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Abstract

In this paper, we build an organization of high-dimensional datasets that cannot
be cleanly embedded into a low-dimensional representation due to missing entries and
a subset of the features being irrelevant to modeling functions of interest. Our algo-
rithm begins by defining coarse neighborhoods of the points and defining an expected
empirical function value on these neighborhoods. We then generate new non-linear
features with deep net representations tuned to model the approximate function, and
re-organize the geometry of the points with respect to the new representation. Finally,
the points are locally z-scored to create an intrinsic geometric organization which is in-
dependent of the parameters of the deep net, a geometry designed to assure smoothness
with respect to the empirical function. We examine this approach on data from the
Center for Medicare and Medicaid Services Hospital Quality Initiative, and generate
an intrinsic low-dimensional organization of the hospitals that is smooth with respect
to an expert driven function of quality.

1 Introduction

Finding low dimensional embeddings of high dimensional data is vital in understanding the
organization of unsupervised data sets. However, most embedding techniques rely on the
assumption that the data set is locally Euclidean [7, 15, 1]. In the case that features carry
implicit weighting, some features are possibly irrelevant, and most points are missing some
subset of the features, Euclidean neighborhoods can become spurious and lead to poor low
dimensional representations.

In this paper, we develop the method of expert driven functional discovery to deal with the
issue of spurious neighborhoods in data sets with high dimensional contrasting features.
This allows small amounts of input and ranking from experts to propagate through the
data set in a non linear, smooth fashion. We then build a distance metric based off these
opinions that learns the invariant and irrelevant features from this expert driven function.
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Finally, we locally normalize this distance metric to generate a global embedding of the
data into a homogeneous space.

An example to keep in mind throughout the paper, an idea we expand upon in Section 4,
is a data set containing publicly-reported measurements of hospital quality. The Center for
Medicare and Medicaid Services Hospital Quality Initiative reports approximately 100 dif-
ferent measures describing various components of the quality of care provided at Medicare-
Certified hospitals across the United States. These features range in measuring hospital
processes, patient experience, safety, rates of surgical complications, and rates of various
types of readmission and mortality. There are more than 5, 000 hospitals that reported at
least on measure during 2014, but only 1, 614 hospitals with 90% measures reported. The
measures are computed quarterly, and are publicly available through the Hospital Compare
website [8]. The high dimensional nature of these varied measures make comprehensive
inferences about hospital quality impossible without summarizing statistics.

Our goal is more than just learning a ranking function f on the set of hospitals X. We
are trying to characterize the cohort of hospitals and organize the geometry of the data
set, and learn a multi-dimensional embedding of the data for which the ranking function is
smooth. This gives an understanding of the data that doesn’t exist with a one dimensional
ranking function. Specifically, we are looking for meta-features of the data in order to build
a metric ρ : X × X → R+ that induces a small Lipschitz constant on the function f , as
well as on features measured by CMS.

An example of this organization is shown in Figure 1. The organization is generated via our
algorithm of expert driven functional discovery, the details of which are found in Sections
2 and 3. The colors in each image correspond to three notable CMS features: risk stan-
dardized 30 day hospital-wide readmission, patient overall rating of the hospital, and risk
standardized 30 day mortality for heart failure. This organization successfully separates
hospitals into regimes for which each feature is relatively smooth.

Figure 1: Organization colored by: (left) risk standardized 30 day hospital wide readmission,
(center) percent patients rating overall hospital 9 or 10 out of 10, (right) risk standardized
30 day mortality for heart failure. Embedding generated via bigeometric organization of
deep nets. Red is good performance, blue is bad.
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Figure 2: (left) unnormalized embedding, (right) z-scored embedding.

Our organization is accomplished via a two step processing of the data. First, we look to
characterize the topology of the data set by creating a stable representation of X such that
neighborhoods can be differentiated at varying scales, and neighborhoods are preserved
across varying parameters of the algorithm. This is done in Sections 2 and 3, using a spin
cycling of deep nets trained on some expert driven function. Second, we build a metic
on that topology by taking a local Mahalanobis distance on the stable neighborhoods (i.e.
local z-scoring) [11, 16]. This is done in Section 3.3, and guarantees that the induced metric
is homogeneous. This means that, if Ux denotes the neighborhood of a point x, then ρ(x, y)
for x, y ∈ Ux measures the same notion of distance as ρ(x′, y′) for x′, y′ ∈ Ux′ .

Figure 2 demonstrates the issue we refer to here. The left image shows an organization of the
hospitals in which neighborhoods have not been normalized. The red points refer to “good”
hospitals, and the blue refer to “bad” hospitals (in a naive sense). The organization on the
left gives no notion of the spread of the points and leaves certain questions unanswerable
(i.e. are “good” hospitals as diverse as “bad” hospitals). However, if we locally z-score the
regions of the hospitals, as in the right figure, it the global notion of distance is normalized
and it becomes clear that “good” hospitals share many more similarities amongst themselves
than “bad” hospitals do among themselves.

Also, by taking a local z-scoring of the features, we generate an organization that is depen-
dent only on the neighborhoods Ux, rather than being dependent on the specific representa-
tions used. Figure 3 shows the organizations of the hospitals generated by algorithms with
two very different parameter sets which, after z-scoring the neighborhoods, generate similar
embeddings. More details about this embedding can be found in Section 4.3.3.

However, discovering the topology of the hospitals is non-trivial. The features may have
significant disagreement, and not be strongly correlated across the population. To examine

3



Figure 3: Two sets of organizations with similar neighborhood structure. The representa-
tions used to generate these embeddings are fundamentally different, with the right figure
using 5× as many features as the left, and with features being generated with vastly different
algorithmic parameters.

these relationships, one can consider linear correlations via principal component analysis.
The eigenvalues of the correlation matrix do not show the characteristic drop off shown in
linear low dimensional data sets. In fact, 76 of the 86 eigenvalues are above 1% the size of
the largest eigenvalue. Previous medical literature has also detailed the fact that many of
the features don’t always correlate [10, 3].

For this reason, there does not exist an organization for which all features are smooth and
monotonically increasing. This is why the meta-features, and organization, must be driven
by minimal external expert opinion. This observation makes the goal of our approach three
fold: develop an organization of the data that is smooth with respect to as many features
as possible, build a ranking function f that agrees with this organization, and minimize the
amount of external input necessary to drive the system.

Our expert driven functional discovery algorithm blends the data set organization of diffu-
sion maps and coupled partition trees with the rich set of non-linear features generated by
deep learning and stacked neural nets. We build an initial organization of the data via cou-
pled partition trees [5], and use this partitioning to generate pseudopoints that accurately
represent the span of the data at a coarse scale. This step is explained in Section 2. This
organization is analyzed and used as an input to a series of stacked neural nets, which learn
invariant representations of the data and separate disparate clusters of points. This step is
explained in Section 3. See [2] for a review of stacked neural nets and deep learning.

It is important to note that our use of stacked neural nets is different from traditional
deep learning applications. We discuss these differences in Section 3.5. The purpose of
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using deep learning and organizing of the generated representations is to create a notion
of fine neighborhoods between points; neighborhoods where the number of neighbors scales
smoothly with the distance metric.

We then examine and validate our algorithm on the CMS Quality Initiative features in
Section 4.

2 Information Organization and Expert Driven Functional
Discovery

2.1 Training on Data with Full Knowledge

Let the data matrix be

M = [v1, ..., vN ], (1)

where vi ∈ Rm is a vector of observations describing the ith data point. Each vi is al-
lowed to have arbitrarily many missing entries. Define supp(vi) = {k ∈ {1, ...,m} :
vi,k is observed}.

Due to the missing entries, calculating an affinity between every two points vi and vj is
not necessarily possible, given that the intersection of the supports of their known values
may be small or even disjoint. For this reason, we begin by restricting ourselves to points
vij that have at most η missing entries. We shall begin by organizing the set of points
Ω = [vi1 , ..., vin ].

To gain an initial understanding of the geometry of Ω, we consider the cosine affinity matrix
A where

Aj,k =
〈vij , vik〉
‖vij‖‖vik‖

, (2)

where the inner product is calculated only on the entries in supp(vij )∩supp(vii). By defi-
nition of Ω, this set contains at least m− 2η known values.

The cosine affinity matrix serves as a good starting point for learning the geometry of
Ω. However, we must develop a way to extend any analysis to the full data M . For this
reason, we partition both the data points and the observation sets of Ω. This gives us two
advantages: partitioning the data points captures the ways in which different observations
may respond to different subsets of Ω, and partitioning the observation sets into similar
question groups gives a method for filling in the missing observations in M .
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We construct a coupled geometry of Ω using the algorithm developed in [5]. The initial
affinity is given by the cosine affinity matrix A, and the iterative procedure is updated using
Earth Mover Distance [14].

Remark: Let the final affinity matrix be called Ã : M ×M → [0, 1]. Let the eigenpairs of
Ã be called {(λi, φi)} with 1 = λ0 ≥ ... ≥ λN . Then the organization of M is generated
by

Φt(x) = [λt1φ1(x), ..., λtdφd(x)], x ∈M,

where d is the dimension of the underlying manifold.

2.2 Filling in Missing Features

Let Tobs be the hierarchical tree developed on the observations in Rm from Section 2.1.
Let the levels be X 1, ...,X L, with the nodes for level l named X l

1 , ...,X
l
n(l). Let vi 6∈ Ω

be a data point with the entry vi,k missing. In order to add vi into the geometry of Ω,
we must estimate the entries in (supp(vi))

c to calculate an affinity between vi and other
points.

Tobs gives a tree of correlations between the observations. This allows us to fill in vi,k with
similar, known entries. Find the lowest level of the tree (most strongly correlated questions)
for which observation k ∈ X l

j and ∃m ∈ X l
j such that vi,m is known. Then the estimate

of vi,k satisfies

ṽi,k =
1

|X l
j |
∑
m∈X l

j

vi,m. (3)

Along with an estimate of vi,k, (3) also gives a level of uncertainty for the estimate, as smaller
l (i.e. coarser folders) have lower correlation and give larger reconstruction error.

2.3 Expert Driven Function on the Folders

Let Tpoints be the hierarchical tree developed on the data points in Ω from Section 2.1. Let
the levels be X 1, ...,X L, with the nodes for level l named X l

1 , ...,X
l
n(l). As the partitioning

becomes finer (i.e. l approaches L), the folders contain more tightly clustered points. This
means that the distance from an point to a centroid of a folders becomes smaller as the
partitioning becomes finer.

Fix the level l in the tree. The centroids of these folders can be thought of as “types” of
data points, or pseudopoints. There are two major benefits: there are a small number of
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pseudopoints relative to n that span the entire data space, and the pseudopoints are less
noisy and more robust to erroneous observations.

These pseudopoints are the key to incorporating expert knowledge and opinion. The pseu-
dopoints are easier and much faster to classify than individual points, as there are a small
number and they are less noisy than individual points. Also, the pseudopoints effectively
synthesize the aggregate performance of multiple hospitals. The classifications generated
by experts can be varied, anything from quality rankings to discrete classes to several de-
scriptive features or “meta-features” of the bins. Specifically, the user assigns a set of classes
C and a classification function g : Ω→ C such that

∀x ∈X l
j , g(x) = yj ∈ C . (4)

This function is understood as a rough estimate, since the classification is applied to all
x ∈X l

j even though the class is determined only from the centroid of X l
j .

This step is non-traditional in unsupervised classification algorithms. Traditionally, the
clustering is done agnostic to the final goal of classification. However, this does not allow for
a second step correction of the original classification. By allowing a user driven component
that quickly examines the cluster centroids, we are able to learn an initial classification
map for the points. This provides a rough characterization of which clusters should be
collapsed due to similar classification scores, which clusters should be separated further due
to drastically different classification scores, and a method of determining class labels for
points on the border of multiple clusters.

This function gives a rough metric ρ : Ω×Ω→ R+ that has dependencies of the form

ρ(x, y) = f (x− y; g(x), g(y)) . f : Rm × C × C → R+. (5)

This metric needs to satisfy two main properties:

1. ∃δ0 such that ρ(x, y) < εdist if ‖x− y‖ < δ for δ < δ0 and some norm ‖ · ‖, and

2. ρ(x, y) > εclass if g(x) 6= g(y).

A metric that satisfies these two properties naturally relearns the most important features
for preserving clusters while simultaneously incorporating expert knowledge to collapses
non-relevant features. We learn this function using neural nets, as described in Section
3.

3 Deep Learning to Form Meta-Features

There are entire classes of functions that approximate the behavior of ρ in (5). For our al-
gorithm, we use neural nets for several reasons. First, the weight vectors on the first layer of
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a neural net have clear, physical interpretation, as the weight matrix can be thought of as a
non-linear version of the weight vectors from principal component analysis. Second, current
literature on neural nets suggest a need for incredibly large datasets to develop meaningful
features on unsupervised data. Our algorithm provides a way to turn an unlabeled data set
into a semi-supervised algorithm, and incorporates this supervision into the nodes of the
neural net. This supervision appears to reduce the number of training points necessary to
generate a non-trivial organization. Past literature has used radial basis functions as the
non-linear activation for deep learning[4] , as well as for analysis of the structure of deep
net representations [12].

3.1 Neural Nets with Back-Propagation of Rankings

For our algorithm, we build a 2 layer stacked autoencoder with a sigmoid activation function,
with a regression layer on top. The hidden layers are defined as

h(l)(x) = σ
(
b(l) +W (1)h(l−1)(x)

)
,

with σ : R → [0, 1] being a sigmoid function applied element-wise, and h(0)(x) = x. The
output function f(x) is logistic regression of these activation units

f(x) = σ(b(3) + V h(2)(x)).

The reconstruction cost function for training our net is an L2 reconstruction error

C =
1

n

n∑
i=1

‖g(xi)− f(xi)‖2. (6)

The overall loss function we minimize, which combines the reconstruction cost with several
bounds on the weights, is

L =
1

n

n∑
i=1

‖g(xi)− f(xi)‖2 + µ
∑
l

∑
i,j

(
W

(l)
i,j

)2

Note that we rescale g if it takes values outside [0, 1]. We then backpropagate the error by
calculating δL

δw
(l)
i,j

and δL

δw
(l)
i

and adjusting the weights and bias accordingly. See [13] for a

full description of the algorithm.
Definition 3.1. The deep neural net metric on Ω with respect to an external function f is
defined as

ρDNN (x, y) = ‖h(1)(x)− h(1)(y)‖.
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Lemma 3.2. A deep neural net with a logistic regression on top generates a metric ρDNN
that satisfies Condition 1 from (5) with a Lipschitz constant of ‖W1‖/4 with respect to Eu-
clidean distance. The output function f also has a Lipschitz constant of ‖W1‖‖W2‖‖V ‖/64
with respect to Euclidean distance.

Proof. Let σ(x) = 1
1+e−x . Then dσ

dx = σ(x)(1 − σ(x)) ≤ 1
4 . By the mean value theorem,

|σ(a)− σ(b)| = |a− b||dσdx (z)| ≤ |a−b|4 . Then

‖f(x)− f(y)‖2 ≤ ‖V ‖‖h(2)(x)− h(2)(y)‖/4
≤ ‖V ‖‖W (2)h(1)(x)−W (2)h(1)(y)‖/16

≤ ‖V ‖‖W (2)‖‖h(1)(x)− h(1)(y)‖/16

≤ ‖V ‖‖W (2)‖‖W (1)‖‖x− y‖/64.

The same argument applies for ρDNN .

Lemma 3.3. A two layer neural net with a logistic regression on top creates a function f
which satisfies a variant of Condition 2 from (5), namely that

E6=
(
‖f(x)− f(y)‖2

)
≥ E6=

(
‖g(x)− g(y)‖2

)
− 2

(
maxi∈C Si · n

S

)
C, (7)

where S = #{(x, y) ∈ Ω × Ω : g(x) 6= g(y)}, Si = #{y ∈ Ω : g(y) 6= i}, and E6= is the
expected value over the set S.

Moreover, the deep neural net ρDNN generated also satisfies

E6=
(
‖f(x)− f(y)‖2

)
≥

(
1∏L

i=2 ‖Wi‖

)[
E6=
(
‖g(x)− g(y)‖2

)
− 2

(
maxi∈C Si · n

S

)
C

]
. (8)

Proof. We have

‖f(x)− f(y)‖2 = ‖f(x)− g(x)− f(y) + g(y) + g(x)− g(y)‖2

≥ ‖g(x)− g(y)‖2 −
(
‖f(x)− g(x)‖2 + ‖f(y)− g(y)‖2

)
.

Unfortunately, because (6) is a global minimization, we cannot say anything meaningful
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about the difference for individual points. However, we do have∑
g(x)6=g(y)

‖f(x)− f(y)‖2 ≥
∑

g(x) 6=g(y)

‖g(x)− g(y)‖2 −
∑

g(x)6=g(y)

(
‖f(x)− g(x)‖2 + ‖f(y)− g(y)‖2

)
=

∑
g(x) 6=g(y)

‖g(x)− g(y)‖ − 2
∑
x∈Ω

#{y : g(x) 6= g(y)} · ‖f(x)− g(x)‖2

≥
∑

g(x)6=g(y)

‖g(x)− g(y)‖ − 2

(
max
i∈C

#{y : g(y) 6= i}
)
· nC,

where #{y : g(y) 6= i} denotes the number of elements in this set. Let S = #{(x, y) ∈
Ω× Ω : g(x) 6= g(y)} and Si = #{y ∈ Ω : g(y) 6= i}. Then

E6=
(
‖f(x)− f(y)‖2

)
≥ E6=

(
‖g(x)− g(y)‖2

)
− 2

(
maxi∈C Si · n

S

)
C.

This means that by minimizing C, we are forcing the separation of points with different
initial ranking to be as large as possible. This makes enforces Condition 2 of (5) in the
aggregate over all such points.

The scaling of 1∏L
i=2 ‖Wi‖

for ρDNN is a simple application of Lemma 3.2.

3.2 Heat Kernel Defined by ρDNN

The weights generated by the neural net represent “meta-features” formed from the features
on Ω. Each hidden node generates important linear and non-linear combinations of the
data, and contains much richer information than a single question or average over a few
questions.

One downside of traditional deep learning is that neural nets only account for the geometry
of the observations. They ignore the geometry and clustering of the data points, opting to
treat every point equally by using a simple mean of all points in the cost function (6). This
can easily miss outliers and be heavily influenced by large clusters, especially with a small
number of training points.

The questionnaire from Section 2.1 organizes both the observations and the data points,
though the meta-features from the questionnaire are simply averages of similar features as
in (3). However, the expert ranking assigned to each bin reflects a rough initial geometry
onto the points to be learned by the neural net.

The back propagation of the expert driven function is essential to building significant weight
vectors in this regime of small datasets. When the ratio of the number of data points to the
dimension of the features is relatively small, there are not enough training points to learn
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the connections between all the features without considering the points themselves. The
back propagation of the classification function generated from the questionnaire is a way to
enforce the initial geometry of the data on the weight vectors. The hospital ranking example
in Section 4 demonstrates the need for back propagation, and Figure 7 demonstrates the fact
that the features from a simple SDAE are not sufficient for separating data points.

For our algorithm, the SDAE is trained on Ω, the subset of points with “full” collection of
features. This is to avoid training on reconstructed features which are subject to recon-
struction error from Section 2.2.

Another problem with neural nets is that they can be highly unstable under parameter
selection (or even random initialization). Two identical iterations can lead to completely
different weights set. Along with that, back propagation can force points into isolated
corners of the cube in [0, 1]k.

For this reason, we rerun the neural net K times with varied random seeds, number of
hidden layers, sparsity parameters, and dropout percentages. After K iterations, we build
the new set of features on points as Ω∗(x) = [h

(1)
1 (x), ..., h

(1)
K (x)]. This defines an adjacency

matrix on A with affinity defined between two points as

A(x, y) = e−‖Ω
∗(x)−Ω∗(y)‖2/ε. (9)

Along with that, the final ranking function on M comes from f(x) = 1
K

∑K
i=1 fi(x). Note

that ‖Ω∗(x)− Ω∗(y)‖2 =
∑K

i=1 ρDNN,i(x, y)2.

The expert driven heat kernel defined in (9) generates an embedding Φ : Ω → Rd via the
eigenvectors Φt(x) = [λt1φ1(x), ..., λt1φd(x)].

For each neural net hi, we keep the number of hidden layers small relative to the dimension
of the data. This keeps the net from overfitting the data to the initial organization function
g.

3.3 Standardizing Distances to Build an Intrinsic Embedding

While this generates a global embedding based off local geometry, it does not necessarily
generate a homogenous space. In other words, ‖Φt(x) − Φt(y)‖ = ‖Φt(x′) − Φt(y′)‖ does
not necessarily guarantee that x and y differ by same amount as x′ and y′. This is because
Ω∗(x) and Ω∗(y) may differ in a large number of deep net features, whereas Ω∗(x′) and
Ω∗(y′) may only differ in one or two features (though those features may be incredibly
important for differentiation).

For this reason, we must consider a local z-score of the regions of the data. For each point
Φt(x), there exists a mean and covariance matrix within a neighborhood Ux about x such
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that

µx =
1

|Ux|
∑
z∈Ux

Φt(z),

Σx =
1

|Ux|
∑
z∈Ux

(
Φt(z)− µx

)ᵀ (
Φt(z)− µx

)
.

This generates a new whitened distance metric

dt(x, y) =
1

2

[
(Φt(x)− µx)− (Φt(y)− µy)

]ᵀ (
Σ†x + Σ†y

) [
(Φt(x)− µx)− (Φt(y)− µy)

]
, (10)

where Σ† is the Penrose-Moore pseudoinverse of the covariance matrix.

One can generate a final, locally standardized representation of the data via the diffusion
kernel

W (x, y) = e−dt(x,y)/σ,

and the low frequency eigenvalues/eigenvectors of W , which we call {(si, ψi)}. The final
representation is denoted

Φt
std(x) = [stiψ1(x), ..., stiψd(x)]. (11)

3.4 Extension to New Points

Once meta-features have been built, extending the embedding to the rest ofM can be done
via an asymmetric affinity kernel, as described in [9]. For each x 6∈ Ω, one can calculate
Ω∗(x) = [h

(1)
i (x)]Ki=1 and fi(x) with the weights generated in Section 3.2. This defines an

affinity between x and y ∈ Ω via

a(x, y) = e−‖Ω
∗(x)−Ω∗(y)‖2/ε.

The affinity matrix is a ∈ RN×n. [9] then shows that the extension of the eigenvectors φi
of A from (9) to the rest of M is given by

φ̃i =
1

λ
1/2
i

Ãφi,

where Ã is the row stochastic normalization of a.

Similarly, once the embedding Φ is extended to all points in M , we can extend the final,
standardized representation to the rest of M as well using the affinity matrix

b(x, y) = exp{−1

2

[
(Φt(x)− µy)− (Φt(y)− µy)

]ᵀ
Σ†y
[
(Φt(x)− µy)− (Φt(y)− µy)

]
/σ},
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for x ∈ M and y ∈ Ω. Once again, the eigenvectors ψi in (11) can be extended similarly
via

ψ̃i =
1

s
1/2
i

B̃ψi,

where B̃ is the row stochastic normalized version of b.

In this way, Φt
std can be defined on all points M after analysis on the reference set Ω.

3.5 Different Approach to Deep Learning

Our algorithm, as we will discuss in detail in Section 3, uses the meta-features from stacked
neural nets in a way not commonly considered in literature. Most algorithms use back
propagation of a function to fine-tune weights matrices and improve the accuracy of the
one dimensional classification function. However, in our algorithm, the purpose of the back
propagation is not to improve classification accuracy, but instead to organize the data in
such a way that is smooth relative to the classification function. In fact, we are most
interested in the level sets of the classification function and understanding the organization
of these level sets.

At the same time, we are not building an auto-encoder that pools redundant and correlated
features in an attempt to build an accurate, lossy compression (or expansion) of the data.
Due to the high level of disagreement among the features, non-trivial features generated
from an auto-encoder are effectively noise, as we see in Section 4.2. This is the motivation
behind propagating an external notion of “quality”.

4 Expert Driven Embeddings for Hospital Rankings

4.1 Hospital Quality Ranking

For preprocessing, every feature is mean centered and standard deviation normalized. Also,
some of the features are posed in such a way that low scores are good, and others posed
such that low scores are bad. For this reason, we “de-polarize” the features using principal
component analysis. Let M = [v1, ..., vN ] be the data matrix. Then let U be the largest
eigenvector of the covariance matrix[

M
−M

]
×
[
M∗ −M∗

]
,

and take the half of the features i for which Ui > 0. This makes scores above the mean
“good” regardless of whether the feature is posed as a positive or negative question.

13



We begin by building a questionnaire on the hospitals. Our analysis focuses on the 2014
CMS measures.We put a 2× weight on mortality features and 1.5× weight on readmission
features due to importance, because the outcome measures describe the tangible results of
a hospitalization are particularly important for patients. The questionnaire learns the rela-
tionships between the hospitals, as well as the relationships between the different features.
In doing this, we are able to build a partition tree of the hospitals, in which hospitals in
the same node of the tree are more similar than hospitals in different nodes on the same
level of the tree. As a side note, the weighting on mortality features only guarantees that
the intra-bin variance of the mortality features is fairly low.

For the ranking in this example, we use the 5th layer of a dyadic questionnaire tree, which
gives 32 bins and pseudohospitals. Experts on CMS quality measures rank these pseudohos-
pitals on multiple criteria and assign a quality score between 1 to 10 to each pseudohospitals.
We use an average of 50 nodes per layer of the neural net. Also, we average the results
of the neural nets over 100 trials. We shall refer to the final averaged ranking as the deep
neural net ranking (DNN ranking) to avoid confusion.

4.2 Two Step Embedding of Hospitals

Figure 4 shows the embedding of the subset of hospitals used in training the neural net.
It is colored by the quality function assigned to those hospitals. The various prongs of the
embedding are explained in Section 4.3.4. Figure 5 shows the embedding of the full set of
hospitals. This was generated via the algorithm in Section 3.4.

Figure 4: Embedding of hospitals with at most τ missing entries. Red corresponds to top
quality, blue to bottom quality.

Finally, while the goal of the hospital organization is to determine neighborhoods of similar
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Figure 5: Embedding of full set of hospitals. Red corresponds to top quality, blue to bottom
quality.

hospitals, it is also necessary for all hospitals in a shared neighborhood to share a common
quality rating. Figure 6 plots the quality function assigned to the hospitals against the
weighted average quality function of its neighborhood, where the weights come from the
normalized affinities between the given hospitals and its neighbors. The strong collinear-
ity demonstrates that the assigned quality function is consistent within neighborhoods of
similar hospitals.

Figure 6: Quality function assigned for hospital versus average quality across the neighbor-
hood in Figure 4.

To demonstrate that the expert input back propagation is necessary for a viable ranking
and affinity, we include Figure 7. Here, we build the same diffusion map embedding, but
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on the features of the autoencoder before back propagation of the expert input function.
Due to the small number of data points relative to the number of features, an untuned
autoencoder fails to form relevant meta-features for the hospitals.

Figure 7: Embedding of Ω without back propagation of expert driven hospitals rankings.
Coloring comes from quality rating function. Notice that without back propagation the
embedding is effectively noise compared to hospital quality.

4.3 Internal Validation

The problem with validating this composite rating of hospital quality is the lack of external
ground truth. For this reason, we must rely on internal validation mechanisms to demon-
strate consistency. There are two qualities necessary for a ranking mechanism: the affinity
between hospitals cannot disagree too drastically with the original features, and similar
hospitals must be of similar quality.

For the rest of the section, we refer to several simple meta-features for comparison and
validation. Row sum ranking refers to a simple ranking function

frow−sum(x) =
∑
i

xi,

where {xi} are the normalized and depolarized features for a given hospital x. Average
process, survey, and outcome features are the same as the row sum score, but restricted
only to features in the given category. NNLS weighted ranking refers to a function

fNNLS(x) =
∑
i

wixi,
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where the weights are calculated using non-negative least squares across the normalized and
depolarized features, with the DNN ranking as the dependent variable. NNLS weighted pro-
cess, survey, and outcome features are the same as the NNLS weighted score, but restricted
only to features in the given category. NNLS was used for calculating the weights to avoid
overfitting the DNN ranking by using negative weights.

Also, our focus (unless otherwise stated) is on the subset of hospitals Ω that have more
than 90% features reported. This is because a number of our validation steps use the row
sum ranking and NNLS weighted ranking, which are more accurate when calculated over
non-missing entries.

4.3.1 DNN Satisfies Conditions for ρ

Figure 8 verifies that the back propagation neural net satisfies Condition 1 of ρ from (5).
The plot shows the ranking of each hospital plotted against the average of its ten nearest
neighbors under Euclidean distance between hospital profiles. The fact that the average
strongly correlates with the original quality rating shows that the embeddings of the hos-
pitals remain close if they are close under Euclidean distance.

Figure 8: Quality function for hospital versus average quality function across closest Eu-
clidean points. Demonstrates first condition necessary for ρ from (5).

Figure 9 shows that the back propagation neural net satisfies Condition 2 of ρ from (5). The
histogram on the left shows the DNN affinity between hospitals with different initial quality
ratings (i.e. when g(x) 6= g(y)). To satisfy Condition 2, g(x) 6= g(y) =⇒ ρ(x, y) > εclass
(i.e. A(x, y) < 1− ε). Also, for the histogram on the right we define

P 6=(t) = Pr (A(x, y) > t : g(x) 6= g(y)) , P=(t) = Pr (A(x, y) > t : g(x) = g(y)) .
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The histogram on the right shows P 6=(t)
P=(t) . The smaller the ratio as t approaches 1, the

stronger the influence of the initial ranking on the final affinity.

Figure 9: (left) Histogram of DNN affinity between two points with different initial quality
ratings. (right) Normalized histogram of DNN affinity between two points with different
initial quality ratings divided by affinity between two points with same initial quality rating.
If initial ranking was unimportant, bar graph would be concentrated around 1. Both images
demonstrate second condition necessary for ρ from (5). Note that, for scaling purposes, all
values less than .1 have been removed from counting.

Moreover, we can compare the contraction guaranteed by (8). For the hospital ratings,

E6=
(
‖f(x)− f(y)‖2

)
= 2.44, E6=

(
‖g(x)− g(y)‖2

)
= 3.36,

maxi∈C Si · n
S

= 1.22, C = 0.9959,

which makes the right hand side of (8) equal 2.15.

Figure 10 indicates that the DNN metric from (5) gives a better notion of small neighbor-
hoods than a simple Euclidean metric. Each metric defines a transition probability P (x, y).
For each point x, the plot finds

minimize
I⊂Ω

#I

subject to
∑
y∈I

P (x, y) ≥ 1

2
.

(12)

It is important for (12) to be small, as that implies the metric generates tightly clustered
neighborhoods. As one can see from Figure 10, the DNN metric creates much more tightly
clustered neighborhoods than a Euclidean metric. Figure 11 gives summary statistics of
these neighborhoods for varying diffusion scales.
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Figure 10: Percent of points necessary to sum half the total transition probability. Metrics
are generated in same fashion: K(x, y) = e−‖x−y‖

2/σ2 . Here σ = 1
N

∑
x ‖x− yx‖, where yx

is the 10th closest neighbor of x.

Figure 11: Metrics are generated in same fashion: K(x, y) = e−‖x−y‖
2/σ2

i . Here σi =
1
N

∑
x ‖x − yx‖, where yx is the ith closest neighbor of x. For both DNN embedding

and Euclidean embedding metrics, the plots are (left) the average percentage of neighbors
needed to contain half the transition probability from a given point to its neighborhood,
and (right) the standard deviation of the number of neighbors needed to contain half the
transition probability from a given point to its neighborhood.

Another positive characteristic of our DNN embedding is the reduced local dimension of
the data. Figure 12 plots the eigenvalues {Sti}ni=0 of the diffusion kernels At, where the
Markov chain At describes either comes from the Euclidean metric or the DNN metric.
These eigenvalues give us information about the intrinsic dimension of the data, as small
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eigenvalues do not contribute to the overall diffusion. To compare the eigenvalues across
different diffusion kernels, we normalize the eigenvalues by setting t = 1

1−S1
1
, as this is the

average time it takes to diffuse across the system. Cutting off the eigenvalues to determine
the dimension is fairly arbitrary without a distinct drop off, but an accepted heuristic is to
set the cutoff at

dim(At) = max{d ∈ N : Sd > 0.01}.

With this definition of dimension, dim(At) = 7 for the DNN metric embedding, whereas
dim(At) = 14 for the Euclidean metric embedding.

Figure 12: Eigenvalues {Sti}ni=0 of the embedding of the heat kernel At generated from
the Euclidean metric (blue) and DNN metric (red). Each eigenvalue set is normalized by
setting t = 1

1−S1
1
.

4.3.2 Examples of “Best” and “Worst” Hospitals

Row sum ranking is a poor metric for differentiation between most hospitals, but it is able
to distinguish the extremal hospitals. In other words, hospitals with almost all features
considerably above the mean would have obviously been assigned a 10 within any ranking
system, and hospitals with almost all features below the mean would have obviously been
assigned a 1 by any ranking system.

Let us take the 25 best and worst hospitals under the row sum ranking, and consider how
well these correspond to the final DNN rankings from Section 4.2. The average quality
function value across the top 25 row sum rankings is 8.03, and the average quality function
value across the bottom 25 row sum rankings is 1.75.
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While these averages are indicative of the agreement between the DNN ranking and simple
understandings of hospital quality, they are not perfect. For example, the top 25 row sum
hospitals have an average DNN ranking of 8.03 because one of these hospitals has a DNN
ranking of 4.84. This hospital is an interesting profile. Qualitatively, its process features
and survey features are above average, but their outcomes are significantly worse than the
mean. Even though only 16 of its 81 features are below the mean, the features for mortality
from heart failure and pneumonia, and several measures of hospital associated infection,
are all more than 1 standard deviation below the mean. As all five of those features are
heavily weighted by the algorithm and deemed crucial by experts, the hospital is assigned
a low ranking despite having a strong row sum ranking.

Figure 13 shows the embeddings of hospitals without the neural net step. In other words,
we simply weight the mortality and readmission features and calculate an affinity based
off those feature vectors. There are two important details. First, the embedding is very
unstructured, implying a lack of structure within the naive affinity matrix. Second, while
the cloud doesn’t necessarily reflect structure, it does give a simple understanding of local
neighborhoods.

Figure 13 also shows that our new notion of rankings reflects a naive understanding of
hospital quality. Namely, local Euclidean neighborhoods maintain the same ranking. Also,
the 10 best and worst hospitals under the row sum ranking are circled. As expected, they
exist on the two extremes of the embedding cloud, and our rankings agree with their notion
of quality.

4.3.3 Dependence on Initial Rankings

Another important feature of a ranking algorithm is its robustness across multiple runs. To
demonstrate stability of the neural net section of the algorithm, we run multiple experiments
with random parameters to test the stability of the quality function. Figure 14 shows the
quality rating from one run of the algorithm (ie. the average ranking after 100 iterations
of the neural net) against the quality rating from a separate run of the algorithm. In both
runs, 1, 000 hospitals from Ω are randomly chosen for training the model and then tested
on the other 614 hospitals in Ω. Figure 14 shows the rankings for all 1, 614 hospitals across
both runs. Given the strong similarity in both quality rating and overall organization, it is
clear that the average over 100 iterations of a neural net is sufficient to decide the quality
function.

It is also important to examine the dependence our initial binning and ranking has on the
final ranking of the hospitals. Clearly the initial binning is only meant to give approximate
ranks, so a strong dependence on these rankings would be problematic. Table 1 shows the
confusion matrix between the initial hospital rankings and the final rankings assigned from
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Figure 13: Left: Embedding of hospitals using Euclidean distance on profiles, with 2×
weighting on morality features and 1.5× weighting on readmission features. Coloring is
value of the quality function described in Section 4.2, with top ratings being red and bottom
ratings being blue. Right: Same embedding, with extremal points circled. Blue circles on
10 hospitals with largest number of features above the mean, and red circles on 10 hospitals
with fewest number of features above the mean. This is a rough characterization of “best”
and “worst” hospitals.

Final Rank
8 11 0 0

First Rank 15 730 129 0
0 97 330 219
0 0 27 48

Table 1: Confusion matrix between initial ranking on hospital bins and final ranking from
neural net. For simplicity, rankings have been rounded into quartiles for purposes of con-
fusion matrix.

the neural net. The purpose of the neural net second step is to reclassify hospitals that are
binned incorrectly due to spurious correlations.

Let us examine a few of the hospitals that made the biggest jump. One of the hospitals
increased from a rating of 3 to a DNN rating of 6.55. Several of its process features are well
below average with a couple 2 standard deviation below average, and its survey features
are average to slightly below average. For this reason, it was immediately classified as a
poor hospital. However, its readmission features across the board are above average, with
readmission due to heart failure 1.5 standard deviations above average. Also, mortality due
to heart failure is a standard deviation above average, and all features of hospital associated
infection are above the mean as well. In the initial ranking of the pseudohospitals, the
fact that there are 29 survey features as compared to 5 readmission features brought the

22



Figure 14: (left) Original embedding colored by quality function. Same image as Figure
4. (right) New embedding of 100 nets trained independently from first run. Embedding
is finally rotated to match orientation of the original via [6]. Quality rating coloring the
second embedding is generated independently of left embedding.

weighting down, even when giving extra weight to the readmission features. After the
neural net ranking, the ranking is improved to 6.55.

Another hospital dropped from a rating of 7 to a DNN rating of 3.4. Its process feature are
all above average, and its readmission for heart failure is 1.5 standard deviations above the
mean. Because readmission is weighted initially and there are a large number of process
measures, the hospital was initially binned with better hospitals. However, its features for
hospital associated infections, as well as mortality due to pneumonia and heart failure are
a standard deviation below the mean, and its average survey score is a standard deviation
below the mean as well. For these reasons, the DNN ranking dropped significantly.

4.3.4 Affinity Dependence on Individual Features

As another validation mechanism, we consider the smoothness of each feature against the
metric ρ. For each feature fi, we estimate the Lipschitz constant Li such that

|fi(x)− fi(y)| ≤ Li‖x− y‖DNN ,

where ‖ · ‖DNN is simply the Euclidean distance in the diffusion embedding space of the
DNN affinity matrix A. Once f is normalized by range(f), Li gives a measure of the
smoothness of fi under our new metric.
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Lipschitz Constant Under ρ

Feature Lipschitz Constant
Quality Rating Function 0.124

READM 30 HOSP WIDE 0.303
MORT 30 HF 0.346

READM 30 HF 0.350
MORT 30 AMI 0.371
MORT 30 PN 0.384

READM 30 PN 0.398
READM 30 AMI 0.430

READM 30 HIP KNEE 0.440
H HSP RATING 0 6 0.582

H RECMND DN 0.595
H COMP 1 SN 0.618

H HSP RATING 9 10 0.620
H COMP 3 SN 0.688

H RECMND DY 0.691
H COMP 1 A 0.712

H QUIET HSP SN 0.735
VTE 5 0.740

PSI 90 SAFETY 0.758
H COMP 2 SN 0.758
H COMP 4 SN 0.761

COMP HIP KNEE 0.762
STK 8 0.763
ED 1b 0.766
OP 20 0.789
ED 2b 0.795

PSI 4 SURG COMP 0.807
VTE 3 0.807

H RECMND PY 0.811
H HSP RATING 7 8 0.831

OP 21 0.832
STK 1 0.834
HAI 5 0.838

H CLEAN HSP SN 0.839
H COMP 5 SN 0.844

HAI 2 0.846
HAI 3 0.868

H COMP 6 Y 0.870
H COMP 6 N 0.870

HAI 1 0.875
STK 6 0.889

H COMP 4 A 0.898
PC 01 0.904
VTE 2 0.906

Feature Lipschitz Constant
H COMP 1 U 0.908

OP 11 0.913
OP 9 0.913

H COMP 3 A 0.918
H COMP 2 A 0.931

OP 13 0.934
OP 18b 0.935
STK 10 0.942

H QUIET HSP A 0.946
OP 10 0.978

H COMP 5 A 0.996
H CLEAN HSP A 1.023

HF 3 1.077
AMI 2 1.081
HAI 6 1.088

SCIP INF 9 1.102
VTE 4 1.106
AMI 10 1.133
OP 6 1.147

H COMP 2 U 1.186
SCIP CAR 1.192

VTE 1 1.221
H CLEAN HSP U 1.225

OP 22 1.227
H QUIET HSP U 1.258

SPP 1.264
IMM 1A 1.272
IMM 2 1.284
STK 2 1.288
OP 7 1.291

H COMP 4 U 1.325
H COMP 3 U 1.365

HF 1 1.430
STK 5 1.443
PN 3b 1.545

H COMP 5 U 1.566
SCIP INF 2 1.994
SCIP INF 3 2.001

PN 6 2.066
SCIP INF 1 2.131
SCIP VTE 2.151

SCIP INF 10 3.333
HF 2 5.111

From the Lipschitz constant, we can conclude that the most influential features are the
mortality and readmission scores, followed closely by survey scores and post surgical
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infection scores. While the process features have some smoothness, the Lipschitz
constants are significantly larger than outcome and some survey scores.

Figure 15: Hospital Diffusion embedding colored by average across 34 process features.

Almost all the hospitals in Figure 15 have an average process score within a half standard
deviation of the mean, which is well within acceptable levels. For this reason, these
features are not as strong of features as some of the other features. However, the few
hospitals that are well below the mean have middle to poor quality ratings.

Figures 16 and 17 show the embedding of the hospitals colored by their average survey
and average outcome features. These are more strongly correlated with the overall quality
function.

Figure 16: Hospital Diffusion embedding colored by average across 29 survey features.

Note that the average across all features from a category is not the ideal description of
that category. For a given hospital, there can be significant variability within a category
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Figure 17: Hospital Diffusion embedding colored by average across 15 outcome features.

which would not be captured by the mean. The category average is only meant to
demonstrate a general trend. Figure 18 shows a weighted average of the readmission and
mortality features, with the weights determined by a least squares fit with the DNN
quality function as a dependent variable.

Figure 18: (left) Scatter plots of quality function vs least squares solution with mortality and
readmission as independent variables and quality function as dependent variable. (right)
Hospital Diffusion embedding colored by same least squares solution.

We can also use these embeddings, along with Figure 19, to show why the embedding has
the two prongs on the left side of the image among the well ranked hospitals. Notice from
Figure 19 that readmission is very strong along the lower prong, while mortality scores are
very strong along the upper prong. Moreover, there is some level of disjointness between
the two scores [10].

This begs the question of why the strong readmission cluster is ranked higher than the
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Figure 19: (left) Hospital Diffusion embedding colored by hospital wide readmission (right)
Hospital Diffusion embedding colored by mortality from heart failure.

strong mortality cluster. That can be explained in Figure 16. The survey features are
much stronger along the lower cluster with high readmission than they are in the
mortality cluster. This explains the cluster of hospitals receiving top quality ratings
despite having average to slightly above average mortality scores. The same can be said,
to a lesser degree, for the process scores in Figure 15. So the differentiation in rankings is
derived from the fact that, at their highest levels, more of the features agree with
readmission features than they do with mortality features.

The left plot in Figure 20 represents each hospital with three features: the mean score
across process features, the mean score across survey features, and the mean score across
outcome features. The plot is colored by the quality function, and it is clear that the
rankings reflect the trend of these three average features. The right plot in Figure 20
represents each hospital with the NNLS process, survey, and outcome scores. Table 2 list
those features that have non-trivial weights with p-value < .05.

5 Conclusion

We introduced an algorithm for generating new metrics and diffusion embeddings based
off of expert ranking. Our algorithm incorporates both data point geometry via
hierarchical diffusion geometry and non-linear meta-features via stacked neural nets. The
resulting embedding and rankings represent a propagation of the expert rankings to all
data points, and the resulting metric generated by the stacked neural net gives a Lipschitz
representation with respect to Euclidean distance that learns important and irrelevant
features according to the expert opinions and in automated fashion.
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Figure 20: (left) Plot of mean scores across process, survey, and outcome measures, colored
by the quality function. (right) Plot of process, survey, and outcome measures with weights
determined by non negative least squares with the quality function as dependent variable,
colored by quality rating.

Although the ranking algorithm seems tied to the process of expert rankings of hospitals,
the underlying idea of generating metrics in the form of (5). and propagating first pass
rankings to the rest of the data, is quite general. For example, this method could be used
to propagate sparsely labeled data to the rest of the dataset, with expert bin rankings
replaced by the mode of the labelled data in the bin.

This method also touches on the importance of incorporating data point organization into
the neural net framework when dealing with smaller data sets and noisy features.
Without the expert driven function to roughly organize the data points, the stacked
autoencoder fails to determine any relevant features for separation, as shown in Figure 7.

We will examine the implications of our hospital ratings on health policy, as well as
discuss the various types of hospitals in our embedding, in a future paper. Future work
will also examine further examination of the influence of data point organization on
neural nets and the generation of meta-features. Also, it would be interesting to examine
other applications of propagation of qualitative rankings and measures.
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Features Coefficient Magnitude
HAI 3 0.029
HAI 6 0.010

READM 30 AMI 0.148
READM 30 HF 0.139

READM 30 HIP KNEE 0.148
READM 30 HOSP WIDE 0.122

READM 30 PN 0.074
PSI 4 SURG COMP 0.018

PSI 90 SAFETY 0.003
MORT 30 HF 0.116
MORT 30 PN 0.121
MORT 30 AMI 0.072

SPP 0.053
OP 10 0.045
OP 11 0.080
OP 13 0.003
AMI 10 0.069
HF 1 0.058
HF 3 0.136
STK 1 0.136
STK 5 0.040
STK 6 0.156
STK 8 0.059
STK 10 0.083
VTE 2 0.183
VTE 3 0.126
VTE 4 0.002
PN 6 0.112

SCIP CAR 0.074
IMM 2 0.239
OP 6 0.077
OP 7 0.009
OP 21 0.028
PC 01 0.108

H CLEAN HSP SN 0.171
H COMP 1 SN 0.141
H COMP 2 SN 0.082
H COMP 5 SN 0.119
H COMP 6 Y 0.156

H HSP RATING 7 8 0.185
H RECMND DN 0.176
H RECMND PY 0.123

Table 2: Significant features from Non Negative Least Squares with Quality Function as
the Dependent Variable
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