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The basic reference for this lecture is [1, Sec.10.1].

1 Wave Equation and Heat Equation
Consider a bounded domain Ω ⊂ Rd, d = 2, 3, · · · .

wave equation heat equation

utt = c2∆u in Ω ut = k∆u in Ω
(1)

with one of the three boundary conditions (BC) on ∂Ω:

u = 0 (D) u = 0 (D)

∂u

∂ν
= 0 (N)

∂u

∂ν
= 0 (N)

∂u

∂ν
+ au = 0 (R)

∂u

∂ν
+ au = 0 (R)

(2)

with initial conditions (IC):

u(x, 0) = f(x) u(x, 0) = f(x)

ut(x, 0) = g(x) ut(x, 0) = g(x).
(3)
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The abbreviations for the boundary conditions used here are: Dirichlet (D), Neu-
mann (N), Robin (R). For the Robin BC, a is a constant.

We use the method of separation of variables and set u(x, t) = T (t)v(x), which
leads to the following equations

From wave equation:
T ′′

c2T
=

∆v

v
= −λ.

From heat equation:
T ′

kT
=

∆v

v
= −λ.

(4)

Later in this lecture we will show that λ ≥ 0, for at least either (D), (N), or (R) in
(2) is satisfied.

Regardless of whether we consider the heat or the wave equation, we reach

−∆v = λv in Ω
where v satisfies either (D), (N), or (R). (5)

Lots of mathematics are involved to prove that the set of λ satisfying (5) is dis-
crete, i.e., λ1, λ2, · · · , and there exist the corresponding eigenfunctions ϕ1, ϕ2, · · ·
that are mutually orthogonal. We’ll cover those math later, but at this point, we
assume the existence of λ1, λ2, · · · and ϕ1, ϕ2, · · · . Once we have the eigenpairs
{(λn, ϕn)}∞n=1, we can write the solutions for (1) as

wave equation: u(x, t) =
∑∞

n=1

[
An cos(

√
λnct) + Bn sin(

√
λnct)

]
ϕn(x)

heat equation: u(x, t) =
∑∞

n=1 Ane−λnktϕn(x)
(6)

where An and Bn are appropriate constants.

Preliminary: some important formulas used in the following sections:

• Divergence Theorem
∫

Ω

∇ · f dx =

∫

∂Ω

ν · f dS,

ν is normal vector and dS is a surface measure on ∂Ω.

• Green’s first identity (G1): For u, v ∈ C2(Ω),
∫

Ω

u∆v dx +

∫

Ω

∇u · ∇v dx =

∫

∂Ω

u
∂v

∂ν
dS.
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• Green’s second identity (G2): For u, v ∈ C2(Ω),
∫

Ω

(u∆v − v∆u) dx =

∫

∂Ω

(
u

∂v

∂ν
− v

∂u

∂ν

)
dS.

• The definition of the directional derivative along ν:

∂

∂ν
∆
= ν · ∇ (7)

2 Orthogonality of the Eigenfunctions
Define the inner-product

〈f, g〉 ∆
=

∫

Ω

f(x)g(x) dx, where Ω ∈ Rd, dx = dx1 dx2 . . . dxd.

Consider two functions u, v ∈ C2(Ω), with Ω = Ω
⋃

∂Ω, (C2 condition can be
weakened), we have

u∆v − (∆u)v = ∇ · [u∇v − (∇u)v].

Then integrate both sides in Ω:
∫

Ω

(u∆v − (∆u)v) dx =

∫

Ω

∇ · [u∇v − (∇u)v] dx

(a)
=

∫

∂Ω

ν · [u∇v − (∇u)v] dS

(b)
=

∫

∂Ω

(
u

∂v

∂ν
− v

∂u

∂ν

)
dS,

(8)

where (a) is derived by divergence theorem, and (b) is from the definition (7).

Now we can show that any u, v ∈ C2(Ω) satisfying either (D), (N), or (R) also
satisfy

〈u, ∆v〉 = 〈∆u, v〉.
Proof. Equation (8) is equivalent to

〈u,∆v〉 − 〈∆u, v〉 =

∫

∂Ω

(
u

∂v

∂ν
− v

∂u

∂ν

)
dS.
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If u and v satisfy (D) or (N), it is obvious that the above is equal to 0.
If u and v satisfy (R), we get

u
∂v

∂ν
− v

∂u

∂ν
= u(−av)− v(−au) = 0.

Therefore each of these three classical BC’s is symmetric. Suppose both u, v are
real eigenfunctions satisfying

−∆u = λ1u, −∆v = λ2v

and satisfying either (D), (N), or (R). Then λ1, λ2 are reals, and if λ1 6= λ2, then
〈u, v〉 = 0.

Proof.

λ1〈u, u〉 = 〈λ1u, u〉
= 〈−∆u, u〉
= 〈u,−∆u〉
= 〈u, λ1u〉
= λ1〈u, u〉,

which implies (λ1−λ1)‖u‖2
2 = 0. Since ‖u‖2 6= 0, λ1 = λ1 ⇔ λ1 ∈ R. Similarly,

λ1〈u, v〉 − λ2〈u, v〉 = 〈λ1u, v〉 − 〈u, λ2v〉
= 〈−∆u, v〉 − 〈u,−∆v〉
= 〈u,−∆v〉 − 〈u,−∆v〉
= 0

which implies (λ1 − λ2)〈u, v〉 = 0. Since λ1 6= λ2, 〈u, v〉 = 0.

We summarize the information above with the following theorem.

Theorem 2.1. In the eigenvalue problem (5), we have the following facts:

• all the eigenvalues are real

• the eigenfunctions can be chosen to be real-valued

• the eigenfunctions corresponding to distinct eigenvalues are necessarily or-
thogonal

• all the eigenfunctions can be chosen to be orthogonal, i.e., orthonormal.
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3 Multiplicity of the Eigenvalues
Definition 3.1. An eigenvalue λ has multiplicity m if it has m linearly indepen-
dent eigenfunctions. The eigenspace Eλ is a linear space spanned by the set of
eigenfunctions corresponding to λ. So, in this case dim(Eλ) = m.

Notice: if dim(Eλ) = m, and Eλ = span{w1, ..., wm}, but 〈wi, wj〉 6= δij , then
we can use the Gram-Schmidt orthogonalization method to get

Eλ = span{ϕ1, ..., ϕm}, with 〈ϕi, ϕj〉 = δij.

4 Generalized Fourier Series
Because of the Theorem 2.1, we have for f ∈ L2(Ω)

f(x) =
∞∑

n=1

fnϕn(x), fn = 〈f, ϕn〉.

This is a generalization of the Fourier series, and we can discuss the decay of
{fn}, etc.

Theorem 4.1. As in (5), let λk be the Dirichlet-Laplacian eigenvalues, let νk be
the Neumann-Laplacian eigenvalues, and let ρk be the Robin-Laplacian eigenval-
ues, where k ∈ N. Then

λk > 0, νk ≥ 0, and ρk ≥ 0, if a ≥ 0.

Proof. Let u and v are corresponding eigenfunctions. Use Green’s first identity
(G1): ∫

Ω

u∆v dx +

∫

Ω

∇u · ∇v dx =

∫

∂Ω

u
∂v

∂ν
dS,

Set v = u, ∫

Ω

u∆u dx +

∫

Ω

|∇u|2 dx =

∫

∂Ω

u
∂u

∂ν
dS,

For the boundary condition (D),
∫

Ω

u(−λu) dx +

∫

Ω

|∇u|2 dx = 0 ⇒ λ =

∫
Ω
|∇u|2 dx∫
Ω

u2 dx
≥ 0.
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But |∇u|2 6= 0. Since if so, u = const, then u ≡ 0, which conflicts with the fact
that u is eigenfunction. Therefore, λ > 0.

For the boundary condition (N),

ν =

∫
Ω
|∇u|2 dx∫
Ω

u2 dx
≥ 0.

Here |∇u|2 = 0 is acceptable, i.e., u ≡ const 6= 0. Then ν ≥ 0, where ν = 0
corresponds to the eigenfunction ϕ0(x) ≡ const 6= 0.

For the boundary condition (R), we have

−ρ

∫

Ω

|u|2 dx +

∫

Ω

|∇u|2 dx =

∫

∂Ω

u(−au) dS

⇒ ρ =
a

∫
∂Ω
|u|2 dS +

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

≥ 0, if a ≥ 0.

5 Completeness of {ϕn}n∈N in the L2-sense
See [2, Sec.3.3-3.4] and [3, Chapter 4] for the elementary discussion on the com-
pleteness of a set of basis in L2(Ω).

For all f ∈ L2(Ω), we have
∥∥∥∥∥f −

N∑
n=1

fnϕn

∥∥∥∥∥
L2

→ 0, as N →∞.

Equivalently,

f =
∞∑

n=1

fnϕn in the L2 sense.

This is important because if it were not the case, we could not represent arbitrary
L2(Ω) function in terms of {ϕn}n∈N. We will discuss more about the complete-
ness later.
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Example: Diffusion in a 3D cube.
Let Ω = Q = {(x, y, z) | 0 < x < π, 0 < y < π, 0 < z < π}.





DE : ut = k∆u in Ω
BC : u = 0 on ∂Ω
IC : u = f(x) x ∈ Ω, t = 0

Then by the separation of variables, let u(x, t) = T (t) · v(x) as before, we have

−∆v = λv in Q, with v = 0 on ∂Q.

Because the sides of Q are parallel to the axes, one can do the separation of vari-
ables again.

v(x, y, z) = X(x)Y (y)Z(z)

⇒ X ′′

X
+

Y ′′

Y
+

Y ′′

Y
= −λ.

BC’s are also separated as

X(0) = X(π) = Y (0) = Y (π) = Z(0) = Z(π) = 0.

Therefore, we can solve v(x, y, z) for (l,m, n) ∈ N3,

v(x, y, z) = sin(lx) sin(my) sin(nz)

= vl,m,n(x)

whose orthonormal version is ( 2
π
)3/2 sin(lx) sin(my) sin(nz).

Then
λ = λl,m,n = l2 + m2 + n2

Finally we get the solution

u(x, t) =
∑

l,m,n

Almne−(l2+m2+n2)kt sin(lx) sin(my) sin(nz)

where Al,m,n = ( 2
π
)3〈f, vl,m,n〉.

Here, different values for l, m, n can result in the same eigenvalue. For example,
λ = 27. The valid values for (l, m, n) are (5, 1, 1), (1, 5, 1), (1, 1, 5), and (3, 3, 3).
In other words, the multiplicity of λ = 27 is four.
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