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Abstract
We study the variant of Particle Swarm Optimization that applies random velocities in a 
dimension instead of the regular velocity update equations as soon as the so-called poten-
tial of the swarm falls below a certain small bound in this dimension, arbitrarily set by the 
user. In this case, the swarm performs a forced move. In this paper, we are interested in 
how, by counting the forced moves, the swarm can decide for itself to stop its movement 
because it is improbable to find better candidate solutions than the already-found best solu-
tion. We formally prove that when the swarm is close to a (local) optimum, it behaves like 
a blind-searching cloud and that the frequency of forced moves exceeds a certain, objec-
tive function-independent value. Based on this observation, we define stopping criteria and 
evaluate them experimentally showing that good candidate solutions can be found much 
faster than setting upper bounds on the iterations and better solutions compared to applying 
other solutions from the literature.

Keywords  Particle Swarm Optimization · Stopping criterion · Heuristics

1  Introduction

Particle Swarm Optimization (PSO) is a meta-heuristic for the so-called continuous black 
box optimization problems, which means that the objective function is not explicitly 
known, e.g., in form of a closed formula. PSO produces good results in a variety of differ-
ent real-world applications. The classical PSO as first introduced by [Kennedy and Eber-
hart (1995); Eberhart and Kennedy (1995)] is an iterative algorithm which tries to improve 
a fixed number of candidate solutions, each represented by a particle. The algorithm can 
be very easily implemented and adapted to the users’ applications, which lead to increased 
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attention not only among computer scientists. In order to further improve performance, 
many authors present changes to the original, “plain,” or classical PSO scheme (for exact 
definitions, see Sect. 3) to improve the quality of the returned solution.

A serious problem of PSO is the phenomenon of premature stagnation, i.e., the con-
vergence of the swarm to a non-optimal solution. To address the issue of premature stag-
nation, van den Bergh and Engelbrecht (2002) introduce Guaranteed Convergence PSO 
(GCPSO), where a random perturbation that scales with the number of global attractor 
updates is added to the best particle. They show on a set of benchmarks that the PSO finds 
a local minimum with an improved convergence speed and later prove convergence to local 
optima. Kennedy and Eberhart (1995) first realized that adding a noise term, called crazi-
ness, can prove beneficial for PSO performance. Adding a noise term to the movement of 
the particle has been theoretically addressed by Lehre and Witt (2013). To overcome such 
stagnation, these authors propose Noisy PSO that adds a “noise” term to the velocity at 
every move. They prove that for the Noisy PSO started on a certain simple 1-dimensional 
objective function the first hitting time of the �-neighborhood of the global optimum is 
finite. However, as proved by Schmitt and Wanka (2013a), premature stagnation of clas-
sical PSO does not occur at all when the search space is 1-dimensional and the objective 
function is continuous. In the 1-dimensional case, PSO provably finds at least a local opti-
mum, almost surely (in the well defined sense of continuous probability theory; see [Chow 
and Teicher 1978,  p.  20) and  (Chung 1974,  p.  233)]. Furthermore, Schmitt and Wanka 
(2013a) show a similar result for a slightly modified PSO in the general D-dimensional 
case [for stagnation-related results regarding the unmodified PSO, see Raß et al. (2015)]. 
This slightly modified PSO assigns a small random velocity in solely one dimension only if 
the so-called potential of the swarm—a fundamental, measurable quantity of the swarm—
of all particles in this dimension falls below a certain (arbitrary and small) bound � . In the 
following, we call such random velocity particle moves forced steps and the PSO vari-
ant f-PSO. The f-PSO provably finds a local optimum almost surely [Schmitt and Wanka 
(2013a)]. Monitoring the swarm’s potential and increasing it from time to time by the 
forced steps is the key ingredient to mathematically proving successful convergence to a 
(local) optimum. In this paper, we will use the potential and the forced steps of f-PSO for 
overcoming another problem of heuristics, the question of when to stop the algorithm.

The goal of this paper is to characterize the behavior of the f-PSO when it is close to a 
(local) optimum. Our experiments and mathematical investigations show that the number 
of forced moves does not only increase significantly when the distance to the next local 
optimum falls below a certain bound, but that additionally the number of forced moves per-
formed close to a local optimum is independent of the objective function. In particular, we 
prove mathematically by potential arguments that the swarm “pulsates” in a cloud around 
the best candidate solution found so far. First rudimentary experimental evidence for this 
potential-based behavior is reported by Bassimir et al. (2014). Note that a similar behavior 
has been described recently by Yi et al. (2018) for the classical PSO. Therefore, by meas-
uring the frequency of occurrences of forced moves, this frequency can act as a stopping 
criterion, so the swarm may come to a self-determined halt. All findings are experimentally 
supported.

The paper is organized as follows. Section 2 provides an introduction and related work 
to stopping criteria. Section  3 presents a description of the classical and forced PSO 
(f-PSO) and the definition of the potential of a swarm. In Sect. 4, we experimentally and 
mathematically analyze the behavior of f-PSO when it comes close to a (local) optimum. 
In Sect. 5, based on the mathematical analysis in Sect. 4, we present the new termination 
criteria and show their practicability by experimental evaluations.
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2 � Stopping criteria

An important problem that arises in the context of PSO and other iterative optimization meth-
ods (see (Solis and Wets 1981, p. 23f) and further papers, referenced in this section) is when 
to stop the iterations and to return the best found admissible solution. Usually, the process 
is terminated (i) when an upper limit on the number of iterations is reached, or (ii) when an 
upper limit on the number of evaluations of the objective function is reached, or (iii) when 
the chance of achieving significant improvements in further iterations is extremely low. The 
choice of the mentioned two upper limits obviously depends on the concrete objective func-
tion which means that the user has to have detailed knowledge of the objective function and 
to “intervene” by hand. Furthermore, these limits often depend on the parameters used. For a 
more detailed description of the problems regarding limits as stopping criteria, see Engelbre-
cht (2014). In (iii), it is desired and advantageous that the algorithm adaptively decides when 
to stop, so external intervention is not necessary anymore. To achieve this for PSO, many cri-
teria were introduced in the literature. A commonly used criterion is the swarm diameter, i.e., 
the maximum distance between two particles, as a measure for the expansion and thus the 
movement capability of the swarm. When PSO is extended with forced steps, this and also 
other criteria of this kind do not work because the expansion of the overall swarm is forcefully 
kept above a certain value and can no longer converge like it does for the classical PSO algo-
rithm. Just the globally best position found by the swarm converges to an optimum.

Adaptive stopping criteria for PSO have been investigated by Zielinski et al. (2005) and Ziel-
inski and Laur (2007). In these papers, a list of upper limit-based and adaptive termination crite-
ria is presented and in experiments applied to (2-dimensional) established benchmark functions 
and a real-world problem, resp. Kwok et al. (2007) introduce a stopping criterion for PSO based 
on the rate of improvements found by the swarm in a given time interval. Quality of the termina-
tion is assured using the nonparametric sign-test enforcing a low false-positive rate. A further 
stopping approach due to Ong and Fukushima (2015) combines PSO with gene matrices.

Stopping criteria have also been studied in the context of other non-PSO optimization 
approaches. Ribeiro et al. (2011) introduce a stopping criterion that stops the GRASP (greedy 
randomized adaptive search procedures) algorithm when the probability of an improvement 
is below a threshold under an experimentally fitted normal distribution. Safe et al. (2004) pre-
sent a study of various aspects associated with the specification of termination conditions for 
simple genetic algorithms. Aytug and Koehler (2000) introduce a stopping criterion that stops 
a genetic algorithm when the optimal solution is found with a specified confidence and thus 
no real further progress can be expected. Sharma and Rangaiah (2013) present a termination 
criterion for a multi-objective differential evolution algorithm based on a taboo list for similar 
solutions. In a very general, ground-breaking investigation, Solis and Wets (1981) consider 
random search in general and also address the question of stopping criteria. In this context, 
Dorea (1990) presents two adaptive stopping criteria. Stopping criteria in the context of multi-
objective optimization is presented by Martí et al. (2016).

3 � Definitions

Due to the wide variety of existing PSO variants, we first state the exact “classical” PSO 
algorithm on which our work is based.

Definition 1  (Classical GBest PSO Algorithm) A swarm S  of N particles moves through 
the D-dimensional search space ℝD with D = {1,… ,D} being the set of indices specifying 
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dimensions. Each particle n ∈ S  consists of a position Xn ∈ ℝ
D , a velocity Vn ∈ ℝ

D and a 
local attractor Ln ∈ ℝ

D , storing the best position particle n has visited so far. Additionally, 
the particles of the swarm share information via the global attractor G ∈ ℝ

D , describing 
the best point any particle has visited so far, i.e., as soon as a particle has performed its 
move1, it possibly updates the global attractor immediately (sometimes called asynchro-
nous PSO, see Carlisle and Dozier (2001) among others).

The actual movement of the swarm is governed by the following movement equations 
where � , c1 , c2 ∈ ℝ

+ are some positive constants to be fixed later, and � and � are drawn 
u. a. r. from [0, 1]D every time the equation is applied.

Here, ⊙ denotes entrywise multiplication (Hadamard product). The application of the equa-
tions on particle n is called the move of n. When all particles have executed their moves, 
the swarm has executed one iteration.

Now we repeat the definition of a swarm’s potential measuring how close it is to conver-
gence, i.e., we describe a measure for its movement. A swarm with high potential should be 
more likely to reach search points far away from the current global attractor, while the poten-
tial of a converging swarm approaches 0. These considerations lead to the following definition 
by Schmitt and Wanka (2013b). The original definition by Schmitt and Wanka (2013a) is more 
complex just for technical reasons. We can omit the � and the square-root as these do not influ-
ence the required properties and the � and square-root are not used in the proposed algorithm.

Definition 2  (Potential) Fix a moment of the computation of swarm S  . For d ∈ D  , the 
current potential �d of S  in dimension d is

� = (�1,… ,�D) is the total potential of S  , and �n
d
 (partial potential) is the contribution 

of particle n to the potential of S  in dimension d.

Note that the potential of the swarm has an entry in every dimension. The swarm comes to 
a halt if � → (0,… , 0) . So, if the particles come close to G, the swarm may stop even if G is 
a non-optimal point, an incident that is called (premature) stagnation. The value of � can actu-
ally be computed at any given time and, hence, be used for decisions on the swarm. Between 
two different dimensions, the potential difference might be large, and “transferring” potential 
from one dimension to another is not possible due to the movement equations as each dimen-
sion is calculated independently. On the other hand, along the same dimension the particles 
influence each other and can transfer potential from one particle to the other. This is the reason 
why there is no potential of individual particles, but only their contribution to the potential.

To address the phenomenon of stagnation, Schmitt and Wanka (2015) slightly modi-
fied the PSO movement equations from Definition 1 by “recharging” potential and, hence, 
keeping the swarm moving.

Vn ∶= 𝜒 ⋅Vn + c1 ⋅� ⊙ (Ln − Xn) + c2 ⋅�⊙ (G − Xn)

Xn ∶= Xn + Vn

�d ∶=

N∑

n=1

(|Vn
d
| + |Gd − Xn

d
|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ �n

d

) =

N∑

n=1

�n
d

1  the particles’ moves are executed sequentially, so there is some arbitrary order of the particles.
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Definition 3  (f-PSO) The modified movement of the swarm is governed by the following 
movement equations where � , c1 , c2 , � ∈ ℝ

+ are some positive constants to be fixed later, r, 
s and t are drawn u. a. r. from [0, 1] for every move and dimension of a particle.

If the forced velocity update applies for a particle, we call its move and the correspond-
ing dimension in the move forced. An iteration of the swarm is called forced if during this 
iteration at least one particle performs a forced move. The whole method is called f-PSO.

If it is necessary to identify the values at the beginning of iteration i, we write Xn,i

d
 , Vn,i

d
 etc.

V
n

d
∶=

{
(2 ⋅ t − 1) ⋅ 𝛿, if ∀n� ∈ S ∶ 𝜙n

�

d
< 𝛿 [forced velocity update]

𝜒 ⋅ V
n

d
+ c1 ⋅r ⋅ (L

n

d
− X

n

d
) + c2 ⋅s ⋅ (Gd − X

n

d
), otherwise [regular velocity update]

X
n ∶= X

n + V
n.
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Algorithm  1 provides a formal and detailed overview of f-PSO. The introduction of 
forced velocity updates guarantees that the swarm (or more precisely, the global attrac-
tor G) does not converge to a non-optimal point almost surely, but finds a local opti-
mum  (Schmitt and Wanka 2013a). In our analysis and for the experiments, we used the 
common parameter settings � = 0.72984 , c1 = 1.49617 , c2 = 1.49617 and N > 1 as sug-
gested and used by Clerc and Kennedy (2002), which are parameter settings that are widely 
used in the literature.

4 � Behavior of the f‑PSO algorithm

The idea of the modification of the classical PSO algorithm is to help the swarm overcome 
(premature) stagnation. The modification is implemented in the calculation of the new 
velocity during a move of a particle (see Definition 3 and Lines 10 and 11 of Algorithm 1). 
The new velocity of a particle in the current dimension d is drawn u. a. r. from [−�, �] when 
for all particles n� ∈ S  their contributions �n′

d
 to the potential in dimension d is less than � , 

which means that the range in which the swarm can optimize is small in dimension d.
The main topic of this section is to examine if at such a situation the particle swarm uses 

from now on only forced moves or, more desirable, the swarm will recover and continue 
using regular velocity updates. In Schmitt and Wanka (2015), it is shown that indeed the 
latter is the case, unless the global attractor G is already in the neighborhood of a local 
optimum. As in this case almost all moves are forced, we will see in Sect. 5 that this can be 
translated into a criterion to stop the PSO’s execution.

4.1 � Experiments

We first introduce the notion of the forcing frequency to quantify the number of applica-
tions of the forced velocity update (Line 11 of Algorithm 1).

Definition 4  (Absolute and relative forcing frequency) Let I denote a (time) interval of |I| 
iterations during a run of the f-PSO algorithm. 

(a)	 Let �(I, d) denote the number of times forced velocity updates (Line 11) have been 
executed in interval I for dimension d, d ∈ {1,… ,D} . �(I, d) is called the absolute 
forcing frequency in dimension d over interval I.

(b)	 �(I) =
∑D

d=1
�(I, d) is the total number of forced velocity updates (Line 11) in interval I 

counted over all dimensions. �(I) is called the absolute forcing frequency over interval 
I.

Analogously, the relative forcing frequency is �(I, d)∕|I| and �(I)∕|I| , respectively.
To explore the behavior of the particle swarm with respect to the absolute forcing fre-

quency �(I, d) , we performed a series of experiments on the well-known benchmark func-
tions Schwefel, Rosenbrock, Rastrigin, H. C. Elliptic, Sphere, Griewank and Ackley 
(for a comprehensive overview of these and many other benchmark functions, see (Helwig 
2010, Sect. 4.2) and Suganthan et al. (2005)). Sphere and H. C. Elliptic will be analyzed 
in detail in Sect. 4.2. The tests were performed with Raß’ HiPPSO (see Raß (2020)) a high 
precision implementation of PSO, in order to rule out the influence of insufficient computer 



291Swarm Intelligence (2020) 14:285–311	

1 3

systems’ precision when applying a forced velocity update with � close to the precision of 
a, e.g., long double variable in C++. The tests were performed with N = 3 particles, 
D = 30 dimensions, � = 10−7 and the well-known swarm parameters already mentioned in 
Sect. 3. The number of particles was chosen to be small to increase the length (measured 
by the number of iterations) of the exploration phase. With a larger number of particles, 
more positions of the search space are explored per iteration as there are more function 
evaluations, and particles tend to come closer to an optimum in the same number of itera-
tions compared to a particle swarm with fewer number of particles therefore ending the 
exploration phase quite early. Given this number of particles, we see a better distinction 
between the exploration phase and the exploitation phase and can observe the transition 
between these two phases. The overall results, however, are still valid for larger swarm 
sizes, e.g., see Appendix A. For a discussion on how to chose � , see Sects. 4.2.1 and 5.

Schwefel Fig. 1 presents the measurements obtained when optimizing the Schwefel 
function with D = 30 . The absolute forcing frequencies per dimension over the intervals 
Ii = [0… 50, 000 ⋅ i] and the function values f(G) of the current global attractors G at the 
end of each interval are depicted. One can see that the absolute forcing frequency (the 
difference of two successive values of �(Ii, d) ) is relatively small if f(G) is far away from 
the (unique) optimum value and increases considerably when f(G) approaches the opti-
mum. Additionally, one can see that the gradient of the absolute forcing frequency, i.e., 
the relative forcing frequency, tends to be constant for all i ≥ i0 after some value i0 . This 
is a showcase and remains true for most of the other tested benchmark functions.

Rosenbrock During the arbitrary precision tests on the standard benchmark func-
tions, processing the Rosenbrock function showed a slightly different behavior. Meta-
phorically speaking, there is a small “banana-shaped” valley in this function that leads 

Fig. 1   Optimizing the Schwefel function: development of the absolute forcing frequencies �(I
i
, d) , 

d ∈ {1,… , 30} , over the intervals I
i
= [0… 50,000 ⋅i] (bundle of lines marked by triangles) compared to 

the development of the function value f(G) of the global best position G after 50,000⋅i iterations (single red 
line marked by circles). N = 3 particles and � = 10−7 were used
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from a local optimum to the global optimum. If the attractors are in this valley (which 
they are quite early), the chance to improve in some dimensions is quite small and 
improvements can easily be voided by setbacks in other dimensions. If this happens, 
forced velocity updates will be applied in some dimensions while in the other dimen-
sions the particles use the usual, regular velocity updates, which can be seen clearly 
in Fig. 2. The chance to get moving into the optimum’s direction again is not zero, but 
quite small which leads to a long phase of near-stagnation as can be seen in Fig.  2. 
Eventually the swarm will re-start moving again, but it may take a long time to do so.

Ackley Another phenomenon may occur on functions like Ackley, where there are 
many local optima. Here, it might happen that the global attractor G is already close 
to a (good) local optimum, but the local attractor Ln of some particle n is close to a 
slightly worse local optimum. In such a situation, the potential is governed by the dis-
tance between G and Ln , and the condition for executing a forced velocity update is not 
satisfied, even though a good local near-optimum value f(G) has already been found. 
But our experiments showed that this happens with only a small probability. However, 
with increased swarm sizes this behavior becomes more likely.

4.2 � Experiments on the Sphere Function, Phases, And Theoretical Analysis

We now analyze the swarm’s final behavior with the help of experiments on Sphere (the 
results for H. C. Elliptic are similar). These experiments show that the final behavior can 
be classified into two main phases: the approaching phase and the pulsation phase that in 

Fig. 2   Optimizing the Rosenbrock function: development of the absolute forcing frequencies �(I
i
, d) , 

d ∈ {1,… , 30} , over the intervals I
i
= [0… 50,000 ⋅i] compared to the development of the function value 

f(G) of the global best position G after 50,000 ⋅i iterations (single red line marked by circles). N = 3 par-
ticles and � = 10−7 were used. Noticeable is the constant behavior of �(I

i
, d) with f(G) far away from the 

optimal value of 0, and the separation into forcing dimensions and non-forcing dimensions
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turn has three distinct sub-phases: forced phase, lockout phase, recovery phase. These find-
ings hold for all objective functions, as the swarm is in this final phase similar to a blind 
searching cloud with no or at least very close to zero updates of the attractors.

So, when the global attractor reaches the �-neighborhood of a local optimum, the 
number of global attractor updates decreases and the distance the global attractor moves 
becomes small. At that time, the whole swarm will start to approach the global attractor. At 
some point during this approaching phase, the local attractors will be close to the global 
attractor and the swarm will lose much of its potential. As described by Schmitt and Wanka 
(2015), the introduction of forced velocity updates in the movement equations of the PSO 
algorithm leads to the situation that the actual positions of the particles cannot approach 
each other closer than a value of about � and the swarm enters a kind of pulsation phase: 
periodically contracting and expanding around the global attractor. However, the global 
attractor still converges (in the mathematical “infinite time” sense) to the local optimum. 
Also, the positions of the local attractors may further contract.

It can be observed that when the attractors are all almost at the same position and the 
particles converge to this position, the number of dimensions that are forced begins to 
increase. During the pulsation phase, almost all particles are forced and the relative forcing 
frequency �(I, d)∕|I| begins to stagnate at a certain value ��d (the gradient in the figures). 
Hence, also �(I)∕|I| begins to stagnate at �� . When this stagnation is reached, the f-PSO 
will become a periodic pulsating process and will behave almost like a blind search in a 
box with a side-length in the order of magnitude of � around the global attractor. Hence, 
the objective function f will become irrelevant and the value �� is independent of f.

4.2.1 � Experimental identification of parameters influencing @�

In order to identify the parameters that influence �� , a series of experiments were per-
formed with the Sphere function using a finite precision PSO algorithm. To study a pure 
pulsation phase, the global and local attractors were initially all set to � , which is the global 
optimum of this function. With the swarm parameters � , c1 and c2 being fixed, the two cru-
cial remaining parameters that might influence �� are

–	 the number D of dimensions and
–	 the number N of particles,

whereas the choice of � has no influence at all. By changing � the range of �d causing a 
forced step is influenced for a dimension d ∈ D  . However, the random velocity assigned 
by the forced step in this dimension d is influenced in the same magnitude. Therefore the 
change of � has no influence on the absolute forcing frequency as these two effects cancel 
each other.

Figures 3 and 4 show the effect of changes in the dimension number D and swarm size 
N, resp., on the stagnation value �� for fixed |I|. The actual size of the fixed interval |I| has 
no real influence on the absolute forcing frequency, disregarding the higher standard devia-
tions with a lower intervals lengths as shown in Fig. 5.

The use of a forced move in a given dimension depends only on the velocities and posi-
tions of all particles relative to the global attractor G in this dimension. The dimensions 
are independent of each other; therefore, the stagnation value (recall that |I| is fixed) for 
each number D of dimensions does not change with an increased number of dimensions as 
shown in Fig. 3. The same is not true for varying the number of particles, see Fig. 4. If the 
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length |I| of the interval and the number D of dimensions are fixed, increasing the number 
of particles increases the number of applications of the movement equations by |I| ⋅ D for 
each new particle. Therefore, more dimensions can be forced in a given interval, but there 
are also more particles that must have a partial potential � less than �.

4.2.2 � Mathematical analysis of the sub‑phases for arbitrary objective functions

We can identify three sub-phases during the pulsation phase which are repeated in a fixed 
order for a given dimension: 

	 (i)	 Starting with a forced phase, where each particle has its move in this dimension 
forced,

	 (ii)	 followed by a lockout phase with the probability of a forced move being zero and
	 (iii)	 finally a recovery phase in which the particles attempt to converge to the global 

attractor until one move of a particle gets forced again and the cycle repeats itself.

To fully understand why this leads to a smaller forced frequency �(I) per particle, see 
Fig. 4, we have to take a closer look at the three sub-phases of the pulsation phase. As 
described in Definition  3, a dimension d ∈ D  is forced during the move of a particle 
when all particles n′ including the particle itself have contribution �n′

d
 less than � in this 

dimension d. For i ∈ ℕ , n ∈ S  , and d ∈ D  let Fi,n,d be the {0, 1}-indicator variable being 
1 iff in iteration i and dimension d particle n has the velocity update forced. The global 
and the local attractors are constant, and in particular, it can be assumed that Gi

d
= G for 

fixed G. We get the following observations regarding a forced move in a given dimension.

Fig. 3   Optimizing the Sphere function: Absolute forcing frequency �(I) over intervals I of length 
|I| = 50, 000 relative to the number D of dimensions at the global optimum with N = 5 particles and 
� = 10−7 , varying the number D of dimensions. Shown are the average value and standard deviation of 100 
trials taking the average values of 10 intervals per trial
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The first phase we analyze is the lockout phase. Recall that �n,i

d
= |Vn,i

d
| + |G − X

n,i

d
| is 

the contribution of particle n to the potential of S  in dimension d and iteration i.

Lemma 1  If �n,i+1

d
≥ � for particle n, then ∀n� ∈ S, n� > n ∶ Fi,n�,d = 0 and 

∀n� ∈ S, n� ≤ n ∶ Fi+1,n�,d = 0.

Proof  With the attractors being constant, the only way for particle n to have contribution 
�n
d
 less than � is to make a swarm move that reduces the sum of the velocity and the dis-

tance to the global attractor to less than � . The earliest time this is possible is in the next 
iteration. 	�  ◻

By Lemma 1, we get the length of the lockout phase as N, the number of particles.
For the forced phase, we have to look at the probability that for a particle n with a 

forced move in dimension d, 𝜙n
d
< 𝛿 still applies in the next iteration.

Lemma 2  Let n ∈ S, d ∈ D  . Then for n < N ∶ P[Fi,n+1,d = 1 | Fi,n,d = 1] =
1

2
 and 

P[Fi+1,1,d = 1 | Fi,N,d = 1] =
1

2

Proof  As each dimension is independent and the same calculations are performed in each 
dimension, we may restrict our analysis to one dimension d and omit the index d in the fol-
lowing proofs.

Fig. 4   Optimizing the Sphere function: Absolute forcing frequency �(I) over intervals I of length |I|=50,000 
relative to the number N of particles at the global optimum with D = 15 dimensions and � = 10−7 , varying 
the number of particles. Shown are the average value and (the very small, almost invisible) standard devia-
tion of 100 trials taking the average values of 10 intervals per trial
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W.  l.  o.  g., let n = 1 . Let � = G − X1,i the (signed) distance of particle 1 to the fixed 
global attractor. Hence, �1,i = |V1,i| + |�|.

	�  ◻

With this probability, we can now analyze the length of the forced phase.

Lemma 3  Given Fi,n,d = 1 , define Y as the number of consecutive particle steps, during 
which dimension d of the respective particle is forced, starting with particle n at iteration i. 
Then for k ≥ 1 it holds that P[Y = k] =

1

2k−1
.

Proof  Again, we omit the dimension d from the variables.
By Lemma 1, we know that if for one particle |Vn,i+1| + |G − Xn,i+1| ≥ � holds, the next 

particle cannot be forced and with Lemma 2, P[Fi,n+1 = 1|Fi,n = 1] =
1

2
 . By assumption, 

P[Fi,n = 1] = 1 . By induction on k, we have:

P
[
Fi,2 = 1 | Fi,1 = 1

]
= P

[
𝜙1,i−1 < 𝛿 | Fi,1 = 1

]

= P
[
𝜙1,i+1 < 𝛿 | 𝛥 ≥ 0 ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≥ 0 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | 𝛥 < 0 ∧ Fi,1 = 1

]
⋅ P

[
𝛥 < 0 | Fi,1 = 1

]

= P
[
𝜙1,i+1 < 𝛿 | (V1,i+1 ≥ 𝛥 ≥ 0) ∧ Fi,1 = 1

]
⋅ P

[
V1,i+1 ≥ 𝛥 ≥ 0 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | (𝛥 ≥ V1,i+1 ≥ 0) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≥ V1,i+1 ≥ 0 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | (𝛥 ≥ 0 ≥ V1,i+1) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≥ 0 ≥ V1,i+1 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | (𝛥 ≤ V1,i+1 < 0) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≤ V1,i+1 < 0 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | (V1,i+1 ≤ 𝛥 < 0) ∧ Fi,1 = 1

]
⋅ P

[
V1,i+1 ≤ 𝛥 < 0 | Fi,1 = 1

]

+ P
[
𝜙1,i+1 < 𝛿 | (𝛥 ≤ 0 ≤ V1,i+1) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≤ 0 ≤ V1,i+1 | Fi,1 = 1

]

= P
[
2 ⋅ V1,i+1 − 𝛥 < 𝛿 | (V1,i+1 ≥ 𝛥 ≥ 0) ∧ Fi,1 = 1

]
⋅ P

[
V1,i+1 ≥ 𝛥 ≥ 0 | Fi,1 = 1

]

+ P
[
𝛥 < 𝛿 | (𝛥 ≥ V1,i+1 ≥ 0) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≥ V1,i+1 ≥ 0 | Fi,1 = 1

]

+ P
[
−𝛥 < 𝛿 | (𝛥 ≤ V1,i+1 < 0) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≤ V1,i+1 < 0 | Fi,1 = 1

]

+ P
[
𝛥 − 2 ⋅ V1,i+1 < 𝛿 | (V1,i+1 ≤ 𝛥 < 0) ∧ Fi,1 = 1

]
⋅ P

[
V1,i+1 ≤ 𝛥 < 0 | Fi,1 = 1

]

+ P
[
𝛥 − 2 ⋅ V1,i+1 < 𝛿 | (𝛥 ≥ 0 ≥ V1,i+1) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≥ 0 ≥ V1,i+1 | Fi,1 = 1

]

+ P
[
2 ⋅ V1,i+1 − 𝛥 < 𝛿 | (𝛥 ≤ 0 ≤ V1,i+1) ∧ Fi,1 = 1

]
⋅ P

[
𝛥 ≤ 0 ≤ V1,i+1 | Fi,1 = 1

]

=
1

2
⋅

(
1

2
⋅
𝛿 − |𝛥|
2 ⋅ 𝛿

+ 1 ⋅
|𝛥|
2 ⋅ 𝛿

+ 1 ⋅
|𝛥|
2 ⋅ 𝛿

+
1

2
⋅
𝛿 − |𝛥|
2 ⋅ 𝛿

+
𝛿 − |𝛥|
2 ⋅ 𝛿

⋅
1

2
+

𝛿 − |𝛥|
2 ⋅ 𝛿

⋅
1

2

)

=
1

2
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	�  ◻

Finally for the recovery phase, we cannot give an exact length, as it depends on the posi-
tions of the particles in the search space. The following Lemma 4 and Fig. 6, however, give 
us at least an idea of the behavior of the particle during this phase.

P[Y = 2] =P

�
2−1�

v=0

Fi+⌊ n+v

N
⌋,n+v mod N = 1

�

=P
�
F
i+⌊ n+1

N
⌋,n+1 mod N

= 1 � Fi,n = 1
�
⋅ P

�
Fi,n = 1

�

=P
�
F
i+⌊ n+1

N
⌋,n+1 mod N

= 1 � Fi,n = 1
�
=

1

2
=

1

22−1

P[Y = k] =P

�
k−1�

v=0

Fi+⌊ n+v

N
⌋,n+v mod N = 1

�

=P

�
F
i+⌊ n+(k−1)

N
⌋,n+(k−1) mod N

= 1
���

k−2�

v=0

Fi+⌊ n+v

N
⌋,n+v mod N = 1

�

⋅ P

�
k−2�

v=0

Fi+⌊ n+v

N
⌋,n+v mod N = 1

�

=
1

2
⋅

1

2k−2
=

1

2k−1

Fig. 5   Absolute forcing frequency �(I) over intervals I relative to the length |I| at the global optimum of 
the Sphere function with D = 15 dimensions and � = 10−7 and N = 5 particles varying the length |I| of the 
measured intervals. Shown are the average value and standard deviation of 100 trials taking the average 
values of 10 intervals per trial



298	 Swarm Intelligence (2020) 14:285–311

1 3

Lemma 4  The probability for a particle n to get a partial potential �n
d
 greater than � when 

not forced for the first time after a chain of forced moves is

Proof  By assumption, Ln = G . Again, d is omitted from the variables and let � be the sum 
of the weighted random variables; hence, � = (c1 ⋅ r + c2 ⋅ s).

Applying the PSO movement equations leads to

Hence,

P
[
�n,i+1 ≥ � | Fi,n,d = 0 ∧ Fi−1,n,d = 1

]
≥

1

2
⋅

(
1 −

1

2�

)
.

�n,i+1 = |Vn,i+1| + |G − Xn,i+1| = |Vn,i+1| + |

=∶�
⏞⏞⏞

G − Xn,i − Vn,i+1|
= |� ⋅ Vn,i + � ⋅ �| + |� − � ⋅ Vn,i − � ⋅ �|
= |� ⋅ Vn,i + � ⋅ �| + | − � ⋅ Vn,i − (� − 1) ⋅ �|
= |� ⋅ Vn,i + � ⋅ �| + |� ⋅ Vn,i + (� − 1) ⋅ �|
≥ |� ⋅ Vn,i + � ⋅ � + � ⋅ Vn,i + (� − 1) ⋅ �|
= |2 ⋅ � ⋅ Vn,i + (2 ⋅ � − 1) ⋅ �|

Fig. 6   Frequency of the distance to the global attractor of one particle in one dimension each iteration for 
5,000,000 iterations in a run with 5 particles and 15 dimensions and � = 10−7 initialized at the global opti-
mum. The dashed lines indicate the interval of [−�, �] with 94.4354% of the measurements in the indicated 
interval
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Under the assumption that Fi−1,n = 1 , we have Vn,i ∼ U(−�, �) and |Vn,i| ∼ U(0, �) ( U  
denotes the continuous uniform distribution). Therefore, we get � ≥ 1 −

1

2�
 and can derive 

� =
1

2
 by the following equations.

	�  ◻

Note that the lower bound on the probability in Lemma 4 is negative for 𝜒 < 1

2
 . The 

actual probability depends on the position in the search space. With 𝜒 > 1

2
 , the probabil-

ity for a particle n to get partial potential 𝜙n > 𝛿 is positive independent of the position 
of the particle. Therefore, the length of the recovery phase will decrease drastically with 
smaller � values.

We may conclude that for a given dimension we get the following behavior in the 
pulsation phase.

Theorem 1  Let S  be a swarm of particles at a (local) optimum of an arbitrary function 
f, i.e., ∀n ∈ S ∶ Ln = G = Opt(f ) with Opt(f ) being a (local) optimum of the function f. 
The swarm repeats three phases independently for each dimension:

–	 the forced phase of length k ≥ 1 with probability 1

2k−1
,

–	 the lockout phase of length N,
–	 and the recovery phase of length � ≥ 0

P
[
𝜙n,i+1 ≥ 𝛿 | Fi,n = 0 ∧ Fi−1,n = 1

]

≥ P
[
|2𝜒 ⋅ Vn,i + (2 ⋅ 𝜌 − 1) ⋅ 𝛥| ≥ 𝛿 | Fi−1,n = 1

]

= P

[
|2𝜒 ⋅ Vn,i + (2 ⋅ 𝜌 − 1) ⋅ 𝛥| ≥ 𝛿

|||
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0

∧ Fi−1,n = 1

]

⋅ P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0 | Fi−1,n = 1
]

+ P

[
|2𝜒 ⋅ Vn,i + (2 ⋅ 𝜌 − 1) ⋅ 𝛥| ≥ 𝛿

|||
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ (G − xn,i) < 0

∧ Fi−1,n = 1

]

⋅ P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 < 0 | Fi−1,n = 1
]

≥ P
[
|2𝜒 ⋅ Vn,i| ≥ 𝛿 | Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0 ∧ Fi−1,n = 1
]

⋅ P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0 | Fi−1,n = 1
]

≥ P
[
2𝜒 ⋅ |Vn,i| ≥ 𝛿 | Fi−1,n = 1

]

�������������������������������������������
=∶𝛼

⋅P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0
]

�������������������������������������
=∶𝛽

≥

(
1 −

1

2𝜒

)
⋅
1

2

P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0
]

= P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0 | Vn,i ≥ 0
]
⋅ P

[
Vn,i ≥ 0

]

+ P
[
Vn,i

⋅ (2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0 | Vn,i < 0
]
⋅ P

[
Vn,i < 0

]

=
1

2
⋅ (P[(2 ⋅ 𝜌 − 1) ⋅ 𝛥 ≥ 0] + P[(2 ⋅ 𝜌 − 1) ⋅ 𝛥 < 0])

=
1

2
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leading to a stagnation of �(I)∕|I| → �� at a (local) optimum depending on N and D.
Starting at one forced particle, the chance for the next k particles to be forced has prob-

ability 2−k+1 as stated in Lemma 3 which is independent of the number of particles. At 
some particle u, this sequence of forced particles ends, and in this moment the forced phase 
ends. With Lemma 1, at least the following N particles will not be forced which constitutes 
the lockout phase. The next particle that can be forced is (u + 1) mod N = v , and for that 
all particles n that move between u and v need to keep partial potential 𝜙n

d
< 𝛿 . All these 

particles use the regular swarm movement equations from Definition 3, and, with G being 
constant, they are independent of each other. As shown in Lemma 4, the chance for a par-
ticle n to get partial potential 𝜙n

d
> 𝛿 can be quite probable depending on the actual swarm 

parameters. Hence, with increasing N the chance for a particle n to get partial potential 
𝜙n
d
> 𝛿 increases exponentially in the order of the probability of the complementary event. 

The exact probability for this event depends on the position of the particle relative to the 
global attractor. The same is true for the number of iterations a particle needs to fix its 
partial potential �n

d
 , but with normal swarm behavior the particle starts to converge to the 

global attractor and therefore decreases its partial potential. Figure 6 shows the distance 
of the particles to the global attractor at the global optimum. We can see that the parti-
cles tend to converge to the attractor with high probability thus ending the recovery phase. 
Therefore, the particles once again start to get forced and the same pattern repeats itself.

Influence of parameter selection To get a more diverse understanding of the influ-
ence of the parameter selection on the forcing frequency, we performed a series 
of experiments on the Rosenbrock function with different swarm parameters and 
the swarm initialized once at and once near the global optimum. We tested the 
parameters � = 0.1, c1 = c2 = 0.1 , � = 0.1, c1 = c2 = 2.1 , � = 0.6, c1 = c2 = 1.7 , 
� = 0.7, c1 = c2 = 0.3 , � = 0.9, c1 = c2 = 0.1 and � = 0.9, c1 = c2 = 3 taken from Trelea 
(2003) and � = 0.72984, c1 = 2.04, c2 = 0.94 taken from Carlisle and Dozier (2001). For 
all parameters except � = 0.9, c1 = c2 = 3 and � = 0.1, c1 = c2 = 2.1 we could observe 
the same behavior as with the parameters used in the rest of this work. For parameters 
like � = 0.9, c1 = c2 = 3 that lead to a diverging swarm as expected no forcing is done, as 
the swarm increases its distance from the global attractor. An interesting behavior can be 
observed for the parameters � = 0.1, c1 = c2 = 2.1 . For these parameters, we get a larger 
forcing frequency when initialized only near the global optimum than the forcing frequency 
at an optimum, resulting from updates of the global attractor. With these parameters, it is 
unlikely for particles to increase their distance to the global attractor and far more likely to 
further reduce it. This behavior can be verified by the convergence of the swarm using the 
classical movement equations with these swarm parameters on the inclined plane function. 
After a particle starts the lockout phase, the other particles might move the global attractor 
in the direction of this particle which can cause the lockout phase to be stopped prema-
turely. However, the positions before and after the improvement of the global attractor need 
to be closer than � , as otherwise other particles could have their partial potential increased 
above � . We therefore get a running phase that is only driven by the forced moves and 
with updates in the range of delta. As a representative for negative � , we tested the param-
eter set � = −0.7, c1 = c2 = 0.5 taken from Trelea (2003). At the optimum, we can see a 
similar behavior to parameter sets with positive � values, as the forced and lockout phases 
are independent of the swarm parameters. However, in the approaching phase we could 
observe an increased number of forced steps due to the decreasing factor of the old veloc-
ity and therefore smaller overall velocities. We have not tested negative values for c1 or c2 . 
If either c1 or c2 are negative, a particle instead of moving towards the respective attractor 
will move directly away from it. If c1 is negative, L is not an attractor in the classical sense, 
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but as long as c2 is positive, G is still an attractor. Analogously, if c2 is negative, G is not 
an attractor, whereas L is an attractor, as long as c1 is positive. For such parameter sets, it is 
questionable if convergence appears at all.

We can therefore conclude that for parameters that are considered good for PSO, i.e., 
the algorithm shows reasonable convergence behavior (even if c1 or c2 are negative), we can 
expect the same behavior of f-PSO in respect to forced steps.

5 � Termination criteria

In Sect. 4 above, we discussed the behavior of the particle swarm when the global and local 
attractors are directly at a local optimum. In Schmitt and Wanka (2015), it is shown that 
with f-PSO the global attractor converges (in the infinite-time sense) to an (at least local) 
optimum almost surely. However, this convergence can be very slow. Therefore, the parti-
cle swarm should be stopped at some time and either be re-started with, when indicated, 
different parameter settings, or, if the current global attractor does not satisfy the desired 
quality, to use a different algorithm. As the swarm does not know when it is close to a local 
optimum and due to the forced steps, the swarm will just converge up to a �-neighborhood 
of the global attractor. When the distance of a particle to the global attractor is smaller than 
� and the velocity is small then a forced move is performed, which sets the velocity of the 
particle to a value of up to � . The particles therefore stay in a range of around � around the 
global attractor, see Fig. 6. The global attractor in turn approaches a (local) optimum.

With our observations from Sect. 4, this means that the forcing frequency will exceed a 
fixed value which can be measured. In the following, we will define a new stopping crite-
rion that stops the algorithm when the f-PSO algorithm reaches this frequency. Note that 
reaching this forcing frequency is just an indication that the swarm is close to an optimum. 
We cannot provide bounds on the probability for a swarm to be classified as stagnating 
while improvements are still possible. However, our experiments in Sect. 5.2 on a selection 
of the standard benchmark sets show that the stopping criteria is rarely triggered when no 
stagnation is present.

In case of plateaus, however, the swarm will keep moving inside the plateau and there-
fore does not converge to a single point. One would not expect that convergence is detected 
in this situation. Indeed, the stagnation frequency can only be attained if � is larger than the 
size of this plateau.

Note that in an idealized setting with arbitrary precision the choice of � has no influence 
on the stagnation frequency (see Sect. 4.2.1). However, calculations with actual machine 
numbers like, e.g., long double variables in C++, have only limited precision. Due 
to this imprecision, artificial plateaus can be created during the function evaluations, e.g., 
there might be an interval U ⊂ ℝ with positive length such that for all x, y ∈ U with x ≠ y , 
f (x) ≠ f (y) , but f (x) ≈ f (y) . In such a case, x and y might yield the same objective function 
value due to the limited precision.

Choosing � too small in the order of the size of such plateaus produces a low forcing 
frequency. Therefore, our termination criterion may not be fulfilled. In our test � = 10−7 
turned out to be a sufficient value to prevent such issues. This issue can be avoided by 
using a high precision PSO platform like HiPPSO [Raß (2020)].
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5.1 � Full stagnation criterion

By Theorem 1, we know that the absolute and the relative forcing frequency become fixed 
if the swarm would be at a (local) optimum, independent of the objective function. So one 
can use an arbitrary known function with known optimum to experimentally determine this 
frequency by starting the swarm in the optimum, as we did in Sect. 4.2 for Sphere.

We will use this observation to describe the first simple termination criterion: we just 
stop the swarm when the measured absolute forcing frequency begins to stagnate and is 
close to the fixed forcing frequency around a (local) optimum. In the mathematical analy-
sis of the behavior at an optimum in Sect. 4.2.2, we required the local and global attrac-
tors to be at the same point. This however does not happen with arbitrary precision and 
is quite unlikely otherwise. We can only expect the attractors to be close to an optimum 
and consequently also close to each other. Therefore, the measured forcing frequency can 
achieve values that are close to the forcing frequency at an optimum but do not necessarily 
match them. To compensate for this deviation, we introduce the new parameter � as a toler-
ance. If better solutions would be required, one could reduce � as this reduces the allowed 
tolerance. As a guideline, one can use a small percentage of the forcing frequency at an 
optimum.

Definition 5  Let �stag(N,D,�) be the objective function-independent, fixed absolute 
forcing frequency around an optimum when intervals are considered with interval length 
� , and let � ∈ ℕ . The criterion “ (� ,�)-full stop” is to terminate the f-PSO execution iff 
�stag(N,D,�) − �(I) ≤ � for some interval I with |I| = � .

We tested (� ,�)-full stop in Line  17 of Algorithm  1, i.e., f-PSO, on our benchmark 
functions with N = 5 particles, D = 15 dimensions, � = 10−7 and interval length �=50,000. 
The standard swarm parameters were used.

The stagnation frequency �stag (5,15,50,000) = 318,350 was measured on the Sphere 
function with all particles initialized at the global optimum. We used � = 1350 , so we ter-
minated the execution when �(I) ≥ 317,000 for intervals I of length �=50,000.

We compared the solutions obtained with f-PSO that used (� ,�)-full stop with the 
results obtained by f-PSO that run for 15,000,000 iterations. Table  1 shows the median 
(not the average) and standard deviation on 500 runs of the norm of the gradient of the 
objective function at the global attractor with and without the use of criterion (� ,�)-full 
stop. Note that the measurements are done in the same run for both values, e.g., the swarm 
was not stopped after the termination was signaled by (� ,�)-full stop only the value of the 
gradient was recorded. In our test, we want to measure the quality of the returned solution 
in respect to the convergence to a (local) optimum. In the literature, the fitness value of the 
returned solution is used. However, when testing multi-modal functions we cannot expect 
the swarm to converge to the same optimum in every run and therefore the fitness value 
cannot represent a measure for the convergence to a local optimum. To account for multi-
modal functions, we use the norm of the gradient at the global attractor, i.e., the 2-norm 
of the partial derivative vector which can be calculated for all used benchmark functions, 
as a measure for the convergence. For continuous one-dimensional functions, the deriva-
tive is zero for local minima/maxima. The same holds for more dimensions. The less the 
norm of the gradient, the better the global attractor. A small value in this measure indicates 
that the improvements in the region around the global attractor will be small, as we can 
only guarantee a convergence to a local optimum, with no indication on the function value. 
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However, we are only interested if the particle swarm is near a local optimum. Further-
more, as the potential of the swarm is at around � we do not expect the swarm to switch to 
another local optimum as this is quite unlikely. Therefore, the gradient provides us with a 
sufficient measure in regards to the convergence.

On simple benchmark functions like Sphere criterion (� ,�)-full stop produces suffi-
ciently good output. We see that the time of termination is significantly earlier than with 
pre-specified number of iterations and that the difference in the gradient at termination is in 
almost all cases in the same order of magnitude.

5.2 � Partial stagnation criterion

On more complex functions like Rosenbrock and Ackley, we can identify two scenarios 
that interfere with the full stop termination criterion.

The first scenario can be observed on the Rosenbrock function. It may occur that some 
dimensions are already highly optimized, i.e., close to an optimal coordinate, while oth-
ers are still far away from optimum coordinates, a situation which leads to late termina-
tion. With Rosenbrock when the particles and the attractors are in the valley between the 
local and the global attractor, the chance to improve on the not yet optimized dimensions 
is voided by the worsening in the already good dimensions. Therefore, the swarm will not 
change the local (and, thus, the global) attractors and the attractors are far away from each 
other. In this case, the optimized dimensions reached the average stagnation frequency 
�stag(N,D,�)∕D , but the other dimensions will not get forced much or not at all as shown 
in Fig. 2.

The second scenario becomes visible on the Ackley function. This function has many 
local optima with a global optimum at � . Unlike Rosenbrock, there is not much difference 
in the behavior of the particles in the different dimensions. Here, the problem originates 
from many local optima with only a small difference in function values. This can lead to 
the global attractor being in a better local optimum than some of the local attractors. Given 
this situation, the particles have a very small probability to actually improve their local 

Table 1   Experimental results for (� ,�)-full stop 

iterterm denotes the number of iterations (measured every � th iteration) until (� ,�)-full stop terminates the 
execution of f-PSO (median and with ± the standard deviation are shown). G

t
 denotes the global attractor 

after t iterations. The final two columns present the median and (with ±) the standard deviation of the gradi-
ent at the global attractor over 500 runs of the f-PSO with and without (� ,�)-full stop. In the tests, N = 5 , 
D = 15 , � = 50,000, �stag(N,D,�) = 318,350, � = 1350 , and � = 10−7 were used. The less the gradient, the 
better G

t

Function f iterterm ||∇f (Giterterm
)|| ||∇f (G15,000,000)||

Sphere 100,000 ± 0 6.65 × 10−8 ± 6.93 × 10−9 3.60 × 10−8 ± 3.83 × 10−9

H. C. Elliptic 300,000 ± 154,324 2.22 × 10−5 ± 1.93 × 10−5 1.17 × 10−5 ± 1.09 × 10−5

Schwefel 150,000 ± 110,707 1.94 × 10−7 ± 1.20 × 10−7 1.07 × 10−7 ± 5.96 × 10−8

Rastrigin 100,000 ± 5000 1.34 × 10−5 ± 1.61 × 10−6 7.82 × 10−6 ± 1.15 × 10−6

Rosenbrock 850,000 ± 490,538 3.09 × 10−5 ± 6.45 × 10−6 2.04 × 10−5 ± 3.80 × 10−6

Griewank 200,000 ± 2,234,323 9.19 × 10−9 ± 2.03 × 10−9 8.41 × 10−9 ± 1.83 × 10−9

Ackley 200,000 ± 3,600,092 2.37 × 10−7 ± 3.57 × 10−2 1.34 × 10−7 ± 3.57 × 10−2
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attractor. At this point, the algorithm should terminate, but given the different positions of 
the global and the local attractors these particles cannot decrease their velocity below the 
necessary bounds to reach the probability of a forced step at the stagnation frequency. The 
current � will stay around some value, which is different from the stagnation frequency 
of each dimension and with a fluctuation larger than the fluctuation at the stagnation fre-
quency. This phenomenon accounts for the large standard deviation, when optimizing the 
Ackley function.

To account for such situations, we formulate an extended termination criterion.

Definition 6  Let �stag(N,D,�) be as defined in Definition 5, and let � ∈ [1,D] . The crite-
rion “ (�, � ,�)-partial stop” is to terminate the f-PSO execution iff for some interval I with 

|I| = � holds �(I) ≥ � ⋅

�stag(N,D,�) − �

D

Definition 6 introduces the additional parameter � . It can be interpreted as how many 
dimensions are required to reach their stagnation frequency such that f-PSO is stopped. 
Actually, if � = D , we have (� ,�)-full stop. By this parameter, the user can choose the 
degree of convergence necessary before terminating. On complex objective functions that 
take a long time to evaluate, a small � may be favorable leading to earlier termination and, 
hence, saving a lot of running time for applying further subsequent optimization methods 
to further improve the solution quality. On simple, easily to be evaluated functions such as 
Sphere, one may choose � = D , which results in (� ,�)-full stop, as already mentioned. 
With (�, � ,�)-partial stop, both interfering scenarios are accounted for. There is no dif-
ferentiation between dimensions, so it makes no difference that like in the first scenario 
some dimensions d are forced such that they have reached (or are close to) their stagna-
tion value ��d , while in other dimensions still almost no forcing takes place. Similarly, it 
might happen, like in the second scenario, that in all dimensions the frequency is less than 
the stagnation value, but the overall sum has reached the stagnation value up to a value of 
�

D
 . We executed a first series of experiments similar to the case with the criterion (� ,�)-

full stop. Again, N = 5 particles, D = 15 dimensions, � = 10−7 , interval length � =50,000, 
�stag(N,D,�) = 318,350 and � = 1350 . We tested (�, � ,�)-partial stop with � = 2 and 
� = 8 , and for the fixed iteration limit, we used 15,000,000 iterations. We repeated the 
experiments 500 times.

Tables 2 and 3 show the results of the experiments. We can see that the median of the 
gradient of the terminated PSO is in the same order of magnitude as the gradient of the 
PSO after 15, 000, 000 iterations with almost the same standard deviation. We can con-
clude that our termination criterion can stop the PSO reliable when almost no improve-
ment is to be expected. This is further emphasized by the geometric mean being in the 
same order of magnitude as shown in Table 3. Given only small deviations of the gradient 
between the different values of � as shown in Table 2 we conclude that in most cases a 
small value of � is sufficient without a significant loss in the quality of the returned solu-
tion. However, the Rosenbrock measurement suggests that on complex objective functions, 
a small value of � might lead to too early termination.

If there are many particles and/or a small number of dimensions, the neighborhood of 
a local optimum can be reached way sooner. Therefore, the question comes up whether 
the interval length can be reduced without losing the quality of (�, � ,�)-partial stop. We 
repeated our experiments for an interval length of � = 5000 . Here, N = 5 particles, D = 15 
dimensions, � = 10−7 and adjusted, �stag(N,D,�) = 31,835, and � = 135 were applied. The 
results are presented in Tables 4 and 5.
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As presumed for the simple functions, f-PSO with (�, � ,�)-partial stop terminates 
significantly earlier with only a small decline in the quality of the returned solution. For 
Rosenbrock, the difference in the quality of the returned solution with different choices 
of the parameter � becomes more distinct. Furthermore, it should be noted that as shown 
in Fig. 5 the standard deviation increases drastically with shorter intervals. In practice, a 
small tolerance is used when testing if the stagnation value is reached. Given this standard 
deviation on small intervals, a tolerance that compensates this standard deviation can lead 
to a too early termination when the stagnation value is not reached and the swarm would 
recover from the stagnation. This leads to a trade-off between interval length and the risk 
of a termination when the swarm has not reached or is close to a local optimum.

We further compared our new stopping criterion against three stopping criteria intro-
duced by Zielinski and Laur (2007).

The three stopping criteria used were:

–	 ImpBest: Termination is signaled if the improvement of the best function value falls 
below a specified bound.

–	 ImpAv: Termination is signaled if the arithmetic mean of the improvements for the 
whole population falls below a specified bound.

–	 MaxDistQuick: Termination is signaled if the maximal distance to the best individual 
falls below a certain bound for the best particles. The particles are sorted and only the 
best particles are considered as specified by a parameter.

We used the parameters as suggested by the authors. We only changed the threshold to 
10−7 , the same range as our � , for a better comparison with our stopping criteria.

Table  6 shows for the three stopping criteria the median and the standard deviation 
of the iterations when the PSO was terminated and the gradient of the global attractor at 
that time over 100 runs. Stopping criterion ImpBest shows the worst results of the three 
tested criteria, while the results for ImpAvg and MaxDistQuick are comparable on simple 
functions like Sphere. However, on more complex functions MaxDistQuck outperformed 
ImpAvg with much less standard deviation.

If we compare the results with the results obtained using our introduced stopping criterion 
and the values after 15, 000, 000 iterations shown in Table 4, we can see that our stopping 
criterion stops the PSO algorithm later than MaxDistQuick; however, we achieve overall better 
results for the median and standard deviation and for nearly all functions our stopping crite-
rion is in the same order of magnitude as the value after 15, 000, 000 iterations. This is not the 
case for the three stopping criteria ImpBest, ImpAv and MaxDistQuick that are on functions 
like Ackley way worse by several orders of magnitude.

We can conclude that our stopping criterion stops the PSO algorithm when the probability 
for an update of the global attractor is low, which is not the case for the tested stopping criteria 
from the literature. Furthermore, our stopping criterion only has to count the number of forced 
steps while more complex calculations are necessary for ImpBest, ImpAv and MaxDistQuick.

If we increase the swarm size, the observations still hold for almost all benchmark 
functions, see Table 7. For a more detailed discussion, see Appendix A. The situation as 
described in Sect. 5.1 for the Ackley function is amplified as more local attractor are pre-
sent with more particles. Consequently, it occurs on the functions Rosenbrock and Ackley. 
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However, we can argue that in this situation the swarm is still exploring the search space, 
indicated by a potential larger than � and might find better solutions therefore the algorithm 
intentionally should not be terminated.

6 � Conclusions

This paper focused on the behavior of the f-PSO algorithm at a (local) optimum. We could 
identify three distinct phases that are repeated when the swarm reaches an optimum, which 
leads to a stagnation of the forcing frequency introduced in this work as a measure for the 
influence of the f-PSO modification. We showed that at an optimum the swarm behaves 
like a blind searching algorithm and that therefore the number of forced steps in a time 

Table 2   Experimental results for (�, � ,�)-partial stop (for notions, see Table 1)

Median and (with ±) the standard deviation over 500 runs of the stopped f-PSO with N = 5 , D = 15 , � 
= 50,000, �stag(N,D,�) = 318,350, � = 1350 , and � = 10−7 , and � = 2 and � = 8 , resp., against an 
“unstopped” f-PSO terminated after 15,000,000 iterations

Function f iter�=2 ||∇f (Giter�=2
)|| iter�=8 ||∇f (Giter�=8

)|| ||∇f (G15,000,000)||

Sphere 50,000
±0

7.24 × 10−8

±7.50 × 10−9
50,000
±0

7.27 × 10−8

±8.17 × 10−9
3.60 × 10−8

±3.83 × 10−9

H. C. Elliptic 50,000
±0

2.52 × 10−5

±2.22 × 10−5
50,000
±0

2.44 × 10−5

±2.24 × 10−5
1.17 × 10−5

±1.09 × 10−5

Schwefel 50,000
±0

2.22 × 10−7

±1.24 × 10−7
50,000
±0

2.14 × 10−7

±1.31 × 10−7
1.07 × 10−7

±5.96 × 10−8

Rastrigin 50,000
±0

1.45 × 10−5

±1.65 × 10−6
50,000
±0

1.46 × 10−5

±1.72 × 10−6
7.82 × 10−6

±1.15 × 10−6

Rosenbrock 100,000
± 730,696

8.54 × 10−5

±3.78 × 10−5
150,000
±469, 614

7.02 × 10−5

±1.80 × 10−5
2.04 × 10−5

±3.80 × 10−6

Griewank 50,000
±0

1.01 × 10−8

±2.43 × 10−9
50, 000
±0

1.03 × 10−8

±2.39 × 10−9
8.41 × 10−9

±1.83 × 10−9

Ackley 150,000
±3, 094, 564

2.69 × 10−7

±3.52 × 10−2
200,000
± 3,469,939

2.51 × 10−7

±1.78 × 10−2
1.34 × 10−7

±3.57 × 10−2

Table 3   Experimental results for (�, � ,�)-partial stop (for notions, see Table 1)

Geometric Mean over 500 runs of the stopped f-PSO with N = 5 , D = 15 , � = 50,000, �stag(N,D,�) = 
318,350, � = 1350 , and � = 10−7 , and � = 2 and � = 8 , resp., against an ‘unstopped” f-PSO terminated 
after 15,000,000 iterations

Function f iter�=2 ||∇f (Giter�=2
)|| iter�=8 ||∇f (Giter�=8

)|| ||∇f (G15,000,000)||

Sphere 50,000 7.15 × 10−8 50,000 7.12 × 10−8 3.54 × 10−8

H. C. Elliptic 50,000 1.95 × 10−5 50,000 1.95 × 10−5 9.41 × 10−6

Schwefel 50,000 1.04 × 10−7 50,000 1.07 × 10−7 1.04 × 10−7

Rastrigin 50,000 1.43 × 10−5 50,000 1.44 × 10−5 7.81 × 10−6

Rosenbrock 153,672 8.80 × 10−5 176,989 6.91 × 10−5 2.03 × 10−5

Griewank 50,000 1.02 × 10−8 50,000 1.04 × 10−8 8.46 × 10−9

Ackley 1,321,300 2.94 × 10−7 1,609,300 2.90 × 10−7 1.64 × 10−7
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interval of specified size, the absolute forcing frequency, is larger than a fitness function 
independent number. Thus, when reaching this frequency it can be presumed that the 
swarm is close to an optimal solution, and it can be stopped. We introduced two new stop-
ping criteria for the f-PSO algorithm and experimentally verified their performance on a 
set of standard benchmark functions. These stopping criteria need the f-PSO modification; 
however, as this modification is quite small it can be applied to most PSO variants in the 
literature.

Table 4   Experimental results for (�, � ,�)-partial stop with reduced interval length (for notions, see 
Table 1)

Median and (with ±) the standard deviation over 500 runs of the stopped f-PSO with N = 5 , D = 15 , 
� = 5000� = 5000� = 5000 , ���

����
(N,D,�)(N,D,�)(N,D,�) = 31,835, � = 1350 , and � = 10−7 , and � = 2 and � = 8 , resp., against an 

“unstopped” f-PSO terminated after 15,000,000 iterations

Function f iter�=2 ||∇f (Giter�=2
)|| iter�=8 ||∇f (Giter�=8

)|| ||∇f (G15,000,000)||

Sphere 5000
±0

1.10 × 10−7

±1.37 × 10−8
10,000
±2200

9.52 × 10−8

±1.22 × 10−8
3.63 × 10−8

±3.73 × 10−9

H. C. Elliptic 5000
±1310

1.11 × 10−4

±1.54 × 10−4
10,000
±0

3.93 × 10−5

±3.73 × 10−5
1.28 × 10−5

±1.00 × 10−5

Schwefel 15,000
±2502

3.87 × 10−7

±2.18 × 10−7
15,000
±1034

3.12 × 10−7

±1.82 × 10−7
1.01 × 10−7

±6.02 × 10−8

Rastrigin 5000
±0

2.12 × 10−5

±2.69 × 10−6
5000
±2449

1.97 × 10−5

±2.64 × 10−6
7.82 × 10−6

±1.13 × 10−6

Rosenbrock 65,000
±442, 699

1.40 × 10−3

±1.04 × 10−3
80,000
± 381,917

1.74 × 10−4

±5.34 × 10−5
2.04 × 10−5

±4.03 × 10−6

Griewank 5000
±0

1.25 × 10−8

±3.41 × 10−9
5000
±2466

1.21 × 10−8

±3.25 × 10−9
8.41 × 10−9

±1.83 × 10−9

Ackley 150,000
± 3,262,633

3.71 × 10−7

±4.20 × 10−2
170,000
± 3,311,552

3.40 × 10−7

±6.36 × 10−2
1.34 × 10−7

±3.57 × 10−2

Table 5   Experimental results for (�, � ,�)-partial stop with reduced interval length (for notions, see 
Table 1)

Geometric Mean over 500 runs of the stopped f-PSO with N = 5 , D = 15 , � = 5000� = 5000� = 5000 , ���
����

(N,D,�)(N,D,�)(N,D,�) = 
31,835, � = 1350 , and � = 10−7 , and � = 2 and � = 8 , resp., against an “unstopped” f-PSO terminated after 
15,000,000 iterations

Function f iter�=2 ||∇f (Giter�=2
)|| iter�=8 ||∇f (Giter�=8

)|| ||∇f (G15,000,000)||

Sphere 5000 1.09 × 10−7 8337 9.41 × 10−8 3.58 × 10−8

H. C. Elliptic 5262 9.68 × 10−5 10,000 3.15 × 10−5 9.62 × 10−6

Schwefel 12,276 3.84 × 10−7 15,150 3.15 × 10−7 1.04 × 10−7

Rastrigin 5000 2.09 × 10−5 6587 1.96 × 10−5 7.75 × 10−6

Rosenbrock 92,560 1.41 × 10−3 111,448 1.80 × 10−4 2.01 × 10−5

Griewank 5000 1.27 × 10−8 6669 1.22 × 10−8 8.46 × 10−9

Ackley 1,326,660 5.92 × 10−7 1,344,320 3.73 × 10−7 1.64 × 10−7
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Table 6   Experimental results of the stopping criteria ImpBest, ImpAv and MaxDistQuick 

Median and (with ±) the standard deviation over 100 runs of the stopped f-PSO with N = 5 , D = 15 and the 
standard swarm parameters

ImpBest ImpAv MaxDistQuick

Function f iter ||∇f (G)|| iter ||∇f (G)|| iter ||∇f (G)||

Sphere 1638
±282

1.30 × 10−2

±5.34 × 10−2
2371
±308

6.36 × 10−7

±3.32 × 10−7
2307
±289

2.90 × 10−6

±2.72 × 10−6

H. C. Elliptic 1385
±955

5.84
±1.99 × 106

2653
±395

1.56 × 10−3

±1.77 × 10−3
3142
±586

6.71 × 10−4

±1.17 × 10−3

Schwefel 2355
±2335

79.79
±1.05 × 103

9210
±1791

5.84 × 10−6

±2.87 × 102
8798
±1168

1.61 × 10−5

±3.02 × 10−5

Rastrigin 423
±581

149.46
±3.69 × 102

2045
±538

1.32 × 10−4

±4.38 × 101
1980
±321

5.85 × 10−4

±1.21 × 10−3

Rosenbrock 3102
±7029

155.63
±9.50 × 109

17, 961
±16, 102

4.55 × 10−1

±4.54 × 104
42,824
±234, 029

3.85 × 10−3

±1.81

Griewank 1067
±322

6.20 × 10−3

±5.56 × 10−2
2102
±304

6.19 × 10−8

±6.38 × 10−3
2060
±319

2.12 × 10−7

±2.62 × 10−7

Ackley 25
±13

1.71
±1.88 × 10−1

62
±27

1.81
±1.79 × 10−1

115,257
± 2,201,190

8.30 × 10−6

±1.87 × 10−1

Table 7   Stopping criterion for an increased number of particles

Function f iter�=8 ||∇f (Giter�=8
)|| ||∇f (G15×106 )|| iter�=8 ||∇f (Giter�=8

)|| ||∇f (G15×106 )||

Sphere 50,000
±0

2.74 × 10−8

±3.32 × 10−9
1.02 × 10−8

±1.21 × 10−9
50,000
±0

4.19 × 10−9

±6.80 × 10−10
7.37 × 10−10

±1.16 × 10−10

H. C. Ellip-
tic

50, 000
±0

8.50 × 10−6

±7.76 × 10−6
2.66 × 10−6

±2.51 × 10−6
50, 000
±0

1.53 × 10−6

±1.14 × 10−6
1.89 × 10−7

±2.03 × 10−7

Schwefel 50,000
±0

1.06 × 10−7

±5.44 × 10−8
3.39 × 10−8

±2.05 × 10−8
50,000
±0

2.04 × 10−8

±1.17 × 10−8
3.07 × 10−9

±2.20 × 10−9

Rastrigin 50,000
±0

5.59 × 10−6

±9.61 × 10−7
2.78 × 10−6

±5.06 × 10−7
50, 000
±0

1.72 × 10−6

±2.81 × 10−7
1.30 × 10−6

±2.06 × 10−7

Rosenbrock 15, 000, 000
± 6,868,757

3.48 × 10−17

±3.21 × 10−6
3.48 × 10−17

±3.21 × 10−6
15,000,000
±5, 658, 620

3.47 × 10−17

±2.96 × 10−7
3.47 × 10−17

±2.96 × 10−7

Griewank 50,000
±0

8.14 × 10−9

±2.21 × 10−9
7.53 × 10−9

±2.20 × 10−9
50, 000
±0

6.96 × 10−9

±2.03 × 10−9
6.68 × 10−9

±2.22 × 10−9

Ackley 1, 150, 000
± 4,745,144

7.68 × 10−8

±6.76 × 10−9
7.53 × 10−8

±7.05 × 10−9
4,850,000
± 6,206,492

7.47 × 10−8

±5.66 × 10−9
7.62 × 10−8

±5.80 × 10−9
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A Increased swarm sizes

At an optimum, i.e., ∀n ∶ Ln = G , increasing the swarm size does not change the funda-
mental behavior of the swarm in the pulsation phase, see Fig. 7.

As the fundamental behavior at an optimum is unchanged, it remains to explore how the 
increased swarm size impacts our stopping criterion. On most benchmark functions, the 
number of iterations after which the algorithm was stopped decreases as the swarm size 
increases. However, on complex multimodal benchmark functions there are runs where our 
stopping criterion did not stop the algorithm in the first 15,000,000 iterations. This issue 
was mostly encountered on the Rosenbrock function. The reason that the stopping crite-
rion was not triggered comes from the issue described in Sect. 5.1 for the Ackley func-
tion. Some local attractors get stuck in a local optimum and the probability for improve-
ments that decrease the distance between the local and global attractors is close to zero. 
The swarm was not able to improve the local attractors after some point, and the distance is 
large enough that no forced moves are performed. The probability for such a situation gets 
higher with an increase in the number of particles. However, as the velocity of the particles 
in such a situation is still at around 10−1 or even higher in some runs, we can argue that the 

Fig. 7   Cumulative number of forced steps at the global optimum of the Sphere benchmark function for dif-
ferent swarm sizes

http://creativecommons.org/licenses/by/4.0/
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swarm is still in the exploration phase, and therefore, the algorithm intentionally should not 
be stopped even though the global attractor is coincidentally at the global optimum.
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