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Abstract Differential evolution (DE) is a popular evolutionary algorithm inspired by Darwin’s

theory of evolution and has been studied extensively to solve different areas of optimisation and

engineering applications since its introduction by Storn in 1997. This study aims to review the mas-

sive progress of DE in the research community by analysing the 192 articles published on this sub-

ject from 1997 to 2021, particularly studies in the past five years. The methodology used to search

for relevant DE papers and an overview of the original DE are firstly explained. Recent advances in

the modifications proposed to enhance the effectiveness and efficiency of the original DE are

reviewed by analysing the strengths and weaknesses of each published work, followed by the poten-

tial applications of these DE variants in solving different real-world engineering problems. In con-

trast to most existing DE review papers, additional analyses are performed in this survey by

investigating the impacts of various parameter settings on given DE variants to identify their opti-

mal values required for solving certain problem classes. The qualities of modifications incorporated

into selected DE variants are also evaluated by measuring the performance gains achieved in terms

of search accuracy and/or efficiency against the original DE. The additional surveys conducted in

this study are anticipated to provide more insightful perspectives for both beginners and experts of

DE research, enabling their better understanding about current research trends and new motiva-

tions to outline appropriate strategic planning for future development works.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Different sophisticated engineering systems have been
designed and deployed in various industries in response to

the phenomenal changes brought by the Fourth Industrial
Revolution [1,2]. Given the ubiquitous nature of optimisation,
most of these real-world engineering systems can be formulated

as complex models that consist of challenging characteristics
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such as nonlinearity, multimodality, discontinuousness and
non-differentiability. To solve these complex models success-
fully, a decision-making process known as optimisation is

generally used to search for the best combinations of decision
variables that can maximise or minimise the predefined objec-
tive functions while satisfying all technical and non-technical

constraints within a reasonable period of time. Convention-
ally, numerous mathematical programming methods such as
linear programming [3], dynamic programming [4] and

Newton’s methods [5] were adopted by practitioners to solve
these optimisation problems. Each of these conventional opti-
misers can perform well in certain types of problems only and
it can be challenging to select an appropriate optimiser without

having good priori knowledge on the characteristics of optimi-
sation problems to be tackled. In addition, these conventional
optimisers suffer from common drawbacks such as limited glo-

bal strength, poor guessing of the initial solution and strong
dependency on gradient information, which can further restrict
their effectiveness in tackling various modern engineering opti-

misation problems that have increasing complexity. In view of
the limitations of conventional optimisation methods, there is
an urgent need to develop generic and yet more intelligent

schemes that are able to solve different types of complex
optimisation problems effectively without having to know
the nature of a given problem a priori.

Metaheuristic search algorithms (MSAs) are envisioned as

promising candidates to solve challenging modern optimisa-
tion problems by leveraging their search mechanisms inspired
by different natural phenomena. These MSAs are able to per-

form searches with different levels of exploration and exploita-
tion strengths during the optimisation process to locate the
global or near-global optimum solution. Exploration is able

to promote population diversity because it involves the process
of discovering diverse solutions within the search space, while
exploitation involves the refinement of information discovered

so far by focusing on the search process within the vicinities of
best solutions. The proper balancing of exploration and
exploitation searches serves as a cornerstone for all MSAs to
solve different types of optimisation problems successfully.

In contrast to mathematical programming methods, MSAs
in general are more flexible and able to locate the near-
global optima of given optimisation problems more efficiently

without requiring substantial modifications of algorithmic
frameworks and the derivative information of given problems.
The stochastic nature of MSAs also enables them to exhibit

better robustness in handling local entrapment issues that are
commonly encountered in real-world global optimisation
problems. Given MSAs’ desirable features such as simplicity,
flexibility, robustness and efficiency, trends in artificial intelli-

gence fields have been emerging in the past decades to develop
new MSAs with enhanced search performances to solve differ-
ent types of optimisation problems.

Depending on the sources of inspiration used to generate
new solutions, the existing MSAs can be divided into four
major categories [6]: (a) evolutionary algorithms (EAs), (b)

swarm intelligence algorithms, (c) human-based algorithms
and (d) physics-based algorithms. In general, the development
of EAs is motivated by Darwin’s theory of evolution and the

‘survival of the fittest’ concept. Different genetic operations
such as crossover, mutation and selection were utilised by these
EAs in producing new offspring solutions with better quality.
Swarm intelligence algorithms are inspired by the collective

behaviours of animals or insects such as searching for food
sources and finding mates for reproduction purposes. Refer-
ring to the local information and interaction with search envi-

ronments, intelligent behaviours can be demonstrated by these
swarm members in a decentralised manner. For human-based
algorithms, their search operators emulate different human

activities or any human behaviour such as thinking, learning,
talking and teaching. Finally, physics-based algorithms refer
to those with search mechanisms inspired by various types of

physical laws such as thermodynamics, electromagnetism,
trigonometry and gravity. Table 1 presents the taxonomy of
MSAs based on their source of inspiration and some notable
examples associated with each branch of the MSA.

1.1. Overview of differential evolution

Among MSAs that were developed in the past few decades,

differential evolution (DE) proposed by Storn et al. [30] is con-
sidered one of the most popular optimisers to solve complex
optimisation problems. DE belongs to the EA family and is

a population-based method that is widely used to solve various
types of optimisation problems. It generates new offspring by
recombining solutions under certain conditions, unlike other

EAs that produce offspring by perturbing the solutions with
scaled difference vectors. The current individual solution will
be replaced if it is outperformed by the new offspring solution
[31]. DE is considered a robust and simple algorithm because

its search process is governed by few algorithm-specific param-
eters, such as scaling factor and crossover rate. Similar to other
EAs, DE can produce new offspring solutions through three

mechanisms: mutation, crossover and selection. Mutation
and crossover are commonly observed to have a greater impact
on the algorithm’s search performance [32].

Although substantial amounts of MSAs inspired by differ-
ent natural phenomena were proposed in the past decades, DE
remains one of the most popular MSAs used by researchers

Table 1 Taxonomy of metaheuristic search algorithms.

MSAs Algorithm name

Evolutionary

Algorithms

Evolutionary programming (EP) [7], genetic

algorithm (GA) [8], co-evolving algorithm

(CEA) [9], genetic programming (GP) [10],

differential evolution (DE) [11], human evo-

lutionary model (HEM) [12], bio-inspired

optimization (BIO) [13]

Swarm Intelligence

Algorithms

Particle swarm optimization (PSO) [14], ant

colony optimization (ACO) [15], artificial

bee colony (ABC) [16], island bat algorithm

(iBA) [17], whale optimization algorithm

(WOA) [18], firefly algorithm (FA) [19]

Human-based

Algorithms

Jaya algorithm (JA) [20], human-inspired

algorithm (HIA) [21], teaching–learning-

based optimization (TLBO) [22], socio evo-

lution and learning optimization (SELO)

[23], cognitive behavior optimization (CBO)

[24]

Physics-based

Algorithms

Gravitational search algorithm (GSA) [25],

electro-magnetism optimization (EMO) [26],

multi-verse optimizer (MVO) [27], sine

cosine algorithm (SCA) [28], nuclear reaction

optimization (NRO) [29]
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and practitioners to tackle diverse sets of real-world optimisa-
tion problems due to its several competitive advantages.
Firstly, the implementation of DE is simpler and more

straightforward than that of most other MSAs [33]. This desir-
able feature enables those practitioners that might not have
strong programming competency to make simple adjustments

on the coding of DE to solve their domain-specific problems.
Secondly, despite its simplicity, DE is able to demonstrate
more promising optimisation ability than other MSAs in solv-

ing diverse types of optimisation problems that have challeng-
ing features such as nonlinearity, multimodal and non-
separability. Thirdly, different DE variants have emerged as
the top three best-performing optimisers in most Congress of

Evolutionary Computation (CEC) competitions since 2005
[34], implying the potential of DE variants to solve different
real-world applications with competitive search accuracy,

search robustness and convergence speed. Lastly, compared
with other MSAs that might also perform well in challenging
optimisation problems, DE has the more desirable feature of

low space complexity [33]. In other words, DE has better scal-
ability than some existing MSAs in handling large-scale and
computational expensive optimisation problems due to its

lower storage requirements.

1.2. Existing review works on differential evolution and their
limitations

Substantial efforts have been made by several researchers to
review the massive progresses made in research areas of DE
from different perspectives since its conceptualisation in 1997

[33–39]. Neri and Tirronen [35] are one of the pioneers in
reviewing the progresses of DE research, focusing on the sur-
vey of various modified DE structures with additional compo-

nents that were published up to 2009 and their performance
evaluation in solving selected conventional and rotated prob-
lems with different dimensional sizes. A few crucial aspects

that were not highlighted in their review work include engi-
neering applications, analysis of current trends, open chal-
lenges and future directions of DE research. Two review
papers were published by Das and Suganthan [33] and by

Das et al. [36] to rigorously survey the advances of DE
research up to 2011 and 2016, respectively. The major topics
covered in these review papers are modifications made on

the existing DE variants to solve different types of optimisa-
tion environments and engineering applications. Other inter-
esting issues such as theoretical analyses, parallelisation and

future directions of DE were also discussed.
The scope of study for the review paper published by

Jebaraj et al. [37] is relatively niche because it focused on the
applications of DE to solve static and dynamic economic or

emission dispatch problems that were published up to 2016.
Problem formulation in terms of objective function as well as
the equality and inequality constraints of various economic

or emission dispatch problems were firstly described, followed
by an overview of existing DE variants that were designed to
solve these problems. In contrast to most existing works that

surveyed modifications made on DE variants and their engi-
neering applications, the review paper of Opara and Arabs
[38] focused on theoretical analyses of DE works. Substantial

amounts of theoretical studies such as convergence character-
istic, computational complexity, population diversity and pop-

ulation dynamics models of DE published up to 2019 were
discussed in this paper comprehensively. Javaid [39] also pub-
lished a review paper in the same year, but it only covered the

DE variants and their applications in energy management
problems that were published up to 2016. Recently, Bilal
et al. [34] published a review paper that covered the recent pro-

gress of DE research published up to 2018. Apart from the
modifications made of original DE, this review paper also per-
formed comprehensive bibliometric analysis of DE to report

its publication statistics on the basis of different journal quar-
tiles and publishers.

Although numerous DE review papers have been published
since the last decade, these works have their unique strengths

and limitations. First, most DE review papers such as
[33,35,36] only covered the relevant works published up to
2016. Bilal et al. [34] surveyed the recent advances of DE vari-

ants up to 2018, yet the engineering applications of DE were
not up to the date and only covered until 2013. Certain review
papers such as [37–39] have a relatively narrower scope of

study and might therefore have limited readership among
novice researchers or other interested parties that intend to
know more about DE from more fundamental and broader

perspectives. Some review papers such as [34,37–39] did not
describe the methodology, databases and choice of keywords
used for data collection. In fact, the presence of this informa-
tion is highly recommended to enable researchers who are per-

forming similar surveys in other research areas. Finally, all the
aforementioned DE review papers [33–39] did not perform any
surveys to investigate the impacts of various parameter settings

on given DE variants to find out their optimal values required
for solving certain problem classes. The performance gains
achieved by these modified DEs against the original DE in

terms of search accuracy and/or efficiency when they are
applied to solve given optimisation problems were also not fur-
ther analysed.

1.3. Significance and contributions of this work

In this paper, we present an updated review based on the state-
of-art DE works, aiming to address the limitations of existing

DE review papers. Our review paper aims to cover broader
scopes of DE’s philosophy to generate greater readership
among the researchers or any other intended parties with dif-

ferent competency levels. Initially, the systematic methodol-
ogy, including adoption of database, choice of keywords,
classification and verification of research articles used during

the data collection, is described for the intended readers to
have a better understanding of the origin of selected papers.
Apart from an overview of basic search mechanisms (i.e. muta-
tion, crossover and selection) in original DE, the recent

advances of modifications made in enhancing the effectiveness
and efficiency of DE are also covered up to 2021, where the
strengths and limitations of each DE variants are critically dis-

cussed. In contrast to existing works, our review paper also
performs additional analysis to investigate the impacts of dif-
ferent parameter settings on given DE variants to identify

the best parameter values used for solving particular problem
classes. Furthermore, our review paper investigates the quali-
ties of modifications incorporated into selected DE variants

by measuring the performance gains achieved in terms of
search accuracy and/or efficiency against the original DE.
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The additional survey analyses conducted in our review paper
are anticipated to be able to offer more new insights to DE
researchers with different competency levels in understanding

the latest trends of DE research, hence providing them the
motivation to outline appropriate strategic planning for their
future development works.

The summary of the contributions of this review paper of
DE can be presented as follows:

� Detailed descriptions are given of the systematic methodol-
ogy used for data collection of related papers, including the
definition of research, choice of keywords and online data-
bases used for article searching, verification processes used

for excluding irrelevant articles and research analyses
required to summarise the findings from existing DE works.

� Recent progress made on the modifications of DE algo-

rithms, including those innovations introduced into modi-
fied initialisation, mutation, crossover, selection and/or
hybridisation schemes up to 2021, were described compre-

hensively and analysed critically. The latest engineering
applications of DE variants, including those of niche areas
such as solving differential equation systems, were also cov-

ered in our review paper.
� Additional survey analyses are conducted in this review
paper to investigate the influences of different parameter
settings on given DE variants to solve certain problem

classes optimally. To the best of the authors’ knowledge,
a detailed survey of the optimal parameter settings for
DE in different types of optimisation problems was not

considered in any previous DE review paper even though
the overall search performances of DE were governed by
these control parameters.

� The qualities of modifications made on DE variants in
terms of search accuracy and/or efficiency to solve given
problems based on pre-specified system configurations are

also measured and compared with the original DE.
Although these types of analyses have not been conducted
in any DE review paper so far, we anticipate that these anal-
yses can be beneficial for both expert and novice researchers

by offering them new insights in discovering new directions
for the modifications of DE.

� Open research challenges from different perspectives are

elaborated by referring to the additional survey analyses
performed on the state-of-art DE variants published in
recent years. The corresponding future research directions

that have the potential to address each open research chal-
lenge are also unveiled at the end of this review paper.

The remaining sections of this paper are presented as fol-

lows: Section 2 presents the research methodology used to con-
duct a systematic literature survey of DE. Section 3 discusses
the basic concepts of the traditional DE algorithm. Section 4

discusses the strategies used to enhance the search performance
of DE through the modification of the initialisation, mutation,
crossover, selection and hybrid schemes. The latest engineering

applications of DE are also reported. Section 5 discusses the
additional performance analyses of DE in terms of survey
analysis, benchmark functions used, frequently used parameter

settings, widely used performance measures and performance
studies. Sections 6 and 7 present the open research challenges
and future research directions, respectively. Lastly, Section 8
concludes this paper.

2. Research methodology

In this section, the methodology and procedures used to per-
form the systematic review of existing works related to DE

are explained. As shown in Fig. 1, an organized research
framework is developed and expressed in four major steps,
namely, research definition, article search, article verification

and research analysis.
First step: Research definition

Step 1.1: Define the research area. The research areas are

the enhanced technique and applications of DE algorithms
to solve various problems, as shown in Fig. 2.
Step 1.2: Define the research goal. The research goal is to

provide a systematic research scheme and propose ideas
to enhance the existing DE algorithms.
Step 1.3: Define the research scope. The research scope is to

review the optimisation process of DE algorithm articles
with full text.

Second step: Article search

Step 2.1: Define the search terms. Only articles published
within 2010 to 2021 were selected as the main references.

Other articles published before 2010 are still considered
general references given that DE was initially conceptu-
alised by Storn et al. [30] in 1997. The articles were gathered

as references by using six key terms, as shown in Fig. 2. All
these research areas are the main focuses of the review pro-
cess presented in Section 4.

Step 2.2: Search in online databases. The online journal
databases used for searching research articles based on
the choices of keywords are listed as follows:

– IEEE Xplore
– Web of Science
– Taylor & Francis
– ScienceDirect

– Springer
– Wiley
– Scopus

Step 2.3: Select only English language articles. Only related
articles written in English language were considered, and
those with other languages were excluded from this review.

A total of 192 articles were selected for the survey purpose.

Third step: Article verification
The articles gathered in the second step were thoroughly

verified by all co-authors. Only the articles related to DE were
selected.

Step 3.1: Filter and remove irrelevant articles. Articles that
generally focused on the general nature-inspired based algo-
rithms but did not have any significant relation with DE

were rejected except for the 53 general research articles used
to explain the basic concept of MSAs.
Step 3.2: Double verification process for each article. The

remaining selected articles were determined if they lie in
the areas of focus. In this review, our focused parts were
exploitation and exploration processes, convergence rate,
computation time, search accuracy and robustness of an

algorithm, as shown in Fig. 3. However, other outstanding
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achievements of researchers were also included as extra
information that can be value-adding to this review paper.
The articles were mainly selected from high-impact journals

and several book chapters in explaining the basic theory of
the DE algorithm. A few conference papers were also
included as extra references for a general review of DE

algorithms. Fig. 4 shows the tabulation of publications used
in this review. On the basis of the chart, most of the chosen
articles were published between 2016 and 2020 because the

latest advances of DE and modification techniques pro-
posed in these variants were surveyed. The DE and non-
DE algorithms are designated with blue and orange col-
ours, respectively, as shown in Fig. 4. Some non-DE

research papers were included in this review process to pro-

vide additional information to readers such as the basic
concept of other MSAs, as well as some open research chal-
lenges and future research directions that might be applica-

ble to outline the future development plans of DE research.
Step 3.3: Classify and store the articles in a specific folder
accordingly. The collected articles were classified into a

specific folder according to the nature of their topics. This
process was necessary because it ensures that the informa-
tion related to our research is well organised.

Final step: Research analysis

Step 4.1: Analyse the selected articles. We analysed the

selected articles to obtain important information such as

Fig. 1 Research framework.

Fig. 2 Research areas. Fig. 3 Focused review parts.
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modification strategies introduced in the original DE and
their respective strengths and limitations, types of engineer-

ing applications, dimensional size of benchmark functions,
optimisation results in terms of the search accuracy and
efficiencies, parameter settings and qualities of modifica-

tions for different DE variants, and performance gains in
terms of algorithm’s accuracy and convergence speed.
Step 4.2: Summarise the articles and make critiques for the
presented methods. We listed the strengths and limitations

of the introduced techniques, as well as the qualities of
modifications imposed in selected DE variants to solve dif-
ferent optimisation problems or any other engineering

applications. Some articles are used as supplementary refer-
ences to explain the fundamental theory and basic concept
of DE algorithms.

Step 4.3: Identify future research directions and further mod-
ifications. Finally, we outlined the potential future develop-
ment works for DE algorithms on the basis of the current

research trends and open research challenges observed from
the current survey analyses.

3. Basic concept of DE algorithms

The algorithmic framework of basic DE consists of four
phases, namely, initialisation, mutation, crossover and selec-

tion, as shown in Fig. 5. Initialisation is a one-time process,
while the remaining three mechanisms are repeated in the
search process of DE in a D-dimensional solution space until

the termination criteria are satisfied.

3.1. Initialisation

Initialisation is the first process that occurs in DE to search for
a global optimum solution located in a D-dimensional of real

parameter space. The initial solutions for a given multidimen-
sional optimisation problem consist of NP real-valued param-
eter vectors, where NP represents the population size of DE.

During the t-th iteration, each i-th individual solution of DE
can be represented as a D-dimensional vector as (1)

Xt
i ¼ ðXi;1;Xi;2; � � � ;Xi;DÞ ð1Þ

where i= 1,2,. . .,NP. The initial population condition starts at
t = 0. The initial candidate solutions can be generated during
the initialisation stage on the basis of the lower and upper limit
boundaries of the solution search space represented by (2) and

(3), respectively, as follows:

Xmin ¼ ðXmin;1;Xmin;2; � � � ;Xmin;DÞ ð2Þ

Xmax ¼ ðXmax;1;Xmax;2; � � � ;Xmax;DÞ ð3Þ
For each i-th DE solution, the j-th dimensional component

can be initialised by randomly generating a value in between

the upper limit of Xmax,j and lower limit of Xmin,j as shown
in (4)

X
ð0Þ
i;j ¼ Xmin;j þ randi;j 0; 1½ � Xmax;j � Xmin;j

� � ð4Þ
where randi,j[0,1] is a uniform distribution that can generate
any real value between 0 and 1.

3.2. Mutation

In biological terms, mutation is defined as an instant change of
characteristic observed from a chromosome gene. In the con-

text of evolutionary computation, mutation is a random per-
turbation process performed on selected decision variables.

In DE philosophy, a mutant or donor vector denoted as Yt
i

is constructed from a mutation process on the basis of a given

target vector of Xt
i [34,35]. Generally, the DE mutation strat-

egy can be represented as the format ‘DE/*/n’ where n refers

to the number of difference vectors involved and * represents
the target vector considered during the mutation process.
The search mechanisms of five commonly used mutation

strategies in DE are represented as follows:
DE/rand/1:

Yt
i ¼ Xt

r1
þ F Xt

r2
� Xt

r3

� �
ð5Þ

DE/rand/2:

Yt
i ¼ Xt

r1
þ F Xt

r2
� Xt

r3

� �
þ F Xt

r4
� Xt

r5

� �
ð6Þ

DE/best/1:

Yt
i ¼ Xt

best þ F Xt
r1
� Xt

r2

� �
ð7Þ

DE/best/2:

Fig. 4 Number of all cited articles.

Fig. 5 DE consecutive phases.
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Yt
i ¼ Xt

best þ F Xt
r1
� Xt

r2

� �
þ F Xt

r3
� Xt

r4

� �
ð8Þ

DE/current-to-best/1:

Yt
i ¼ Xt

i þ F Xt
best � Xt

i

� �þ F Xt
r1
� Xt

r2

� �
ð9Þ

where r1 is the population index of the DE solution selected as
the base vector; r2, r3, r4 and r5 are the population indices of
DE solutions randomly selected to construct the mutant vec-
tor, where r1, r2, r3, r4, r5 e [1, NP] and r1 – r2 – r3 – r4 –
r5 – i; Xt

best imply that the best individual solution in the DE

population is selected as the target vector; and F is a scaling

factor used to control the mutation process and has a value
in the range between [0,1]. Choosing the appropriate value
for F is crucial to achieve proper balancing of exploration

and exploitation searches of the algorithm to prevent undesir-
able drawbacks such as premature convergence or slow con-
vergence speed.

3.3. Crossover

In this phase, both the mutant and target vectors cross their
components together in a probabilistic manner to produce a

trial vector (offspring). This crossover process allows the target
solution to inherit the attributes of the donor solution or
mutant. Two commonly used crossover operators are known

as uniform crossover and exponential crossover. The uniform
crossover scheme is controlled by a crossover rate (CR) that
has a value between [0,1]. The trial solution generated by uni-

form crossover can be defined in (10) as follows:

Zt
i ¼

Yt
i;j if randi;j 0; 1½ � � CR or j ¼ k

Xt
i;j Otherwise

(
ð10Þ

where randi,j is a random number lies in range [0,1] and
k 2 1; 2; � � � ;Df g is a randomly selected dimension index to
ensure at least one dimensional component of trial solution

Zt
i is inherited from the donor vector Yt

i;j.

For exponential crossover, an integer n 2 1; 2; � � � ;Df g is
randomly chosen as the starting point of the dimension index
for a target vector to perform crossover with the mutant or
donor vector. Another integer L 2 1; 2; � � � ;Df g denotes the

number of dimensional components to be inherited from the
donor or mutant vector to form the trial solution. Referring

to the values of n and L, the trial solution (Zt
i) can be obtained

from (11) as follows:

Zt
i ¼

Yt
i;j ifj ¼ hniD; hnþ 1iD; � � � ; hnþ L� 1iD

Xt
i;j Otherwise

(
ð11Þ

where h�iD indicates a modulus function of D. Exponential

crossover reportedly performs better on certain types of opti-
misation problems such as those with the presence of linkages
between neighbouring decision variables.

3.4. Selection

The selection process enables DE to determine the survival of a

target (parent) or a trial (offspring) solution in the next itera-

tion (Xtþ1
i ) of the search process while retaining the population

size of DE in every generation. Once the new population is

formed in the next generation, the iterative processes of muta-

tion, crossover and selection are performed continuously until
the termination criteria are satisfied. Two types of selection
exist, namely, local and global [40]. The selection process of

DE is mathematically described as follows:

Xtþ1
i ¼ Zt

i if f Zt
i

� � � f Xt
i

� �
Xt

i Otherwise

(
ð12Þ

where f(�) is an operator used to determine the objective func-
tion or fitness value of an individual solution. If the latest trial

vector of Zt
i produces a better objective function value, then

the current target vector Xt
i will be replaced by Zt

i in the next

iteration. The selection process of DE can be implemented
through synchronous and asynchronous modes. The DE pop-
ulation can be updated simultaneously during the synchronous
mode, whereas the asynchronous mode can be used to update

the DE population individually.

4. Enhanced schemes of DE

4.1. Enhanced initialisation scheme

Population initialisation is a crucial task because it can govern
the quality of the final solution and the convergence speed of
the algorithm. The selection of this non-repeatable process is

vital because the quality of the initial population obtained
tends to affect the overall flow of the DE algorithm.

An initialisation approach used to generate the initial popu-

lation of the candidate solution with opposition-based learning
was proposed by Rahnamayan et al. [41]. Three essential stages
were considered in this initialisation scheme. Firstly, a ran-
domly distributed population denoted as P(n) was obtained

from the uniform distribution generator, where n refers to pop-
ulation size. An opposite population of OP(n) was then calcu-
lated based on opposition-based learning strategy. Lastly, the

initial population was determined by selecting the best n indi-
vidual solutions evaluated from a combined population set of
P nð Þ [OP nð Þf g. Fig. 6 shows the DE with (a) random popula-

tion initialisation (DEr) and (b) opposition-based population
initialisation (DEo). A set of unimodal and multimodal bench-
mark functions were used for performance comparison, and

reports indicate that the DE incorporated with opposition-
based initialised scheme can achieve performance gains of
10% in terms of convergence rate. However, the proposed
method was unable to solve the benchmark functions with high

dimensional sizes in a robust manner.
Ozer et al. [42] proposed a chaotically initialised DE

(CIDE) algorithm with faster convergence rate and better

robustness against premature convergence. A total of seven
chaotic maps — logistic, circle, Gauss, Henon, sinus, sinu-
soidal and tents — were selected to initialise the DE popula-

tion. Simulation results showed that the DE algorithms
incorporated with chaotic maps for initialisation process tend
to demonstrate better optimisation performance than that ini-

tialised using classical random sequences. Furthermore, the
DE algorithms initialised with both circle and sinus maps were
reported to outperform those of remaining chaotic maps in
terms of final solution quality due to their more promising

capability to flee from the local solutions. The idea of parallel
computing was suggested in this study to reduce the computa-
tional overhead brought by chaotic initialisation schemes.
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Melo et al. [43] proposed smart sampling DE (SSDE),

which is able to locate the promising solution area in the
search space by leveraging the strength of machine learning.
The proposed initialisation process was performed in different

regions of the search space, and it aimed to assist DE in iden-
tifying the solution regions with higher chances to locate the
global optimum. SSDE started with a randomly initialised

population in the boundary regions of the search space. The
solutions with promising fitness values were chosen iteratively
based on a specific threshold until the stopping criteria deter-
mined based on the minimum window size or resampling num-

ber were satisfied. The K-nearest neighbour (kNN) was utilised
to classify the newly generated solutions based on their fitness,
and inferior solutions were discarded. Finally, the regions con-

taining promising solutions were partitioned by a rule-based
learner. SDE was compared with three DE variants with dif-
ferent modified initialisation schemes, namely, opposition-

based DE (ODE), quasi-oppositional DE (QODE) and
uniform-quasi-opposition DE (UQODE). Extensive simula-
tion results revealed the advantages of the proposed initialisa-

tion scheme incorporated into SSDE in locating the global
optima of different optimisation problems in terms of effi-
ciency with a higher success rate (i.e. 96%) as compared with
those of the original DE (i.e. 80%).

Zhu et al. [44] designed an adaptive population tuning
scheme (APTS) to dynamically control the population size of
DE based on the desired population distribution and searching

status. The proposed dynamic population strategy enabled
excessive individuals to be identified on the basis of their rank-
ing orders and then discarded from population clusters. Partic-

ularly, the redundancy monitor variable increased if fitness
enhancement for successive generations was observed. The
stagnation monitor variable increased if no fitness improve-
ment was detected from the individual solution, and the termi-

nation process can be triggered at the predefined threshold
value. The population cut strategy was applied to prevent
the overgrowth of the population size before it reached the

upper boundary limit, whereas the population increment tech-
nique was employed when the population size was close to the
lower boundary limit to ensure that adequate individuals were

allocated for the search process. APTS was integrated with
multiple DE variants and their performances were evaluated
against that of five other state-of-the-art DE variants by using

CEC 2005 test functions. Simulation results showed that the
DE incorporated with APTS outperformed other DE variants
in solving 100 dimensional problems without incurring exces-

sive complexity and runtime.
Poikolainen et al. [45] presented a cluster-based population

initialisation (CBPI) sampling technique for DE to predict the
most promising regions of the decision space. A set of initial

points were randomly sampled within the decision space and
fine-tuned with two local search strategies. These refined solu-
tions were subsequently grouped into different sets of promis-

ing solution areas by using K-means clustering algorithm. In
the final stage, all clusters’ best individuals were saved as the
initial population of DE, and other population members can

be sampled based on the fitness-based probabilistic criterion
to occupy the population size. CBPI was used as the initialisa-
tion scheme of six DE variants to solve different benchmark

and real-world problems. These simulation results showed that
CBPI is able to improve the performance of DE.

An initialisation scheme based on Cauchy mutation and
clustering method was proposed by Bajer et al. [46] to generate

an initial DE population that has good solution qualities with-
out requiring the domain knowledge of given optimisation
problems. Clustering method was firstly employed to identify

different areas of solution search spaces with relatively promis-
ing qualities. Cauchy mutation was then performed around
these cluster centres to generate other good solutions, whereas

uniform distribution was also applied to generate other popu-
lation members to maintain the diversity level of solutions.
Performance analyses revealed that the DE variants integrated

with this proposed initialisation scheme has a higher conver-
gence speed than those with the conventional initialisation
scheme, but the former approach tends to incur additional
computational complexity due to the presence of the clustering

process. Furthermore, a challenging task is to determine the
optimal ratio between solution members generated using the
Cauchy mutation and uniform random distribution to achieve

a proper trade-off between the exploration and exploitation
searches of the algorithm in solving different types of optimi-
sation problems.

An adaptive multi-population DE with dynamic population
reduction scheme known as tribe DE-dynamic reduction
(sTDE-dR) was proposed to address premature convergence
and improve the solution qualities in solving real-world appli-

cations [47]. The population of sTDE-dR was partitioned into
several tribes, and the ensemble of different mutation and
crossover schemes was utilised to evolve these tribe members.

A competitive success-based scheme was designed to determine
the life cycle and participation ratio of each tribe in the next
iteration on the basis of their respective mean success value.

A dynamic reduction scheme was also incorporated to reduce
its population size of sTDE-dR during the search process. The
CEC 2014 benchmark functions with different characteristics

were used to compare the performance of sTDE-dR with that
of other classical DE algorithms, and the former algorithm
performs more competitively in terms of robustness and con-
vergence speed.

Fig. 6 DE with (a) random population initialisation and (b)

opposition-based population initialisation.
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Mustafi et al. [48] proposed a hybrid algorithm using GA
and DE to prevent the premature convergence issue of the
K-mean algorithm by enhancing the quality of its seed initial-

isation. Specifically, the GA framework was used to determine
the original seed points, while the heuristic of DE was lever-
aged to search for the prerequisite number of clusters to

improve the choice of centroids used by the K-mean clustering
algorithm. The performance of the proposed hybrid GA-DE in
optimising the K-mean algorithm was evaluated using text

clustering application and compared with the K-mean algo-
rithm implemented with standard parameters. Despite demon-
strating better performance, the K-mean algorithm optimised
with hybrid GA-DE tends to suffer from the drawback of high

computational times. On the basis of the aforementioned
reviews, Table 2 summarises the research related to enhanced
initialisation schemes.

4.2. Enhanced mutation scheme

Islam et al. [49] proposed an adaptive DE algorithm with a

new mutation strategy to improve its search performance in
tackling complex numerical optimisation problems. A new
mutation operator, namely, DE/current-to-gr_best/1, was

modified from the conventional mutation scheme of DE/
current-to-best/1 and the associated mechanism can be
expressed in (13)

V
!

i;G ¼ X
!

i;G þ FiðX!gr best;G � X
!

i;G þ X
!

r
g
1
;G � X

!
r1
2
;GÞ ð13Þ

where X
!

gr best;G is a percentage of randomly chosen vectors

from group of population, and X
!

r
g
1
;G and X

!
r1
2
;G are two differ-

ent vectors. The best solution from the population was ran-
domly picked from the latest generation to interrupt the
target vector to reduce the probability of premature conver-

gence. The proposed framework was compared with other
six DE variants by using CEC 2005 benchmark functions in
30, 50 and 100 dimensions. The results showed that the new

mutation method can enhance the search performance of DE
tremendously in solving various types of optimisation prob-
lems. The proposed mutation method was also incorporated
with other DE variants such as JADE and jDE. However, their

performance studies were limited to fixed group sizes of candi-
date pools in selecting the best individual solutions over
generations.

Gong et al. [50] presented the ranking-based DE mutation
operator, where parents in the mutation operators were ran-
domly chosen based on their current population rankings.

The probability of each candidate solution to be selected for
the mutation process is directly proportional to its fitness
value. Performance analyses were performed by comparing

the proposed method with competitive jDE algorithm with
various mutation operators, other DE variants and self-
adaptive parameters. The results showed that the ranking-
based mutation operators were able to improve the perfor-

mance of classical and advanced DE algorithms in terms of
their exploitation ability. However, the promising performance
of the proposed framework is limited to small-scale problems

only.
Fan et al. [51] proposed a discrete mutation control param-

eters self-adaptive DE (DMPSADE) algorithm to address the

issue of balancing exploration and exploitation search when

tackling different optimisation problems. In this proposed
mutation scheme, each individual solution was assigned a
unique mutation control parameter. The performance of

DMPSADE was evaluated with CEC 2005 benchmark func-
tions in different dimensional sizes and compared with the
existing DE variants. Extensive simulation results revealed that

DMPSABE outperforms its competitors in most optimisation
problems, but it is outperformed by the Rank-Code,
MDE_pBX and Rank-JADE when dealing with 30 dimen-

sional problems.
Ali et al. [52] proposed a multi-population DE balanced

ensemble of mutation strategies (mDE-bES) to tackle large-
scale optimisation problems with enhanced population diver-

sity. The individuals were partitioned into multiple subgroups
to prevent the stagnation of the main swarm, where each sub-
group was evolved using different mutation strategies. A novel

mutation scheme was also proposed to produce good-quality
solutions by leveraging useful information obtained from the
best or any randomly selected individuals from a given popu-

lation topology. The fitness evaluation of mDE-bES was
divided into different epochs, where information exchange
between subgroups can be facilitated at the end of every epoch

through the swapping of subgroup members. Performance
evaluation was conducted by comparing mDE-bES with other
optimisers in solving 19 large-scale global optimisation bench-
marks in dimensional sizes set in between 50 and 1,000.

Despite having promising performance in solving large-scale
problems, the parameter settings of mDE-bES were obtained
through manual tuning process instead of adaptive ones.

Hamza et al. [53] proposed a new mutation strategy
inspired by the constraint consensus (CC) method and incor-
porated into DE to reduce the constraint violation of new solu-

tions generated during the searching process. In contrast to
most existing works that considered the constraint violation
issue only during the ranking and selection processes of solu-

tions, the CC method directly participated in the mutation
process to reduce the number of new solutions that violated
the predefined constraints. Notably, the CC-based mutation
scheme was applied only on certain infeasible solutions during

the search process to maintain the population diversity with
reduced runtime. Simulation studies revealed that the CC-
based mutation scheme can improve DE in terms of solution

quality with a significantly reduced runtime up to 44.7% and
10.6% for problems with dimensional sizes of 10 and 30,
respectively. Nevertheless, the CC-based mutation scheme is

ineffective in handling multimodal problems due to the rapid
loss of population diversity during the initialisation stage to
identify the feasible search space of given optimisation
problems.

Ho-Huu et al. [54] proposed an improved DE (IDE) that is
able to evolve the target vectors in population by using multi-
mutation operators known as ‘rand/10, ‘rand/20, ‘best/10 and
‘best/20. A selection scheme was devised in the mutation stage
to assign a unique mutation operator to each individual solu-
tion to maintain the balance between the global and local

search abilities of the algorithm. Furthermore, an elitist selec-
tion scheme was proposed to replace the conventional selection
scheme during the selection process of IDE, aiming to acceler-

ate the convergence rate of the algorithm. The performance of
IDE was evaluated using five benchmark functions and the
optimisation of size and shape for truss structures subjected

Differential evolution (DE) is a popular evolutionary algorithm 3839



Table 2 Summary of research on enhanced DE initialisation scheme.

Author Technique

introduced

Dimensional

sizes

Results Performance

metrics

Merits Limitations

[41] Opposition-based

initialization

method

2, 3, 4, 5, 6,

10, 20, 30

and 100

The convergence rate of

the DE algorithm with

opposition-based

initialization was

enhanced by 10% as

compared with the DE

algorithm with random

population initialization.

Acceleration

rate

The proposed

initialization method

improved diversity level

of initial population,

hence increasing

convergence rate of

algorithm.

Significant performance

degradation of

acceleration rate can be

observed in higher

dimensional problems,

i.e., for D > 10

[42] Chaotically

Initialized DE

(CIDE)

2, 5 and 10 The presence of complex

and yet dynamic

initialization methods

can improve the quality

of solutions in solving

optimization problems.

Not stated Reduced probability of

premature convergence

due to improvement of

global search capability.

Only two out of seven

chaotic maps can

increase the solution

quality in solving

benchmark functions.

The capability of other

chaotic maps in

generating solution with

better quality to solve

real-world applications

were not investigated.

[43] Smart Sampling

DE (SSDE)

10, 20, 30, 40

and 60

Success rate and success

performance of SSDE

were proven to

outperform original DE

by 16% and 76%,

respectively.

NFC,

Success rate

(SR), Success

performance

(SP)

SSDE has better efficacy

to find initial

populations of superior

quality when compared

to three other DE

variants with

oppositional learning.

High computational cost

was incurred due to the

utilization of machine

learning techniques to

perform the smart

sampling approach.

[44] Adaptive

population tuning

scheme (APTS)

30, 100 The proposed JADE-

APTS achieved a good

performance in 30

dimensional problems

and best performance in

100 dimensional

problems.

Mean error

and standard

deviation

Simplicity in

implementation.

Population size can be

adaptively adjusted to

increase the probability

of locating global

optimum.

Effect of control

parameters were not

carefully studied. High

tendency of status

monitor to discard the

candidate solutions that

have temporary inferior

performance but can be

potentially useful in long

terms.

[45] Cluster-Based

population

initialization

(CBPI)

10, 30, 50,

100 and 1000

The proposed algorithm

is efficient and able to

improve the

performance of DE

framework consistently.

Average

fitness and

standard

deviation

The presence of intra-

cluster and inter-cluster

mutation strategies can

improve explorative

behavior of algorithm.

Additional

computational cost can

be incurred by clustering

process. In addition, the

results were not explicitly

exploited.

[46] A population

initialization

method for

evolutionary

algorithms based

on clustering and

Cauchy deviates

2, 4, 10, 30

and 50

The proposed

initialization method

achieved more rapid

convergence rate speed

than the conventional

initialization approach.

Average

execution

time

Convergence rate of

proposed DE variant

was increased notably

when compared to the

DE variants with

conventional population

initialization method and

DE with opposition-

based initialization

method.

High computational

complexity. Difficulty in

estimating optimal ratios

between the solutions

generated by Cauchy

mutation and uniform

distribution when

solving different problem

types.

[47] Success Tribe

DE-dynamic

Reduction

(sTDE-dR)

10, 30, 50

and 100

sTDE-dR solved

unimodal, multimodal,

composite and hybrid

function efficiently.

Mean error,

standard

deviation,

and

Friedman

test

Increased probability of

generating good

offspring solutions due

to promising ability of

each tribe in

disseminating the best

solution to future tribe.

Inferior performance of

algorithm in solving the

hybrid functions with

higher dimensional sizes.
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to frequency constraints. While the solution accuracies of IDE
are similar to that of the original DE, the former algorithm

was reported to have better performance than the latter one
in terms of computational cost.

Opara et al. [55] advocated that the existing DE mutation

operators can be generalised through parameter tuning
because these algorithms are different only in terms of the
range and direction of the difference vector performed on a

given base vector. A mathematical framework was therefore
developed to represent different mutation schemes in terms
of expectation vectors and covariance matrices of mutants’ dis-
tribution. A generalised scaling factor was also introduced to

adjust the mutation range, enabling the expectation vectors
and covariance metrices of expected mutants’ distribution to
simulate the statistics of two mutation operators, i.e. DE/

best/1 and DE/rand/1. The proposed framework was evalu-
ated using CEC 2013 benchmark functions in different dimen-
sional sizes. Comparable performances were found in different

transformations of scaling factors, especially for DE variants
with two difference vectors.

Mohamed et al. [56] proposed an enhanced fitness adapta-
tion DE (EFADE) with a novel triangular mutation operator

to handle the global optimisation problems with better balanc-
ing of exploration and exploitation searches. Three solutions
were firstly chosen randomly during the triangular mutation

process. The difference vectors between the best, better and
worst solutions with each randomly selected solution were then
calculated to construct the convex combination vector of tri-

plet. Two parameter adaptation schemes were also introduced
to adjust the control parameters of EFADE effectively without
requiring any additional parameters or priori knowledge of

given problems. The performances of EFADE were compared
with those of 12 DE variants by using CEC 2013 benchmark
functions, and EFADE can outperform its peers in terms of
solution quality and robustness. Although EGADE can per-

form well in solving problems with low and medium dimen-
sional sizes, the effectiveness of modifications that were made
to deal with large-scale optimisation problems remains

unexplored.
Yu et al. [57] proposed several mutation operators to han-

dle the feasible and infeasible solutions of DE separately when

dealing with constrained multi-objective optimisation prob-
lems that consider the goals of objective optimisation and con-
straint handling equally crucial. For infeasible solutions,

randomisation processes based on major and minor mutations

were proposed at the early and later stages of optimisation,
respectively, to balance the exploration and exploitation

searches. For feasible solutions, different modifications were
proposed for mutation operators to rank these solutions based
on their Pareto domination status and diversity values to bal-

ance the convergence and diversity. Nineteen benchmark func-
tions and a real-world problem known as combined economic
emission dispatch were used to examine the performance of

proposed method with other peer algorithms such as reference
vector-guided EA, speed-constrained multi-objective PSO,
archive-based hybrid scatter search, reference point-based
many-objective and multi-objective EA based on decomposi-

tion. Numerical results showed that the proposed method out-
performed the others, having better solution diversity and
higher convergence rate in solving problems with low dimen-

sional sizes of 2 and 10. However, the robustness of the pro-
posed method in solving problems with higher dimensional
sizes remains unexplored.

Ramadas et al. [58] proposed a reconstructed mutation
strategy for DE (RDE) to solve multilevel thresholding prob-
lems based on fuzzy entropy. Apart from the scaling factor,
two additional control parameters with complemented values

were incorporated into the mutation operator to enhance con-
vergence speed and prevent the premature convergence of the
algorithm. The inclusion of two additional control parameters

in RDE also enabled greater emphasis on the value of the
donor vector and prevented it from collecting the neighbour-
hood of global best solutions. Simulation studies showed that

RDE can obtain better thresholding results within a shorter
processing time when dealing with weather images with differ-
ent hazard severity levels, thus enabling more accurate analysis

of weather conditions.
Wang et al. [59] proposed a self-adaptive mutation DE

algorithm based on PSO (DEPSO) to address the slow conver-
gence and high tendency of premature convergence exhibited

by the original DE. An improved DE/rand/1 mutation scheme
was introduced based on elite archive strategy to promote the
global exploration search of DEPSO. Meanwhile, the conver-

gence speed of DEPSO was enhanced by incorporating
another PSO-based mutation scheme. The performance of
DEPSO was evaluated using a set of benchmark functions with

different dimensional sizes (i.e. 30 and 100) and a real-world
optimisation problem known as arrival flight scheduling.
DEPSO successfully improved its convergence speed in solving

simple optimisation problems without sacrificing the popula-

Table 2 (continued)

Author Technique

introduced

Dimensional

sizes

Results Performance

metrics

Merits Limitations

[48] A hybrid

approach using

genetic algorithm

and the DE

heuristic

2, 3, 4, 5 The proposed method

outperformed the

classical versions of k-

means algorithm

Silhouette

score and

DB-Index

score

Initial population with

the higher diversity level

was generated due to the

better coverage of initial

solutions in the search

space, hence generating

the most desirable

centroids for k-means

clustering algorithm.

The execution time of

proposed algorithm were

significantly slower than

that of the conventional

k-means clustering

algorithm.
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tion diversity. The robustness of their self-adaptive mutation
strategy with a relatively simple structure in dealing with more
complicated optimisation problems remains questionable.

Xiao et al. [40] presented a multi-strategy different dimen-
sional mutation DE (MDMDE) to address the slow conver-
gence speed and premature convergence of the conventional

algorithm. A different dimensional mutation strategy was
firstly proposed to enhance population diversity, where each
dimensional component of the mutant vector is contributed

by the base vector and difference vector from different dimen-
sions, as described in (14)

vgþ1
i;j ¼ xg

r3;n þ F � xg
r1;m � xg

r2;m

� �
ð14Þ

where i – r1 – r2 – r3, j – n – m, vgþ1
i;j is the mutation vector,

xg
r3 ;n

is the base vector and xg
r1;m � xg

r2;m is a different vector

from distinct dimensions. A multi-strategy mutation scheme
was also designed to enhance the convergence speed of

MDMDE by dividing the overall optimisation process into
four generation units. The first- and third-generation units of
MDMDE adopted a conventional mutation strategy of ‘DE/
best/10 that promoted exploitation search, whereas the new

dimensional mutation strategy was utilised in the second-
and fourth-generation units under the presence of dynamic
mutation factor to prevent the stagnation of population in

local optima regions. A new crossover rate scheme varied
based on the cosine function was also introduced to further
enhance the robustness of MDMDE towards premature con-

vergence. The proposed MDMDE was applied to solve eight
simple test functions, and it outperformed its peer algorithms
in terms of solution accuracy and convergence speed. Never-

theless, the performance evaluation of the current study might
not be sufficient to fully explore the full potential of MDMDE
due to the small number of test functions and peer algorithms
used. Furthermore, the idea of different dimensional mutation

strategy proposed in this study might not be applicable for
most real-world optimisation problems because the decision
variables encoded in different dimensions tend to have differ-

ent search ranges.
Prabha et al. [60] presented a new mutation vector, namely,

the DE haemostasis operator (DEHeO) inspired by the

haemostasis process in the human body to enhance the popu-
lation diversity of the algorithm to prevent premature conver-
gence. Fitness criterion was firstly employed to divide the main

population of DEHeO into revision and remainder pools used
to store the best and better candidates, respectively. Both pools
performed searching independently based on the newly
designed haemostatic mutation operator to introduce diverse

new solutions at every iteration. Further population diversity
can be supplemented by the haemostatic mutation operator
by removing the pressure from all individuals in generating

potential solutions. The performance of DEHeO was com-
pared with that of other DE variants by using the Comparing
Continuous Optimisers (COCO) platform, and the proposed

algorithm was reported to have better solution accuracies
and convergence rates. Nevertheless, laborious processes of
manual parameter tuning were needed to determine the opti-
mal parameter settings of DEHeO to achieve these perfor-

mance gains.
Bidgoli et al. [61] proposed a new version of generalised DE

(GDE4) with an ordered mutation operator to solve many-

objective optimisation problems more effectively. In contrast

to conventional DE, which performed mutation on randomly
selected individual solutions, GDE4 ranked the candidate
solutions by using the concepts of non-dominated sorting

and crowding distance before mutation. The best-ranked solu-
tion among three randomly selected solutions was considered
the parent, whereas the remaining two are identified as the sec-

ond and third candidate solutions for the mutation process,
respectively. With these ordered vectors, the summation and
subtraction operators of DE mutation enable the new mutant

solution to inherit the quality of the best and better candidate
solutions by being attracted towards the first and second vec-
tors and being repelled from the third one. The standard
benchmark functions of CEC 2017 were used to evaluate the

performance of GDE4, and it was reported to outperform its
competitor in most test functions, implying the effectiveness
of using ordered vectors for mutation. The potential of other

ranking strategies has yet to be explored in this study.
Deng et al. [62] proposed a DE with two dynamic

speciation-based mutation strategies (DSM-DE) to solve

single-objective optimisation problems more effectively.
Dynamic speciation technique was firstly performed in DSM-
DE to partition the population dynamically into multiple num-

bers of species with each species seed considered as centres.
The best vector of each species was also considered base vec-
tors of two proposed mutation vectors, i.e. ‘DE/seeds-to-
seeds’ and ‘DE/seeds-to-rand’, with greater explorative and

exploitative strengths, respectively. ‘DE/seeds-to-seeds’ consid-
ered another two species seeds randomly chosen from other
species to construct the difference vector, while two random

individuals were randomly selected by ‘DE/seeds-to-rand’ to
determine the difference vector as in (15) and (16)

V
!

i;j;g ¼ X
!

i;seedi;g þ Fi;j;g:ðX!i;seedr1;g � X
!

i;seedr2;gÞ ð15Þ

V
!

i;j;g ¼ X
!

i;seedi;g þ Fi;j;g:ðX!i;r1;g � X
!

i;r2;gÞ ð16Þ

where X
!

i;seedi;g is the seed of the target vector; Fi;j;g is the muta-

tion factor for each generation; seedr1, seedr2 are the indices of
two randomly selected species seeds; and r1 and r2 are the
indices of two randomly chosen solutions from the DE popu-

lation. The performance of DSMDE was compared with that
of its peer algorithms by using CEC 2014, CEC 2015 and
Lennard-Jones potential problems. DSMDE has competitive
search accuracy and efficiency due to the proper balancing of

global and local searches brought by ‘DE/seeds-to-seeds’ and
‘DE/seeds-to-rand’. Despite its promising performance,
DSMDE is sensitive to species sizes and it requires a manual

parameter tuning process to obtain an optimal species size.
Sun et al. [63] proposed a novel Gaussian mutation and

modified common mutation schemes in their proposed GPDE

to produce new mutant vectors collaboratively and adaptively
by referring to their respective cumulative scores. A periodic
function was adopted to generate the scaling factor to achieve

proper balancing of exploration and exploration strengths.
The population diversity of GPDE was further enhanced
through the fluctuant crossover rate obtained from Gaussian
function to ensure its robust performance in dealing with com-

plex problems. Thirty benchmark functions from CEC 2014
and four real-world problems were employed to compare the
performance of GPDE with that of seven DE variants. Despite

its promising search performance, GPDE is more sensitive to
the changes of crossover rate due to its greater impacts on
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population sizes, thus requiring a more careful parameter
tuning process to achieve optimal settings.

Attia et al. [64] proposed an enhanced DE variant abbrevi-

ated as MSaDE with self-adapting control parameters and
multi-mutation strategies, aiming to improve its solution accu-
racy and convergence speed. The proposed MSaDE consists of

three mutation operators with unique control parameters.
‘DE/rand/10 and ‘DE/best/10 can promote the global search
and local search abilities of MSaDE, respectively. The third

mutation technique was designed to offer better balancing of
exploration and exploitation searches by generating new
mutant vectors from the average values of those obtained from
the two aforementioned mutation operators. Notably, only

one mutation strategy was selected to form the trial vector in
each generation based on a selection probability influenced
by the locations of the worst, current and best individuals in

each generation. Selected benchmark functions from CEC
2013 and CEC 2005 were used for performance comparison
purposes. Despite performance gains achieved by MSaDE,

some performance degradation can be observed when dealing
with multimodal and composition functions, implying the lim-
itations of their modifications in handling the optimisation

problems with a more complicated fitness landscape. On the
basis of the aforementioned reviews, Table 3 summarises the
research related to enhanced mutation schemes.

4.3. Enhanced crossover scheme

Guo et al. [65] presented a rotationally invariant operator
known as eigenvector-based crossover operator to address

optimisation problems with rotated fitness landscapes more
effectively. A rotated coordinate system was firstly constructed
by referring to the eigenvector information of the covariance

matrix of the population. The offspring solutions can then
be generated by the parents that are randomly selected from
standard or rotated coordinate systems to prevent the rapid

diversity loss of the population. Eight DE variants incorpo-
rated with the eigenvector-based crossover operator were eval-
uated using the selected benchmark functions from CEC 2011,
CEC 2012 and CEC 2013. Significant performance improve-

ment of these DE variants was observed, especially when deal-
ing with non-separable unimodal functions. Nevertheless, the
effects of parameter settings such as population size and

dimensionality on the performance of the proposed method
remain unexplored.

Cai et al. [66] proposed a hybrid linkage crossover (HLX)

scheme to leverage the problem-specific linkage information
between pairs of variables for more effective guidance of the
search process. An improved differential grouping technique
was firstly incorporated into HLX to adaptively extract differ-

ent groups of tightly interactive variables known as building
blocks (BBs). Two group-wise crossover operators, abbrevi-
ated as GbinX and GorthX, were then proposed to guide the

crossover process without disrupting the tight linkage struc-
tures of BBs. Accordingly, the proposed HLX scheme can be
easily adapted into the existing DE variants to achieve more

promising optimisation performance. Two sets of benchmark
functions adopted from CEC 2005 and CEC 2012 were
employed to investigate the effectiveness of HLX in improving

the optimisation performance, parameter sensitivity and scala-
bility of all involved DE variants.

Hui et al. [67] proposed an ensemble and arithmetic
recombination-based speciation DE (EARSDE) to solve the
multimodal optimisation problems. In contrast to the conven-

tional approach, the arithmetic recombination-based neigh-
bourhood speciation technique incorporated into EARSDE
can enhance exploration without having to suffer from any

radius parameterisation issues. The proposed EARSDE was
reported to outperform 11 peer algorithms in terms of effi-
ciency and robustness when evaluated using 29 multimodal

benchmark functions. The proposed speciation technique
adopted by EARSDE was proven to be more generalisable
in practical situations for being able to identify the peaks
and troughs of highly irregular fitness landscape regions.

Xu et al. [68] proposed a superior–inferior (SI) crossover
strategy and a superior–superior (SS) crossover strategy to
improve the diversity of the DE population. The SI scheme

is triggered to enhance the exploration strength of an algo-
rithm if the population diversity is too low. At the same time,
the exploitation search is promoted through the SS scheme if

the population is diversified. Both the SS and SI schemes are
adaptable into typical binomial and exponential crossover
operators and can hence be incorporated into various DE

frameworks. Simulation studies using CEC 2005 benchmark
functions showed that the search performance of DE variants
is highly dependent on the parameter settings of both SI and
SS crossover schemes.

Fan et al. [69] presented a crossover adaptation strategy in
self-adaptive differential evolution (CSA-SADE) to improve
the performance of DE. Each CSA-SADE individual was envi-

sioned to have a unique crossover strategy, mutation strategy
and control parameters that can be changed adaptively by
referring to its latest search progress. The proposed CAS-

SADE was compared with eight advanced EAs, and it was
proven competitive in solving the CEC 2005 benchmark func-
tions and kinetic parameter estimation problem of mercury

oxidation due to its enhanced exploitation capability.
Fister et al. [70] proposed an epistatic arithmetic crossover

operator into an ensemble DE variant known as eXEDE.
Unlike the ordinary arithmetic crossover, the epistatic arith-

metic operators considered the impact of epistatic genes in
the context of evolutionary computation by expressing the epi-
static as a graph product of two linear graphs represented by

the candidate solutions that are involved in the crossover pro-
cess. The performances of eXEDE in solving the CEC 2014
benchmark functions are compared with those of three DE

variants, and the presence of epistatic arithmetic crossover
operator is proven promising in enhancing the search perfor-
mance of DE significantly.

Qiu et al. [71] presented a multiple exponential crossover

operator that enables the formation of a new solution through
the combination of multiple segments of target and mutant
vectors. Theoretical and empirical analyses showed that this

semi-consecutive crossover operator is not only equipped with
the strengths of both conventional binomial and exponential
crossover operators but also demonstrates better capability

in handling the subset of tightly interactive variables. The pro-
posed exponential crossover was implemented in six classical
and one DE variants, and the performance evaluations

reported its outstanding search performance in solving prob-
lems with unknown variable interrelations as compared with
the conventional binomial crossover approach.
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Table 3 Summary of research on enhanced DE mutation scheme.

Author Technique

introduced

Dimensional

sizes

Results Performance metrics Merits Limitations

[49] An adaptive

DE algorithm

with novel

mutation and

crossover

strategies

30, 50 and

100

The proposed method

is able to solve various

large-scale

optimization problems

with improved search

performance.

Mean fitness and

standard deviation

More explorative

mutation strategy was

proposed to preserve

population diversity.

Biased parent

selection strategy was

incorporated into

crossover operation to

promote more

exploitative behavior.

These strategies

reduced the

probability of

algorithm to suffer

with the premature

convergence in

dealing with large-

scale optimization

problem.

The performance

evaluations only

focused on the

constant group size

over generations.

[50] DE with

ranking based

mutation

operators

30, 50, 100

and 200

The performance of

classical and advanced

variants of DE

algorithms was

improved with the

adoption of ranking-

based mutation

operators.

Error value Enhanced exploitative

behavior through

ranking-based

mutation operators.

Simplicity in

implementation

without increasing the

complexity of

algorithm

significantly.

The proposed

ranking-based

mutation operators

might not effective in

improving the

performance of DE

variants in solving

certain types of

problems due to the

excessive level of

exploitation search

introduced.

[51] Self-adaptive

DE with

discrete

mutation

control

parameters

(DMPSADE)

30, 50 and

100

The average

optimization

performance of the

proposed DMPSADE

algorithm was better

than other DE variants

in solving problems

with 50 and 100-

dimensional sizes.

Mean fitness, standard

deviation, Wilcoxon

signed rank test and

Friedman test

The proposed method

allowed each

optimized variable to

have different

mutation control

parameters and

adaptive adjustment

of mutation strategy

via competition,

leading to better

preservation of

population diversity.

The proposed

algorithm did not

show significant

performance gains

over other DE

variants in solving

benchmark problems

with 30-dimensional

size. Encoding

strategy of the

proposed method

increased the

complexity of

algorithm, leading to

longer execution time.

[52] Multi-

population DE

with balanced

ensemble of

mutation

strategies

(mDE-bES)

50, 100, 200,

500 and 1000

The proposed method

has an excellent

performance in solving

persistent global

problems efficiently

Mean error, standard

deviation, computation

time, Wilcoxon rank

sum test, Friedman

aligned rank test

Multi-population

strategy promoted

exploitative strategy,

whereas information

sharing scheme

among different

subpopulations was

adopted to reduce the

drastic loss of

population diversity

over the generations.

Different mutation

strategies and control

parameters were also

assigned to each

subpopulation to

The performance of

proposed algorithm

was not thoroughly

verified with the

adaptive adjustment

of control parameters.

3844 M.F. Ahmad et al.



Table 3 (continued)

Author Technique

introduced

Dimensional

sizes

Results Performance metrics Merits Limitations

maximize the

coverage of all

individual solutions in

search space.

[53] Constraint

consensus

mutation DE

10 and 30 The proposed

algorithm was reported

to have promising

performance in solving

constrained

optimization problems

in terms of fitness value

and computational

time. The

computational time of

proposed algorithm in

solving 10 and 30

dimensional problems

were 33.7% and 10.6%

faster than those of

conventional DE,

respectively.

Fitness value and

computational time.

Faster computational

time as compared to

conventional DE in

solving the

constrained

optimization

problems.

High tendency of the

proposed algorithm to

suffer with rapid loss

of population

diversity during the

initialization stage,

leading to the inferior

performance when

dealing with multi-

modal constrained

problems.

[54] Adaptive DE

mutation

scheme

Not stated The proposed IDE

algorithm was reported

to have promising

performance in dealing

with truss structure

application problems

with the presence of

multiple complex

nonlinear constraints.

Weight values,

diversity index

Better preservation of

population diversity

through multi-

mutation operator

selection scheme.

Increased execution

time due to the

presence of elitist

selection scheme.

[55] A probabilistic

perspective

comparison of

mutation

strategies in

DE

10, 30 and 50 The accuracy of

Gaussian

approximation were

improved with the

increasing numbers of

difference.

Mean error and

standard deviation.

Offered a new

perspective, i.e.,

Gaussian

approximation, in

comparing DE with

and other

optimization

algorithms

The transformations

of scaling factors did

not influence the

performance much,

especially for the case

of multiple difference

vectors.

[56] Enhanced

fitness-adaptive

DE algorithm

(EFADE)

10, 30 and 50 The proposed method

EFADE outperformed

other DE variants in

terms of quality,

stability, and

robustness of

solutions.

Wilcoxon signed rank

test and Friedman test

The triangular

mutation scheme can

improve the

exploration and

exploitation searches

simultaneously,

without sacrificing its

convergence speed.

Only small- and

medium-scale

problems were

considered in the

performance

evaluations. The

capability of the

proposed algorithm in

solving large-scale

problem remain

unexplored.

[57] DE mutation

operators for

constrained

multi-objective

optimization

2 and 10 The proposed

algorithm was reported

to have promising

performance in solving

CMOPs and real-world

problem.

Mean inverted

generational distance

(IGD), mean hyper-

volume, standard

deviation, and

Friedman test

Gauss mutation was

implemented to tackle

infeasible solutions

more effectively, while

DE mutation

operation was

performed to handle

feasible solutions

more robustly.

The performance

evaluation of the

proposed algorithm

only considered the

small-scale

optimization problem.

The capability in

dealing with large-

scale problems were

not investigated.

[58] Segmentation

of weather

radar DE

25 and 50 The proposed RDE

technique has the

fastest processing time

Mean fitness,

processing time and

Friedman test

Faster computation

time as compared to

the conventional DE

Less thorough

performance

evaluations of image

(continued on next page)
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Table 3 (continued)

Author Technique

introduced

Dimensional

sizes

Results Performance metrics Merits Limitations

(RDE) as compared to

conventional DE

algorithm in solving

the image thresholding

task.

algorithm in solving

image thresholding

tasks

thresholding because

only two sets of

images were used for

performance

comparison with

conventional DE.

[59] Self-adaptive

mutation DE-

particle swarm

optimization

(DEPSO)

30 and 100 The overall

performance of

DEPSO surpassed the

conventional DE and

PSO algorithms.

Mean fitness, standard

deviation, success rate,

mean number of

evolution generations,

Wilcoxon rank sum

test, Friedman test and

Kruskal-Wallis test.

The improved DE

mutation strategy and

mutation strategy

inspired by PSO can

improve the

convergence rate of

proposed algorithm

effectively.

The capability of the

proposed algorithm in

solving more complex

optimization

problems was not

thoroughly

investigated.

[40] Multi-strategy

differential

dimensional

mutation DE

2 and 50 The proposed

algorithm

outperformed the

compared DE variants

in terms of fitness value

and convergence rate.

Minimum, mean,

median fitness values

and standard deviation

Notable performance

gain in terms of the

convergence rate was

achieved by the

proposed algorithm

against well-

established DE

variants.

The performance

evaluates were

conducted using

simple single-objective

test functions and

compared with only

two DE variants.

Insufficient test

functions, real-world

problems and

statistical analysis

were used to further

analyze the

performance of the

proposed algorithm.

[60] DE with

biological-

based mutation

operator

(DEHeO)

2, 3, 5, 10, 20

and 40

The proposed DEHeO

surpassed the other DE

variants in terms of

convergence rate.

Comparing

Continuous Optimizer

(COCO) framework

Global search ability

was enhanced by the

proposed mutation

strategy. The pool

assignment scheme

can achieve the better

balancing of

exploitation and

exploration search

behaviors without

discarding the

individual solutions

with relatively worse

fitness value.

The parameters of

proposed mutation

scheme were fixed and

cannot be adjusted

adaptively.

[61] The

Generalized

DE with

Ordered

Mutation

(GDE4)

5, 10 and 15 The proposed GDE4

algorithm was reported

to outperform its

previous version of

GDE3 algorithm in

solving MaF test suite

from CEC 2017.

Mean, median, worst

and best inverse

generational distance

Information such as

non-dominance level

and crowding distance

of three randomly

selected individual

from search space

were utilized by the

proposed mutation

scheme to improve the

balancing of

exploration and

exploitation search

behaviors of proposed

algorithm.

The effectiveness of

proposed algorithms

is only tested with

smaller dimensional

problems and its

robustness in problem

with larger

dimensional sizes

remained unexplored.

[62] Dynamic

speciation-

based mutation

DE (DSM-DE)

30, 50 and

100

DSM-DE

outperformed the

compared DE variants

in terms of search

accuracy and

Mean error, standard

deviation, Wilcoxon

signed rank test and

Friedman test.

The proposed

mutation strategy, i.e.,

DE/seeds-to-seeds and

DE/seeds-to-rand, can

enhance the

The methodology

used to determine the

predefined species size

of proposed algorithm

was not clearly stated.
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Deng et al. [72] proposed a new DE variant that consists of
rotating crossover operator (RCO) with multi-angle searching

strategy, aiming to reduce the likelihood of generating inferior
offspring solutions by expending the search space tactically.
Unlike conventional binomial crossover scheme, the trial vec-

tor of RCO can be generated diversely within the circle regions
around the donor and target vectors by referring to the self-
adaptive crossover parameter and rotation control vectors that

followed the Levy distribution. A comparison analysis was
conducted between JADE-RCO with other five enhanced DE
variants on a group of test functions in CEC 2013. Simulation
results showed that DE-RCO outperformed the compared DE

variants in terms of search accuracy and convergence rate,
with performance gains in the range of 57% to 96%. DE-
RCO implies the feasibility of developing different variants

of multi-angle search strategy with an efficient parameter selec-
tion scheme to enhance the search performance of other DE
variants.

Ghosh et al. [73] proposed a switched parameter DE with
success-based mutation and modified BLX crossover
(SWDE_Success_mBLX) to solve scalable optimisation prob-
lems without sacrificing the simplicity of its algorithmic frame-

work. A simple control parameter selection strategy that
enables the random and uniform switching of mutational scale
factor and crossover rate within their feasible ranges was firstly

proposed. A success-based switching strategy was incorpo-
rated to determine the mutation schemes of each solution on
the basis of its search performance history. The crossover of

each target-donor pairs was performed using a binomial cross-
over or a modified BLX (mBLX) crossover via a probability-

based selection scheme. The latter mBLX crossover scheme
facilitated the search in the region between and beyond the
dimensional bounds established by the target-donor pairs to

balance the exploration and exploitation searches. Two sets
of benchmark functions, namely, CEC 2010 and CEC 2013,
were used to evaluate the overall performance of SWDE_Suc-

cess_mBLX in solving moderate- and large-scale optimisation
problems, ranging from 30 to 1,000 dimensions. The results
showed that the proposed SWDE method outperformed other
advanced DE variants in terms of robustness and searching

capability efficiency. The robustness of SWDE_Suc-
cess_mBLX in solving large-scale optimisation problem could
be improved by adjusting the population size intelligently

through dynamic population reduction or multi-population
schemes.

Mohamed et al. [74] proposed a DE variant known as

adaptive novel DE (ANDE) to tackle large-scale continuous
optimisation problems. A novel adaptation scheme was intro-
duced in ANDE to adjust the crossover rate of each solution
based on its past searching experience to achieve the proper

trade-off between enhanced convergence speed and good
preservation of population diversity. Performance evaluation
using 20 large-scale global optimisation benchmark functions

showed that the proposed ANDE outperformed seven com-
pared algorithms in terms of search accuracy, robustness and
efficiency.

Table 3 (continued)

Author Technique

introduced

Dimensional

sizes

Results Performance metrics Merits Limitations

convergence rate. exploitation and

explorative search

behaviors of

algorithm,

respectively, leading

to the improvement of

convergence rate of

algorithm.

[63] Gaussian

mutation and

dynamic

parameter

adjustment DE

(GPDE)

30, 50 and

100

The proposed

algorithm showed its

competitive

performance in solving

limited numbers of

benchmark problems.

Mean fitness, standard

deviation and

Wilcoxon rank sum

test.

The proposed periodic

scaling factor had

shown promising

potential to improve

the exploitation and

exploration abilities of

proposed algorithm.

No notable

performance gain in

term of convergence

rate was achieved by

the proposed

algorithm as

compared to its peer

algorithms.

[64] Enhanced DE

Algorithm with

Multi-

Mutation

Strategies and

Self-Adapting

Control

Parameters

30 and 50 The proposed

algorithm was reported

to outperform all the

compared DE variants

in solving benchmark

functions.

Furthermore, its

convergence rate was

reported to be better

than its competitors.

Mean error, standard

deviation, Wilcoxon

signed rank test and

Friedman test.

The proposed

mutation strategy

adopted three search

directions that were

assigned with different

weightages of

explorative and

exploitative search

behaviors in

generating new

solutions for

achieving better

preservation of

population diversity.

Notable performance

degradation can be

observed from

proposed algorithm

when dealing with the

multimodal and

composition

functions. The

performance of

proposed algorithm in

solving real-world

problems remain

unexplored.
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Zhou et al. [75] proposed a modified JADE with sorting
crossover rate (JADE_sort) with enhanced search ability. A
sorting CR mechanism was firstly incorporated into JADE_-

sort by assigning the fitter individual solutions with lower
CR values to ensure the propagation of these promising solu-
tions into the next generation. To further improve the explo-

ration ability of JADE_sort, a better scheme retention
mechanism was introduced during the crossover process to
preserve the components of the mutant vector originated from

better offspring, aiming to facilitate a deeper search around
promising individual solutions. The proposed JADE_sort
was compared with nine DE variants in solving the CEC
2005 benchmark problems. Although the JADE_sort was pro-

ven to have better global and local search abilities compared
with its peers, the simulation studies revealed its weakness in
handling hybrid composition functions due to the rapid loss

of population diversity.
Alswaitti et al. [76] proposed a variance-based DE algo-

rithm with an optional crossover (VDEO) to solve data clus-

tering optimisation problems with improved convergence
speed and solution quality. A single-solution representation
approach was firstly adopted by VDEO to overcome the limi-

tation of population-based solution techniques in initialising
and formulating the clustering optimisation problems. A
switchable scheme that consists of two mutation schemes
and a vector-based estimation of the mutation factor were then

incorporated into VDEO to achieve a proper balancing of
exploration and exploitation searches. Considering that a
mutant solution might have better fitness than its trial counter-

part, the proposed scheme accelerated the convergence speed
of the algorithm by determining the fitness between the mutant
and trial solutions before proceeding to the selection process.

The clustering performance of the proposed VDEO was com-
pared with that of four DE variants in solving 15 benchmark
datasets extracted from the UCI repository and validated

using non-parametric statistical analysis. The results showed
that VDEO achieved 11.98% average improvement in classifi-
cation accuracy and cluster density against the competing
peers. Despite the promising clustering performance demon-

strated by VDEO, the control parameters of the algorithm,
such as the mutation factor and crossover rate, are not opti-
mised. Furthermore, the correlation between the input data

characteristics and some control parameters, such as probabil-
ity threshold and degree of randomisation, remains unex-
plored. On the basis of the aforementioned reviews, Table 4

summarises the research related to enhanced crossover
schemes.

4.4. Enhanced selection scheme

Sallam et al. [77] proposed a landscape-based adaptive opera-
tor selection DE (LSAOS-DE) to solve the wide ranges of
benchmark functions more efficiently and effectively. An adap-

tive operator selection scheme was introduced, where both the
fitness landscape information and the performance track
records of each mutation operator in generating fitter offspring

were considered in selecting the most appropriate mutation
operator to evolve the entire LSAOS-DE population during
the optimisation process. The performances of LSAOS-DE

in solving the CEC 2014 and CEC 2015 benchmark functions
were compared with those of two state-of-the-art multi-

method algorithms, four multi-operator algorithms and three
single-operator algorithms. The results showed that LSAOS-
DE outperformed other advanced DE algorithms in almost

all cases. Thus, more than one landscape measure could be
used to select the best mutation operator for each solution.

Tian et al. [78] presented a DE with improved individual-

based parameter setting and selection strategy (IDEI). A com-
bined mutation strategy that consists of two mixed mutation
strategies is firstly incorporated into IDEI to guide the search

process of each individual by referring to their respective
individual-based parameter settings. A diversity-based selec-
tion strategy was also incorporated into IDEI as a weighted fit-
ness function by referring to the fitness value and position of

the target and trial individual. The proposed diversity selection
strategy not only aims to enhance the population diversity, but
it also leverages the large amount of exploration information

found to locate better solutions. The performance of IDEI
was compared with that of eight peer algorithms in solving
the CEC 2005 and CEC 2014 benchmark functions, as well

as a real-world optimisation problem. While it demonstrated
competitive search performance in the majority of complex
optimisation problems, the proposed IDEI has a relatively

slow convergence speed in solving some unimodal functions.
Guo et al. [79] observed that the conventional one-to-one

selection scheme tends to deteriorate the convergence speed
of DE by unfairly rejecting the trial vectors with better fitness

than most other current population members, especially if the
corresponding target vector was even better. A novel subset-
to-subset (STS) selection operator was proposed to enhance

the convergence speed of DE by randomly partitioning the tar-
get and trial populations into several subsets of populations.
For each subset, the best individual solutions among the subset

of target and trial populations are identified by referring to
their fitness values. Under the presence of the STS selection
operator, the trial vectors with better fitness values were

expected to have higher chances to survive in the next genera-
tion. Extensive simulation studies were conducted to compare
the STS selection operator with four other survival selection
schemes, and the proposed approach emerged as a more reli-

able selection scheme. Furthermore, the proposed STS selec-
tion improved the search accuracy and convergence speed of
all DE variants significantly when it was incorporated into

these algorithms.
Qu et al. [80] presented a modified multi-objective DE

(MODE) to simultaneously minimise the pollution emission

and fuel cost of the dynamic economic emission dispatch
(DEED) problem incorporated with wind power plant. An
ensemble of selection methods that incorporates non-
dominated sorting and summation-based sorting was designed,

enabling MODE to perform effectively in different stages of
the searching process and in different types of optimisation
problems. A heuristic constraint handling technique was fur-

ther developed to locate all solution members in a feasible
search space. Simulation studies revealed that the proposed
MODE delivered good performance in solving both standard

benchmark functions and DEED problems with and without
wind factor.

Rakshit [81] proposed a DE integrated with noise handling

policies (NDE) to enhance its optimisation robustness in deal-
ing with solution search spaces consisting of stochastic noise.
A stochastic learning automata (SLA) was firstly incorporated
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Table 4 Summary of research on enhanced DE crossover scheme.

Author Technique

introduced

Dimensional

Sizes

Results Performance

metrics

Merits Limitations

[65] Enhancing DE

Utilising

Eigenvector-

Based

Crossover

Operator

30 and 50 Significant performance

improvement was

observed from proposed

algorithm in dealing with

the unimodal functions.

Mean fitness,

standard

deviation,

Wilcoxon rank

sum test

The proposed crossover

operations allowed the

offspring to be properly

distributed

corresponding to the

fitness landscape, and to

be directed towards the

global optimum without

affecting the search

capabilities.

Lacking of clear

explanations between the

effect of dimensionality

with population size of

proposed algorithm.

[66] Hybrid linkage

crossover for

DE (HLX-DE)

10, 30, 50,

100 and 200

High performance of

HLX for the DE

algorithms in terms of

convergence speed as

compared to four DE

variants, original DE

algorithm and advanced

DE variants.

Mean error,

standard

deviation,

Wilcoxon

signed rank test

and Friedman

test.

A group-wise binomial

crossover and a group-

wise orthogonal

crossover were designed

to guide the crossover

process of DE more

effectively, enabling the

better balancing of

exploration and

exploitation strengths

and the enhanced

convergence rate of

proposed algorithm.

Slightly performance

degradations were

observed when the

hybrid linkage crossover

mechanism was used by

different DE variants to

solve the hybrid

composite functions.

[67] Ensemble and

arithmetic

recombination

based

speciation DE

(EARSDE)

1, 2, 3 and 10 EARSDE outperformed

the compared

optimisation algorithms,

in term of efficiency and

robustness, in solving

multimodal functions.

Success rate,

peak ratio,

average number

of peak and

Wilcoxon test

Speciation was

performed with the

arithmetic

recombination and

ensemble strategy to

improve the exploitative

and explorative search

behaviors of algorithm,

respectively.

The performance of

proposed algorithm to

solve real-world

optimisation problems

are unknown.

[68] DE based

superior-

inferior (SI)

and superior-

superior (SS)

crossover

strategy

30, 50 and

100

The adoption of self-

adaptive SI mechanism

in DE variants can

improve their

optimisation

performances in solving

the unimodal, basic and

expanded multimodal

functions at 30-

dimensional size.

Mean error and

standard

deviation

Enhanced exploration

and exploitation

strengths of proposed

algorithm by the SI

crossover and SS

crossover operators,

respectively.

Performance

degradation of the

proposed algorithm can

be observed when

solving the hybrid

composition functions.

The ability of SI method

to enhance performance

of DE variants in solving

large-scale and complex

problems are

questionable.

[69] Crossover

strategies

adaptation

with self-

adaptive DE

(CSA-SADE)

30 and 50 The proposed algorithm

was reported to

outperform five well-

established DE variants

and three non-DE

algorithms, in terms of

search accuracy.

Mean error,

standard

deviation,

Wilcoxon rank

sum test and

Friedman test

The proposed self-

adaptive mechanism can

improve population

diversity by allowing

each individual to have

the unique combination

of crossover strategy,

mutation strategy and

control parameters.

The scalability of

proposed method was

not thoroughly analysed

with different set of test

functions at higher

dimensions.

[70] Epistatic

crossover

ensemble DE

(eXEDE)

10, 30 and 50 The proposed method

was observed to

outperform the

compared DE variants in

solving the test functions

at 30 and 50 dimensions.

Mean error,

standard

deviation,

Wilcoxon

signed rank

test, Friedman

test and

Nemenyi test

The proposed epistatic

arithmetic crossover was

proven able to improve

the search accuracy of

the DE algorithm in

solving single-objective

test functions.

The generated offspring

was highly dependent on

Cartesian graph product.

(continued on next page)
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Table 4 (continued)

Author Technique

introduced

Dimensional

Sizes

Results Performance

metrics

Merits Limitations

[71] Various

exponential

crossover

50 and 100 The proposed method

had competitive

performance in solving

unimodal, basic and

expanded multimodal

functions at 50 and 100

dimensions.

Mean error,

standard

deviation and

Wilcoxon rank

sum test

The proposed multiple

exponential crossover

recombination scheme

increased the robustness

of the algorithm in

handling different types

of problems.

Manual and tedious

parameter tuning

processes were needed to

obtain the optimal

combinations of control

parameter settings.

[72] DE Rotating

crossover

operator (DE-

RCO)

30 and 60 The implementation of

the proposed rotating

crossover operator in DE

variants can improve

their optimisation

performances in terms of

search accuracy and

convergence rate.

Mean error,

standard

deviation and

Wilcoxon rank

sum test

RCO operator is simple

to be implemented and

can be easily

incorporated into

different DE variants.

Influences of different

parameter settings on

algorithm’s

performances were not

thoroughly studied.

[73] Switchable

parameter DE

(SWDE)

30, 50, 1000

and 2000

The proposed algorithm

outperformed the

compared DE variants in

solving single-objective

optimisation problems at

30, 50, 1000 and 2000

dimensions.

Mean error,

standard

deviation and

Wilcoxon rank

sum test

The proposed

mechanism can enhance

the scalability and

robustness of DE in

dealing with the large-

scale optimisation

problems.

Significantly high

execution time incurred

by proposed algorithm in

solving large-scale

optimisation problems

due to its excessive

computational

complexity.

[74] DE with

adaptive

crossover

strategies

1000 The proposed method

outperformed other

seven optimisation

algorithms in solving

large scale optimisation

problems.

Median, mean

error, standard

deviation and

Wilcoxon

signed rank test

The proposed self-

adaptive crossover

scheme enabled each

individual to have

different crossover rates

in generating new

solutions based on past

experiences of these

individuals in search

space.

Th execution time of the

proposed method in

solving large-scale

problem was not

investigated. The

scalability of the

proposed method in

solving small-scale

optimisation problems

(10, 30, 50 dimensions)

remained unknown.

[75] Assemble

sorting

crossover rate

(CR)

30 and 50 The proposed sorting

crossover rate

mechanism was observed

to improve the

performance of proposed

JADE_sort algorithm

over the original JADE

algorithm in solving

single objective

optimisation problem.

Mean fitness,

Wilcoxon sum

rank test

Better parent solutions

have higher probability

to retain their schemes

into the offspring

solutions, hence

improving the overall

quality of next

populations.

The quality of the

generated scheme was

extremely depended on

the latest iteration

offspring.

[76] Variance-

based DE with

optional CR

(VDEO)

Not stated Average performance

improvement up to

11.98% in terms of

classification accuracy

was reported by the

proposed algorithm over

the compared DE

variants in performing

data clustering task on

15 datasets from UCI

Machine Learning

repository.

Best, worst,

median, mean

fitness,

standard

deviation and

Friedman test

The proposed switchable

DE mutation scheme can

balance the search

behavior of DE

algorithm. The proposed

multidimensional

mutation factor can

enhance the quality of

offspring solutions. The

convergence rate of

algorithm was improved

by the optional crossover

strategy.

The adoption of multiple

proposed mechanisms

tends to increase the

computational time of

algorithm in performing

data clustering task.
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into NDE to identify an appropriate sample size of solutions in
largely noise-affected areas to achieve accurate fitness estima-
tion without incurring additional computation complexity. A

new fitness estimation strategy was also proposed by consider-
ing the weighted average of all fitness samples to reduce the
influences of noisy minority fitness samples. An adaptive muta-

tion rate was designed to select the solutions from relatively
less noisy regions for the mutation process. Finally, a niching
strategy was incorporated to address the deceptive effect of

noise signal in the fitness landscape during the selection phase
of NDE, hence ensuring proper trade-off between population
diversity and quality. Two sets of benchmark functions, i.e.
CEC 2013 functions contaminated with noise signals and

CEC 2010 noisy benchmark functions, were used for perfor-
mance evaluation, and NDE was reported to have better
robustness and convergence speed against its competitors.

Despite its promising performance, more effective strategies
of state quantisation and selection of reward functions were
needed for NDE to provide more accurate sampling from

noisy regions for fitness estimation. On the basis of the afore-
mentioned reviews, Table 5 summarises the research related to
enhanced selection schemes.

4.5. Hybridisation of DE algorithm

Hybridisation is another popular approach used to enhance
the search performance of DE by leveraging the strengths of

search operators obtained from other computational intelli-
gence algorithms. In this section, we focus on the growing
trends in the past six years (i.e. 2016–2021) in research that

hybridised DE with other computational intelligence algo-
rithms. Some popular computational intelligence algorithms
considered to hybridise with DE are artificial neural network

(ANN), PSO, fuzzy logic (FL), CS, ABC, WOA, FA, ACO
and GA. Forty-three articles were written on hybridisation
of the DE algorithm [59,82–123].

4.5.1. DE with ANN

Mason et al. [82] proposed a hybrid algorithm known as multi-
objective ANN with DE, which can approximate and solve

DEED problems simultaneously to minimise the cost and
emission of the system. Kumar et al. [83] proposed an adaptive
DE and ANN to improve the quality of resource scaling deci-
sions made by the cloud prediction system through the fine-

tuning of system parameters. The fine-tuned cloud prediction
system was tested and compared with the conventional back-
propagation ANN model by using two servers’ benchmark

datasets. Dahou et al. [84] presented an ANN-based language
sentiment classifier in which the best configuration of the net-
work architecture and parameters were optimised by DE.

Some crucial parameters of the language sentiment classifier
that needed to be fine-tuned by DE include the convolution fil-
ter sizes, neuron numbers, dropout rate and initialisation rate.

Li et al. [85] hybridised the DE into a backpropagation ANN
to solve the transient electromagnetic inversion problems com-
monly encountered in geophysical applications. The proposed
hybrid algorithm was reported to have more competitive per-

formances in term of stability, accuracy, robustness and speed
when compared with two geoelectric models using two typical
benchmark sets. Jiang et al. [86] proposed a simpler way to

train the feedforward ANN by using the collective

intelligence-based DE to optimise its network structure and
parameters. With its ability to generate more diverse solution
vectors by considering multiple best individuals from the cur-

rent population via linear combination model, CIDE has bet-
ter performance in training ANN. Majhi et al. [87] presented
an evapotranspiration prediction model by hybridising the

DE with a radial basis function ANN, and it was then applied
to predict the climate changes of a moist humid area in east–
central India. Saporetti et al. [88] developed a hybrid surrogate

model of DE and ANN to classify the petrophysical data auto-
matically to improve the procedures of reservoir characterisa-
tion in the oil industry. The optimal architecture and
parameter settings of ANN (e.g. types of regularisation, activa-

tion function and optimiser) were determined by DE to pro-
duce a robust classifier.

4.5.2. DE with PSO

Moharam et al. [89] proposed a hybrid algorithm known as
aging leader and challengers PSO and DE (ALC-PSODE) to
fine-tune the parameter settings of PID controller. The con-

cepts of aging leader and challengers adopted in ALC-
PSODE were useful in addressing the premature convergence
issues of PSO and DE, hence producing a PID controller with

robust performance. Zhang et al. [90] hybridised DE and PSO
for path planning of a mobile robot, which was formulated as
a constrained multi-objective optimisation problem. The effec-

tiveness of the hybrid DE and PSO in solving the path plan-
ning problem was verified by an extensive amount of
simulation studies. Song et al. [91] optimised the design of a

3D wind turbine system using PSO and DE, aiming to max-
imise the output power generated and minimise the cost
incurred. Wang et al. [59] proposed self-adaptive mutation
DEPSO to maintain the population diversity by leveraging

the promising global search ability of DE/rand/1 mutation
strategy. Boks et al. [92] presented a modular hybridisation
of DE and PSO, where a total of 800 hybrid variants were pro-

duced based on 16 different original variation operators and 4
selection operators considered in their study. Dash et al. [93]
hybridised DE and PSO to optimise the design and fabrication

of sharp edge filers that can produce good sharp edge fre-
quency response during the filtering process. Choi et al. [94]
proposed a hybrid algorithm consisting of DE and PSO in
solving global optimisation problems. A modified initialisation

scheme was introduced in this hybrid algorithm to produce a
better-quality initial population that can lead to better optimi-
sation results.

4.5.3. DE with FL

Ebtehaj et al. [95] proposed a hybrid model known as ANFIS-
DE to predict the parameter of Froude number that restricted

the velocity effort in the non-deposition sediment transport
problem. Sahoo et al. [96] designed a PID controller by hybri-
dising FL and DE to solve the load frequency control problem

commonly encountered in interconnected power systems. The
proper adjustment of two control parameters (i.e. crossover
probability and step size) contributed to the performance gain

of PID significantly. Dixit et al. [97] proposed a new image seg-
mentation method by hybridising DE and FL to determine the
optimised threshold values with reduced computational com-

plexity. Sharma et al. [98] applied a DE and FL to solve
energy-efficient clustering problems. Fuzzy clustering was the
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idea of new cluster creation to select the best node within each
cluster. Jamali et al. [99] proposed a hybrid algorithm with

multi-objective DE and FL to solve Pareto optimisation prob-
lems. FL inferences were used to dynamically adjust the muta-
tion factor of DE to balance exploration and exploitation

searches. Babanezhad et al. [100] demonstrated the feasibility
of hybridising DE and FL to predict the nanofluid character-
istics and pattern flow of natural heat transfer in Cu-water.

Karimi et al. [101] hybridised DE and FL to develop the mod-
els used to estimate the efforts required for developing com-
puter software.

4.5.4. DE with CS

Mlakar et al. [102] hybridised CS and DE (CSDE) to select the
optimal threshold values required to perform multilevel seg-
mentation on grayscale images. The proposed hybridisation

framework was established by including a reset strategy
adopted from CS within the DE loop. Lin et al. [103] proposed
a new hybrid CSDE to solve the protein–ligand docking prob-

lem. This method achieved performance gains of 9% to 15% in
terms of success rate when compared with the original CS by
using two benchmark functions. Zhang et al. [104] proposed

a new hybrid CSDE to solve several constrained engineering

problems. Notably, their proposed hybrid algorithm can sepa-
rate the main population into two subpopulations for better

information exchange, and each subpopulation was evolved
independently by CS and DE. Chi et al. [105] proposed a
new CSDE to solve the logistics distribution centre location

problems, and Xi et al. [106] presented hybrid CSDE with
enhanced population diversity and local search ability to
address several numerical optimisation problems.

4.5.5. DE with ABC

Gao et al. [107] proposed a hybrid algorithm of ABC and DE
with enhanced convergence speed by leveraging the search

experience of each solution in previous iterations. An initialisa-
tion scheme modified with chaotic theory and oppositional-
based learning was also incorporated to improve the global
convergence characteristic of this hybrid algorithm. Zhou

et al. [108] proposed a hybridised DE with ABC (DE-
caABC) to improve the search performance in solving the
selection process of cloud manufacturing and service composi-

tion. Haohao et al. [109] presented a hybrid algorithm of ABC
with DE to solve the path planning and obstacle avoidance
problems commonly encountered in quadrotor applications.

Specifically, ABC was responsible for enhancing the global

Table 5 Summary of research on enhanced DE selection scheme.

Author Technique

introduced

Dimensional

sizes

Results Performance

metrics

Merits Limitations

[77] Landscaped-

based

adaptive

operator

selection DE

(LSAOS-

DE)

10, 30 and 50 LSAOS-DE

outperformed others

DE variants in solving

majority benchmark

functions from CEC

2014 and CEC 2015.

Mean error,

Wilcoxon

signed-rank test,

Friedman test

Fast convergence speed

and good search accuracy.

Optimal parameter

settings of proposed

algorithm were

determined manually.

[78] Improved

individual-

based

parameter

setting

selection

strategy

(IDEI)

30 Competitive search

performance in

majority of complex

optimisation

problems.

Mean error,

standard

deviation and

Wilcoxon rank

sum test

Diversity-based selection

strategy was designed as a

secondary guidance of

searching process by

enabling the individuals

with temporary inferior

fitness values to be selected

for survival in the next

iteration.

The proposed diversity-

based selection strategy is

computationally expensive

and has high tendency to

promote excessive

explorative search

behavior that can lead to

significant reduction of

the convergence rate.

[79] STS

selection

operator

30 STS emerged as a

more reliable selection

scheme compared to

other 4 competitive

selection schemes.

Mean error,

standard

deviation,

Wilcoxon rank

sum test and

Friedman test

The proposed subset-to-

subset selection is proven

effective to improve the

convergence rate of DE

algorithm.

The scalability of the

proposed method was not

thoroughly investigated

with different dimensional

sizes.

[80] Adopted

multi-

objective DE

(MODE)

Not stated The proposed

algorithm generated

good performance on

the DEED problem

Mean value of R

indicator

Provides better power

emission value as

compared to the other

optimisation algorithm.

The computational times

incurred by proposed

method might be

infeasible for real-world

application.

[81] Improved

DE for noisy

optimisation

10, 20, 30, 40

and 50

NDE outperformed all

its contesters in term

of search capability in

different dimensions

and noise cancelation.

Mean function

error value,

standard

deviation,

Wilcoxon rank

sum test and

Friedman test

The proposed method can

improve the convergence

rate and search accuracy of

DE.

Less efficient in solving the

optimisation problems

with complex fitness

landscapes.
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search ability of the hybrid algorithm, whereas DE was used to
introduce additional diversity to prevent the population from
falling into local optima. Najari et al. [110] proposed to hybri-

dise ABC and DE to address the modelling and optimisation
of carbon dioxide (CO2). The first part of this study focused
on the estimation of kinetic parameters by using the proposed

hybrid algorithm, followed by an investigation of the reactor’s
performance on the basis of the distribution of hydrocarbons.
Zorarpaci et al. [111] developed a new feature selection method

by hybridising ABC and DE to solve data classification prob-
lems in which data privacy was the main concern. The pro-
posed feature selection method was able to reduce the
number of queries dispatched count to the database with dif-

ferent levels of privacy without compromising the classification
accuracy of the system significantly.

4.5.6. DE with WOA

Xiong et al. [112] proposed a hybrid WOA and DE to solve the
parameter estimation problem for solar model application.
The performance of the proposed hybrid algorithm in this

modelling problem was compared with that of the original
WOA and DE algorithm under different environmental condi-
tions such as weather, temperatures and irradiances. Dhabal

et al. [113] presented a hybrid WOA and DE for image
enhancement by improving the pixel intensity. It is realised
using a cost function with global and local information.

4.5.7. DE with FA

Sarbazfard et al. [114] proposed a hybrid algorithm of FA and
DE to solve several global optimisation problems in the real

world. Ghosh et al. [115] presented a novel hybrid FA and
DE (HFA-DE) algorithm to solve the job scheduling task in
the computation system grid by maximising the utilisation

rates of resources and minimising the processing cost. Anu-
radha et al. [116] hybridised FA with DE in developing a com-
putationally efficient clustering technique for multi-agent
systems. Rosić et al. [117] proposed an adaptive hybrid FA

and DE to solve passive target localisation with proper balanc-
ing local exploitation and global exploration searches during
optimisation problems.

4.5.8. DE with ACO

Rahmat et al. [118] hybridised ACO with DE to optimise the
economic load dispatch of a power system integrated with

renewable energy to minimise the operating cost. Zhang
et al. [119] presented a hybrid algorithm of DE and ACO to
learn the optimal structure of Bayesian network to enhance

its convergence speed and learning accuracy. Xie et al. [120]
proposed a hybrid algorithm of ACO and DE to address pop-
ular issues encountered in the cloud computing resource

scheduling problem such as long processing time and uneven
distribution of computing resources.

4.5.9. DE with GA

Trivedi et al. [121] hybridised GA with DE as hGADE to solve
the unit commitment scheduling problem. A heuristic was
incorporated into the population initialisation scheme to fur-

ther enhance the performance of hGADE. Thakshaayene
et al. [122] presented another hybrid algorithm of GA and
DE to solve unit commitment problems, and the obtained

solutions were compared with those of the conventional
dynamic programming method. Li et al. [123] proposed a

multi-objective optimisation algorithm by hybridising GA
and DE to solve cloud computing applications.

4.5.10. Summary of hybridisation

Table 6 presents a list of hybridised methods derived from the
DE algorithm, and this trend analysis shows that the hybridi-
sation of DE with ANN, PSO and FL remains popular in the

research community. Other computational intelligence algo-
rithms such as WOA, FA, ACO and GA were observed as less
favourable candidates to be hybridised with DE. Fig. 7 sum-

marises the distributions of proposed hybrid DE variants
according to year and the computational intelligence algo-
rithms selected for hybridisation. Accordingly, ANN, PSO,

Table 6 Hybridisation of DE algorithm with other AI

algorithms.

Method hybridized Years Authors

DE with ANN 2018 [82]

2018 [83]

2019 [84]

2020 [85]

2020 [86]

2021 [87]

2021 [88]

DE with PSO 2016 [89]

2018 [90]

2018 [91]

2019 [59]

2020 [92]

2020 [93]

2021 [94]

DE with FL 2017 [95]

2018 [96]

2018 [97]

2019 [98]

2020 [99]

2020 [100]

2021 [101]

DE with CS 2016 [102]

2018 [103]

2019 [104]

2019 [105]

2020 [106]

DE with ABC 2016 [107]

2017 [108]

2018 [109]

2019 [110]

2020 [111]

DE with WOA 2018 [112]

2020 [113]

DE with FA 2017 [114]

2018 [115]

2020 [116]

2021 [117]

DE with ACO 2017 [118]

2018 [119]

2019 [120]

DE with GA 2016 [121]

2017 [122]

2018 [123]

Differential evolution (DE) is a popular evolutionary algorithm 3853



FL and FA are the most famous computational intelligence
algorithms selected to be hybridised with DE, as indicated

by recent works published in 2020 and 2021. In contrast,
ACO and GA are less popular choices of candidates used for
hybridisation because no related works were published in

2020 or 2021.
Performance analyses of most hybrid DE algorithms were

conducted by using the benchmark functions under frequently

used control parameters. The performance measures of
solution quality and convergence rate are not analysed due
to the different natures of simulation results; hence, they are

not suitable to be compared with other DE variants.

4.6. Applications of DE algorithm

The applications of the DE algorithm to solve different

real-world engineering problems and standard benchmark
functions are summarised in Table 7. Fifty-five articles
related to the applications of original DE and its enhanced

variants are covered [124–178]. Some of the published
works will be summarised in another section for further
performance analyses, whereas the remaining applications

that do not fall in the scope of the study will be listed
in this section only.

4.6.1. Prediction models

Onan et al. [124] proposed a multi-objective weighted voting
ensemble classifier to solve text sentiment classification prob-
lems, where DE was applied to determine the appropriate

weight values of each individual classifier on the basis of their
predictive performance. The machine learning models included
in their proposed ensemble method were support vector
machine, logistic regression, linear discriminant analysis, naı̈ve

Bayes and Bayesian logistic regression. Hu et al. [125] applied
DE to optimise the parameters and weights of least-square
support vector machine. A multi-level regression model was

then developed to predict the carbon efficiency to minimise
the energy consumption incurred during the iron ore sintering
process.

Peng et al. [126] presented a long short-term memory
(LSTM) model optimised by DE to address the electricity price

prediction task that can be formulated as time series and non-
linear regression problems. The LSTM optimised by DE can
produce higher prediction accuracy. Al-Sudani et al. [127] pro-

posed the application of DE to optimise the design of a multi-
variate adaptive regression spline developed using least square
support vector regression. This prediction model was used to

achieve more accurate forecasting of a streamflow pattern that
plays crucial roles in effective planning and management of
water resources. Both studies show the effectiveness of DE in

optimising the parameters of the machine learning model to
develop useful prediction models in different areas of
applications.

4.6.2. Industrial control

Li et al. [128] applied DE to estimate the self-potential data
widely used in geophysics with better solution quality and effi-
ciency by optimising six parameters, namely, regional coeffi-

cients, polarisation angle, distance from the origin, depth of
source and electrical dipole moment. Marčič et al. [129] pro-
posed to use DE to simultaneously identify the mechanical,

electrical and magnetic subsystem parameters of a dynamic
model used to represent the objective functions and technical
constraints of line-start interior permanent magnet syn-

chronous motors. Kadhar et al. [130] proposed to use diversity
controlled self-adaptive DE with local search to achieve the
optimal design of a non-fragile multivariable proportional

integral controller used in the wood and berry distillation pro-
cess. Both studies demonstrated the potential of DE for vari-
ous industrial processes.

Santucci et al. [131] proposed an abstract algebraic DE to

optimise the total flow time of the permutation flow shop
scheduling task. Some notable modifications introduced in this
work include the heuristic-based initialisation scheme, discrete

mutation operator, crossover operator inspired by the bubble
sort algorithm, biased selection scheme and memetic restart
scheme. Wang et al. [132] developed a new strategy to design

a coaxial magnetic gear by referring to the theory related to

0

1

2

3

4

5

6

7

8

ANN PSO FL CSA ABC FA ACO GA WOA
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Fig. 7 Distributions of hybrid DE variants produced according to year and AI algorithms used for hybridisation.
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magnet magneto-motive force. DE was applied to search for
optimal combinations of key parameters that have a significant

impact on the modulation effects of magnetic gears, i.e. the
thickness of permanent magnet, ratio between magnet arc to
permanent magnet pole pitch and ratio between air slot open-

ing to pole pitch. Nadimi-Shahraki et al. [133] proposed three

trial vector producers (TVPs), namely, the global best history-
based TVP, local random-based TVP and representative-based
TVP, into their multi-trial vector-based DE (MTDE) to solve

different numerical benchmark functions and four engineering
design problems. Both the winner-based distribution policy
and life-time archive were employed by MTDE to determine

the most appropriate TVP for each subpopulation.

4.6.3. Computational systems

By leveraging the benefits of cloud computing technologies,

Teijeiro et al. [134] proposed the parallel implementation of
an enhanced DE by using a cloud platform known as Spark
to address three-parameter estimation problems commonly

found in the computational biology domains (i.e. Circadian
model, NFKB model and three-step pathway model) more
effectively without consuming excessive computational time.

LaTorre et al. [135] applied DE in computational neuroscience
model calibration. A simplified triggering technique with fixed-
diameter axon was used to increase the computation processes.
The finding showed that the proposed model managed to

address the complex framework of nerve damages. Houssein
et al. [136] proposed to apply an adaptive guided DE (AGDE)
in searching for the optimal quantum cloning circuit parame-

ters through the minimisation of cloning difference error value
to improve the cloning fidelity. A new mutation operator was
proposed to improve the convergence speed of AGDE by fully

utilising information brought by population members with
good, average and poor fitness. A self-adaptive scheme was
also introduced to adjust the crossover rate of AGDE to

ensure the balancing of exploration and exploitation searches.

4.6.4. Electrical and power systems

Azad et al. [137] proposed a modified DE to solve economic

dispatch problems in power generation systems with minimum
generation cost by incorporating a tournament selection
scheme to perform pair-wise comparisons between the feasibil-
ity of solutions by referring to their degrees of constraint vio-

lations. Sakr et al. [138] proposed a modified DE (MDEA) to
solve an optimal reactive power management problem encoun-
tered in an Egyptian power grid system to minimise the voltage

deviation and transmission power losses simultaneously. A
self-adaptive scaling factor was incorporated into MDEA to
enhance its convergence speed without compromising popula-

tion diversity, and a new updating strategy was also proposed
to modify its penalty factor to handle different types of techni-
cal constraints effectively.

Majed et al. [139] designed a direct control strategy of dis-
tribution static synchronous compensator based on a harmon-
ics elimination pulse-width strategy implemented using DE. In
contrast to the conventional control strategy, HEPWM has a

wider modulation index and is able to maintain a small har-
monic distortion in output voltage. Biswas et al. [140] applied
the linear population size reduction technique of success

history-based adaptive DE (L-SHADE) presented to solve
the parameter estimation problems of solar cells constructed
from single-diode and double-diode models with minimum

current–voltage errors. Ozyon et al. [141] produced the optimal
solutions by using DE to solve the short-term operations of an
electrical power system that consists of pumped-storage power

generation units.

Table 7 Research on the applications of the DE algorithm.

Authors Year Applications

[124] 2016 Prediction

[125] 2018 Prediction

[126] 2018 Prediction

[127] 2019 Prediction

[128] 2012 Industrial control

[129] 2014 Industrial control

[130] 2015 Industrial control

[131] 2015 Industrial control

[132] 2019 Industrial control

[133] 2020 Industrial control

[134] 2017 Computational systems

[135] 2020 Computational systems

[136] 2020 Computational systems

[137] 2012 Electrical and power systems

[138] 2017 Electrical and power systems

[139] 2017 Electrical and power systems

[140] 2019 Electrical and power systems

[141] 2020 Electrical and power systems

[142] 2013 Feature selection

[143] 2017 Feature selection

[144] 2017 Feature selection

[145] 2018 Feature selection

[146] 2018 Feature selection

[147] 2018 Feature selection

[148] 2020 Feature selection

[149] 2020 Feature selection

[150] 2020 Feature selection

[151] 2013 Image processing

[152] 2017 Image processing

[153] 2018 Image processing

[154] 2019 Image processing

[155] 2020 Image processing

[156] 2017 Clustering

[157] 2019 Clustering

[158] 2019 Clustering

[159] 2019 Clustering

[160] 2020 Clustering

[161] 2018 Health care

[162] 2019 Health care

[163] 2019 Health care

[164] 2016 Path planning

[165] 2019 Path planning

[166] 2020 Path planning

[167] 2020 Path planning

[168] 2020 Path planning

[169] 2020 Path planning

[170] 2018 Wireless and sensor

[171] 2018 Wireless and sensor

[172] 2018 Wireless and sensor

[173] 2020 Wireless and sensor

[174] 2007 Differential equations

[175] 2013 Differential equations

[176] 2014 Differential equations

[177] 2019 Differential equations

[178] 2020 Differential equations
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4.6.5. Feature selection

Ghosh et al. [142] proposed a self-adaptive DE (SADE) to

address the feature subset selection problem of a hyperspectral
image that suffers from high computational intensiveness and
redundancy issues due to the presence of large numbers of neigh-

bouring bands. A feature ranking technique known as Relief-F
algorithm was incorporated to eliminate the duplicated features,
followed by the employment of fuzzy k-nearest neighbour to per-

form classification tasks. Mlakar et al. [143] investigated the fea-
sibility of applying a multi-objective version of DE (DEMO) to
develop a wrapper-based feature selector (FS) for a facial expres-
sion recognition system to detect seven types of prototypical

expression with minimum numbers of features and maximum
accuracy of emotion recognition. Vivekanandan et al. [144]
designed an FS method using a modified DE to select the critical

features for a classifier constructed using the fuzzy analytical
hierarchy and feed-forward neural network to predict the pres-
ence and absence of heart disease with better accuracy and

shorter processing time.
Gutoski et al. [145] proposed a bio-inspired FS method

with a traditional DE/rand/1/bin algorithm and combined

with the K-means algorithm to solve unsupervised clustering
problems with more promising values of Calinski-Harabasz
and Silhouette scores, which are two metrics commonly used
for cluster analyses. Nayak et al. [146] designed a feature selec-

tor for extreme learning machine to solve supervised classifica-
tion problems by leveraging the promising capability of using
an elitist-based multi-objective DE in optimising three objec-

tive functions related to selected feature number, classification
accuracy and Minkowski score simultaneously. Yao et al. [147]
incorporated two improved binary DE (BDE) algorithms into

the Gaussian process regression to solve the variable selection
problem in deploying the soft sensors required to monitor the
process variables of industrial plants. Hancer [148] proposed a

new multi-objective DE-based filter approach to perform fea-
ture selection by considering the filter criteria of fuzzy and ker-
nel measures to obtain the optimal feature subset that can lead
to the maximum predictive of responses.

Zhang et al. [149] proposed a self-learning multi-objective
FS with binary DE (MOFS-BDE) to address the FS problems
with the aim of maximising classification accuracy and min-

imising the number of selected features simultaneously. A
novel binary mutation scheme based on probability difference
was incorporated into MOFS-BDE to guide the solution mem-

bers in locating the promising solution regions rapidly, and the
self-learning capability of elite individuals in near-optimal
solution regions was enhanced with a one-bit purifying search
operator. The computational complexity of the selection pro-

cess in MOFS-BDE was further reduced by using an efficient
non-dominating sorting strategy based on crowding distance.
Rivera-Lopez et al. [150] proposed a permutational-based

DE algorithm to tackle feature subset selection problems with-
out a fixed subset size to be defined in advance. The
permutational-based mutation operator was designed to create

new feasible solutions, and a repair-based recombination oper-
ator was proposed to maintain the population diversity during
the evolution process.

4.6.6. Image processing

Sarkar et al. [151] performed a multilevel thresholding process
on the 2D histogram to segment input images into several dis-

tinct regions efficiently through the maximisation of the Tsallis
entropy using DE. Gong et al. [152] applied a DE to solve the
superpixel segmentation problems that have become increas-

ingly crucial in computer vision applications. The homogeneity
of superpixels was achieved through the minimisation of
within-superpixel errors, derivation of superpixel boundaries

in natural images with boundary gradient and generation of
superpixels that are human vision-friendly by using a regular-
isation term. Bhandari et al. [153] proposed a multi-level

thresholding scheme based on the novel beta DE to address
the colour segmentation problem. The optimal thresholding
levels of colour images were determined via the maximisation
of Tsallis and Kapur’s entropy values.

Kaur et al. [154] applied a memetic DE to optimise the
parameters of an intertwining logistic map to develop an image
encryption technique with higher efficiency and security. The

optimised intertwining map was able to produce encrypted
images by generating appropriate secret keys used for encrypt-
ing the shuffled channels of colour images. Sui et al. [155]

developed a parallel computation of DE (pcDE) to solve the
image threshold segmentation problem with better perfor-
mance and stability even in the presence of different noise sig-

nals. Two communication schemes, namely, the optimal elite
strategy and mean elite strategy, were incorporated into pcDE
to promote information exchange between different subpopu-
lations by replacing the local optimal solution with the global

optimal solution and the mean value of the local optimal solu-
tion in all subpopulations, respectively.

4.6.7. Data clustering

Tam et al. [156] proposed a new unsupervised learning tech-
nique known as automatic clustering differential evolution
(ACDE), where DE was used to determine the optimal number

of clusters. A heuristic approach was incorporated into ACDE
to adjust the activation value of each cluster centroid based on
the predefined quality metrics. Saini et al. [157] presented a

fusion of self-organizing map (SOM) and multi-objective
DE, abbreviated as SMODoc_clust, to automatically classify
documents on the basis of Silhouette and Pakhira–Bandyopad

hyay–Maulik indices. The multi-objective DE was used to
determine the optimal cluster numbers of SMODoc_clust
based on the new genetic operator inspired from SOM.
Nguyen-Trang et al. [158] designed an adaptive elitist DE

(aeDE) to determine the optimal values of cluster centres that
can lead to better partitioning by minimising an internal valid-
ity measure that represents the compactness of established

clusters. Apart from having promising global search ability,
a spherical quadratic steepest descent method was also inte-
grated into aeDE to enhance its local search ability to solve

optimisation problems with better accuracy and less computa-
tional time.

Mustafa et al. [159] designed an adaptive memetic DE to

improve the quality of data clustering by optimising the
intra-cluster distance similarity measure. A neighbourhood
selection heuristic and an adaptive DE mutation operator were
integrated with a memetic algorithm to ensure that population

diversity was maintained throughout the optimisation process
and to guarantee the consistency of clustering results. Wu et al.
[160] presented a clustering DE method assembled with crowd-

ing factors to promote the populations to eliminate the local
optima. A novel clustering method, namely, k-means special-
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based DE, was proposed, which enhances the diversity of the
populations in the earlier stage, whereas the solution accuracy
was gradually improved in the later stage.

4.6.8. Health care

Hamdi et al. [161] applied DE and support vector regression
(SVR) model to predict blood glucose level in chronic disease

patients. The validation was performed with real continuous
glucose monitoring data of 12 patients and can be operated
independently with high prediction accuracy. Wang et al.

[162] proposed a complex harmonic regularisation with DE
(CHR-DE) to address the biomarker selection problems that
are crucial in combating cancer and genetic diseases. DE was

used to optimise the hyperparameters of CHR, enabling the
latter method to have a strong ability to select relevant
biomarkers from gene expression data. Kaur et al. [163]

designed an e-health data prediction method by applying a
multi-objective DE to fine-tune the parameters of random for-
est technique for different medical applications, such as the
diagnosis of lung cancer, skin cancer, blood cancer, breast can-

cer, diabetes, brain tumour and Ebola.

4.6.9. Path planning

Kok and Rajendran [164] applied DE to solve the path plan-
ning problem of an unmanned aerial vehicle with improved
computational cost and better final output path via the fine-
tuning of its four control parameters, namely, generation num-

ber, population size, scaling factor and crossover rate. Zamuda
et al. [165] applied SHADE and L-SHADE to design an expert
system that enabled higher-autonomy control of underwater

glider path planning with more stable trajectories that are cru-
cial for robotic and oceanographic applications. Chellaswamy
et al. [166] proposed a method called railway track heath mon-

itoring system DE (RHMDE) to check malfunctions in railway
tracks for increasing safety measures. RHMDE can continu-
ously report defects found on the track to the control station,
hence reducing the need to conduct regular inspections.

Zuo et al. [167] proposed a case learning-based DE (CLDE)
to solve an optimal design problem of interplanetary trajectory
that is crucial for a space mission. Successful values of scaling

factor and crossover rate were stored and retrieved by CLDE
throughout the search process until these control parameters
were no longer able to produce new offspring solutions with bet-

ter fitness. Jain et al. [168] studied recent modifications made in
DE to solve robotic path planning problems subjected to various
constraints. Pan et al. [169] proposed a hybrid DE called

CIJADE by combining the modified CIPDE (MCIPDE) and
modified JADE (MJADE) to solve the path planning problem
related to unmanned combat aerial vehicles. The main popula-
tion of CIJADE was partitioned into inferior and superior sub-

populations on the basis of fitness values and evolved
independently using MJADE and MCIPDE, respectively. An
external archive was incorporated into the mutation operator

of MCIPDE to enhance its exploration capability, where a new
crossover operator and dynamic strategy of determining elite size
was designed in MJADE to achieve a better balancing of explo-

ration and exploitation searches.

4.6.10. Wireless sensor network

Cespedes-Mota et al. [170] proposed a multi-objective DE

applied on wireless sensor distribution network over various

geometric shapes and areas to minimise energy usage and max-
imise network coverage area simultaneously. Cui et al. [171]
presented a wireless sensor network (WSN) with DE and

DV-Hop to enhance the localisation accuracy in four different
network simulations. The estimated distance error can be fur-
ther reduced by optimising the location estimation for all sen-

sor nodes. Qin et al. [172] applied DE for WSNs to solve area
coverage problems such as unbalanced energy consumption
through the incorporation of compensation technique. Their

proposed strategy covered 90% of network areas with high
energy and good computation efficiency. Wu et al. [173] pro-
posed a single-inverter wireless power transfer technique with
improved DE to optimise modulated dual-frequency output

and switching angle.

4.6.11. Differential equations

Differential equations are widely applied to formulate highly
complex real-world application problems encountered in dif-
ferent sectors. However, numerical approximations of differen-
tial equations such as those approaches reported in [179–181]
are tedious tasks. DE algorithms are envisioned as promising
optimisation algorithms to solve these differential equations
by locating the manipulated parameter vectors effectively.
Chang [174] proposed the use of a DE algorithm to solve the
identification problem of chaotic systems known as Chen
and Lü [182] systems. The chaotic models of the Chen and
Lü systems were described by the differential equations with
manipulated parameter vectors that can be evolved by an opti-
misation algorithm to produce the optimal values. The simula-
tion studies verified the effectiveness of the DE algorithm in
locating the optimal parameters for Chen and Lü systems with
few iterations. Moreover, a fast convergence rate of the DE
algorithm was observed in minimising the cost function value.

In [175], a new DE algorithm was proposed to locate the
feasible optimal parameters of biological dynamic system
models described by using ordinary differential equations
(ODEs) and continuous delay-differential equations (DDEs).
This parameter estimation problem was formulated as an
objective function with algebraic constraints through the
incorporation of nonlinear programming and spline approxi-
mation approaches. The formulated objective function con-
tained two major parts: the system parameter and the weight
coefficient, which have essential roles in affecting the search
behaviour of the algorithm. Although these two objectives
have the same weightages when the conventional DE was
adopted, the proposed algorithm was modified using a relax-
ation approach to emphasise the explorative search in the solu-
tion space of the system parameter because its main objective is
to discover the unknown system parameters. The performance
evaluations were performed by using two simulated studies
and a biological application described by ODEs and DDEs.
The proposed algorithm was more robust and efficient in
locating the optimal parameter values of ODEs and DDEs.
However, the performance of the proposed algorithm was
not compared with that of other optimisation algorithms.

In [176], a new efficient differential evolution with popula-

tion size varying scheme was introduced to solve partial differ-
ential equations. In contrast to the conventional DE with fixed
population size, the population size of the proposed algorithm

can be increased with a predefined maximum value. If the
standard deviation of best fitness values is smaller than a pre-
defined threshold value, then an additional individual solution
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will be generated using DE operators and added to the current
population. Six partial differential equations (PDEs) were for-
mulated as minimisation problems with equality constraints to

evaluate the performance of the proposed algorithm in locat-
ing the approximate solutions of PDEs. The convergence rate
of the proposed algorithm was twice that of other compared

methods on the basis of reported function evaluation
numbers.

Fateh et al. [177] introduced a differential evolution-based

solver to produce optimal solutions for elliptic PDEs.
Second-order elliptic equations with homogeneous and non-
homogeneous forms were considered and formulated as the
minimisation problems. The proposed DE-based solver was

effective in solving elliptic PDEs benchmark problems with lin-
ear and nonlinear characteristics. The proposed method has a
high convergence speed, producing the best fitness value for

each problem in approximately 500 generations, and was also
reported to solve PDEs with low computational cost, as indi-
cated by its low processing time.

In [178], a novel mesh-free approach was introduced to
solve ODEs by combining the improved Fourier periodic
expansion function with the weighted least square method to

reduce the approximation errors. A weighted residual method
[183] was firstly applied to formulate the ODEs problems as an
optimisation problem. Then, an adaptive DE algorithm was
used to minimise the ODEs’ residuals and the boundary condi-

tion errors. The proposed method was implemented with five
optimisation algorithms to solve 20 types of ODEs with initial
value problems and boundary value problems. The SHADE

algorithm achieved the best accuracy in producing the optimal
solutions for the majority of ODEs with average processing
times.

4.6.12. Summary of applications

Table 7 presents the research related to the applications of DE
variants, while Fig. 8 summarises the distributions of these

studies according to their publication years and application
domains. Eleven applications are listed in this survey, namely,

the prediction, industrial control, computational systems, elec-
trical power systems, feature selection, image processing, clus-
tering, health care, path planning, wireless sensor and

differential equations. Feature selection is identified as the
most popular application of DE, with nine research papers
having been published in this research domain. Other applica-

tions also received notable attention among researchers, with
works related to these research domains having been published
in recent years.

5. Performance analysis of DE

This section presents the performance analysis of DE based on

the surveyed articles. This section is split into five subsections:
benchmark functions, most frequently used parameter settings,
most frequently used performance measures, performance

studies of solution quality and trends in enhancing the DE
algorithm.

5.1. Benchmark functions

The modifications of DE, namely, EDE, were evaluated with
different datasets or benchmark functions. Table 8 shows the
benchmark functions commonly used for evaluation purposes.

Most researchers used EDE to solve optimisation problems,
followed by the selection and clustering problems. The most
common dimension size used for performance evaluation is

30D.
The benchmark selection process has a major impact on the

results of EDE. Previously, most researchers used Rosenbrock,
Rastrigin, Dejong, Griewank, Ackley, Sphere and various clas-

sical benchmark functions to solve their respective problems.
Recent trends indicate that CEC benchmark suites become
popular in 2011 until 2020. The latest benchmark being used

is CEC 2017 because of its effectiveness in evaluating the
search accuracy, search robustness and success performance
of an algorithm. It also compatible for solving various func-

Fig. 8 Distributions of DE algorithm applications.
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Table 8 Benchmark functions.

Author Tasks Dimensional size Benchmark functions

[41] Optimization 2,3,4,5,6,10,20,30,100 Numerical benchmark functions

[42] Optimization 2, 5, 10 Rosenbrock, Dejong, Quartick, Rastrigin

[43] Optimization 10, 20, 30, 40, 60 Ackley, Alpine, Griewank, Parabola, Rastrigin, Rosenbrock, Tripod

[44] Optimization 30, 100 Sphere, Schwefel, Rosenbrock, Griewank, Ackley, Rastrigin, Weierstrass

[45] Optimization 10, 30, 50, 100, 1000 CEC 2010, CEC 2013, BBOB 2010, Lennard-Jones Potential Minimization

[46] Optimization 2, 4, 10, 30, 50 Unimodal, Step, Multimodal, Low dimensional

[47] Optimization 10, 30, 50, 100 CEC 2014

[48] Clustering 2, 3, 4, 5 BBC, Email

[49] Optimization 30, 50, 100 CEC 2005

[50] Optimization 30, 50, 100, 200 CEC 2005

[51] Optimization 30, 50 CEC 2005

[52] Optimization 50, 100, 200, 500,

1000

LGSO

[53] Optimization 10, 30 CEC 2010

[54] Optimization Not reported 10, 37, 52, 72, 120 Bar planar truss structure

[55] Optimization 10, 30, 50 CEC 2013

[56] Optimization 10, 30, 50 CEC 2013

[57] Optimization 2, 10 19 (Name not given)

[58] Clustering 25, 50 Images (Morse, Iris, Hogg, Weather, Stock returns)

[59] Optimization 30, 100 Mathematical model of arrival flights scheduling

[40] Optimization 2, 50 Sphere, Schwefel, Quartic, Griewank, Rastrigin, Zakharov, Schaffer

[60] Optimization 2, 3, 5, 10, 20, 40 BBOB 2015

[61] Optimization 5, 10, 15 CEC 2017

[62] Optimization 30, 50, 100 CEC 2014, CEC 2015

[63] Optimization 30, 50, 100 CEC 2014

[64] Optimization 30, 50 CEC 2005, CEC 2013

[65] Optimization 30, 50 CEC 2011, CEC 2013, BBOB 2012

[66] Optimization 30, 50 CEC 2005, CEC 2010, CEC 2012

[67] Optimization Not reported Multimodal (name not given)

[68] Optimization 50, 100 CEC 2005

[69] Optimization 30, 50 CEC 2005

[70] Optimization 10, 30, 50 CEC 2014

[71] Optimization 50, 100 CEC 2005

[72] Optimization 30, 60 CEC 2013

[73] Optimization 30, 50, 1000 CEC 2010, CEC 2013

[74] Optimization 1000 CEC 2010

[75] Optimization 30, 50 CEC 2005

[76] Clustering 2 Images (Iris, Haberman, New thyroid, Seeds, Lung cancer, Glass, Wine, Balance, Vowel,

BTSCD, Heart, WDBC-Int, Dermatology, WDBC, Landsat)

[77] Selection 10, 30, 50 CEC 2014, CEC 2015

[78] Selection 10, 20, 30 CEC 2005, CEC 2014

[79] Selection 30 CEC 2005, CEC 2014

[80] Optimization Not reported Pareto fronts

[81] Optimization 10, 20, 30, 40, 50 CEC 2013

[124] Optimization 10 13 numerical benchmarks

[125] Optimization Not reported Images (Lena, Vegetable, Ship)

[129] Optimization Not reported Least Square Support Vector Regression (LSSVR)

[136] Optimization Not reported Circadian

[139] Optimization Not reported Constrained test problems (g06, g10)

[140] Optimization 6, 15 IEEE 30, 57 bus system, WDN

[141] Optimization Not reported Not reported

[142] Optimization 3, 5 Diodes (single, double)

[145] Selection Not reported Cohn Kanade, JAFFE, MMI

[146] Selection 20, 30, 50, 100, 200,

500, 1000

Not reported

[147] Selection 2, 10 Not reported

[148] Selection Not reported Images (Iris, Glass, Breast cancer, Wine, Heart, Australian, Zoo, Vehicle, German numeric,

WBCD, Dermatology, Ionosphere, Waveform, Lung cancer, Spambase, Sonar, Hill valley,

Musk 1, DNA, Arrhythmia, Multiple features)

[149] Selection Not reported Not reported

[150] Clustering Not reported Real world and synthetic

[151] Selection NGSA Feature Selection (NSGAFS)

(continued on next page)
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tion types such as unimodal, multimodal, constrained, large-
scale and hybrid. However, none of the researchers used

CEC benchmark suites to evaluate the clustering task because
the developed algorithms are generic.

5.2. Frequently used parameter settings

Parameter settings are one of the crucial parts to produce the
optimum solution within the shortest running time. The per-

formance of DE depends on the common parameter settings
of number of population (NP), mutation factor (F) and
crossover rate (CR) [33,35]. All researchers worked on adjust-
ing this value with a variety of numbers. The review based on

Table 9 shows that the common value set on NP is 100, F and
CR are 0.5. ‘Not Reported’ indicates that the researchers did
not report the algorithm implementation values, while ‘Not

Applicable’ means that the researchers did not perform any
implementation. The total simulation runs are important
because different results may be obtained in different runs.

The lowest simulation runs used for performance evaluation
is 10, and the highest is 100. Our survey shows that most of
the researchers prefer to set 30 and 50 runs for their

simulations.

5.3. Most widely used performance measures

The widely performance measures are recorded in Tables 10

and 11 for solution quality and convergence rate, respectively.
The quality of algorithms cannot be judged based on a few
runs because a result may vary when undergoing several runs.

Additional independent runs need to be performed to obtain
more accurate average results.

The experiment results in the reviewed papers were anal-

ysed and measured in various ways (best result overruns, aver-
age time over results, average results over time, etc.). However,
some researchers considered only quality solutions and
ignored the convergence rate, and vice versa. In addition, some

researchers considered both solution quality and convergence
rate. The performance measuring criteria rely on the research
objective.

Most researchers tend to use success rate (SR), standard
deviation (SD), mean square error (MSE), root mean square
error (RMSE), Friedman rank, Wilcoxon and average fitness

(AF) to evaluate the accuracy of the solution obtained during
the termination of the algorithm.

5.4. Performance studies

This section presents any enhancement that is applied to the
DE algorithm. All the reviewed articles used non-standard

measures. A comparison between the final results of papers
is unfair and impossible. Thus, an estimation comparison

can be conducted among all results with a modified enhance-
ment equation, I (%), as defined by

I %ð Þ ¼ 1� MEDE

MDE

� �� �
� 100 ð17Þ

where MEDE and MDE are metric values for EDE and DE,
respectively. This equation is useful to calculate the improve-
ment of solution quality and convergence speed rate. Several

researchers compared EDE and DE, while others compared
EDE with non-DE algorithms. However, a few researchers
presented their research without a single comparison, thus pre-

senting difficulty in computing the impact of EDE on the orig-
inal algorithm. In addition, many researchers present final
results as graphs. Thus, a graph comparison cannot be made

and we reported the results as ‘Graph representation’. The best
case for a perfect comparison is to compare EDE with the orig-
inal DE before comparing it with other non-DE algorithms.

Table 10 presents the computation of percentage improve-
ment for solution quality. The comparison is made by compar-
ing EDE with DE only. The highest improvement recorded is
100%, and the lowest is 0.05%. Some researchers performed a

comparison with different dimensional problems. Thus, all the
results need to be calculated separately because different
dimensions give a different percentage value.

The computation comparison of the convergence rate of
EDE over DE is presented in Table 11. The different system
configurations (operating system, processor speed, RAM,

etc.) of the computer used by the researchers might affect the
speed of computation processes. Thus, a direct comparison
of execution time is not fair because the systems run on differ-

ent hardware specifications. In addition, half of the researchers
did not report information on system configuration. Only
seven successful complete improvements were calculated with
sufficient information [41,43,44,74,138,149,156]. The enhance-

ment made by [156] was the best as it reached 100%, and the
lowest is [41] with only 10.35%, as shown in Table 11.

5.5. Trends in enhancing the DE algorithm

As highlighted in Fig. 3, the statistics show that the enhance-
ment of DE starts to the gloom is between 2015 and 2021.

As mentioned in the earlier part of this paper, DE consists
of four main strategies. The most popular enhancement strat-
egy is mutation, as the main part of this review reported on
mutation, and it is followed closely by crossover. Mutation

and crossover have a close relationship, with both of them
showing steady increases throughout the years. The report
on initialisation shows that the strategy glooms in 2010 to

Table 8 (continued)

Author Tasks Dimensional size Benchmark functions

[152] Selection Not reported Arrhythmia, Australian, Cylinder-b, Dermatology, h-valley, Madelon, Musk-1, Optic,

Semeion, Soybean, Splice, Vote, All-aml, Leukemia, Ovarian

[156] Selection Not reported 5 color images

[161] Clustering 1, 2 Images (Iris, Wine, CMC, Glass, Cancer, Vowel)

[164] Selection Not reported Breast cancer, Hepatocellular carcinoma, Colorectal cancer

[167] Optimization Not reported Underwater glider path planning
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Table 9 Parameter settings.

Author Parameters Simulation runs

[41] NP = 100, F = 0.5, CR = 0.9 100

[42] F = 0.6–1.9, CR = 0.5–0.8 100

[43] Not reported 50

[44] Not applicable 30

[45] NP = 30, F = 0.7, CR = 0.5 50

[46] Not applicable 50

[47] Not reported 51

[48] Not reported 100

[49] NP = 100, F = 0.8, CR = 0.9 50

[50] Not applicable 50

[51] NP = 50, 75, 100, 125, 150, F = 0.5, CR = 0.9 50

[52] NP = 60, F = 0.5–0.9, CR = 0.2, 0.9 25

[53] NP = 100, F = 0.4, CR = 0.4, 0.75, 0.95 25

[54] NP = 20, F = 0.8, CR = 0.9 30

[55] NP = 10D, F1 = 0.3, 0.5, 0.7, 0.9, CR = 0.1, 0.3, 0.5, 0.7, 0.9 51

[56] NP = 10, 15, 20, CR = 0.05–0.15, 0.9–1 51

[57] NP = 200, F1 = 1, CR1 = 0.4, F2 = 0.7, CR2 = 0.8 Not reported

[58] F = 0.6, CR = 0.8 Not reported

[59] NP = 100, F = 0.5, 0.9, CR = 0.1, 0.9 30

[40] NP = 50, CR = 0–1 30

[60] NP = 100D 15

[61] NP = 100D, 3000D, F = 0.5, CR = 1 51

[62] NP = 5D, F = 0.6, CR = 0.8 50

[63] NP = D, 5D, F = 0.05 50

[64] NP = 50 & 100, F = 0.1–1, CR = 0.05–1 25, 30, 51

[65] F = 0.7, CR = 0.5, p = 0.05 50

[66] NP = 100, F = 0.5, CR = 0.9 30

[67] F = 0.3, 0.5, 0.9, CR = 0.1, 0.5, 0.9 25

[68] NP = 30 & 50, p = 0.1 30

[69] Not applicable 30

[70] NP = 100, F = 0.5, CR = 0.9 51

[71] NP = 100, F = 0.5, CR = 0.5 30

[72] NP = 5D, F = 0.4, CR = 0.5 30

[73] NP = 100, F = 0.5 & 2, CR = 0 & 1 51

[74] CR = 0.1, 0.5, 0.9 25

[75] NP = 100, F = 0.5, CR = 0.5 25

[76] NP = 100, F = 0.5, CR = 0.9 50

[77] F = 0.5, CR = 0.5 51

[78] NP = 20, F = 0.5, CR = 0.5 25

[79] NP = 30, F = 0.5, CR = 0.5 30

[80] Not reported 30

[81] NP = 15–25 50

[124] NP = 40 50

[125] Not reported Not reported

[129] Not reported Not reported

[136] NP = 256, F = 0.9, CR = 0.8 20

[139] NP = 10D, F = 0.5–1, CR = 0.8–1 30

[140] F > 0, CR = 0.9–1 50

[141] Not reported Not reported

[142] NP = 50, 80, F = 0.5, CR = 0.5 30

[145] NP = 30 30

[146] Not reported Not reported

[147] NP = 30, CR = 0.75, F = 0.01, 10

[148] NP = 50, F = 0.3, CR = 0.9, GN = 150, Hidden neuron = 40 40

[149] Not reported 10

[150] NP = 50, F = 0.8, CR = 0.7 30

[151] NP = 50, F = 0.5xRand, CR = 0.3 30

[152] F = 0.1514, CR = 0.8552 10, 30

[156] F = Independent, CR = Independent Not reported

[161] NP = 50, F = 0.7, CR = 0.9 31

[164] Not reported 50

[167] NP = 32, 100 12
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Table 10 Solution quality.

Author Metric EDE DE Improvement (%)

[41] Acceleration rate 2,476,078 2,755,883 10.15

[42] Not stated 83.33% 12.50% 70.83

[43] Success rate 96% 80% 16.00

[44] Mean fitness 95% Not reported –

[45] Average fitness, SD 83.33% 16.67% 66.66

[46] Average execution time Graph representation Graph representation –

[47] SD, Wilcoxon 10D = 3.5333

30D = 3.2167

50D = 2.8000

100D = 3.6833

10D = 5.2667

30D = 6.7167

50D = 7.2500

100D = 7.5167

32.91

52.11

61.38

51.00

[48] k-means C2 = 0.53292

C3 = 0.79893

C4 = 0.82104

C5 = 0.88265

C2 = 0.64329

C3 = 0.81023

C4 = 0.8731

C5 = 0.89101

17.16

1.39

5.96

0.94

[49] Mean, SD Not reported Not reported –

[50] Error value Not reported Not reported –

[51] Mean, SD Not reported Not reported –

[52] Mean, SD 50D = 1.14E + 00

100D = 2.85E + 00

200D = 2.22E + 01

500D = 3.04E + 01

1000D = 1.94E + 02

50D = 1.20E + 00

100D = 4.20E + 00

200D = 2.90E + 01

500D = 9.60E + 01

1000D = 3.80E + 02

5

32.14

23.49

68.33

48.95

[53] Average, Best, Mean 1308.48 1395.84 6.26

[54] Mean 28.6530 Hz 28.6661 Hz 0.05

[55] Mean, SD Graph representation Graph representation –

[56] Mean 2.13 Not reported –

[57] Mean, SD 1981.73 2003.35 1.08

[58] Mean I1 = 11.70

I2 = 14.30

I1 = 12.43

I2 = 17.02

5.87

15.98

[59] Friedman Rank 1.17 1.83 36.07

[40] Mean, SD Graph representation Graph representation –

[60] Mean Graph representation Graph representation –

[61] Mean Graph representation Graph representation –

[62] Friedman Rank CEC2014 = 1.6667

CEC 2015 = 1.8333

Not reported –

[63] Mean, SD Graph representation Graph representation –

[64] Average rank 1.73 2.57 32.68

[65] Mean error Graph representation Graph representation –

[66] Mean, SD Not reported Not reported –

[67] Success rate Graph representation Graph representation –

[68] Mean, SD Graph representation Graph representation –

[69] Mean, SD, Wilcoxon Graph representation Graph representation –

[70] Mean, SD 33.33% 10% 23.33

[71] Mean, SD Not reported Not reported –

[72] Mean, SD 96% 57% 39

[73] Mean, SD Graph representation Graph representation –

[74] Mean, SD, Median Not reported Not reported –

[75] Mean Graph representation Graph representation –

[76] Mean, Median Graph representation Graph representation 11.98

[77] Median, Mean CEC2014 = 0.981004

CEC2015 = 0.946601

Not reported –

[78] Mean, SD, Wilcoxon Not reported Not reported –

[79] Mean, SD, Wilcoxon 3.46 Not reported –

[80] Mean Graph representation Graph representation –

[81] Mean, SD Graph representation Graph representation –

[129] RMSE, MAE Graph representation Graph representation –

[136] Mean, Median, SD Graph representation Graph representation –

[139] Wilcoxon 43057.83 43,213 0.36

[140] Average, SD Graph representation Graph representation –

[141] Not stated Graph representation Graph representation –

[142] Mean, SD 1D = 17.90 s

2D = 18.60 s

Not reported –

[145] Recognition rate 100% 98.37% 1.63
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2015. The majority of reviewed articles on initialisation were
taken from 2010 to 2015 because fewer researchers focused

on this strategy recently. The least enhanced DE strategy is
selection. Only five reviews were conducted on this strategy
between 2017 and 2021. Even the trend shows that selection

is the subject of the fewest studies, but researchers still appear
to be interested in performing the selection task because all the
related reviews were published in the past three years. In addi-

tion, the trend of using DE to solve real-world applications
and enhancing the search performance of DE with hybridisa-
tion has increased recently.

6. Open research challenges

6.1. Encoding strategy

The encoding strategy plays a crucial role in representing the
decision variables of given optimisation problems to be solved

by the DE variants. Direct encoding strategy is commonly used
in most literature, where each decision variable or phenotype is
represented as a genome element of DE’s candidate solution.

While the concept of direct encoding is intuitive and explicit
in handling common optimisation problems, it tends to suffer
from the curse of dimensionality in the Big Data era, which

requires solving sophisticated optimisation problems with
extremely high numbers of decision variables [184], especially
with the world defending against COVID-19 nowadays, which
requires many data samples [185]. Under this scenario, DE

algorithms might be struggling to solve large-scale optimisation
problems with desirable accuracy or within the reasonable
amount of time due to the excessive complexity involved.

6.2. Fitness value and search performance

The fitness value is commonly used by most DE variants to

evaluate the quality of the new solution generated. The current
solution of the DE solution can be replaced by the correspond-
ing trial solution with a better fitness value. The fitness func-

tion of an optimisation problem needs to be constructed to
compute the fitness value of any given DE solutions. Neverthe-
less, articulating an accurate fitness function for a complex
optimisation problem is difficult because the landscapes tend

to be deceptive towards local optimal solution regions and pre-
vent the global optimum from being reached. The fitness-based
selection also tends to suppress the survival of novel solutions

with temporary poor performance at the beginning stage and
yet can be successful in the long term if given sufficient gener-

ation [186]. A crucial task is to investigate alternative metrics
other than fitness value that can be used to guide the searching
process of DE to preserve novel solutions.

6.3. Optimisation problems

Most existing EAs such as DE were primarily designed to solve

a single optimisation problem from scratch at one time. This
concept does not truly reflect the actual scenario of real-
world optimisation problems, which require several jobs to be
handled at the same time. A new category of a problem known

as multi-factorial optimisation (MFO) [187] has recently
emerged to address this issue. In general, the MFO problem
is characterised by the concurrent existence of multiple search

spaces associated with different tasks that may or may not be
interdependent of each other. One of the notable examples of
MFO is the cloud computing platform, which receives different

optimisation tasks from multiple users concurrently. To the
best of the authors’ knowledge, only a few studies have been
conducted to leverage the benefits of EAs in designing multi-

tasking optimisers that are able to solve multiple optimisation
problems in MFO simultaneously with enhanced productivity.

6.4. Exploitation and exploration processes

Numerous algorithmic-specific parameters were introduced in the
majority of DE variants to achieve a proper balancing of their
exploitation and exploration searches. The parameter settings

of these DE variants tend to be problem-dependent because dif-
ferent optimal combinations of parameters need to be determined
to solve various types of optimisation with promising accuracy.

Nevertheless, evaluating every possible combination of parame-
ters exhaustively for each type of optimisation problems encoun-
tered is impractical because of the limitation of computation
resources. The presence of inherent mathematical correlations

between these newly introduced algorithmic-specific parameters
can further complicate the parameter tuning process, thus being
impractical for solving real-world applications.

6.5. ‘No free Lunch’ theorem

In 1997, Wolpert [188] proposed the ‘no free lunch’ (NFL) the-

orem, which states that search-based optimisation algorithms

Table 10 (continued)

Author Metric EDE DE Improvement (%)

[146] Accuracy 83% Not applicable –

[147] k-means 2 K = 0.23

10 K = 0.04

Not applicable –

[148] Average rank 2.25 Not applicable –

[149] RMSE 0.0026 0.0045 42.22

[150] Not stated 2.16 Not reported –

[151] Friedman test 1.6099E-13 Not applicable –

[152] Accuracy 1.33 2.75 51.64

[156] Unified average change intensity Image representation Image representation –

[161] Not stated Graph representation Graph representation –

[164] MSE 53.999 Not applicable –

[167] Median, SD Graph representation Graph representation –
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Table 11 Convergence rate.

Author Metric EDE DE System configurations Improvement

(%)

[41] NFC 2,080,795 2,321,045 Not reported 10.35

[42] Not reported Not

reported

Not

reported

Not reported –

[43] NFC 100,663 415,194 Not reported 75.76

[44] Mean reliability 99.74 59.33 Not reported 40.41

[45] Not reported Not

reported

Not

reported

Not reported –

[46] NFE Graph Graph Not reported –

[47] Not reported Not

reported

Not

reported

PC with Core processor, 2.26 GHz, 4 GB RAM –

[48] Not reported Not

reported

Not

reported

Laptop with Matlab R2015b, HP Quad core, 2.4 GHz –

[49] Not reported Not

reported

Not

reported

Pentium Core 2 duo, 2.23 GHz, 2 GB RAM –

[50] Not reported Not

reported

Not

reported

Not reported –

[51] Not reported Graph Graph 64 bit windows 7, Matlab R2012a –

[52] Not reported Graph Graph Windows Java 1.7, Intel Xeon 8 cores, 2.4 GHz –

[53] Objective function Graph Graph PC with Windows 7, Matlab, Core i7, 3.4 GHz, 8 GB

RAM

–

[54] Diversity index Graph Graph Matlab –

[55] Not reported Not

reported

Not

reported

Not reported –

[56] Not reported Not

reported

Not

reported

Not reported –

[57] Diversity index Graph Graph Not reported –

[58] Not reported Not

reported

Not

reported

Matlab R2008b, Core i7, 12 GB RAM –

[59] Mean best fitness Graph Graph Windows 7, Visual Studio 2008 –

[40] Average function Graph Graph PC with Matlab R2016a, Core i7, 1.8 GHz –

[60] Target pairs Graph Graph Windows 7, Matlab R2013a, Core i5, 2.2 GHz, 4 GB

RAM

–

[61] Inverse generational

distance

Graph Graph Not reported –

[62] Average function error Graph Graph Windows 7, Matlab R2014a –

[63] Fitness error Graph Graph Not reported –

[64] Mean error Graph Graph Matlab R2007b, Core i3, 2.4 GHz, 4 GB RAM –

[65] Solution error Graph Graph Not reported –

[66] NFE Graph Graph Not reported –

[67] Not reported Not

reported

Not

reported

Not reported –

[68] Mean fitness Graph Graph Not reported –

[69] Not reported Not

reported

Not

reported

64 bit windows 7, Matlab R2012a –

[70] Not reported Not

reported

Not

reported

PC with Linux Ubuntu, Core i5, 3.2 GHz, 8 GB RAM –

[71] Value of CRm Graph Graph PC with Core i7, 3.4 GHz, 16 GB RAM –

[72] Error fitness value Graph Graph Not reported –

[73] Not reported Not

reported

Not

reported

Not reported –

[74] Median 2.44E + 00 7.27E + 0.0 Not reported 66.44

[75] Not reported Not

reported

Not

reported

Not reported –

[76] Mean of best objective

function

Graph Graph Not reported –

[77] Fitness Fitness Graph Windows 7, Matlab R2014a, Core i7, 3.4 GHz, 16 GB

RAM

–

[78] Not reported Not

reported

Not

reported

Matlab R2010a, Quad core, 2.83 GHz, 4 GB RAM –

[79] Success rate Success rate 4.63E + 05 Not reported –

[80] Not reported Not

reported

Not

reported

Not reported –
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perform equally well when their performance is averaged
across all possible problems [189]. Hence, NFL remains an

advanced open research question that shows the varieties in
solving many EA problems.

7. Future research directions

7.1. Encoding strategy

Indirect encoding can be envisioned as one of the possible
approaches to address the drawbacks of direct encoding in
dealing with highly complex optimisation with millions of

parameters. In contrast to the direct encoding strategy, which
performs one-to-one mapping, indirect encoding allows multi-
ple phenotypic elements of problem domains to be compressed

into a single genome element of DE solutions, hence reducing
the search space size considerably. The idea of indirect encod-
ing is currently utilised to solve large-scale neuro-evolution

problems [190], achieving promising performance. A similar
indirect encoding strategy may be applied by DE algorithms
to solve other large-scale optimisation problems with compet-

itive performance provided that their underlying properties are
appropriately investigated. Some potential numbering systems
that can be applied to implement an indirect encoding scheme
include complex number, phase angle and IP address.

7.2. Fitness value and search performance

The ideas of novelty search [191] can be incorporated into DE
to address the negative impacts of poorly designed fitness func-
tions such as poor solution diversity, which can have detrimen-

tal impacts on the long-term evolution of the population. The
main purpose of integrating the novelty-driven searching pro-
cess into DE is to preserve more novel solutions that might

exhibit temporary poor performance but be able to contribute
to notable performance enhancement in the long term. The
idea of quality–diversity optimisation [192] is another interest-

ing future direction to improve the search performance of DE
in dealing with optimisation problems with challenging fitness
landscapes. Unlike novelty search, both fitness and diversity
criteria are considered by quality–diversity optimisation dur-

ing the solution search process. Proper balancing between
the fitness and diversity criteria needs to be achieved to pro-
duce a diverse yet highly performing set of DE solutions.

7.3. Optimisation problems

The implicit parallelism of DE and its variants can be har-

nessed to solve the multiple and diverse problems of MFO
simultaneously under a multitasking environment to accelerate
the optimisation process of complex problems. Some key

Table 11 (continued)

Author Metric EDE DE System configurations Improvement

(%)

[81] Not reported Not

reported

Not

reported

Not reported –

[129] Not reported Not

reported

Not

reported

Not reported –

[136] Time Graph Graph Microsoft Azure public cloud –

[139] Not reported Not

reported

Not

reported

Microsoft Visual Studio 9.0, Core 2 Duo, 2.5 GHz,

4 GB RAM

–

[140] Time 4.6 41 Matlab R2012a 88.78

[141] Not reported Not

reported

Not

reported

Not reported –

[142] Not reported Not

reported

Not

reported

Matlab, Core i5, 2.7 GHz, 4 GB RAM –

[145] Not reported Not

reported

Not

reported

Not reported –

[146] Not reported Not

reported

Not

reported

Not reported –

[147] Not reported Not

reported

Not

reported

Not reported –

[148] Fitness Graph Graph Not reported –

[149] Not reported Not

reported

Not

reported

Not reported –

[150] Not reported Not

reported

Not

reported

Not reported –

[151] SD 0.53 0.73 Not reported 27.40

[152] Not reported Not

reported

Not

reported

Not reported –

[156] Squared errors 0 1.51 Matlab 2.4 GHz, Core i5, 16 GB RAM 100

[161] Fitness Graph Graph CPU with Oracle Java 1.8, Core i7, 2.4 GHz, 8 GB

RAM

–

[164] Not reported Not

reported

Not

reported

Not reported –

[167] Fitness Graph Graph Not reported –
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issues need to be addressed to develop efficient and robust
multitasking optimisers by using DE algorithms. Depending
on the relationship between different tasks in an MFO, differ-

ent encoding and decoding schemes need to be designed to
map the phenotypic elements of the problem domain and the
genome element of DE in a unified search space. Inspired by

the assortative mating and vertical cultural transmission, i.e.
two essential mechanisms of a biological concept known as
multifactorial inheritance, effective knowledge transfer strate-

gies can be designed to evolve the DE population, thus facili-
tating an efficient search for the knowledge of multiple tasks.

7.4. Exploitation and exploration process

Parameter-free DE variants need to be developed to eliminate
the sensitivity of DE’s search performance towards the changes
of algorithmic-specific parameters. In contrast to most existing

DE variants, parameter-free DE does not require any human
intervention to determine the optimal combination of
algorithmic-specific parameters in solving any given optimisa-

tion problems. One of the ways to develop parameter-free DE
is to design an intelligent mechanism such as reinforcement
learning, which can fine-tune all parameters adaptively based

on the feedback provided by search environments such as pop-
ulation diversity, overall solution quality and fitness landscape
of optimisation problems.

7.5. No free lunch theorem

While it might appear as a counterintuitive concept, the NFL
theorem can be addressed by increasing the number of adap-

tive and automated processes of the DE optimiser. The suit-
able design of parameter adaptation mechanisms is expected
to achieve a proper balancing of the exploration and exploita-

tion search strengths of these new DE variants, thus emerging
as an interesting future research direction for these DE vari-
ants to solve optimisation problems with different fitness land-

scapes in a more robust manner.

8. Conclusions

This paper presents a recent review based on the enhancements
in DE, referred to as EDE. The performance improvement per-
centages of EDE over DE are computed except for some
research that has not reported numerical values. Comparing

the performance of the enhancements of DE among different
studies is unfair because EDE runs on different conditions
and benchmarks. DE has been modified by researchers to

enhance its effectiveness and efficiency in solving various opti-
misation problems starting from 2010. This trend could con-
tinue to exponentially increase in the future due to the global

attention on AI and its proficiency in solving multiple engi-
neering problems. This statement can be proved by our review,
which showed that 158 out of 192 papers were published

within 2016 to 2021. All this information can assist new
researchers in looking for suitable modifications of the original
DE, as well as expert researchers for developing further
enhancements of DE.

Our findings show that most researchers used NP = 100, F
and CR = 0.5 as their parameter settings for the implementa-
tion of EDE in various domains. Thus, we suggest these values

as standard DE parameter values. The approach of balancing
between exploitation and exploration of the DE algorithm is
also important in preventing premature convergence, thereby

enhancing the quality of final solutions. A big data sample is
also crucial because it can validate the accuracy of the solu-
tions. However, a fast processing scheme is important to

address the slow computing issue of this approach. The
engagement of a complex number and phase angle can
improve the capability of DE to solve various complex optimi-

sation and real engineering problems. The way to overcome
the NFL theorem is also discussed. Last but not least, we
believe that this review can have an important impact, espe-
cially for new researchers who want to explore how the DE

algorithm can be enhanced according to various approaches
applied by many researchers.
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evolution-based parameter identification of a line-start IPM

synchronous motor, IEEE Trans. Ind. Electron. 61 (11) (2014)

5921–5929, https://doi.org/10.1109/TIE.2014.2308160.

[130] K.M.A. Kadhar, S. Baskar, S.M.J. Amali, Diversity

Controlled Self Adaptive Differential Evolution based design

of non-fragile multivariable PI controller, Eng. Appl. Artif.

Intell. 46 (2015) 209–222, https://doi.org/10.1016/j.

engappai.2015.09.015.

[131] V. Santucci, M. Baioletti, A. Milani, Algebraic differential

evolution algorithm for the permutation flowshop scheduling

problem with total flowtime criterion, IEEE Trans. Evol.

Comput. 20 (5) (2015) 682–694, https://doi.org/10.1109/

TEVC.2015.2507785.

[132] Y. Wang, M. Filippini, G. Bacco, N. Bianchi, Parametric

design and optimization of magnetic gears with differential

evolution method, IEEE Trans. Ind. Appl. 55 (4) (2019) 3445–

3452, https://doi.org/10.1109/ICELMACH.2018.8507160.

[133] M.H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Faris,

MTDE: An effective multi-trial vector-based differential

evolution algorithm and its applications for engineering

design problems, Appl. Soft Comput. 97 (2020), https://doi.

org/10.1016/j.asoc.2020.106761 106761.

[134] D. Teijeiro, X.C. Pardo, D.R. Penas, P. González, J.R. Banga,
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