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a b s t r a c t

We consider a self-propelled particle system which has been used to describe certain types of collective
motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by
means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially
decaying Morse potential is a typical choice, and is known to reproduce certain types of collective
motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of
interaction potentials, thatwe call Quasi-Morse, forwhich flock and rotatingmills states are also observed
numerically, however in that case the correspondingmacroscopic equations allow for explicit solutions in
terms of special functions, with coefficients that can be obtained numerically without solving the particle
evolution. We compare the obtained solutions with long-time dynamics of the particle systems and find
a close agreement for several types of flock and mill solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Emerging behaviors in interacting particle systems have received a lot of attention in research in recent years. Topics range fromdiverse
fields of applications such as animal collective behavior, traffic, crowd dynamics and crystallization. Self-organization in the absence of
leaders has been reported in several species which coordinate their movement (swarming), and several models have been proposed for
their explanation [1–6].

Many of thesemodels are based on zones inwhich someof 3 basic effects are included: short-range repulsion, long-range attraction, and
alignment. These 3-zone basic descriptions have been very popular for modeling fish schools [7–11], starlings [12], or ducks [13,14]. The
mainmodeling issues are if some or all of these effects between agents have to be included and if so, how to incorporate them. Many basic
swarming models rely on averaged spatial distance or orientation interactions while recent biological studies point out the importance of
nearest-neighbor interactions [15] or anisotropic communication [16]. Mathematicians have started in recent years to attack one of the
most striking features of these simple looking models: the diversity of swarming states, also called patterns in the biology community,
their emergence and stability.

The individual level description of these phenomena leads to certain particle systems, called Individual BasedModels (IBMs), with some
common aspects. Typically, the attraction–repulsion is modeled through pairwise effective potentials depending on the distance between
individuals. An asymptotic speed for particles is imposed either by working in the constrained set of a sphere in velocity space [17–19]
or by adding a term of balance between self-propulsion and friction which effectively fixes the speed to a limiting value for large times
[20,21]. In this work, we will not include any alignment mechanism. We refer to [22] for a survey on results related to kinetic modeling in
swarming.

In Section 2 we will review some of these IBMs, and discuss the appearance of two main swarming patterns: mills and flocks. These
patterns are easily observed in particle simulations [21,23] and reported in detail for certain particular potentials, the so-called Morse
potentials. We will give a precise definition of flocks and mills as solutions of the kinetic equation associated to the particle systems.
Finding the spatial shape of flocks and mills has been numerically reported in the literature, but obtaining analytical results on them has
only been done in one dimension for the Morse potential in [24].

In this work, we generalize the strategy in [24] proposing a new interaction potential, that we call Quasi-Morse, to replace the Morse
potential. The Quasi-Morse potential coincides with the Morse potential in one dimension and wewill show that, it is a suitable extension
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of the Morse potential in n = 2, 3. Section 3 introduces Quasi-Morse potentials as fundamental solutions of certain linear PDEs. We
will first show that the Quasi-Morse potentials are biologically relevant in essentially the same parameter range as the Morse potentials.
Second, we make use of their particular structure to show in our main theorem that flock and mill solutions can be expressed as almost
explicit linear combinations of special functions.

Finally, Section 4 is devoted to propose an algorithm to compute the scalar coefficients in the expansion of the flock andmill patterns in
terms of the basis functions associated with the Quasi-Morse PDE operators. The strategy uses ideas of constrained optimizationmethods.
We finally compare the results for flocks in 2D and3Dandmills in 2D to particle simulations showing a good agreement. As a conclusion,we
demonstrate that the proposed Quasi-Morse potentials are very good alternative to Morse potentials as they share many of their features
in the natural parameter range, and at the same time enable explicit computation of the macroscopic density profiles up to numerically
determined constants.

2. Swarming: Models and patterns

We will consider a simple second order model for swarming analyzed in [21] consisting of the attraction–repulsion of N interacting
self-propelled particles located at xi ∈ Rn with velocities vi ∈ Rn in a host medium with friction, with n = 1, 2, 3. Friction is modeled by
Rayleigh’s law and as a result, an asymptotic speed for the individuals is fixed by the compensation of friction and self-propulsion. More
precisely, the time evolution is governed by the equations of motion

dxi
dt

= vi,

dvi
dt

= αvi − βvi|vi|
2
− ∇xi


i≠j

W (xi − xj),
(1)

where W is a pairwise interaction potential and α, β are effective values for propulsion and friction forces, see [20,21,25,26] for more
discussion. The interaction potential W : Rn

× Rn
→ R is assumed to be radially symmetric: W (x) = U(|x|), x ∈ Rn. The typical

asymptotic speed of the individuals is
√
α/β . The Morse potential is defined by taking

U(r) = −CAe−r/lA + CRe−r/lR ,

where CA, CR are the attractive and repulsive strengths, and lA, lR are their respective length scales. We set V (r) = − exp(−r/lA),
C = CR/CA, and l = lR/lA to obtain

U(r) = CA


V (r)− CV

 r
l


.

The choice of this potential is motivated in [21] for being one of the simplest choices of integrable potentials with easily computable
conditions to distinguish the relevant parameters in biological swarms. In fact, it is straightforward to check that in the range C > 1 and
l < 1 the potential U(r) is short-range repulsive and long-range attractive with a unique minimum defining a typical distance between
particles. Moreover, in this regime the sign of the integral of the potential:

U :=


∞

0
W (x) dx = V(1 − Cln) with V :=


∞

0
V (r)rn−1 dr < 0, (2)

gives a criterion to distinguish between the so-called H-stable and catastrophic regimes. This condition reads as Cln − 1 < 0 for the
catastrophic case in any dimension n, see [21,27]. This property of the potential is important since it is related to the typical patterns
emerging in such systems, as classified in [21].

Flocks, where particles tend to form groups, movingwith the same velocity, andmilling solutions, where rotatory states are formed are
of particular interest and are observed in particle and hydrodynamic simulations [21,28] in n = 2. Actually, they typically emerge in the
large time behavior of the system of particles (1) in the catastrophic regime Cl2 < 1with C > 1 and l < 1. In the same range of parameters,
randomly chosen initial data lead also to other patterns such as double mills and flocks [21,29]. However mills are not observed in the
H-stable regime Cl2 > 1 with C > 1 and l < 1 while flocks do.

Assuming the weak coupling scaling [30–33] in which the range of interaction is kept fixed and the strength of interaction is divided
proportionally between particles, we pass to the rescaled formulation:

dxi
dt

= vi,

dvi
dt

= vi(α − β|vi|
2)−

1
N

∇xi


i≠j

U(|xi − xj|).

This system has a well-defined limit as N → ∞ which can be expressed as a solution of the corresponding mean-field equation:

∂t f + v · ∇xf + F [ρ] · ∇v f + div

α − β|v|2


vf


= 0, (3)

with

ρ(t, x) :=


f (t, x, v)dv.

Here, f (t, x, v) : R×Rn
×Rn

→ R is the phase-space density, andρ(t, x) is the averaged (macroscopic) density. Themean-field interaction
is given by F [ρ] = −∇xW ⋆ ρ.
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The limit N → ∞ has been established rigorously for smooth potentials W ∈ C2
b in [30–33], in [34,35] for more general models with

and without noise, and for more general potentials, with possibly singular behavior at zero, including theMorse potential (2) in the recent
result [36].

2.1. Flock and mill states

We are interested in computing certain relevant particular solutions of the Vlasov-like equation for swarming in (3). In fact, we can
formally find mono-kinetic solutions of (3) by inserting the ansatz:

f (t, x, v) = ρ(t, x) δ(v − u(t, x)), (4)

in the weak formulation of (3). The result in [25,29] is that ρ and u should satisfy the following set of hydrodynamic equations:
∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u · ∇x)u = ρ (α − β|u|2)u − ρ (∇xW ⋆ ρ).

(5)

Definition 1. A flock is a solution fF of (3) of the form (4) with ρ(t, x) = ρF (x − tu0) and u(t, x) = u0 with u0 ∈ Rn such that |u0| =


α
β

and ρF a probability measure in Rn.

Obviously, flock solutions are determined by their density profile ρF and have the structure of traveling waves in the direction of the
velocity vector u0. It is straightforward to see that, the density of a flock is characterized by the following equation:

Proposition 1. The function fF ≥ 0 is a flock solution if and only if the macroscopic density ρF satisfies

∇xW ⋆ ρF = 0 on the support of ρF . (6)

There are singular solutions to (6) obtained by concentrating all the mass uniformly in a suitable sphere, the so-called Delta rings [29],
whose stability for first ordermodels has recently been studied in [37] for certain potentials. Also, there are solutions to (6) given by smooth
compactly supported densities for combination of suitable powers in 1D [38,39], for the Morse potential in 1D [24], and for combination
of powers when one of them is the repulsive Newtonian potential [40] in 2D. In fact, the set of solutions to (6) can be very complicated
even in one dimension [38,39,41] depending on the regularity of the potential.

Let us remark that, since we assume the radial symmetry of the potential, one expects that the density of the flocking solutions to (6) is
radially symmetric as well and that it is supported in a ball B(0, RF )with RF > 0. This is reinforced by the fact that the convolution of radial
functions is radial, see Section 2.2 for more precise statements. We will reduce ourselves to find flocking solutions with radial symmetry
in the rest of this paper, that is, finding RF > 0 and a radial density ρF (|x|) compactly supported in B(0, RF ) satisfying

W ⋆ ρF = C in B(0, RF ), (7)

for some constant C ∈ R.
Another interesting type of solutions that spontaneously show up in particle simulations aremills, they correspond to motion with the

velocity field of a point vortex:

uM(x) = ±


α

β

x⊥

|x|
, (8)

where x = (x1, x2), x⊥
= (−x2, x1), such that ρM(|x|) is a radially symmetric stationary solution to (5).

Definition 2. A mill is a solution fM of (3) of the form:

fM(t, x, v) = ρM(x) δ(v − uM(x)),

with uM given by (8) and ρM radially symmetric.

As shown in [20,29,28], mill solutions can also be characterized as:

Proposition 2. ρM(x) is a mill density if and only if

∇x


W ⋆ ρ −

α

β
log |x|


= 0, on the support of ρ.

As discussed above, one can obtain singular mill solutions by concentrating all particles in a ring [29]. However, we will search for
radial solutions supported in an annulus B(Rm, RM) with 0 < Rm < RM , and therefore, mill radial solutions supported in B(Rm, RM) are
characterized by

W ⋆ ρM = D +
α

β
log |x| in B(Rm, RM), (9)
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for some constant D ∈ R. In the following, the subindex x in differential operators is dropped since we only deal with x-dependent
functions.

2.2. Convolution of radial functions

Since we want to find particular radial solutions to flocks (7) and mills (9), we need suitable expressions of the convolution of two
radial functions in n = 2, 3. Given any radial density ρ(|x|), then the convolution term rewrites:

(W ⋆ ρ)(x) =


Rn

W (x − y)ρ(|y|)dy =


∞

0


∂B(0,1)

W (x − sω)ρ(s)sn−1dωds

which is not a convolution in r = |x| anymore, but rather is given by an integral operator of the following form:

(W ⋆ ρ)(r) =


R+

Ψ (r, s)ρ(s)ds

with

Ψ (r, s) = sn−1

∂B(0,1)

U(|re1 − sω|)dω.

Expressing it in polar (n = 2) or spherical (n = 3) coordinates, we get the functions

Ψ (r, s) = s
 2π

0
U


r2 − 2rs cos θ + s2

dθ (10)

for n = 2 and

Ψ (r, s) = s2
 2π

0

 π

0
U(|re1 − sω(θ, ν)|) sin ν dν dθ

= 2πs2
 π

0
U


r2 − 2rs cos ν + s2


sin ν dν, (11)

with ω(θ, ν) = (cos ν, sin ν cos θ, sin ν sin θ) for n = 3.

3. Quasi-Morse potentials and their explicit solvability

In this section, we define Quasi-Morse potentials for n = 1, 2, 3 and discuss their properties. These Quasi-Morse potentials will yield
biologically relevant shapes similar to the Morse potentials. We show that flock and mill solutions in the natural parameter range, see
Figs. 4 and 8(d) for precise statements, can be computed explicitly up to numerically determined constants.

3.1. Definition and comparison

Definition 3. Let V : R+
→ R denote the radially symmetric solution of the n-dimensional screened Poisson equation 1u − k2u = δ0,

for a given k > 0, that vanishes at infinity. Let C, l, λ ∈ R be further positive parameters. Then we say that, U(|x|) is the n-dimensional
Quasi-Morse potential if

U(r) := λ

V (r)− C V

 r
l


.

Using the radially symmetric ansatz, the screened Poisson equation reduces to a second-order ordinary differential equation dependent
on the space dimension. For relevant n = 1, 2, 3 this ODE possesses two linearly independent solutions. We therefore have

Corollary 1. Quasi-Morse potentials for n = 1, 2, 3 are well-defined and constructed from the following fundamental solution:

n = 1 : V (r) = −
1
k
e−kr

n = 2 : V (r) = −
1
2π

K0(kr)

n = 3 : V (r) = −
1
4π

e−kr

r

(12)

where K0 is the modified Bessel function of second kind. For n = 1, the Quasi-Morse potential equals the Morse potential.

We illustrate the Quasi-Morse potential in comparison to the Morse potential for n = 2 with parameters C = 10/9 and l = 0.75 in Fig. 1.
Both potentials could be used tomodel the biologically motivated interplay between short-range repulsion and long-range attraction, and
there is no clear reason to prefer one over the other. A significant difference is the behavior at zero, where Morse is finite and Quasi-Morse
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(a) Quasi-Morse potential. (b) Morse potential.

Fig. 1. Comparison of potentials: Both yield the biologically relevant shape of short-range repulsion and long-range attraction (Quasi-Morse: n = 2, C =
10
9 , l = 0.75, k =

1
2 , λ = 4, Morse: C =

10
9 , l = 0.75, λ = 2).

is singular though locally integrable for n > 1, which are the dimensions we aim to study. The parameter dependence of catastrophic
regimes is inherited from the Morse potential as summarized in the next result, whose proof is given in an Appendix.

Corollary 2. The function U(r) has a unique minimum if and only if l < 1, Cln−2 > 1. Furthermore, the Quasi-Morse potential U(|x|) is
catastrophic if Cln < 1.

Remark 1. We first emphasize that, the global minimum of U corresponds to the biologically relevant scenario of short-range repulsion
and long-range attraction, as for the standard Morse potential. Concerning the H-stability of the Quasi-Morse potentials, we remark that
the inverse Fourier transform of U(r) for k = 1 reads

Ǔ(|ξ |) =
Cln − 1 + l2(Cln−2

− 1)|ξ |2

(1 + |ξ |2)(1 + l2 |ξ |2)

which is positive if Cln > 1 and Cln−2 > 1. This indicates theH-stability, but the criteria developed in [27] do not apply directly, since Ǔ(|ξ |)
is not integrable in dimensions n = 2, 3. However, our numerical findings presented in the following sections will suggest H-stability for
the configurations l < 1, Cln−2 > 1, Cln > 1. This corresponds to potentials having a unique minimum and a positive n-dimensional
integral.

Next, we mention the influence of the free scaling parameter k and show that, any potential shape can be normalized to k = 1, see
Appendix. The following results are given without proof which follows easily by a change of variables from the convolution form in radial
coordinates (10) and (11) in Section 2.2.

Corollary 3. Let ρ be the flock (resp. mill) solution setting k = 1 with support B(0, R) (resp. B(Rm, RM)), then the transformed solution ρ̃ for
the potential scaled to k = k̃ ≠ 1 is given by

flock : ρ̃(x) = k̃nρ(k̃x), supp(ρ̃) = B

0,

R

k̃


mill : ρ̃(x) = k̃2ρ(k̃x), supp(ρ̃) = B


Rm

k̃
,
RM

k̃


.

Denoting Ũ(r) := U(k̃r), W̃ (x) = Ũ(|x|), we have W̃ ⋆ ρ̃ = W ⋆ ρ = Ck̃2−n for flocks, and W̃ ⋆ ρ̃ = W ⋆ ρ +
α
λβ

log(k̃) for mill solutions.

3.2. Explicit solvability

In this section, we show how to solve almost explicitly the integral equations for flock andmill profiles with the Quasi-Morse potential.
The exact problem to solve for any potentialW is to find a density ρ and its support such that

(W ⋆ ρ)(r) = s(r) on supp(ρ) (13)

with some radial s(r) on supp(ρ) = B(Rm, RM), 0 ≤ Rm < RM . Solving (13) generally implies inverting the integral operator, a task
that is complicated by the fact that the support is unknown. Even if this is numerically achievable, we will not learn anything about the
structure of the solutions. For the Quasi-Morse potential, we take advantage of the differential operators behind its construction, to avoid
the inversion of (13) and to give an almost explicit expression of its solution in terms of special functions. This strategy was already done
in [24] in the one dimensional case, where Morse and Quasi-Morse potentials coincide. In this section, we pursue a similar strategy for the
Quasi-Morse potential in n = 2, 3.

We begin our discussion reminding the radially symmetric fundamental system associated with some operators, which will be needed
henceforth.
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Remark 2. The n-dimensional Helmholtz equation reads 1u + k2u = 0 in Rn. Its fundamental system of radially symmetric solutions
{ϕ1, ϕ2} is associated to a second-order ordinary differential equation (in radial coordinates for n = 2, 3) and given below, together with
the fundamental system of the already mentioned screened Poisson equations {ψ1, ψ2}:

Helmh. ϕ1 ϕ2 s.Poiss. ψ1 ψ2

n = 1 1
2k sin(kr) −

1
2k cos(kr) n = 1 1

2k e
kr

−
1
2k e

−kr

n = 2 −
1
2π J0(kr)

1
2π Y0(kr) n = 2 1

2π I0(kr) −
1
2π K0(kr)

n = 3 1
4π

sin(kr)
r −

1
4π

cos(kr)
r n = 3 1

4π
ekr
r −

1
4π

e−kr

r

Here, J0 and Y0 are the Bessel functions of the first and second kind respectively, while I0 and K0 are the modified Bessel functions of the
first and second kind respectively.

We continue with a simple computation related to the local properties of our potential.

Lemma 1. Let V be the fundamental solution of the screened Poisson equation. Then

∆x


V
x
l


=

k2

l2
V + ln−2δ0.

Proof. Let ξ be a test function. Then by change of variables
Rn
∆x


V
x
l


ξ(x) dx =

1
l2


Rn
(1V )

x
l


ξ(x)dx =

1
l2


Rn
1V (z)ξ(lz)lndz

=
ln

l2


Rn

k2V (z)ξ(lz)dz + ξ(0)


=
1
l2


Rn

k2V (z)ξ(lz)lndz + ln−2ξ(0)

=
k2

l2


Rn

V
x
l


ξ(x)dx + l2ξ(0)

leading to the weak formulation of the claim. �

Now, we can state the main result of this section.

Theorem 1. Assume there exists a solution of (W ⋆ ρ)(r) = s(r) on supp(ρ) with W being the Quasi-Morse potential and supp(ρ) =

B(0, RF ), s(r) = D for flocks, or supp(ρ) = B(Rm,RM), s(r) = D +
α
β
log(r) for mills respectively. Then ρ has to be of the following form on

suppρ:

n = 2: Flock A > 0 ρF = µ1 J0(ar)+ µ2

A = 0 ρF = µ1r2 + µ2

A < 0 ρF = µ1 I0(ar)+ µ2

Mill A > 0 ρM = ρinhom + µ1 J0(ar)+ µ2 Y0(ar)+ µ3

A = 0 ρM =
α
β

k4

4λl2(1−C)
r2(log(r)−1)+µ1r2+µ2 log(r)+µ3

A < 0 ρM = ρinhom + µ1 I0(−ar)+ µ2 · K0(ar)+ µ3

n = 3: Flock A > 0 ρF = µ1 sin(ar) 1r + µ2

A = 0 ρF = µ1r2 + µ2

A < 0 ρF = µ1 sinh(ar) 1r + µ2

with A = k2 Cln−1
l2−Cln

, a2 = |A|, and ρ satisfying ρ > 0,

ρdx = 1.
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Proof. Let us define the operators L1 := ∆− k2I,L2 := ∆−
k2

l2
I . We apply both operators to the equation and obtain

L2L1(W ⋆ ρ) = (L2L1W ) ⋆ ρ = λ

−C L1L2V

 r
l


+ L2L1V (r)


⋆ ρ

= λ


−Cln−21δ + Ck2ln−2δ +1δ −

k2

l2
δ


⋆ ρ

= λ(1 − Cln−2)1ρ + λ


Ck2ln−2

−
k2

l2


ρ = L2L1s

using Lemma 1. Hence, ρ should satisfy the following equation in its support:

1ρ ± a2ρ =
1
λ

1
1 − Cln−2

L2L1s, (14)

with a2 = |A| and

A =
Ck2ln−2

−
k2

l2

1 − Cln−2
= k2

Cln − 1
l2 − Cln

,

resulting in the Helmholtz equation for A > 0, the screened Poisson equation for A < 0 and the Poisson equation for A = 0 with radially
symmetric inhomogeneous right-hand side. Therefore, the solution to (14) writes as a general solution of the homogeneous problem given
by a linear combination of the fundamental system in Remark 2 plus a particular solution of the inhomogeneous problem.

The right-hand side of (14) depends on the type of solutionwewish to compute. For flocks in any dimension, s(r) is a constant function,
and then we have 1

λ(1−Cln−2)
L2L1s(r) = D̃. Therefore, the inhomogeneous solution of (14) for A ≠ 0 with unknown constant right-hand

side D̃ is

ρinhom,A(r) =
D̃
A
1supp ρ .

For mills and n = 2, we have s(r) = D +
α
β
log(r) to obtain

1
λ(1 − C)

L2L1


D +

α

β
log(r)


=

k4

λl2(1 − C)
α

β
log(r)+ D̃ (15)

since log(r) is the fundamental solution of the Laplacian and its Dirac delta disappears and we look for mill solutions on an annulus (see
Section 2, (9)). Therefore, the inhomogeneous solution of (14) with right-hand side (15) can also be written explicitly. Again since log(r)
is a fundamental solution of the Laplacian and the support of the solution is assumed not to contain the origin, it states

ρinhom,A(r) =
k4

λa2l2(1 − C)
α

β
log(r)+

D̃
A

on supp ρ for A ≠ 0.

Finally, in case A = 0, the inhomogeneous solution for the flock case is

ρinhom,0 =


1
4
D̃r2, n = 2

1
6
D̃r2, n = 3,

whereas in the mill case it reads

ρinhom,0 =
α

β

k4

4λl2(1 − C)
r2(log(r)− 1)+

1
4
D̃r2

by using the fundamental solution of the Laplace operator. Putting together the inhomogeneous solution with the homogeneous part
leads to the claim of the theorem. For flocks, the space of candidate solutions is of lower dimension, since singularities at the origin are
excluded. �

The coefficients (µ1, µ2) or (µ1, µ2, µ3) have to be computed numerically under the constraint that the solution has to be non-negative,
has to contain unit mass, and has to solve the original equation (13), but only on its own support which is a priori unknown. To achieve
this, we now need only to evaluate the convolution integral in (13) in a constrained optimization method rather than its inversion.

Remark 3. Finally, we show that the radius of the support R and the constants (µ1, µ2) are connected by an explicit nonlinear identity in
the particular case of 3D flocks. By plugging the definition of the Quasi-Morse potential in 3D (12) into (11), then

Ψ (r, s) =
λs
2rk


Cl2e−

k
l |r−s|

− e−k|r−s|
− Cl2e−

k
l (r+s)

+ e−k(r+s)

.
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By looking up in the table of Theorem 1, we have the explicit expression of ρF (r) for flocks with A > 0 and n = 3. Straightforward
computations lead to R

0
Ψ (r, s)ρF (s)ds −

λµ2

k2
(Cl3 − 1) =

λCl3

k3(k2 + a2l2)
Λ(C, l)e−

k
l R
sinh

 k
l r


r

−
λ

k3(k2 + a2)
Λ(1, 1)e−kR sinh kr

r

where A = a2 was used, and with

Λ(C, l) = µ1k2al cos Ra + µ2ka2l2R + l3µ2a2 + µ2lk2 + µ1k3 sin Ra + µ2k3R.

Therefore, the existence of a flock solution is equivalent to the conditionsΛ(C, l) = 0 andΛ(1, 1) = 0, or equivalently
k2al cos Ra + k3 sin Ra ka2l2R + a2l3 + lk2 + k3R
k2a cos Ra + k3 sin Ra ka2R + a2 + k2 + k3R


µ1
µ2


=


0
0


.

A necessary condition (ρF can still be negative) is that, the determinant of the matrix on the left hand side is zero, i.e., the existence of the
solution of the nonlinear equation for R

tan Ra =
a
k

k3R − a2(l2 + l + klR)
ka2R + a2(l2 + l + 1)+ k2

.

So that, for flock solutions in 3D we only need to check for radii verifying this last identity.

In the next section, we will show an algorithm to solve this problem and present the numerical results.

4. Numerical investigations

Theorem 1 shows that, solutions of (13) are solutions of (14) with the constraints of positivity, unit mass, and compact support on an
annulus. Therefore, we now propose an algorithm that numerically determines the support and linear factors µi of the stationary flock
and mill solution. We will also present results which are compared to particle simulations.

4.1. The algorithm

Let parameters n, C, l, k, α, β be fixed and ρhom denote the homogeneous solution dependent on dimension as in Theorem 1. In search
for the support of the solution, we set the parameter Rmax as an upper boundary on the support size the algorithms shall consider. We can
ensure that, this is no restriction to the final result by setting Rmax large compared to the characteristic shape of the potential. Furthermore,
denote 1r a discretization parameter and {r0, . . . , rN} an equidistant discretization of a chosen support supp(ρ), with ri+1 − ri = 1r .
Numerical approximations of functions F(r) on the discrete radial grid are denotedwith F̄ . Our first algorithmdetermines the best possible
solution for one particularly chosen support B(Rl, Rr). We aim to find linear coefficients (µ1, µ2) (or (µ1, µ2, µ3) respectively), which solve
the integral equation (13) the best possible way. Non-negativity and unit mass of ρ are hard constraints, whereas the deviationW ⋆ ρ − s
serves as the objective function the coefficients shall minimize.

Algorithm 1 (For Flocks).

Input : fixed support B(0, Rr)
- For convolving functions with the potential, compute a matrix H s.t.
W ⋆ ρ = Hρ̄ according to Section 2.2.

- Evaluate the convolution of the basis functions ρhom and 1 on suppρ :

g1
:= Hρ̄hom, g2

:= H 1̄.

- To fit the right hand side s(r) = D on the support, we chose coefficients
such that s(r) = D at the two end points r1, rN . That is, solving

g1
1 g2

1
g1
N g2

N


µconst =


1
1


setting D = 1 temporarily.

- By linearity of H , we set ρ̄ :=
1
M (µconst,1ρhom + µconst,2)with M normalizing total mass.

- Since we have only ensured (13) to hold at two points, we measure deviation of
Hρ̄ from s(r) (here, an arbitrary constant) on the whole support as

e :=
1
Rr

 
Hρ̄ −

1
Rr


Hρ̄dr̄


dr̄.

Output : e, ρ̄, s̄ if ρ̄ ≥ 0, error message if ρ̄ � 0.

For the case of mills, we proceed analogously, but we have to take into account the fixed inhomogeneous solution and three basis
functions.
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Algorithm 2 (For Mills).

Input : fixed support B(Rm, RM)
- For convolving functions with the potential, compute a matrix H s.t.
W ⋆ ρ = Hρ̄ according to Section 2.2.

- Evaluate the convolution of the fixed inhomogeneous part ρinhom,A on suppρ
and set s̄inhom := Hρ̄inhom,A.

- Define the remainder of the right-hand side as s̄rem := s̄ − s̄inhom,
which has to be fitted by the convolution of the basis functions.

- To do so, evaluate J0(ar), Y0(ar) and 1 on suppρ:

g1
:= HJ̄0, g2

:= HȲ0, g3
:= H1̄.

- Giving three basis functions, we pick three points r1, rj with j = ⌊N/2⌋, rN
and interpolate both the remainder s̄rem and the free constant, which is
temporarily set to 1. We solve g1

1 g2
1 g3

1
g1
j g2

j g3
j

g1
N g2

N g3
N

µrem =

 s̄rem,1
s̄rem,j
s̄rem,N


 g1

1 g2
1 g3

1
g1
j g2

j g3
j

g1
N g2

N g3
N

µconst =

 1
1
1


- By linearity of H , we set ρ̄rem := µrem,1 J̄0 + µrem,2Ȳ0 + µrem,3 and

ρ̄const := µconst,1 J̄0 + µconst,2Ȳ0 + µconst,3.

- Our last degree of freedom is the free constant on the right hand side s(r),
which we use to normalize mass. The candidate density is

ρ̄ := ρ̄inhom,A + ρ̄rem + γ ρ̄const with γ :=
1−m(ρ̄rem)−m(ρ̄inhom,A)

m(ρ̄const)
.

- We penalize deviation of Hρ̄ from s(r) on the entire support as

e1 :=
1

RM − Rm

 
Hρ̄ − s̄ −

1
RM − Rm


(Hρ̄ − s̄)dr̄


dr̄.

- Second, since s(r) is concave, we penalize numerical convexity of s̄ by

e2 :=


χ[s̄′′>0] s̄dr̄

The total penalty value is the sum of e1, e2.
Output : e = e1 + e2, ρ̄, s̄ if ρ̄ ≥ 0

Now, we search the minimizer of the error function e over a test set of supports, given by the pre-defined discretization1r1 and maximal
support size. Repeating Algorithm 1 over the set of test supports provides a minimizer of the penalty function. For flocks, the number of

tested supports is ≈
Rmax
1r1

, for mills ≈
1
2


Rmax
1r1

2
. To enhance the speed of numerical computation, we first compute a solution based on a

coarser discretization length 1r2 = m∆r1 for some integer m. Then, the obtained minimizer is used as the center of a local refinement
search with a fine discretization length, as illustrated in Algorithm 3:

Algorithm 3.

- Choose a coarse grid size∆r2 such that an iteration of Algorithm 1 over all
test supports is reasonably fast and, as a solution, obtain the support B(0, R̃F )

(or B(R̃m, R̃M)) for mills.
- Vary this support locally up to a fixed parameter c with a fine discretization
∆r1 ≪ ∆r2, re-run Algorithm 1 restricted on |RF − R̃F | ≤ c
(|Rm − R̃m| ≤ c, |RM − R̃M | ≤ c for mills).

- Obtain the minimizing results supp(ρ), ρ̄, s̄ and e.

Naturally, the matrix H is not recomputed in every iteration but constructed once for the largest support and inherited. The choice
to fix a functional equality on the points which are most left, most right and for mills central on the chosen support is arbitrary. We say
that, no compact solutions are found in our computations, if our algorithms deliver Rmax as the error minimizer, no matter of its value.
The convergence of the algorithm for 1r → 0 if compact solutions are found will be demonstrated together with the results of the next
subsection.

4.2. Flocks in 2D

We start our presentation of numerical results with the aligned flock in two dimensions. Our standard example is the configuration C =
10
9 , l = 0.75, k =

1
2 as in Fig. 1. The stationary aligned flock state is independent of λ, α, β , yet emergence of flocks in particle simulations
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(a) Flock emerged in a particle simulation with N = 400
particles.

(b) Radial flock density: Continuous result vs. empirical
density (N = 30 000 particles).

Fig. 2. Two-dimensional aligned flocks emerge for the Quasi-Morse potential. The resulting continuous radial density of Algorithms 1 and 3 matches the empirical
distribution obtained from particle simulations. The stationary flock has the form ρF = µ1 J0(ar) + µ2 with, in this case, µ1 ≈ 0.2356, µ2 ≈ 0.018, A = 1.5, RF ≈ 1.31.
(Quasi-Morse potential parameters in use are C =

10
9 , l = 0.75, k =

1
2 .)

(a) Continuous solution ρF for varying1r . (b) Minimal error value and computation times.

Fig. 3. Algorithms 1, 3 converge as 1r → 0 if a compactly supported flock solution exists. Four resulting densities are shown for 1r ∈ {0.1, 0.05, 0.01, 0.0025} together
with the minimal error value of the algorithm and the corresponding computation time.

depends on these parameters and suitable initial conditions. An exemplary convenient choice is α = 1, β = 5, λ ∈ {100, 1000}. The
observed flock of aligned particles is illustrated in Fig. 2(a) for N = 400 particles. In Fig. 2(b), the result of our investigations is compared
to the empirical radial density obtained from a particle simulation with N = 30 000 agents. The empirical radial density is obtained by
collecting particles in radial bins and dividing by the Jacobian of the radial transformation. We see that, the continuous solution matches
the particle density and convergence is expected as N → ∞. While the numerical cost of full particle simulations is at least O(N2), the
computational effort of the presentedmethod scales quadratically with1r , as illustrated in Fig. 3(b). In Fig. 3(a) we show the convergence
of our algorithms as1r → 0. One observes that, the support is estimated well for coarse grid sizes, whereas the correct radial density is
established with finer discretizations. The minimal error values of Algorithms 1, 3 are listed in Fig. 3(b). The advantages of the presented
solution are continuity, dramatic reduction of the numerical cost, fast convergence, and an explicit expression of the radial density as, in
this example, a combination of Bessel’s J-function and a constant.

Concerning the potential parameters, the area of relevant short-term repulsion and long-range attraction shapes divides into two
subregions based on the results of Section 3, as illustrated in Fig. 4: In region I with C > 1, l < 1, Cl2 < 1, the potential is catastrophic,
A > 0 (from Theorem 1) and compactly supported continuous flock solutions are found. In region II with C > 1, l < 1, Cl2 < 1, A < 0
(from Theorem 1), and no compactly supported solutions can be found. No solution of the algorithm indicates H-stability since in this
case particle simulations do show flocks, whose support diverges when N → ∞. The presented method faces numerical difficulties for
catastrophic potentials A > 0 with Cl2 ≈ 1, where it eventually breaks down not converging to a compactly supported flock. Similarly,
particle simulations are not fully reliable in this limiting cases. However, thanks to our computation in Section 3 we are able to consider
the exact separatrix case Cl2 = 1, C > 1, l < 1, A = 0: Here, no compact solutions are found. Our numerical findings are illustrated
in Fig. 4. We emphasize that based on the reported simulations, we conjecture that compactly supported flock solutions exist only in the
catastrophic regime, A > 0.

4.3. Mills in 2D

The Quasi-Morse potential is able to produce rotatingmill states in particle simulations, just as the original Morse potential. We choose
the same configuration as in Section 4.2with λ = 100 and show themill emerging from a particle simulation in Fig. 5(a). The resultingmill
solution of our algorithms is illustrated in Fig. 2(b), togetherwith a comparison to an empirical density fromaparticlemillwithN = 16 000
agents. Again, our result is confirmed by the particle simulation and support as well as the density shape agree perfectly. The stationary
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Fig. 4. Numerical phase diagram of the Quasi-Morse potential in 2D: The biologically relevant scenarios decompose into two subregions. Region I: A > 0, continuous
compactly supported flocks. Region II: A ≤ 0, no compactly supported continuous solutions, flocks only emerge on particle level. The same division of regions applies to the
mill solutions.

(a) Mill emerged in a particle simulation with N = 400
particles.

(b) Radial mill density: Continuous result vs. empirical
measure (N = 16 000 particles).

Fig. 5. Rotating mills emerge for the Quasi-Morse potential. As for flocks, the resulting radial density of Algorithms 1, 3 matches the empirical distribution obtained from
particle simulations. The mill solution has the form ρM = ρinhom,A + µ1 J0(ar) + µ2 Y0(ar) + µ3 with, in this case, µ1 ≈ 0.1708, µ2 ≈ 0.0468, µ3 = 0.0320, A =

1.5, suppρM ≈ B(0.47, 1.57). (Quasi-Morse potential parameters in use are C =
10
9 , l = 0.75, k =

1
2 , others are α = 1, β = 5, λ = 100.)

Fig. 6. Algorithms 1, 3 converge for the mill case as1r → 0.

rotatingmill is a weighted sum of Bessel’s J and Y functions, the inhomogeneity ρhom and a constant. The convergence of Algorithms 1, 3 in
the mill case is shown in Fig. 6. As for flocks, the computational costs are minimal compared to a full particle simulation. For the existence
of compactly supported mill solutions, the parameter diagram on Fig. 4 applies just as for flocks. In region I, continuous solutions can be
found, whereas in region II and the separatrix Cl2 = 1 no suchmills can be found. In particle simulations, we there see either a crystal-like
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(a) Mill solutions for varying βλ

α
. (b) Support of mill solutions for varying βλ

α
.

Fig. 7. Quasi-Morse potentials with identical shape parameters C, l, k result in mill solutions with different support sizes and densities, depending on the ratio of potential
factor and squared stationary speed of the mill.

(a) Quasi-Morse potential in 3D. (b) 3D flock emerged in a particle
simulation with N = 200 particles.

(c) 3D radial flock density: continuous result vs. empirical
measure (N = 35 000 particles).

(d) Parameter diagram.

Fig. 8. The Quasi-Morse potential in three dimension is able to produce aligned flock solutions. The continuous radial density can be expressed as ρF = µ1 ·sin(ar) 1r +µ2 ·1
with, in this case, µ1 ≈ 0.3574, µ2 ≈ 0.0052, RF ≈ 0.725, A = 5.585. Our result is verified by comparing to the empirical density obtained from a particle simulation. (a)
Exemplary potential shape, (b) flock emerged from 3D particle simulation, (c) continuous flock solution vs empirical measure, (d) parameter diagram of biological relevant
configurations.

arrangements or ‘‘finite particle’’ flocks as in Section 4.2. Next we study the impact of parameters α, β, λ on the stationary mill solution,
which enter the solution solely in the joint quotient α

λβ
. Hence, for a potential multiplied by a factor λ, the mill solution will stay the same,

if the preferred speed of particles is multiplied by
√
λ by any suitable change of α and/or β . In Fig. 7(a), we show several mill densities for

our standard potential configuration and β

λα
∈ {350, 500, 1250, 2500, 5000, 12 500}. The support of mill solutions is plotted against β

λα
in Fig. 7(b).

4.4. Flocks in 3D

The introduction ofQuasi-Morse potentials enables us also to study flocks in three space dimensions. Aswehavementioned in Section 3,
the area of admissible parameter configurations is smaller than in the 2D case, as illustrated in the parameter diagram. For our example,
we set C = 1.255, l = 0.8, k = 0.2, A = 5.585 and plot the resulting potential shape in Fig. 8(a). A three-dimensional flock resulting



124 J.A. Carrillo et al. / Physica D 260 (2013) 112–126

from a particle simulation is shown in Fig. 8(b). With the help of Algorithm 1 the continuous radial flock density is computed as a linear
combination of sin ar

r and a constant. Notice that, due to Remark 3, Algorithm 3 is not needed. Also in three dimensions, the empirical
density of a particle simulationmatches our result, as illustrated in Fig. 8(c). Concerning the existence of flock solutions in the dependence
of the shape parameters C and l, we get an equivalent picture as in two dimensions (see Fig. 8(d)): Though different in shape, the area of
biologically relevant shapes is divided into two subregions by the separatrix Cl3 = 1. In region I, continuous compactly supported three-
dimensional flocks are found, not so in region II, which again indicates H-stability. Here, flocks do appear but their support increases with
the total number of agents N . In the special case of the separatrix, which can be investigated with the computation of the case A = 0 in
Section 3, no flock solutions are found.

5. Discussion

Quasi-Morse potentials fulfill three properties desirable from biological modeling: short-term repulsion, long-term attraction and
vanishing interaction at infinity. Using Quasi-Morse potentials instead of the standard Morse potential makes, in our view, hardly any
difference in terms of biological modeling. The stronger singularity at the origin for n ≠ 2 might even be desirable in order to enforce
repulsion. Though the special functions involved for n = 2 may seem not as convenient to work with as the exponential function, the
existence of continuous, compactly supported stationary states itself make Quasi-Morse potentials a good choice for further studies of the
models discussed in the above. Our results are, to the best of our knowledge, one of the first of its kind for explicit solutions of flock andmill
patterns in two or three dimensions. The strategy of building up potentials from solutions of certain partial differential equations might
work in other cases as well, and form one tool in the effort to understand the equilibria of interaction potentials. However, the techniques
applied here are of no help for general potentials, such as classical Morse. With a variety of potentials suggested (see the discussion in
Section 2), the problem of choosing the best suited one for a particular biological application becomes increasingly evident and should be
a topic of future research.

6. Conclusions

In this paper, we have introduced the Quasi-Morse interaction potentials for a second-order model of self-propelled interactive
particles. The Quasi-Morse potentials lead to the emergence of flocks and mills, similar to the standard Morse potential. We have shown
that the radial densities of these stationary states are (affine) linear combinations of two or three elementary functions, which are chosen
with respect to the three subcases A > 0 (catastrophic), A = 0 (separatrix) or A < 0. In order to determine the correct scalar coefficients
and the a priori unknown support, we have developed a numerical algorithm that does not use time evolutions in Section 4. We have
illustrated our result with examples for flocks and mills in two dimension and flocks in 3D. In all cases, our findings are convincingly
verified by corresponding particle simulations. With our algorithm, we find that for all coherent patterns, only the catastrophic scenarios
A > 0 lead to continuous compactly supported solutions.
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Appendix

This appendix is devoted to the proof of Corollary 2. Denote by Vk(r) the potential in (12) for a given k > 0. Notice that, Vk(r) =

kn−2V1(kr), hence we set k = 1 without loss of generality and, from now on, we drop the index k for simplicity.
Let us first show, the assertion about the unique minimum of the potential. This property is desirable from the biological point of view

to set a typical length scale for the distance between agents.
Let U(r) = V (r) − CV

 r
l


, then U ′(r) = V ′(r) −

C
l V

′
 r
l


, and the necessary condition for a local extremum can be stated as finding r

such that

h(r) :=
C
l
V ′
 r
l


V ′(r)

= 1.

Straightforward computations lead to

h′(r) =
C

l(V ′(r))2


1
l
V ′′

 r
l


V ′(r)− V ′

 r
l


V ′′(r)



=
C

l(V ′(r))2


−

n − 1
r

V ′(r)V ′

 r
l


+

1
l
V
 r
l


V ′(r)+

n − 1
r

V ′(r)V ′

 r
l


− V (r)V ′

 r
l



=
C

l(V ′(r))2


1
l
V ′(r)V

 r
l


− V ′

 r
l


V (r)


,

where we used that V is a solution of n−1
r V ′(r)+ V ′′(r) = V (r).
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We next check that, log(−V (r)) is a convex function of r for n = 1, 2, 3. Indeed, if n = 1, then log(−V (r)) is affine; if n = 3, then
log(−V (r)) = − log r − r − log(4π). In the case n = 2, we have

(log(−V (r)))′′ =
K0(x)2 + K2(x)K0(x)− 2K1(x)2

2K0(x)2
,

and we can use the inequality K0(x)2 + K2(x)K0(x)− 2K1(x)2 > 0 (which can be verified numerically).
Thus, if l < 1, we have

V ′( rl )

V ( rl )
≥

V ′(r)
V (r) . Since V (r) < 0, V ′(r) > 0, this implies V ′( rl )V (r)− V ′(r)V ( rl ) ≥ 0, and therefore

h′(r) =
C

l(V ′(r))2


1
l
V ′(r)V

 r
l


− V ′

 r
l


V (r)



<
C

l(V ′(r))2


V ′(r)V

 r
l


− V ′

 r
l


V (r)


≤ 0.

Similarly, if l > 1, we obtain h′(r) > 0.
Further, it is directly checked that

lim
r→0+

h(r) = Cln−2 and lim
r→∞

h(r) =


0 if l < 1
+∞ if l > 1.

Thus, the equation h(r) = 1 has no solution in the cases Cln−2 < 1, l < 1 or Cln−2 > 1, l > 1 and a unique positive solution in the cases
Cln−2 < 1, l > 1 or Cln−2 > 1, l < 1. Recalling that U ′(r) = V ′(r)(1 − h(r)), we see that of the last two cases, the former corresponds to
a local maximum of U(r) and the latter to a local minimum. Since the minimum is unique, then it is a global minimum.

Concerning the second assertion, by construction we have
Rn

V (|x|)dx = −1 for all n,

since V is the fundamental solution of1u − u = δ0 as stated in Definition 3. Therefore, we get
Rn

U(|x|)dx =


Rn

V (|x|)− CV (|x|/l)dx = −1 + Cln,

which is negative for Cln < 1, and thus U is catastrophic (see [27, p. 37]).
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