
\]

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

For $n \geq 4$, the isoperimetric number $i(G)$ satisfies

\[
i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - a(G)\right) a(G)}.
\]
Isoperimetric Number

- Let $S \subseteq V(G)$ be a nonempty subset of vertices of G.
- $\partial S := \{e = (u, v) \in E(G) | u \in S, v \notin S\}$, which is called the boundary of S.
- The isoperimetric number of G is defined as

$$i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \left| \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right. \right\},$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

- For $n \geq 4$, the isoperimetric number $i(G)$ satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - a(G) \right)} a(G).$$
Isoperimetric Number

- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- $\partial S := \{ e = (u, v) \in E(G) \mid u \in S, v \notin S \}$, which is called the boundary of S.
- The isoperimetric number of G is defined as

$$i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \left| \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right. \right\},$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.
- For $n \geq 4$, the isoperimetric number $i(G)$ satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - a(G) \right) a(G)}.$$
Outline

1. Properties of Graph Laplacian Eigenvalues

2. Algebraic Connectivity \(a(G) := \lambda_1(G) \)

3. Wiener Index
The distance matrix $\Delta(G)$ of G represents “distances” among the vertices, i.e., $\Delta(G)_{i,j} = d(v_i, v_j)$ is the length (or cost) of the shortest path from vertex v_i to vertex v_j.

The Wiener index\(^1\) $W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.

The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, . . .) of the corresponding molecule/material.

Let G be a tree. Then

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

\(^1\)proposed by Harry Wiener of Brooklyn College in 1947
The distance matrix $\Delta(G)$ of G represents “distances” among the vertices, i.e., $\Delta(G)_{i,j} = d(v_i, v_j)$ is the length (or cost) of the shortest path from vertex v_i to vertex v_j.

The Wiener index\(^1\) $W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.

The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

Let G be a tree. Then

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

\(^1\) proposed by Harry Wiener of Brooklyn College in 1947
Wiener Index

- The distance matrix $\Delta(G)$ of G represents “distances” among the vertices, i.e., $\Delta(G)_{i,j} = d(v_i, v_j)$ is the length (or cost) of the shortest path from vertex v_i to vertex v_j.

- The Wiener index $W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.

- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

- Let G be a tree. Then

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

1 proposed by Harry Wiener of Brooklyn College in 1947
Wiener Index

- The distance matrix $\Delta(G)$ of G represents “distances” among the vertices, i.e., $\Delta(G)_{i,j} = d(v_i, v_j)$ is the length (or cost) of the shortest path from vertex v_i to vertex v_j.

- The Wiener index1 $W(G)$ of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.

- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, . . .) of the corresponding molecule/material.

- Let G be a tree. Then

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

1 proposed by Harry Wiener of Brooklyn College in 1947