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We present a direct solver for the Poisson and Laplace equations in a 3D rectan-
gular box. The method is based on the application of the discrete Fourier transform
accompanied by a subtraction technique which allows reducing the errors associated
with the Gibbs phenomenon and achieving any prescribed rate of convergence. The
algorithm requiresO(N3 log N) operations, whereN is the number of grid points
in each direction. We show that our approach allows accurate treatment of singular
cases which arise when the boundary function is discontinuous or incompatible with
the differential equation. c© 1998 Academic Press
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1. INTRODUCTION

Fast and accurate solution of elliptic equations is an important step towards resolution of
problems which appear in computational physics or fluid dynamics (CFD). These equations
arise in the determination of the pressure field for incompressible CFD, in the implicit
solution of viscous and heat transfer problems, in the solution of the Maxwell equations
for lithographic exposure, in the solution of reaction-diffusion equations for baking and
dissolution processes in semiconductor manufacture and in many other applications.

We solve the Poisson equation in a 3D domain. Most Poisson and Laplace solvers were
initially developed for the 2D case, such as the iterative multigrid techniques [15], domain
decomposition [9] and other preconditioning strategies, the boundary integral method [16],
and the adaptive [11] fast multipole method [12].

Application of high-order (pseudo) spectral methods, which are based on global expan-
sions into orthogonal polynomials (Chebyshev or Legendre polynomials), to the solution of
elliptic equations, results in full matrix problems. The cost of inverting fullP× P matrices
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without using special properties isO(P3)operations [8]. Besides, the accuracy may decrease
considerably as the dimensionN2 of the system grows due to accumulation of round-off
errors. These remarks are related to the 2D case, where in 3D the cost increases drastically.
Sparse representations which can be derived by the application of the wavelet transform to
elliptic operators can reduce the number of operations as it is described in [2, 3].

The Fourier method has the following advantages when it is used to solve the Laplace
(Poisson) equation:

1. Differential operators are represented in the Fourier basis by diagonal matrices which
reduce the integration to division of the Fourier coefficients by the corresponding wave
numbers.

2. If the function is infinitely differentiable and periodic then the approximation off by
Fourier series converges tof more rapidly than any finite power of 1/N, whereN is the
number of Fourier harmonics.

Multidimensional FFT can be immediately applied to a regular domain (rectangle in 2D
and parallelepiped in 3D). Besides, rapid convergence assumes periodicity of the function
and its derivatives up to a certain order. If the function is nonperiodic, the Fourier series
converges as 1/N, whereN is the number of points in each direction, which is not better
than a first-order finite-difference scheme. In [4, 5] a fast 2D algorithm was developed
which incorporates the application of the FFT with a preliminary subtraction technique. The
method requiresO(N2 log N) operations forN2 discretization points in the 2D case and
can achieve any prescribed rate of convergence. In this paper we generalize the algorithm to
a 3D case. The efficiency of the algorithm is especially vital for 3D problems which usually
require heavy computations. The method which is presented here enjoys the properties
of the 2D algorithm: fast convergence (i.e., smallN necessary to achieve the prescribed
accuracy) and comparatively small number of operations per point(O(log N)).

We consider the Poisson equation

1u = f (1.1)

with Dirichlet boundary conditions.
First, a particular solution of (1.1) is obtained; then an auxiliary problem for the Laplace

equation is solved. The boundary conditions for the auxiliary problem are obtained as the
difference between the original boundary conditions and those obtained from the particular
solution. If the particular solution corresponds to zero boundary values, then we solve the
Laplace equation with the original boundary conditions.

Thus, the algorithm consists of two steps:

Step1. solving a Poisson equation (1.1) with some boundary conditions;
Step2. solving a Laplace equation with specified boundary conditions.

Below we describe two steps of the algorithm and characterize the methods which are
used to avoid the Gibbs phenomenon.

1. The function f in the right-hand side of Eq. (1.1) is extended to a larger domain
and it is replaced by a new function which coincides withf in the original domain and it
is periodic together with a certain number of its derivatives in the larger domain [4, 18].
This procedure is based on the local Fourier basis method [14, 19] and it uses the folding
operation as it is described in [1, 13].
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2. The auxiliary boundary value problem for the Laplace equation is solved to satisfy
the original boundary conditions. Here we restrict ourselves to a Dirichlet problem. We
reduce the effect of the Gibbs phenomenon by employing the subtraction technique used
in [5], which is extended to the 3D case. The boundary conditions are represented as a sum
of periodic functions with functions which are considered as a restriction of the known
harmonic functions to the boundaries. In particular, combinations of the functions

f1(x, y, z) = sinλ1x sinλ2y sinhλ3z, λ2
1+ λ2

2 = λ2
3, (1.2)

f2(x, y, z) = sinλ1x sinhλ2y sinhλ3z, λ2
1 = λ2

2+ λ2
3, (1.3)

enjoy the propertyfi (1, 1, 1) 6= 0 and fi (x, y, z) = 0 in all the other corners. By subtracting
one of the weighted functions (1.2) or (1.3) we achieve the zero value in the corner (1, 1, 1)
without affecting the values on the other corners. Eight functions are subtracted to achieve
zero values on the corners; then the second derivatives in the corners are eliminated, etc.
A similar procedure is applied to the edges. Finally, the solution is derived by the application
of the discrete sine transform (DST) to each of the six faces, where the boundary conditions
are eventually periodic.

The present paper employs the following ideas of [4, 5]. First, the Gibbs phenomena is
reduced by subtraction of some harmonic functions. Second, these subtraction functions are
chosen as products of trigonometric (i.e., cos, sin, cosh, sinh) functions. However, for the 3D
case the algorithm is more complicated because in 2D the subtraction step was concerned
only with the corners, while in the 3D case we have to treat both corners and edges. Therefore,
different subtraction functions have to be derived. In addition, in [17] and [5] singular cases
were treated when the boundary function is discontinuous or nonharmonic on the corner
of the 2D rectangular. The spectral accuracy was restored by subtracting the singularity.
The singularity treatment of the 3D case is much more difficult by the following reasons.
First, we may have discontinuity not only at one point but along the whole edge. Second,
we cannot use the methods from complex analysis which were useful in removing the 2D
singularities. Therefore, the whole mechanism to remove singularities in the 3D case is new.

The method which is presented here can be modified and extended to handle Neumann/
mixed boundary conditions and for an elliptic equation of a more general type as in [6].

The paper has the following structure. In Section 2 we solve the boundary value problem
for the Laplace equation. We describe the procedure that leads to the boundary function
which vanishes on the corners. The same technique is applied to eliminate the derivatives.
Section 2.3 describes the algorithm which transforms the boundary function to a periodic
one (together with its derivatives up to the third one) to avoid the Gibbs phenomenon. The
outline of the algorithm with operations count and convergence rate estimates are given in
the next section. Numerical results are presented in Section 2.6. Finally, certain singular
cases are considered when the boundary function is discontinuous or does not satisfy the
Laplace equation on a certain edge. Section 3 describes the application of the Fourier method
for the solution of (1.1) in the 3D case.

2. LAPLACE EQUATION IN A BOX

2.1. Mathematical Preliminaries

Consider the Laplace equation in a cube. LetC stand for the open cube(0, π)× (0, π)×
(0, π) = {(x, y, z) : 0≤ x < π,0< y < π, 0< z< π} and let∂C stand for the boundary
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FIG. 1. Dirichlet problem for the cubeC. The continuous functionf on ∂C is specified by six functions
f1, . . . , f6, one on each of the six faces of∂C.

surface of that cube. To solve the Dirichlet problem forC (Fig. 1), we solve first a simpler
problem:

19 = 9xx +9yy+9zz= 0
9(0+, y, z) = 9(π−, y, z) = 0, 9(x, 0+, z) = 9(x, π−, z) = 0

9(x, y, 0+) = 0, 9(x, y, π−) = f1(x, y).
(2.1)

Substituting9(x, y, z) = X(x)Y(y)Z(z) into Laplace’s equation we obtain, upon divi-
ding by X(x)Y(y)Z(z),

X′′(x)
X(x)

+ Y′′(y)
Y(y)

+ Z′′(z)
Z(z)

= 0

and the homogeneous (zero) conditions in (2.1) yield

X(0) = X(π) = 0, Y(0) = Y(π) = 0, Z(0) = 0.

These last two results lead us to

X′′(x) = λX(x), Y′′(y) = µY(y), Z′′(z) = −(λ+ µ)Z(z)
X(0) = X(π) = 0, Y(0) = Y(π) = 0, Z(0) = 0,

(2.2)

whereλ andµ are constants. The first two problems in (2.2) yield the same eigenvalues
and eigenfunctions as the wave equation (fora = b = π ). Substituting those eigenvalues
λm = −m2 andµn = −n2 into the third problem in (2.2), we find the solution

Zmn(z) = sinhδmnz,
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whereδmn= (m2+ n2)1/2. Any finite superposition of these separable solutions,

M,N∑
m,n=1

Dmn sinmxsinny(sinhδmnz/sinhδmnπ), (2.3)

is harmonic. IfM, N →∞ we obtain

9(x, y, z) =
∞∑

m,n=1

Dmn sinmxsinny(sinhδmnz/sinhδmnπ),

where the coefficientsDmn are yet to be determined. Forz=π to satisfy9 = f1 it is required
that

f1 ∼
∞∑

m,n=1

Dmn sinmxsinny.

Therefore, the solution to (2.1) can be written as

9(x, y, z) =
∞∑

m,n=1

Dmn sinmxsinny(sinhδmnz/sinhδmnπ), (2.4)

whereδmn = (m2+ n2)1/2 is a solution of (2.1) (the detailed discussion is given in Ap-
pendix 1) and

Dmn = 4

π2

∫ π

0

∫ π

0
f1(x, y) sinmxsinny dx dy. (2.5)

By adding such solutions we obtain the solution9 to the general Dirichlet problem as a
sum of six series like the one of (2.4). Similarly, the problem

19 = 0

9(0+, y, z) = 9(π−, y, z) = 0

9(x, 0+, z) = f4(x, z), 9(x, π−, z) = 0

9(x, y, 0+) = 9(x, y, π−) = 0

has the series solution

9(x, y, z) =
∞∑

m,n=1

Dmn sinmxsinnz
sinhδmn(π − y)

sinhδmnπ
,

where

Dmn = 4

π2

∫ π

0

∫ π

0
f4(u, v) sinmusinnv du dv.

The other four series solution needed for the solution can be obtained by permuting the
variablesx, y, andz in the two series above.

The validity of (2.4) as a solution to (2.1) is discussed in Appendix 1.
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FIG. 2. Dirichlet’s problem for cubeC. Here the solution9(x, y, z) is specified on the twelve edges ofC.

2.2. Subtraction Procedure for Edges

A sum of six series like the one in Eq. (2.4) is a solution of the Laplace equation with the
given boundary function on the surface∂C. However, if9 6= 0 on the edges of the cube,
the convergence of the series will be very slow because of the Gibbs phenomenon. Conver-
gence can be improved if the face functions vanish together with their even derivatives to
some order. For example, zeroing out the function9 on the edgey = 0, z= π, 0< x < π ,
can be achieved by subtraction of the function (Fig. 2):

u1(x, y, z) =
∞∑

n=1

dn sinnx
sinh λ1n(π − y)

sinh λ1nπ

sinh λ2nz

sinh λ2nπ
, (2.6)

whereλ2
1n + λ2

2n = n2, or alternatively,

u∗1(x, y, z) =
∞∑

n=1

dn sinnx
sinh λ1n(π − y)

sinh λ1nπ

sin λ2nz

sin λ2nπ
(2.7)

with λ2
1n − λ2

2n = n2, where we must require the “nonresonance condition” sinλ2nπ 6= 0.
Here

dn = 2

π

∫ π

0
9(x, 0, π) sinnx dx;

u1 andu∗1 are obviously harmonic and vanish on all the edges except the one under consi-
deration.

Similarly,

u2(x, y, z) =
∞∑

n=1

[
2

π

∫ π

0
9(x, 0, π) sinnx dx

]
sinnx

sinh λ1ny

sinh λ1nπ

sinh λ2nz

sinh λ2nπ
(2.8)
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is appropriate for9(x, π, π) = 0, 0< x < π ,

u3(x, y, z) =
∞∑

n=1

[
2

π

∫ π

0
9(x, 0, π) sinnx dx

]
sinnx

sinh λ1n(π − y)

sinh λ1nπ

sinh λ2n(π − z)

sinh λ2nπ

(2.9)

is appropriate for9(x, 0, 0) = 0, 0< x < π , and

u4(x, y, z) =
∞∑

n=1

[
2

π

∫ π

0
9(x, 0, π) sinnx dx

]
sinnx

sinhλ1ny

sinhλ1nπ

sinhλ2n(π − z)

sinhλ2nπ
(2.10)

is appropriate for9(x, π,0)= 0, 0< x<π . The analogs of the functions (2.7) are obtained
in a similar way.

Eight other subtraction functions can be obtained from (2.6)–(2.10) by permuting the
variablesx, y, andz.

After subtractingu1, u2, . . . ,u12 we will have a solution that vanishes on edges (except
perhaps corners).

We observe that approximation of this solution by a series of type (2.4) will converge
faster if the function vanishes on the edges, together with its even derivatives.

Let

∂29

∂y2
(x, 0, π) ∼

∞∑
n=1

bn sinnx, (2.11)

where

bn = 2

π

∫ π

0

∂29

∂y2
(x, 0, π) sinnx dx. (2.12)

The following function is subtracted for the elimination of the second derivative,

∞∑
n=1

bn

λ2
1n + λ2

2n

sinnx

[
sinhλ1n(π − y)

sinhλ1nπ

sinλ2nz

sinλ2nπ
− sinλ2n(π − y)

sinλ2nπ

sinhλ1nz

sinhλ1nπ

]
, (2.13)

wherebn is defined in (2.12),λ1n > λ2n, sinλ1n 6= 0, sinλ2n 6= 0, andλ2
1n−λ2

2n = n2. This
function enjoys the following properties: it is harmonic, vanishes on all the edges together
with its first derivatives, its second derivative iny vanishes on all the edges except the
chosen one. It also has the same second derivative inz as the boundary conditions since
here the boundary function is assumed to be harmonic.

Similarly, the annihilation of the fourth derivatives is achieved by subtracting a linear
combination of the two functions (2.13) with different coefficients and frequencies.

Under certain conditions the subtraction of the edge values and the second derivatives
can be achieved simultaneously as shown in Appendix 2.

We recall that a boundary function on the segment can be approximated by the sine series
(4.4) if it vanishes on the ends. We proceed to describe the procedure for obtaining zeroes
on the corners.
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FIG. 3. Dirichlet’s problem for cubeC. Here the solution9(x, y, z) is specified on the eight corners ofC.

2.3. Subtraction Procedure for Corners

Let 9(0, 0, 0) = A. A zero value at the origin is achieved by subtracting the so-called
“corner functions” given by (Fig. 3):

C(0,0,0)(x, y, z) = A

[
sinhλ1(π − x)

sinhλ1π

sinhλ2(π − y)

sinhλ2π

sinλ3(π − z)

sinλ3π

]
, (2.14)

where the arguments can be changed to fit the other corners andλ2
1+ λ2

2= λ2
3. The subtrac-

tion of such a function does not influence the values in the seven other corners; thus each
corner can be treated separately.

Denote

Bx = ∂29

∂x2
(0, 0, 0), By = ∂29

∂y2
(0, 0, 0), Bz = ∂29

∂z2
(0, 0, 0).

The second derivative vanishes after subtracting a linear combination of the above func-
tions. For example, in the case of(By − Bx)(2Bx + By) > 0 the function

a

[
sinhλ1(π − x)

sinhλ1π

sinhλ2(π − y)

sinhλ2π

sinλ3(π − z)

sinλ3π

− sinhλ2(π − x)

sinhλ2π

sinλ3(π − y)

sinλ3π

sinhλ1(π − z)

sinhλ1π

]
is subtracted, where sgn|a| = sgn(By − Bx), and

λ2
1 =

2Bx + By

3a
, λ2

2 =
By − Bx

3a
, λ2

3 = λ2
1+ λ2

2.

For(By−Bx)(2Bx+By)<0 and|2Bx+By|> |By−Bx| the subtraction function is chosen
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as

a

[
sinhλ1(π − x)

sinhλ1π

sinλ2(π − y)

sinλ2π

sinλ3(π − z)

sinλ3π

− sinλ2(π − x)

sinλ2π

sinλ3(π − y)

sinλ3π

sinhλ1(π − z)

sinhλ1π

]
,

wherea is of the same sign as(Bx − By):

λ2
1 =

2Bx + By

3a
, λ2

2 =
Bx − By

3a
, λ2

3 = λ2
1− λ2

2.

For (By − Bx)(2Bx + By)<0 and|2Bx + By|< |By − Bx| we subtract

a

[
sinhλ1(π − x)

sinhλ1π

sinλ2(π − y)

sinλ2π

sinhλ3(π − z)

sinhλ3π

− sinλ2(π − x)

sinλ2π

sinhλ3(π − y)

sinhλ3π

sinhλ1(π − z)

sinhλ1π

]
with a, λ1, λ2 as in the previous case,λ2

3 = λ2
2− λ2

1.
In caseBy= Bx we choose the subtraction function as

a

[
sinhλ(π − x)

sinhλπ

sinhλ(π − y)

sinhλπ

sin
√

2λ(π − z)

sin
√

2λπ

− sinλ(π − x)

sinλπ

sinλ(π − y)

sinλπ

sinh
√

2λ(π − z)

sinh
√

2λπ

]
,

whereλ anda are such thataλ2 = Bx/2.
For the caseBy=−2Bx we subtract the same function as above, wherey and z are

permuted. The choice ofλ and allλi should be such that the denominators do not vanish.
Similar functions are subtracted for the other corners. For instance, in the “corner func-

tion” of (π, 0, π) in (2.14), (4.8),π − x is changed byx andπ − z—by z etc.
If the boundary function does not vanish in the corner, the subtraction of the corner values

and the second derivatives can be achieved simultaneously as shown in Appendix 2.
Figure 4 illustrates the values on the facez= 0 after subtraction of the corner functions

and the edge functions, respectively, for the numerical solution of the Dirichlet problem in
the cube [0, 1]× [0, 1]× [0, 1] which corresponds to the exact solution

9(x, y, z) = 1√
(x − 0.5)2+ (y− 0.5)2+ (z− 0.5)2

.

The second derivatives were computed using the divided differences method which
corresponds to a polynomial of the fourth order (four points in addition to one where
the derivative is evaluated).

2.4. Steps of the Algorithm

1. Subtraction of corner functions defined by (2.14).
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2. Computation of the second derivatives in two directions for each corner by the divided
differences method.

3. Elimination of the second derivatives on the corners by using the subtracting functions
which were defined in Section 2.3.

4. Application of the discrete sine transform (DST) on each of the 12 edges and subtrac-
tion of the “edge functions” (2.6) or (2.7).

5. Computation of the second derivatives in the orthogonal direction for the 12 edges.
6. Subtraction of 12 functions defined by (2.13).
7. Application of two-dimensional DST on the six faces; the remainder of the solution

is in (2.3) form.

2.5. Rate of Convergence and Operation Count

The numerical error is dominated by the truncation of the Fourier series. We begin by
estimating the accuracy of the two-dimensional approximation if we truncate the series in
(2.4) for any of the six faces. Consider the first one. The tail of the truncated series,∣∣∣∣∣

∞∑
m,n=1

Dmn sinmxsinny
sinhδmnz

sinhδmnπ
−

M,N∑
m,n=1

Dmn sinmxsinny
sinhδmnz

sinhδmnπ

∣∣∣∣∣
=
∣∣∣∣∣
∞∑

m=M+1

∞∑
n=1

Dmn sinmxsinny+
∞∑

m=1

∞∑
n=N+1

Dmn sinmxsinny

∣∣∣∣∣
≤

∞∑
m=M+1

∞∑
n=1

|Dmn sinmxsinny| +
∞∑

m=1

∞∑
n=N+1

|Dmn sinmxsinny|,

since 0≤ sinhδmnz≤ sinhδmnπ for 0≤ z≤ π .
Let f1 be a periodic function withk − 1 periodic derivatives inx and l − 1 periodic

derivatives iny, while ∂k+l f1/∂
kx∂ l y is integrable in [0, π ]× [0, π ]. Applying integration

by parts to (2.5) yields [10]

Dmn = 4

π2

∫ π

0

∫ π

0
f1(x, y) sinmxsinny dx dy

= 4

π2mk

∫ π

0

∫ π

0

∂k f1(x, y)

∂xk
ϕm(mx) sinny dx dy

= 4

π2mk

∫ π

0

∫ π

0

∂k+l f1(x, y)

∂xkyl
ϕm(mx)ϕl (ny) dx dy,

where

ϕi (t) =
{

cost, odd i,
sint, eveni .

Thus,Dmn¿ 1/(mknl ) and the error estimate∣∣∣∣∣ f1(x, y)−
M,N∑

m,n=1

Dmn sinmxsinny

∣∣∣∣∣ = O

(
1

nl
+ 1

mk

)
= O

(
max

{
1

nl
,

1

mk

})
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is valid for both the first face and the corresponding part of the solution in the cube. There
fore, if the function and its first derivative vanish on the boundaries (one subtraction step),
then the maximal error is reduced by the factor of 22= 4 when the number of points is
doubled in each direction. The maximal error is reduced by the factor of 24= 16 if all the
derivatives up to the third one vanish on the boundaries (two step subtraction). Obviously,
all the other steps of the algorithm (namely, one-dimensional sine Fourier transform for
edges) have the same rate of convergence.

Operation Count

Let N be the number of grid points in each direction:

1. Subtraction of corner functions (2.14) 8· O(N3)

2. Computation of the second derivatives in two directions for
each corner

16 · O(1)

3. Elimination of the second derivatives in the corners 8· O(N3)

4. Application of discrete sine transform for each of the 12 edges
and subtraction of the “edge functions” (2.6) or (2.7)

12 · O(N3 log2 N)

5. Computation of the second derivatives in the orthogonal
direction for the 12 edges

12 · O(N)

6. The same procedure as in 4 for the second derivatives 12· O(N3 log2 N)
7. Application of discrete sine transform for the six faces;

construction and summation of the 6 solutions.
6 · O(N3 log2 N)

Therefore, the total computational cost of the algorithm is 32· O(N3 log2 N) + O(N3),
i.e., O(N3 log2 N) operations.

2.6. Numerical Results

Assume that9 is the exact solution and9 ′ is the computed solution. In the following
examples we will use the following measures to estimate the errors:

εMAX = max‖9 ′i −9i ‖

εMSQ =
√∑N

i=1(9
′
i −9i )2

n

εL2 =
√∑N

i=1(9
′
i −9i )2∑N

i=19
2
i

.

EXAMPLE 1. We solve the Laplace equation in [0, 1]× [0, 1]× [0, 1] with the boundary
conditions corresponding to the harmonic solution (Table 1)

9(x, y, z) = 1

ρ(x, y, z)
,

where

ρ(x, y, z) =
√
(x − x0)2+ (y− y0)2+ (z− z0)2, x0 = y0 = z0 = −0.5.

One can observe thatεMAX decreases a little bit less than what was predicted in the previous
section according to the dominant error. After one subtraction step when the functions
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TABLE 1

MAX, MSQ, and L2 Errors after One (Function Values on the Frame) and Two

(also Second Derivatives on the Frame) Subtraction Steps

One subtr. step Two subtr. steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 1.3e-5 1.8e-6 3.0e-6 9.8e-7 8.1e-8 1.4e-7
16× 16× 16 3.5e-6 2.3e-7 4.0e-7 8.1e-8 2.8e-9 4.7e-9
32× 32× 32 9.3e-7 3.1e-8 5.2e-8 5.9e-9 8.8e-11 1.5e-10
64× 64× 64 2.4e-7 3.9e-9 6.7e-9 4.0e-10 3.0e-12 5.0e-12

before the application of the Fourier transform are periodic, together with their derivatives,
εMAX decreases a little bit less than four times as the number of points is doubled and theεL2

eight times. For two subtraction steps, when the functions after the subtraction procedure
are periodic, together with their derivatives up to the third order, we obtain a decrease of
about 16 and 32 times, respectively.

In the following examples we do not specify boundary conditions and only notice the
corresponding exact solution. Examples 2–5 illustrate the same rate of convergence for
various Dirichlet problems.

EXAMPLE 2. In [0, π ] × [0, π ] × [0, π ] the Dirichlet boundary problem is solved for
the Laplace equation such that the exact solution is (Table 2)

9(x, y, z) = cos 2x
sinh
√

3(π − y)

sinh
√

3π

sinhz

sinhπ
.

EXAMPLE 3. The exact solution is (Table 3)

9(x, y, z) = cos 2x cosy
sinh
√

5(π − z)

sinh
√

5π
, (x, y, z) ∈ [0, π ] × [0, π ] × [0, π ].

EXAMPLE 4. The same as Example 1, only(x0, y0, z0) = (−0.1,−0.3,−0.2) (Table 4).

EXAMPLE 5. The exact solution is (Table 5)

9(x, y, z) = sin 2x
sinhy

sinhπ

sinhz

sinhπ
, (x, y, z) ∈ [0, π ] × [0, π ] × [0, π ].

TABLE 2

MAX, MSQ, and L2 Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 1.5e-4 1.5e-5 1.1e-4 4.2e-5 4.2e-6 3.3e-5
16× 16× 16 4.4e-5 2.1e-6 2e-5 3.4e-6 1.3e-7 1.2e-6
32× 32× 32 1.3e-5 2.9e-7 3e-6 2.4e-7 4.2e-9 4.4e-8
64× 64× 64 3.8e-6 3.7e-8 4.2e-7 1.6e-8 1.3e-10 1.5e-9
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TABLE 3

MAX, MSQ, and L2 Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 2.2e-4 3.2e-5 1.6e-4 8e-5 1e-5 5e-5
16× 16× 16 2e-5 6.8e-7 4.5e-6 6.4e-6 3.6e-7 2.1e-6
32× 32× 32 7e-5 5e-6 3e-5 4.3e-7 1.2e-8 8e-8
64× 64× 64 5.4e-6 8.8e-8 6.2e-7 2.7e-8 3.9e-10 2.7e-9

2.7. Dirichlet Problems with Discontinuous Boundary Conditions or Boundary
Conditions Which Do Not Satisfy the Laplace Equation

Everywhere above we assumed that the boundary function satisfies the Laplace equation
on the edges and the corners. Let us assume now that for the edgey = z = 0, 0≤ x ≤ 1
the Laplace equation is not satisfied but

∂29

∂x2
(x, 0, π)+ ∂

29

∂y2
(x, 0, π)+ ∂

29

∂z2
(x, 0, π) = ϕ(x), (2.15)

whereϕ(x) 6≡ 0. For instance, consider the caseϕ(x) = ax+ b. The function

f (x, y, z) = ax+ b

2π

[
2y(π − z) ln

√
y2+ (π − z)2+ arctan

π − z

y
(y2− (π − z)2)

]
satisfies the Laplace equation everywhere except on the edgey = 0, z= π , where

∂2 f

∂x2
(x, 0, π)+ ∂

2 f

∂y2
(x, 0, π)+ ∂

2 f

∂z2
(x, 0, π) = ax+ b.

In fact,

f (x, 0, π) = 0⇒ ∂2 f

∂x2
(x, 0, π) = 0,

f (x, y, π) = ax+ b

2π

π

2
y2⇒ ∂2 f

∂y2
(x, 0, π) = ax+ b

2
,

f (x, 0, z) = ax+ b

2π

π

2
(π − z)2⇒ ∂2 f

∂z2
(x, 0, π) = ax+ b

2
;

TABLE 4

MAX, MSQ, and L2 Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 5.5e-5 3.8e-6 4.4e-6 3e-5 4e-6 4.7e-6
16× 16× 16 1.7e-5 5.6e-7 6.5e-7 1.6e-6 5e-8 6e-8
32× 32× 32 5.1e-6 7.7e-8 9e-8 1.3e-7 1.6e-9 1.9e-9
64× 64× 64 1.5e-6 1e-8 1.2e-8 9.4e-9 5.2e-11 6e-11
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TABLE 5

MAX, MSQ, and L2 Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 3.6e-5 3.9e-6 3.4e-5 5.8e-6 6.4e-7 5.5e-6
16× 16× 16 1.1e-5 6.3e-7 6.3e-6 3.8e-7 2.8e-8 2.8e-7
32× 32× 32 2.8e-6 8.6e-8 9.3e-7 1.7e-8 6.7e-10 7.3e-9
64× 64× 64 7e-7 1.1e-8 1.3e-7 1e-9 1.6e-11 1.8e-10

therefore∇2 f (x, 0, π)=ax+ b. After subtraction of this function we obtain regular bound-
ary conditions, and the technique that was developed in Sections 2.1–2.3 is applicable.

For the 2D case the problem of corner singularities was considered in [5, 17]. However, it
is to be emphasized that in 3D the problem is more complicated. First, we have a singularity
not only on a single point but on the whole edge. Second, in 3D we cannot apply methods
of complex analysis which appeared to be useful for removing 2D singularities.

At first we describe some cases when singularity can be removed by subtraction of
a function which is known analytically. Then a numerical method for the subtraction of
singularities of a general type will be presented.

Some Types of Constant Singularities

1. Singularity from the intersection of two planes with different constant values:

9(x, y, 0) = 1, 0< x, y ≤ π, 9(x, 0, z) = 0, 0≤ x, z≤ π,
9(0, y, z) = 0, 0≤ y, z≤ π.

The subtraction function for singularity removal is

u(x, y, z) = 2

π
arctan

xy

z
√

x2+ y2+ z2
.

2. A box with “a black floor and white walls”:

9(x, y, 0) = 1, 0< x, y ≤ π, 9(x, 0, z) = 9(x, π, z) = 0, 0≤ x, z≤ π,
9(0, y, z) = 9(π, y, z) = 0, 0≤ y, z≤ π.

The corner singularity function is

8(x, y, z) = 1

π

[
arctan

x

z
+ arctan

y

z
− 2 arctan

yx

z
√

x2+ y2+ z2

]
, (2.16)

which corresponds to the corner (0, 0, 0). The complete subtraction function which removes
the singularities is

S(x, y, z) = 1−8(x, y, z)−8(π − x, y, z)−8(x, π − y, z)−8(π − x, π − y, z).

3. A box with “black floor and ceiling and white walls”:

9(x, y, 0)=1, 9(x, y, π) = 1, 0< x, y ≤ π,
9(x, 0, z)=9(x, π, z)= 0, 0≤ x, z≤π, 9(0, y, z)=9(π, y, z)= 0, 0≤ y, z≤π.
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TABLE 6

Numerical Accuracy after One Subtraction Step when the Solution Is Equal

to One on the Bottom and Vanishes on All the Neighboring Faces

Nx × Ny × Nz εMAX εMSQ εL2

16× 16× 16 2.0e-7 4.0e-8 2.0e-8
32× 32× 32 4.7e-8 3.5e-10 1.8e-9
64× 64× 64 1.2e-8 3.0e-11 1.7e-10

The harmonic function with the same singularity isS(x, y, z) + S(x, y, π − z), whereS
stands for the function defined by (2.16).

EXAMPLE 6. Consider the second problem, i.e. the problem of a cube with a “black
floor and white walls” (Table 6).

The General Case

The above results demonstrate that in the case when “a jump between the faces” is
constant we usually can construct the subtraction function analytically. This leads to a
smooth problem. Suppose now that9(x, 0+, 0)−9(x, 0, 0+)= g(x).

The problem is how to build a function which has the same jump at the edgez= y= 0
and has no jumps on the other edges. This is equivalent to introducing a double layer at the
face y = 0 with a fixed density 2g(x) at z= 0 and zero density atz= 1; for example, a
subtraction function is introduced as

ϕ(x, y, z) = 1

2π

∫ 1

0

∫ 1

0

g(t)y8(s) dt ds

[(x − t)2+ y2+ (z− s)2]3/2
,

where8(s) is a smooth function such that8(0)= 1,8(1)= 0. Obviously,8(s) is equal
to zero aty= 0. We assumeg(0)= g(1)= 0 to avoid a jump at the edges(0, 0, z) and
(1, 0, z). This situation can be achieved by subtracting the corner singularities as shown in
Fig. 5. Figure 6 illustrates the values on the facesz= 0 andz= 1 for the particular case
8(s) = (1−s)2, g(x)= sin(πx). The function8has a jump atz= 0 and is smooth atz= 1.

3. POISSON EQUATION IN CUBE

The following problem involves the Poisson equation with boundary conditions on a
rectangular boxB= (0, π)× (0, π)× (0, π):

9xx +9yy+9zz= −F(x, y, z), Poisson equation,
9(0, y, z) = 9(π, y, z) = 0 9(x, 0, z) = 9(x, π, z) = 0, boundary conditions,

9(x, y, 0) = 9(x, y, π) = 0.
(3.1)

To solve (3.1) we expand9 andF in triple sine series,

9(x, y, z) =
∞∑

k,m,n=1

dkmnsin(kx) sin(my) sin(nz)

F(x, y, z) =
∞∑

k,m,n=1

Dkmnsin(kx) sin(my) sin(nz),
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FIG. 5. Plot of the subtraction functionS(x, y, z) at z= 0.005.

and substitute it into the Poisson equation (3.1) and, assuming that9 is twice continuously
differentiable, we see that

dkmn= Dkmn

k2+m2+ n2
.

Thus,

9(x, y, z) =
∞∑

k,m,n=1

Dkmn

k2+m2+ n2
sin(kx) sin(my) sin(nz). (3.2)

This series and its first and second partial derivatives converge absolutely and uniformly,
provided the seriesF does the same. This is the case ifF is extended as an odd function, it is
continuously differentiable, and if the squares of its second derivatives have finite integrals.
In this case9 is the solution of (3.1). The complete details are given in Appendix 3.

We proceed with the numerical algorithm for the solution of the Poisson equation. The
numerical technique that locates a particular solution of the Poisson equation (3.1) includes
the three-dimensional Fourier transform of the right-hand side. It is efficient and accurate
if the right-hand side is periodic in the cube. If not, a smoothing procedure that includes
extension and folding is applied on the right-hand side. Finally, the solution of the Dirichlet
problem for the Poisson equation incorporates the followingsteps:

1. F(x, y, z) is continuously extended to the domain [−2ε, π + 2ε] × [−2ε, π + 2ε] ×
[−2ε, π + 2ε]; this step can be omitted if the right-hand side is defined in the extended
domain.

2. A one-dimensional folding procedure inz is applied to the extended function̄F(x, y, z)
for each−2ε≤ x, y≤π + 2ε. It is described in Appendix 4. As a result a new function
F̄1(x, y, z) is obtained which coincides with the original function in the cube [0, π ] ×
[0, π ] × [0, π ] and F̄ (2r )

1z
(x, y, −ε)= F̄ (2r )

1 (x, y, π + ε)= 0, r = 0, 1, . . . , −2ε ≤
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x, y≤π + 2ε. The cost of this step isO((N + Nε)2 · Nε), whereNε is the number of
discretization points on the extended segment.Nε is small when it is compared withN.

3. The same folding procedure iny, for each−2ε ≤ x ≤ π + 2ε,−ε ≤ z≤ π + ε, leads
to the functionF̄2 which is periodic, together with its even derivatives iny: F̄ (2r )

2y
(x,−ε, z)=

F̄ (2r )
1 (x, π + ε, z) = 0, r = 0, 1, . . . ,−2ε ≤ x ≤ π + 2ε,−ε ≤ z ≤ π + ε. The cost is

O((N + Nε) · N · Nε).
4. Folding procedure inx for each−ε ≤ y, z≤ π + ε generates a function̄F3 periodic

in “the extended cube”

[−ε, π + ε] × [−ε, π + ε] × [−ε, π + ε],

together with its even derivatives inx, y, andz. The cost of this step isO(N2 · Nε).
5. The Poisson equation (3.1) is solved in the extended domain; the solution is effective

and accurate due to periodicity of the extended right-hand sideF̄3 which coincides with
the original right-hand side in the original domain. The restriction of the obtained solution
to the cube [0, π ] × [0, π ] × [0, π ] is a particular solution of the Poisson equation which
satisfies some boundary conditions. The procedure requiresO(N3 log2 N)operations which
is crucial for the algorithm.

6. An additional Laplace equation is solved with boundary conditions which are equal
to the difference between the original conditions and those of the particular solution of
the Poisson equation that was obtained in the previous step. When the solution of the
Laplace equation is added to the solution of the Poisson equation we obtain a solution
of the problem. As shown in Section 2.4 this part of the algorithm can be implemented
with O(N3 log2 N) operations. Consequently, the solution of the Poisson equation requires
O(N3 log2 N) operations.

EXAMPLE 7. The right-hand side is one of the following functions:

F(x, y, z) = sin(4x) sin(4y) sin(4z),

sinx siny sinz,
cosx cosy cosz

The results are obtained by successive application of the program that computes a parti-
cular solution of the nonhomogeneous equation and the program for the Laplace equation
(Table 7).

EXAMPLE 8. The right-hand side is (Table 8)

f (x, y, z) = exp{−α((x − 0.5)2+ (y− 0.5)2+ (z− 0.5)2)}.

The results are obtained by successive application of the program that computes a particular
solution of the nonhomogeneous equation and the program for the Laplace equation.

Forα = 3 Table 9 shows the dependence of the accuracy on the length of the extension
interval. Everywhere below(32+ 1)3 points are taken in the box [0, 1]3, while the number
of folding points (equal in each direction) varies.



                   

128 BRAVERMAN ET AL.

TABLE 7

Maximal, MSQ, and L2 Errors for the Numerical Solution of the Poisson Equation (3.1)

F(x, y, z) Nx × Ny × Nz Fold. points εMAX εMSQ εL2

sin(4x) sin(4y) sin(4z) 8× 8× 8 4 2.6e-6 4.3e-7 6.9e-4
16× 16× 16 8 7.9e-9 1.9e-9 2.7e-6
32× 32× 32 16 1.7e-12 1.3e-13 1.8e-10

sinx siny sinz 8× 8× 8 4 1.9e-6 7.5e-7 7.5e-5
16× 16× 16 8 1.9e-9 6.9e-10 6.4e-8
32× 32× 32 16 4.7e-11 4.4e-12 3.9e-10

cosx cosy cosz 8× 8× 8 4 1.2e-6 2.0e-7 1.5e-5
16× 16× 16 8 1.1e-9 2.1e-10 1.6e-8
32× 32× 32 16 8.2e-11 1.4e-12 1.1e-10

4. SUMMARY AND DISCUSSION

We developed a spectral algorithm which has the following properties:

1. The algorithm provides fast convergence (in fact, any prescribed rate of convergence)
which leads to high accuracy for comparatively small number of grid points in each direction
(the error 10−7−10−9 is achieved for 32 grid points in each direction when two subtraction
steps are applied).

2. The algorithm requires the same order of operations as the usual Fourier method
requires which isO(N3 log N). HereN is the number of grid points in each direction. The
cost of each subtraction step isO(N3), which is asymptotically smaller than the cost of the
application of the Fourier transform.

For example, we consider the Dirichlet problem for the Laplace equation with the bound-
ary conditions corresponding to the exact solution

9(x, y, z) = 1√
(x + 0.1)2+ (y+ 0.3)2+ (z+ 0.2)2

.

Table 10 shows the numerical results of the straightforward application of the Fourier

TABLE 8

The Dependence of the Numerical Accuracy on the Number of Grid Points

and the Steepness of the Gaussian

α Nx × Ny × Nz Fold. points εMAX εMSQ εL2

0.5 8× 8× 8 4 4.2e-6 1.7e-6 2.0e-6
16× 16× 16 8 3.6e-7 1.8e-8 2.0e-8
32× 32× 32 16 8.9e-8 1.9e-9 2.1e-9

3 8× 8× 8 4 3.4e-6 1.5e-6 3.1e-6
16× 16× 16 8 1.0e-8 1.7e-9 3.4e-9
32× 32× 32 16 2.8e-9 6.0e-11 1.2e-10

15 8× 8× 8 4 2.8e-6 4.2e-7 2.7e-6
16× 16× 16 8 1.6e-12 4.9e-13 2.9e-12
32× 32× 32 16 6.2e-15 5.1e-16 2.3e-15
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TABLE 9

Dependence of the Numerical Accuracy on the Number of Folding Points

Fold. points εMAX εMSQ εL2

4 2.0e-7 5.4e-8 1.0e-7
8 1.1e-8 3.3e-10 6.3e-10

11 7.3e-9 1.6e-10 3.1e-10
14 4.3e-9 9.3e-11 1.8e-10
16 2.8e-9 6.0e-11 1.2e-10
20 1.1e-9 2.2e-11 4.3e-11
24 3.5e-10 9.7e-12 1.8e-11

transform without subtraction. They are compared to the results of the algorithm developed
in this paper using the two subtraction steps. Due the Gibbs phenomenon that exists since
the function is not periodic we can see that the errorεMAX is constant since it is stipulated
by the “jump” of the function at the end. The average errorsεMSQ andεL2 decay as 1/N,
whereN is the number of grid points in each direction.

The present algorithm, that computes the solution of the Poisson equation fast in a regular
3D domain, is a part of a more general algorithm. Suppose that we solve a Dirichlet problem
for the Poisson equation

1u(x, y, z) = f (x, y, z), (x, y, z) ∈ Ä, U (x, y, z) = φ(x, y, z), (x, y, z) ∈ ∂Ä,

in a 3D domainÄwith complex geometry. The domainÄ is decomposed into some subdo-
mains that have regular geometry and only few subdomains have complex geometry (which
are located near the boundary). In each subdomain a different resolution is chosen that
depends on the smoothness of the right-hand sidef . This makes the algorithm adaptive.
The Poisson equation in domains of complex geometry can be solved similar to [20], where
the 2D case was considered. If the equation

1u(x, y, z) = f (x, y, z)

was solved in each subdomain, the collection of these solutions may have discontinuities at
the domain interfaces. The matching procedure for domains with different resolutions was
developed in [7].

TABLE 10

Comparison between the Numerical Results That Were Derived from the Application of

the Fourier Method (without Subtraction Steps) and the Present Algoritm with Two Subtrac-

tion Steps

Fourier method without subtraction Two subtraction steps

Nx × Ny × Nz εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 2.8 3.6e-1 5.3e-1 3e-5 4e-6 4.7e-6
16× 16× 16 2.8 2.0e-1 2.9e-1 1.6e-6 5e-8 6e-8
32× 32× 32 2.8 1.0e-1 1.5e-1 1.3e-7 1.6e-9 1.9e-9
64× 64× 64 2.8 5.2e-2 7.6e-2 9.4e-9 5.2e-11 6e-11
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The results of this paper can be extended in two directions:

1. Elliptic equations of a more general type can be considered, for example, the Helmholtz
equation. This is critical for computational fluid dynamics problems. Discretization of the
Navier–Stokes equation leads to a Helmholtz equation at each time step.

2. The Neumann/mixed problem can be solved for the Poisson equation.

The paper [6] includes fast spectral solvers both for the Dirichlet problem for the
3D Helmholtz equation and for the Neumann/mixed boundary problem for the Poisson
equation.

APPENDIX 1: SOLUTION OF THE LAPLACE EQUATION BY FOURIER SERIES

We discuss now the validity of (2.4) as a solution to (2.1). Similar arguments apply to
the other series that occur in solving Dirichlet’s problem in the cubeC.

Suppose that|Dmn| ≤ A, a constant, for allm andn. This is certainly true if∫ π

0

∫ π

0
| f (x, y)| dx dy

is finite. If 0≤ z≤ π − δ for δ > 0, then

0≤ A
sinhδmnz

sinhδmnπ
= A

eδmnz

e−δmnπ

1− e−2δmnz

e2δmnπ − 1
≤ Ae−δmnδ

1

e2
√

2π − 1

and
∑∞

m,n=1 Ae−δmnδ[e2
√

2π − 1]−1 converges by the comparison test. It follows that

∞∑
m,n=1

Dmn sinmxsinny(sinhδmnz/sinhδmnπ) (4.3)

converges uniformly to9 for 0 ≤ z ≤ π − δ. Similar arguments show that (4.3) may be
differentiated term by term any number of times, provided that 0≤ z≤π − δ. Hence, letting
δ approach zero, we find that9 is harmonic inC.

If f1 is C2 when extended as an odd periodic function, then9 satisfies the boundary
conditions of Dirichlet’s problem.

Finally, we note that the uniqueness of9 follows by the maximum–minimum principle
for harmonic functions.

APPENDIX 2: ONE STEP SUBTRACTION PROCEDURE

If in (2.6) all dn 6= 0, the function values at the edges and the second derivatives can
be subtracted simultaneously. We observe that in (2.6)–(2.10)λ1n, λ2n are not uniquely
determined. They can be chosen such that the second derivatives have the appropriate
values.

The functions9(x, 0, π), (∂29/∂y2)(x, 0, π) can be expressed as

9(x, 0, π) ∼
∞∑

n=1

dn sinnx,
∂29

∂y2
(x, 0, π) ∼

∞∑
n=1

bn sinnx, (4.4)
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where

dn = 2

π

∫ π

0
9(x, 0, π) sinnx dx, bn = 2

π

∫ π

0

∂29

∂y2
(x, 0, π) sinnx dx. (4.5)

Let us set

λ2
1n = bn/dn,

λ2n =
√

n2− λ2
1n, if n > λ1n in (2.6), (4.6)

λ2n =
√
λ2

1n − n2, if n < λ1n in (2.7),

if bn/dn > 0,

λ2
1n = −bn/dn, λ2n =

√
λ2

1n + n2,
(4.7)

u∗1(x, y, z) =
∞∑

n=1

dn sinnx
sinλ1n(π − y)

sinλ1nπ

sinhλ2nz

sinhλ2nπ
,

if bn/dn < 0.
Then, after subtraction ofu1 the function vanishes with its second partial derivatives in

y andz on the edge (the boundary conditions satisfy the Laplace equation on the edges).
This procedure is not applicable if at least onedn = 0.
Similar procedure can be applied to the corners. Consider the corner(0, 0, 0). If

9(0, 0, 0) = A 6= 0, then by the appropriate choice ofλ1, λ2 in (2.14) we can in fact
achieve the annihilation of the three second derivatives with repeated indices. For ex-
ample, if By = (∂29/∂y2)(0, 0, 0)>0, Bz = (∂29/∂z2)(0, 0, 0) < 0, −Bz> By, then
λ2 =

√
By, λ3 =

√−Bz, λ1 =
√
λ2

3− λ2
2. If also By < 0, then we choose the “corner

function” as

C(0,0,0)(x, y, z) = 9(0, 0, 0)
[

sinhλ1(π − x)

sinhλ1π

sinλ2(π − y)

sinλ2π

sinλ3(π − z)

sinλ3π

]
(4.8)

with

λ2
2 = −

∂29

∂y2
(0, 0, 0) = −By, λ2

3 = −
∂29

∂z2
(0, 0, 0) = −Bz, λ1 =

√
λ2

3+ λ2
2.

In caseBy > 0, Bz < 0,−Bz, By the function

C(0,0,0)(x, y, z) = A

[
sinλ1(π − x)

sinλ1π

sinhλ2(π − y)

sinhλ2π

sinλ3(π − z)

sinλ3π

]
is subtracted, whereinλ2 =

√
By, λ3 =

√−Bz, λ1 =
√
λ2

2− λ2
3, etc.

APPENDIX 3: GREEN FUNCTION FOR THE POISSON EQUATION

By the Parseval equation we can write the solution (3.2) as

9(x, y, z) =
∫ π

0

∫ π

0

∫ π

0
G(x, y, z; ξ, η, ζ )F(ξ, η, ζ )dξ dη dζ, (4.9)
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providedG is a function such that

G(x, y, z; ξ, η, ζ ) ∼ 8

π3

∑∑∑ sinkx sinmysinnzsinkξ sinmη sinnζ

k2+m2+ n2
. (4.10)

To find this function we let

r =
√
(ξ − x)2+ (η − y)2+ (ζ − z)2

and choose a constanta depending upon the fixed point(x, y, z) in such a way that the
spherer ≤ a inside our cube. We define the function

ψ(r ) =


1
2r

[
5
(
1− r

a

)4− 3
(
1− r

a

)5
]
, r < a,

0, r ≥ a.

Then,ψ(r ) − 1/r has a continuous second partial derivatives, bounded third derivatives,
and square integrable fourth derivatives.

We expandψ(r ) in a triple sine series. Making the change of variable

ξ ′ = ξ − x, η′ = η − y, ζ ′ = ζ − z,

we let

π3

8
Akmn=

∫ π

0

∫ π

0

∫ π

0
ψ
(√

(ξ − x)2+ (η − y)2+ (ζ − z)2
)

sinkξ sinmη sinnζ dξ dη dζ

=
∫∫∫

ξ ′2+η′2+ζ ′2<a2
ψ
(√

ξ ′2+ η′2+ ζ ′2)
× sink(ξ ′ + x) sinm(η′ + y) sinn(ζ ′ + z) dξ ′ dη′ dζ ′

=
∫∫∫

ψ [sinkξ ′ coskx+ coskξ ′ sinkx][sin mη′ cosmy+ cosmη′ sinmy]

× [sinnζ ′ cosnz+ cosnζ ′ sinnz] dξ ′ dη′ dζ ′

= sinkx sinmysinnz
∫∫∫

ψ coskξ ′ cosmη′ cosnζ ′ dξ ′ dη′ dζ ′.

(Sinceψ is even inξ ′, η′, andζ ′, integrals ofψ sinξ ′, ψ sinη′, andψ sinζ ′ are zero.)
Now

coskξ ′ cosmη′ cosnζ ′ = 1

4
[cos(lξ ′ +mη′ + nζ ′)+ cos(lξ ′ +mη′ − nζ ′)

+ cos(lξ ′ −mη′ + nζ ′)+ cos(lξ ′ −mη′ − nζ ′)].

Sinceψ is even inξ ′, η′, andζ ′, we find that the integrals ofψ times each of these cosines
gives the same result. Then,

π3

8
Akmn=

∫∫∫
ξ ′2+η′2+ζ ′2<a2

ψ
(√

ξ ′2+ η′2+ ζ ′2) cos(kξ ′ +mη′ + nζ ′) dξ ′ dη′dζ ′.
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We now use the spherical coordinates(r, θ, φ) with origin at(x, y, z) and the polar axis
in the direction of the vector with components (k, m, n). Then,√

ξ ′2+ η′2+ ζ ′2 = r,

kξ ′ +mη′ + nζ ′ = r
√

k2+m2+ n2 cosθ,

and, hence,

π3

8
Akmn=

∫ a

0

∫ π

0

∫ 2π

0
ψ(r ) cos

(
r
√

k2+m2+ n2 cosθ
)
r 2 sinθ dr dθ dφ.

We investigate first with respect toφ and then with respect toθ :

π3

8
Akmn= 2π

∫ a

0
ψ(r )

[− sin(r
√

k2+m2+ n2 cosθ)

r
√

k2+m2+ n2

]π
0

r 2 dr

= 4π√
k2+m2+ n2

∫ a

0
ψ(r )r sin

(
r
√

k2+m2+ n2
)

dr.

Using the definition ofψ , we find

Akmn= 32

π2(k2+m2+ n2)

[
1− 60(2+ cosa

√
k2+m2+ n2)

a4(k2+m2+ n2)2

+ 180 sina
√

k2+m2+ n2

a5(k2+m2+ n2)5/2

]
sinkx sinmysinnz.

Thus,

1

4π
ψ(r ) ∼ 8

π3

∑∑∑[
1

k2+m2+ n2
− 60(2+ cosa

√
k2+m2+ n2)

a4(k2+m2+ n2)3

+ 180 sina
√

k2+m2+ n2

a5(k2+m2+ n2)7/2

]
sinkx sinmysinnzsinkξ sinmη sinnζ.

Comparing with (4.10), we see that

G(x, y, z; ξ, η, ζ ) = 1

4π
ψ(r )

480

π3

∞∑
1

∞∑
1

∞∑
1

[
2+ cosa

√
k2+m2+ n2

a4(k2+m2+ n2)3

− 3 sina
√

k2+m2+ n2

a5(k2+m2+ n2)7/2

]
sinkx sinmysinnz sinkξ sinmη sinnζ.

(4.11)

The series on the right and its first and second partial derivatives converge uniformly. This
means thatG − 1/(4πr ) is twice continuously differentiable and thatG vanishes on the
faces of the cube. It can be verified by direct differentiation that

∇2

(
1

r

)
= 0 for r 6= 0
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and that

∇2[ψ(r )] = 1

r

d2

dr2
(rψ) for r 6= 0.

From this it follows that the Laplacian of the series is the series of−(1/4π)∇2ψ . Hence,
∇2G = 0.

The functionG is called the Green’s function. For a general domainD the Green’s
functionG is characterized by the properties

1. ∇2G = 0 in D,
2. G = 0 on the boundary,
3.

G(x, y, z; ξ, η, ζ ) = 1

4π
√
(x − ξ)2+ (y− η)2+ (z− ζ )2 − γ (x, y, z; ξ, η, ζ ),

whereγ is a regular solution of Laplace’s equation. Such a Green’s function exists for any
sufficiently regular bounded domain. However, it can usually not be found explicitly. As in
two dimensions,G is symmetric:

G(x, y, z; ξ, η, ζ ) = G(ξ, η, ζ ; x, y, z)

Physically,G is the potential at(x, y, z) due to a charge at(ξ, η, ζ ) inside a cubical box
whose sides are kept at zero potential.

The functionγ in condition (3) is the solution of the boundary value problem

∇2γ = 0, in D,

γ = 1

4π
√
(x − ξ)2+ (y− η)2+ (z− ζ )2 , on the boundary.

It is infinitely differentiable inD. Hence, the same is true forG except at(x, y, z).
By using the form (4.11) of the Green function we can show that the function (4.9) satisfies

the Poisson equation (3.1) ifF is continuous and continuously differentiable. Under these
hypotheses we see from the Schwarz inequality and the Parseval equation that the series
(3.2) converges uniformly, so that9 also satisfies the boundary conditions of the problem
(3.1).

APPENDIX 4: FOLDING PROCEDURE

To implement the smoothing, we introduce the bell functionB(x), supported on the
extended intervala1 < a < b < b1,

B2(x)+ B2(2ā− x) = 1, x ∈ [a1,a],
B(x) = 1, x ∈ [a, b],

B2(x)+ B2(2b̄− x) = 1, x ∈ [b, b1],
B(x) = 0, x < a1, x > b1,

(4.12)
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FIG. 7. The folding operation.

whereā = (a+a1)/2, b̄ = (b+ b1)/2. This function is equal toB= 1 inside the subdomain
and smoothly decays out words over the distance 2ε = b1 − b = a− a1. Some particular
forms of B(x) were tested in [13, 14].

The smoothing of the functionf , denoted byf̃ , appears as a “folding” across the lines
ā andb̄ (see Fig. 7):

f̃ ≡ B · f =FāFb̄ f (x)= B(x) f (x)− B(2ā− x) f (2ā− x)− B(2b̄− x) f (2b̄− x)

(4.13)

(the “folded” function f̃ is defined in [̄a, b̄]; the second term is “switched on” only in the
interval x ∈ [a1,a] and the third term in the intervalx ∈ [b, b1], respectively). The extra
pieces of the functionf , required for the smoothing operation, are provided by overlapping
the neighboring subdomains over 4ε range. On the intervalx ∈ [a, b] we have f̃ = f .

The smoothing procedure keeps the functionf̃ highly continuous atx=a, b. In addition,
Eq. (4.13) yields that in the vicinity of the pointsx= ā, x= b̄ the function f̃ (x) is odd and
thus all even derivatives̃f

(2r )
(ā)= f̃

(2r )
(b̄)= 0 for r = 0, 1, . . .. After an antisymmetric

reflection across the pointx= b̄ (or x= ā) is performed, we obtain a smooth periodic
function which can be represented by a rapidly converging sine series.

In the numerical implementation of the algorithm the bell was used,

B(x) =


0, x < a1 or x > b1,

sin(θ(x)), x ∈ [a1,a],
1, x ∈ [a, b]
cos(θ(x)), x ∈ [b, b1]

(4.14)

with

θ(x) = π

4

(
1+ sin

(
π

2
sin

(
sin

(
π

2

x

ε

))))
. (4.15)
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