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The basic reference for this lecture is [1, Sec.10.1].

1 Wave Equation and Heat Equation
Consider a bounded domain Q C R, d=2,3,---.
wave equation heat equation
uy =c2Au inQ  w=kAu in

with one of the three boundary conditions (BC) on 0€2:

u =0 (D) u=20 (D)
ou ou
85—0 (N) 85—0 (N)
M iau=0 ® iau=0 ®
ov ov

with initial conditions (IC):

w(@,0) = f(x)  u(z,0) = f(z)
Ut(mao) :g(m) ut(iB,O) :g(w)'

ey

2)

3)



The abbreviations for the boundary conditions used here are: Dirichlet (D), Neu-
mann (N), Robin (R). For the Robin BC, a is a constant.

We use the method of separation of variables and set u(x,t) = T'(¢)v(x), which
leads to the following equations

T B Av

From wave equation: = = -\
2T v
/ 4)
From heat equati I _dv_
rom heat equation: -— = — = —\.
q kT )

Later in this lecture we will show that A > 0, for at least either (D), (N), or (R) in
(2) is satisfied.

Regardless of whether we consider the heat or the wave equation, we reach

—Av=M\v in € )

where v satisfies either (D), (N), or (R).
Lots of mathematics are involved to prove that the set of A satisfying (5) is dis-
crete, i.e., A, A9, - - -, and there exist the corresponding eigenfunctions ¢, (o, - - -
that are mutually orthogonal. We’ll cover those math later, but at this point, we

assume the existence of Ay, Ao, -+ and 1, @9, ---. Once we have the eigenpairs
{(A\n, ©n)}5°,, we can write the solutions for (1) as

wave equation: u(x,t) = > oo | [A, cos(v/Anct) + By sin(v/Act)] on ()
heat equation:  u(x,t) => Ape kg, (x)
(6)

where A,, and B,, are appropriate constants.

Preliminary: some important formulas used in the following sections:

/QV~fd:I::/mV-de,

v is normal vector and d.S is a surface measure on Of).

e Divergence Theorem

e Green’s first identity (G1): For u,v € C%(Q),

/uAvdm+/Vu-Vvdm: u@dS.
Q 0 oo OV



e Green’s second identity (G2): For u,v € C?(Q),

ov ou
/Q(UAU —vAu)dx = /asz (ua — U%> ds.

e The definition of the directional derivative along v:

0 a

N v-V (7

2 Orthogonality of the Eigenfunctions

Define the inner-product
(f,q9) 2 / f(x)g(x)da, where Q € RY, dx = da;dz,... dug.
Q

Consider two functions u,v € C2%(Q), with Q = QJ99Q, (C? condition can be
weakened), we have

uAv — (Au)v =V - [uVv — (Vu)v].
Then integrate both sides in 2:
/(uAv — (Au)v)de = /V [uVo — (Vu)v] de
Q Q
@ / v [uVv — (Vu)v]dS (8)
)
© / <u@ - v@) ds,
90 ov ov
where (a) is derived by divergence theorem, and (b) is from the definition (7).
Now we can show that any u,v € C?(Q) satisfying either (D), (N), or (R) also

satisfy
(u, Avy = (Au, v).

Proof. Equation (8) is equivalent to

ov ou
(u, Av) — (Au,v) = /BQ (ua — 05) ds.
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If u and v satisfy (D) or (N), it is obvious that the above is equal to 0.
If u and v satisfy (R), we get
u— —v— = u(—av) — v(—au) = 0.
O

Therefore each of these three classical BC’s is symmetric. Suppose both u, v are
real eigenfunctions satisfying

—Au = \u, —Av = My

and satisfying either (D), (N), or (R). Then Ay, A, are reals, and if A; # Ao, then
(u,v) = 0.

Proof.
/\1 <U, U>

which implies (A\; — A1) ||u||2 = 0. Since ||u|s # 0, \; = A\; < A\, € R. Similarly,
A (u, v) — Xo(u,v) = (Au,v) — (u, Av)
= (—Au,v) — (u, —Av)
= (u,—Av) — (u, —Av)
=0
which implies (A — A2){u,v) = 0. Since \; # g, (u,v) = 0. O

We summarize the information above with the following theorem.

Theorem 2.1. In the eigenvalue problem (5), we have the following facts:

all the eigenvalues are real

the eigenfunctions can be chosen to be real-valued

the eigenfunctions corresponding to distinct eigenvalues are necessarily or-
thogonal

all the eigenfunctions can be chosen to be orthogonal, i.e., orthonormal.
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3 Multiplicity of the Eigenvalues

Definition 3.1. An eigenvalue \ has multiplicity m if it has m linearly indepen-
dent eigenfunctions. The eigenspace E) is a linear space spanned by the set of
eigenfunctions corresponding to A. So, in this case dim(F)) = m.

Notice: if dim(E)) = m, and E, = span{wy, ..., wy, }, but (w;, w;) # §;;, then
we can use the Gram-Schmidt orthogonalization method to get

E)\ = Span{gpl, "'7(;0771}7 with <S0u SDJ> = 0O4j-

4 Generalized Fourier Series

Because of the Theorem 2.1, we have for f € L*(Q)

f(m) :an¢n(m)a Jn= <f790n>'

This is a generalization of the Fourier series, and we can discuss the decay of

{fn}, etc.

Theorem 4.1. As in (5), let i, be the Dirichlet-Laplacian eigenvalues, let vy, be
the Neumann-Laplacian eigenvalues, and let py. be the Robin-Laplacian eigenval-
ues, where k € N. Then

M >0, v >0, and pr >0, ifa>0.

Proof. Let u and v are corresponding eigenfunctions. Use Green’s first identity

(G1):
/uAvdm—l—/Vu-Vvdm— u@dS,
Q Q oq OV

Set v = u,

/uAud:c+/|Vu|2da:: u@ds,
Q Q o0 OV

For the boundary condition (D),

Vul?d
/u(—)\u)dw+/|Vu|2da::0 = /\:MZO
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But |[Vu|? # 0. Since if so, u = const, then v = 0, which conflicts with the fact
that v is eigenfunction. Therefore, A > 0.

For the boundary condition (N),

B Jo |Vul?dx
v Jqurde ~

Here |[Vu|? = 0 is acceptable, i.e., u = const # 0. Then v > 0, where v = 0
corresponds to the eigenfunction o (x) = const # 0.

For the boundary condition (R), we have

—p/\u|2dw+/\Vu\2dw:/ u(—au)dS
Q 0 00

A fyqlulPdS + [ [Vul* de
B Jo lul? d

= p > 0, ifa > 0.

5 Completeness of {0, },cy in the L?-sense

See [2, Sec.3.3-3.4] and [3, Chapter 4] for the elementary discussion on the com-
pleteness of a set of basis in L?(12).

For all f € L?(Q), we have

N
Hf - an(pn

— 0, as N — oo.

L2

Equivalently,

f= Z fnon in the L? sense.
n=1

This is important because if it were not the case, we could not represent arbitrary
L?(2) function in terms of {, },en. We will discuss more about the complete-
ness later.



Example: Diffusion in a 3D cube.
LetQ=Q ={(z,y,2)|0<z<mO0<y<m 0<z<7}

DE: w; =kAu in Q)
BC: u=0 on 0f)
IC: u=f(zx) z€Q, t=0

Then by the separation of variables, let u(x,t) = T'(t) - v(x) as before, we have
—Av=X inQ, with v =0 on 0Q.

Because the sides of () are parallel to the axes, one can do the separation of vari-

ables again.
v(z,y,2) = X(2)Y (y)Z(2)

Therefore, we can solve v(x,y, z) for (I, m,n) € N3,

v(x,y,z) = sin(lz)sin(my)sin(nz)
= Ul,m,n(m)
whose orthonormal version is (2)3/2
Then

sin(lz) sin(my) sin(nz).
A= XNmn = 2+ m?+n?
Finally we get the solution

u(x,t) = Z Apne”EFm 08 gin (1) sin(my) sin(nz)

Im,n
where A; ., = (%)3<f, Vimn)-

Here, different values for [, m, n can result in the same eigenvalue. For example,
A = 27. The valid values for (I, m,n) are (5,1, 1), (1,5,1), (1,1,5), and (3, 3, 3).
In other words, the multiplicity of A = 27 is four.

7



References

[1] W. A. STRAUSS, Partial Differential Equations: An Introduction, John Wi-
ley & Sons, 1992.

[2] G. B. FOLLAND, Fourier Analysis and Its Applications, Brooks/Cole, 1992.

[3] N. YOUNG, An Introduction to Hilbert Space, Cambridge Univ. Press, 1988.



