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Adaptation of control parameters, such as scaling factor (𝐹), crossover rate (CR), and population size (NP), appropriately is one
of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method
can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a
challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE
algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual
are adapted based on the average parameter value of successfully evolved individuals’ parameter values by using the Cauchy
distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far
from that of the average parameter value whichmight be better parameter value for next generation.The experimental results show
that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in
solving various unimodal and multimodal problems.

1. Introduction

Differential Evolution (DE) is a powerful population based
search technique for optimizing problems. Many researchers
have used the DE in practical fields because this technique
has good convergence properties and is easy to apply [1]. The
DE has three control parameters such as scaling factor (𝐹),
crossover rate (CR), and population size (NP). The perfor-
mance of DE is largely influenced by what parameter values
are assigned to these control parameters. Therefore, in order
to have a good optimization performance, finding suitable
parameter values is of crucial importance [2, 3]. In the DE,
the control parameters are usually adjusted by using the trial-
and-error search method. However, the value assigned by
the trial-and-error method might be efficient for solving one
type of problems and inefficient for solving other problems
[4]. Moreover, it requires a lot of computational resources.
As a solution of this problem, parameter adaptation has
been utilized. According to Eiben et al. [5, 6], the parameter
adaptation can be categorized into three classes as follows.

(1) Deterministic parameter control: the control param-
eters are adapted by some deterministic rule.

(2) Adaptive parameter control: the control parameters
are adapted by some formof feedback fromevolution-
ary search.

(3) Self-adaptive parameter control: the control parame-
ters are adapted by the evolution-of-evolution tech-
nique. The control parameters are encapsulated in
each individual as additional chromosomes and
undergo evolutionary procedure.

The well designed adaptive or self-adaptive parameter
control method can improve the performance of DE. There-
fore, the adaptive and self-adaptive parameter controls are
more applicable than the trial-and-error search method. So
far, many adaptive and self-adaptive DE algorithms have
been proposed and they have shown that the adaptive and
self-adaptive DE algorithms have more robust performance
than standard DE algorithm for many benchmark functions
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[4, 7, 8]. Although there are many suggestions for adapting
control parameters, it is still a challenging task to properly
adapt the control parameters for problem. Based on various
experiments, we found out that the parameter adaptation
should be performed in every generation and the control
parameters of each individual should be adapted based on the
average parameter value of successfully evolved individuals’
parameter values by using the Cauchy distribution.

The Cauchy distribution is one of the long tail distribu-
tions.TheCauchy distribution generates large step from peak
location with higher probability. Many evolutionary algo-
rithms have used this long tail property as an escaping local
minima method. The proposed algorithm also, but in differ-
ent manner, utilizes the Cauchy distribution for the parame-
ter adaptation. In the proposed algorithm, each individual has
its own control parameters. The control parameters of each
individual are adapted based on the average parameter value
of successfully evolved individuals’ parameter values by using
the Cauchy distribution. It is because the successfully evolved
individuals are led by appropriate parameter values. That is
to say, the appropriate parameter values make the individuals
take the good region for solving problem. However, there is
a possibility that the current appropriate parameter values
might be inappropriate parameter values in next generation.
Therefore, we cannot assure that the parameter adaptation
based on the average parameter value is good for making
well-suited parameter values for future generations. In view
of the above considerations, the parameter adaptation of
proposed algorithmutilizes the Cauchy distribution as a large
step method. According to it, the control parameters of each
individual are assigned either near the average parameter
value or far from that of the average parameter value which
might be better parameter value for next generation. The
experimental results show that the proposed algorithm is
more robust than standard DE algorithm and some adaptive
and self-adaptive DE algorithms such as jDE [4], SaDE [7],
and MDE [9] on solving multimodal problems as well as
unimodal problems.

The rest of this paper proceeds as follows. In Section 2,
we introduce basic operations of standard DE algorithm
and some adaptive and self-adaptive parameter control DE
algorithms. In Section 3, theCauchy distribution is described.
The proposed algorithm is explained in detail in Section 4.
Section 5 presents the experimental results. We conclude this
paper in Section 6.

2. Related Work

2.1. DE Algorithm. In the DE, a parent vector is called
“target vector,” a mutant vector is that generated by mixing
donor vectors, and an offspring obtained bymaking crossover
between target vector and mutant vector is called “trial
vector.” A target vector generates a trial vector which is
moved around in search space by using the mutation and the
crossover operations. If the fitness value of the trial vector is
better than or equal to the fitness value of the target vector, the
trial vector is accepted and included in the population of next
generation, otherwise it is discarded and the target vector

remains for the next generation. This cycle of operations is
repeated until some specific termination conditions are not
satisfied.

2.1.1. Initialization. The population of the DE consists of NP
individuals. Each individual is a 𝐷-dimensional parameter
vectors, denoted as 𝑋

𝑖,𝐺
= 𝑥
1

𝑖,𝐺
, . . . , 𝑥

𝐷

𝑖,𝐺
where 𝑖 = 1, . . . ,NP.

In the initialization stage, first of all, the DE designates the
search space of the test problem by prescribing the minimum
(𝑋min = 𝑥

1

min, . . . , 𝑥
𝐷

min) and the maximum (𝑋max =

𝑥
1

max, . . . , 𝑥
𝐷

max) parameter bounds. After that, the parameter
vectors of the each individual are initialized as follows:

𝑥
𝑖,𝑗,0

= 𝑥
𝑗,MIN + rand [0, 1] ⋅ (𝑥𝑗,MAX − 𝑥

𝑗,MIN) , (1)

where rand[0, 1] is the uniform distributed random number
lying between 0 and 1. By doing this, all the individuals are
randomly scattered in the search space. After initialization,
the DE executes a loop of the operations: mutation, crossover,
and selection.

2.1.2.MutationOperation. Themutation is the first operation
to generate child individuals from their parent individuals.
So far, a lot of mutation strategies have been proposed. Here,
we explain an example, called DE/rand/1/bin, which was
introduced by Storn and Price [1]. First of all, the mutation
strategy randomly select three mutually exclusive individuals
among [1,NP]. They are called the “donor vectors”, denoted
as𝑋
𝑟
1
,𝐺
,𝑋
𝑟
2
,𝐺
, and𝑋

𝑟
3
,𝐺
. Amutant vector𝑉

𝑖,𝐺
is generated by

adding the scaling difference of𝑋
𝑟
2
,𝐺
and𝑋

𝑟
3
,𝐺
to𝑋
𝑟
1
,𝐺
.

𝑉
𝑖,𝐺

= 𝑋
𝑟
1
,𝐺

+ 𝐹 ⋅ (𝑋
𝑟
2
,𝐺

− 𝑋
𝑟
3
,𝐺
) , (2)

where 𝐹 is a scaling factor for amplifying the difference value
between 𝑋

𝑟
2
,𝐺
and𝑋

𝑟
3
,𝐺
.

2.1.3. Crossover Operation. The crossover generates the trial
vectors by making a crossover between target vector and
mutant vector. There are two crossover operations which are
commonly used. They are the binomial and the exponential
crossovers. Here, we describe the binomial crossover. At
the beginning, a random number is selected. If the random
number is less than or equal to the crossover rate CR, the
first element of the trial vector is occupied by the first element
of the mutant vector. Otherwise, the element is occupied by
the target vector. This procedure is repeated𝐷 times for each
individual.The trial vector𝑈

𝑖,𝐺
= 𝑢
1

𝑖,𝐺
, . . . , 𝑢

𝐷

𝑖,𝐺
is generated as

follows:

𝑢
𝑖,𝑗,𝐺

= {
V
𝑖,𝑗,𝐺

if (rand [0, 1) ≤ CR or 𝑗 = 𝑗rand)

𝑥
𝑖,𝑗,𝐺

otherwise.
(3)

Prior to crossover, the DE select another random number
𝑗rand lying between [1, 𝐷]. The random number is used to
guarantee that at least one element of the trial vector is
occupied by the mutant vector.
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2.1.4. Selection Operation. The selection is the last operation
of the DE iterations. It compares the fitness value of the target
and the trial vectors. If the fitness value of the trial vector is
better than or equal to the fitness value of the target vector,
the trial vector is accepted and forms part of the population,
otherwise it is discarded and the target vector remains for the
next generation. these procedures are formulated as follows:

𝑋
𝑖,𝐺+1

= {
𝑈
𝑖,𝐺

if (𝑓 (𝑈
𝑖,𝐺

) ≤ 𝑓 (𝑋
𝑖,𝐺

)) ,

𝑋
𝑖,𝐺

otherwise.
(4)

2.2. jDE. Brest et al. [4] proposed a self-adaptive parameter
control DE (called jDE) based on DE/rand/1/bin. In jDE,
the control parameters, 𝐹 and CR, are encapsulated in
each individual as additional chromosomes. Therefore, all
individuals have their own control parameters, denoted as
𝐹
𝑖
and CR

𝑖
. jDE utilizes four additional parameters: 𝜏

1
, 𝜏
2
,

𝐹
𝑙
, and 𝐹

𝑢
. The first two parameters are used to determine

whether the control parameters need to be updated or not
and the last two parameters are used to designate the range
of the control parameter 𝐹

𝑖
. At the beginning, the values of 𝐹

𝑖

and CR
𝑖
are initialized by 0.5 and 0.9, respectively. Then, the

control parameters𝐹
𝑖
andCR

𝑖
for next generation are adapted

as follows:

𝐹
𝑖,𝐺+1

= {
𝐹
𝑙
+ rand

2 [0, 1] ⋅ 𝐹𝑢 if (rand
1 [0, 1] < 𝜏

1
) ,

𝐹
𝑖,𝐺

otherwise,

CR
𝑖,𝐺+1

= {
rand
4 [0, 1] if (rand

3 [0, 1] < 𝜏
2
) ,

CR
𝑖,𝐺

otherwise.

(5)

The author used 𝜏
1

= 0.1, 𝜏
2

= 0.1, 𝐹
𝑙

= 0.1, and 𝐹
𝑢

=

0.9. This procedure is executed before applying the mutation
operation. Therefore, newly generated control parameters
affect the mutation and the crossover operations.

2.3. DESAP. Teo [10] proposed the first self-adaptive pop-
ulation size DE (called DESAP) based on the self-adaptive
Pareto DE [11]. DESAP can self-adapt not only the scaling
factor 𝐹 and the crossover rate CR but also the population
size NP. This algorithm utilizes additional parameters such
as 𝜂
𝑖
, 𝛿
𝑖
, and 𝜋

𝑖
. These parameters are encapsulated in each

individual as additional chromosomes and also participated
in the mutation and the crossover operations for evolving
itself. The newly generated control parameters are selected
when the fitness value of the trial vector is lower than or
equal to the fitness value of the target vector. DESAP is
divided into two algorithms (i.e., DESAP-abs andDESAP-rel)
according to the equation of the population size for the next
generation. DESAP has shown the effectiveness of the self-
adaptive population size technique.

2.4. JADE. Zhang and Sanderson [12, 13] proposed a new
mutation strategy called DE/current-to-𝑝best which is lower
greedy than DE/current-to-best/1. This strategy utilizes not
the best individual of the population but the randomly
selected one from the top 100𝑝% (𝑝 ∈ (0, 1]) individuals. In
addition, an external archive schemewas proposed by storing

the set of parameter vectors of recently discarded individuals.
These parameter vectors provide the additional informa-
tion about promising progress direction and increase the
population diversity. The following equations represent the
DE/current-to-𝑝best with and without the external archive
strategy:

(1) DE/current-to-𝑝best with archive:

𝑉
𝑖,𝐺

= 𝑋
𝑖,𝐺

+ 𝐹
𝑖
⋅ (𝑋
𝑝

best,𝐺 − 𝑋
𝑖,𝐺

) + 𝐹
𝑖
⋅ (𝑋
𝑟1,𝐺

− 𝑋
𝑟2,𝐺

) ,

(6)

(2) DE/current-to-𝑝best without archive:

𝑉
𝑖,𝐺

= 𝑋
𝑖,𝐺

+ 𝐹
𝑖
⋅ (𝑋
𝑝

best,𝐺 − 𝑋
𝑖,𝐺

) + 𝐹
𝑖
⋅ (𝑋
𝑟1,𝐺

− 𝑋
𝑟2,𝐺

) , (7)

where 𝑋
𝑟2,𝐺

is an individual randomly selected from the
population or external archive.

In terms of parameter adaptation, JADE adapts the
crossover rate CR

𝑖
, as follows:

CR
𝑖
= rnd 𝑛

𝑖
(𝜇CR, 0.1) , (8)

where rnd 𝑛
𝑖
is the Gaussian distributed random number

generator. After that, the crossover rate CR
𝑖
is truncated to

[0, 1]. Moreover, 𝜇CR that is a mean value to generate CR
𝑖
is

modified as follows:

𝜇CR = (1 − 𝑐) ⋅ 𝜇CR + 𝑐 ⋅mean
𝐴
(𝑆CR) , (9)

where 𝑐 is a constant value in [0, 1], mean
𝐴
stands for the

arithmetic mean, and 𝑆CR contains the successfully evolved
crossover rates of individuals after the selection operation.
Similarly, the scaling factor 𝐹

𝑖
is adapted as follows:

𝐹
𝑖
= rnd 𝑐

𝑖
(𝜇
𝐹
, 0.1) , (10)

where rnd 𝑐
𝑖
is the Cauchy distributed random number

generator. After that, the scaling factor 𝐹
𝑖
is truncated to 1 if

𝐹
𝑖
≥ 1 or regenerated if 𝐹

𝑖
≤ 0. Also, 𝜇

𝐹
that is a mean value

to generate 𝐹
𝑖
is modified as follows:

𝜇
𝐹
= (1 − 𝑐) ⋅ 𝜇𝐹 + 𝑐 ⋅mean

𝐿
(𝑆
𝐹
) , (11)

where 𝑐 is a constant value in [0, 1], mean
𝐿
stands for

the Lehmer mean, and 𝑆
𝐹
contains the successfully evolved

scaling factors of individuals after the selection operation.

2.5. MDE. Ali and Pant [9] proposed a Modified Differen-
tial Evolution (MDE). This algorithm utilizes the Cauchy
distribution as another mutation operation. In the selection
operation, all individuals are monitored and the results of
the selection operation are stored in the failure counter. If
some individuals consequently fail to be selected as an indi-
vidual for the next generation over MFC (Maximum Failure
Counter), MDE assumes that these individuals were felled
into some local minima. Therefore, the algorithm applies
the Cauchy distributed mutation to these individuals instead
of the mutation and the crossover operations to escape the
local minima. After that, the failure counter is initialized by
0. MDE has shown the good performance for the higher
dimensional problems, compared with DE/rand/1/bin.
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3. Analysis of the Cauchy Distribution

The Cauchy distribution is a continuous probability distri-
bution and it has two parameters 𝑥

0
and 𝛾. 𝑥

0
is the peak

location of the distribution and 𝛾 stands for the halfwidth
at halfmaximum (HWHM) of the distribution. The value of
𝛾 determines the shape of the Cauchy distribution. If 𝛾 is
assigned a lower value, the peak of the probability density
function would be higher and its width would be narrower.
On the other hand, if 𝛾 is assigned a higher value, the
probability density function would have a lower peak and a
wider width. The Cauchy distribution generates a large step
from the peak with a higher probability. In general, many
evolutionary algorithms have used this long tail property as
an escaping local minima technique. The probability density
function and the cumulative distribution function of the
Cauchy distribution are defined by

𝑓 (𝑥; 𝑥
0
, 𝛾)

=
1

𝜋𝛾 [1 + ((𝑥 − 𝑥
0
) /𝛾)
2
]

=
1

𝜋
[

𝛾

(𝑥 − 𝑥
0
)
2
+ 𝛾2

] ,

𝐹 (𝑥; 𝑥
0
, 𝛾)

=
1

𝜋
arctan ((𝑥 − 𝑥

0
) /𝛾) +

1

2
.

(12)

Figure 1 illustrates the various probability density functions
of the Cauchy distribution. Here, 𝐿 and 𝑆 denote the location
(𝑥
0
) and the scaling factor (𝛾), respectively. In addition, 𝐿 = 0

and 𝑆 = 1 generate the standard Cauchy distribution.

4. Adaptive Cauchy DE

4.1.When Parameter Adaptation Should Be Performed? Find-
ing appropriate moments of adapting control parameters is
important problem for improving the DE performance. In
this section, we explain when parameter adaptation should
be performed.

Looking for previous studies, jDE utilizes self-adaptive
method which allows each individual to maintain suitable
control parameter values by itself. However, the parameter
adaptation of jDE depends on the predefined probabilities
(𝜏
1
and 𝜏

2
). Therefore, this method does not guarantee the

adequacy of maintained control parameter values for current
generation. In otherwords, it is possible that some individuals
maintain unsuitable control parameter values. In SaDE, the
scaling factor is calculated in every generation by using
Gaussian distribution with the predefined mean value and
all individuals utilize it. The crossover rate of SaDE, each
individual has its own crossover rate and they are calculated
by using Gaussian distribution with the median value of
accumulated information about selection operation results
during learning period as a mean value. This method is
performed in every end of learning period. The parameter
adaptation of SaDE has two problems. First, although each
individual has different state during the DE iteration, the
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Figure 1: The various probability density functions of the Cauchy
distribution.

scaling factor adaptation of SaDE does not consider it.
Therefore, many individuals might be utilized unsuitable
control parameter values. Second, the selection operation
results of past generationsmight become unnecessary or even
noisy information for adapting the crossover rate. In addition,
similar to jDE, during the learning period, it is possible
that some individuals maintain unsuitable control parameter
values.

Parameter adaptation should be performed whenever
current control parameter values are not suitable for finding
optimal value. We can utilize the selection operation results
for distinguishing that an individual has suitable control
parameters or not because the DE is based on the elitism.
We find out that parameter adaptation should be performed
in every generation. This means that every generation is
appropriate moments of adapting control parameters. The
reasons are follows.

(1) If an individual has good control parameter values,
the child individual can succeed in the selection
operation and it can locate better region for finding
optimal value than the region of its parent individual.
At this moment, the characteristic of child individual
region might differ from the characteristic of its
parent region. It means that there is a possibility of
the existing of more suitable control parameter values
than the previous control parameter values for new
region. Therefore, although an individual succeeds in
the selection operation, we should apply parameter
adaptation for finding more suitable control param-
eter values.

(2) On the contrary, if an individual does not have
good parameter values, the child individual might
fail to evolve in the selection operation and then it
remains the same region with its parent individual.
This indicates that the individual needs more suitable
control parameter values for escaping the region.
Therefore, if an individual fails to evolve itself, we
should also apply parameter adaptation.
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Table 1: Benchmark functions used in the performance evaluation.

Benchmark function Dim Search space Global min.

𝐹
1
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100]

𝐷 0

𝐹
2
(𝑥) =

𝐷

∑

𝑖=1

|𝑥
𝑖
| +

𝐷

∏

𝑖=1

|𝑥
𝑖
| 30 [−10, 10]

𝐷 0

𝐹
3
(𝑥) = max

𝑖
(|𝑥
𝑖
|, 1 ≤ 𝑖 ≤ 𝐷) 30 [−100, 100]

𝐷 0

𝐹
4
(𝑥) =

𝐷

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 30 [−100, 100]
𝐷 0

𝐹
5
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random [0, 1) 30 [−1.28, 1.28]

𝐷 0

𝐹
6
(𝑥) =

𝐷

∑

𝑖=1

− 𝑥
𝑖
sin(√

𝑥𝑖
)

30 [−500, 500]
𝐷

−12569.5

𝐹
7
(𝑥) =

𝐷

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) 30 [−5.12, 5.12]

𝐷 0

𝐹
8
(𝑥) = −20 exp(−0.2√

1

𝐷

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp(

1

𝐷

𝐷

∑

𝑖=1

cos 2𝜋𝑥
𝑖
) + 20 + exp (1) 30 [−32, 32]

𝐷 0

𝐹
9
(𝑥) =

1

4000

𝐷

∑

𝑖=1

𝑥
2

𝑖
−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 30 [−600, 600]
𝐷 0

𝐹
10

(𝑥) =
𝜋

𝐷
{10 sin2 (𝜋𝑦

1
) +

𝐷−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2

[1 + 10 sin2 (𝜋𝑦
𝑖+1

)] + (𝑦
𝐷
− 1)
2

}

+

𝐷

∑

𝑖=1

𝑢 (𝑥
𝑖
, 10, 100, 4)

30 [−50, 50]
𝐷 0

𝐹
11

(𝑥) = 0.1{sin2 (3𝜋𝑥
1
) +

𝐷−1

∑

𝑖=1

(𝑥
𝑖
− 1)
2

[1 + sin2 (3𝜋𝑥
𝑖+1

)] + (𝑥
𝐷
− 1)
2

[1 + sin2 (2𝜋𝑥
𝐷
)]}

+

𝐷

∑

𝑖=1

𝑢 (𝑥
𝑖
, 5, 100, 4)

30 [−50, 50]
𝐷 0

𝐹
12
(𝑥) = 𝑓

12
(𝑥
𝑛
, 𝑥
1
) +

𝐷−1

∑

𝑖=1

𝑓
12
(𝑥
𝑖
, 𝑥
𝑖+1

) 30 [−100, 100]
𝐷 0

𝑓
12
(𝑥, 𝑦) = (𝑥

2
+ 𝑦
2
)
0.25

[sin2 (50(𝑥2 + 𝑦
2
)
0.1

) + 1]

𝐹
13
(𝑥) =

𝐷−1

∑

𝑖=1

(𝑥
2

𝑖
+ 2𝑥
2

𝑖+1
− 0.3 cos (3𝜋𝑥

𝑖
) − 0.4 cos (4𝜋𝑥

𝑖+1
) + 0.7)

30 [−15, 15]
𝐷 0

𝐹
14
(𝑥) =

𝐷−1

∑

𝑖=1

(𝑥
2

𝑖
+ 𝑥
2

𝑖+1
)
0.25

[sin2 (50(𝑥2
𝑖
+ 𝑥
2

𝑖+1
)
0.1

) + 1] 30 [−100, 100]
𝐷 0

As a result, because the individuals of DE are evolved
for exploring new regions, it is hard to assure that the
previous suitable control parameter values are still suitable
until satisfying some probabilities or during some periods.
Therefore, parameter adaptation should be performed in
every generation.

4.2. How Parameter Adaptation Should Be Performed? Find-
ing proper method of adapting control parameters is also
important problem for improving the DE performance. In
this section, we explain how parameter adaptation should be
performed. When performing parameter adaptation, we can
utilize the successfully evolved individuals’ control parameter
values for parameter adaptation. It is because the successfully
evolved individuals are led by good parameter values. That is

to say, good parameter values make the individuals take the
good region for solving problem.

Looking for previous studies, jDE adapts control param-
eter values by using the uniform distribution. However,
the randomly generated control parameter values might
not be suitable for finding better region. In SaDE, the
successfully evolved individuals’ crossover rates are stored in
CR Memory. After learning period, the parameter adaptation
of SaDE extracts the median value from the CR Memory
as a mean value of the Gaussian distribution. In general,
the median function is not largely influenced by outliers.
However, the outliers give us the information about a new
possibility of better control parameter values. Therefore, we
should consider the outliers together.

As a result, the successfully evolved individuals’ con-
trol parameter values based parameter adaptation is proper
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Table 2: The experiment result of comparison of adaptive Cauchy DE with other DE algorithms.

GEN Adaptive Cauchy DE DE/rand/1/bin jDE SaDE MDE
Mean Std Mean Std Mean Std Mean Std Mean Std

𝐹
1

1500 5.0E − 36 9.4E − 36 7.9𝐸 − 14 6.8𝐸 − 14 2.6𝐸 − 28 4.0𝐸 − 28 1.8𝐸 − 20 2.3𝐸 − 20 7.0𝐸 − 17 2.8𝐸 − 17

𝐹
2

2000 2.4E − 30 1.6E − 30 1.2𝐸 − 09 6.7𝐸 − 10 1.8𝐸 − 23 1.8𝐸 − 23 6.2𝐸 − 15 3.2𝐸 − 15 4.8𝐸 − 13 1.3𝐸 − 13

𝐹
3

5000 2.9𝐸 − 12 1.1𝐸 − 12 3.3𝐸 − 02 7.2𝐸 − 02 2.0E − 15 3.3E − 15 7.8𝐸 − 10 2.0𝐸 − 10 2.0𝐸 − 08 8.5𝐸 − 09

𝐹
4

1500 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
5

3000 3.0E − 03 6.9E − 04 4.6𝐸 − 03 1.0𝐸 − 03 3.1𝐸 − 03 8.5𝐸 − 04 4.5𝐸 − 03 1.2𝐸 − 03 8.8𝐸 − 03 1.8𝐸 − 03

𝐹
6

9000 −12569.5 7.3E − 12 −11095.3 5.2𝐸 + 02 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −11482.1 3.0𝐸 + 02

𝐹
7

5000 0.0E + 00 0.0E + 00 7.1𝐸 + 01 2.9𝐸 + 01 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00 4.0𝐸 + 01 5.6𝐸 + 00

𝐹
8

1500 3.3E − 15 7.0E − 16 9.2𝐸 − 08 4.0𝐸 − 08 8.2𝐸 − 15 2.3𝐸 − 15 5.3𝐸 − 11 3.7𝐸 − 11 4.0𝐸 − 09 9.2𝐸 − 10

𝐹
9

2000 0.0E + 00 0.0E + 00 3.9𝐸 − 04 2.0𝐸 − 03 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00 7.4𝐸 − 03 1.1𝐸 − 02

𝐹
10

1500 1.6E − 32 5.5E − 48 6.5𝐸 − 15 5.6𝐸 − 15 7.0𝐸 − 30 7.2𝐸 − 30 3.3𝐸 − 20 4.2𝐸 − 20 9.9𝐸 − 18 1.5𝐸 − 17

𝐹
11

1500 1.3E − 32 1.1E − 47 5.9𝐸 − 14 4.9𝐸 − 14 1.2𝐸 − 28 1.4𝐸 − 28 8.5𝐸 − 20 1.6𝐸 − 19 2.6𝐸 − 17 1.6𝐸 − 17

𝐹
12

3000 6.1E − 22 5.0E − 22 2.1𝐸 − 07 1.3𝐸 − 07 6.3𝐸 − 17 7.0𝐸 − 17 3.5𝐸 − 12 2.9𝐸 − 12 7.4𝐸 − 11 3.9𝐸 − 11

𝐹
13

1000 5.0E − 20 3.4E − 20 7.3𝐸 − 04 6.6𝐸 − 04 1.4𝐸 − 15 6.9𝐸 − 16 1.5𝐸 − 07 3.4𝐸 − 08 3.4𝐸 − 05 1.3𝐸 − 05

𝐹
14

3000 3.5E − 22 2.5E − 22 2.3𝐸 − 05 1.7𝐸 − 05 7.5𝐸 − 17 1.4𝐸 − 16 1.8𝐸 − 10 2.2𝐸 − 10 1.2𝐸 − 08 3.7𝐸 − 09

Table 3: The success rate of comparison of adaptive Cauchy DE with other DE algorithms.

Success rate 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

𝐹
11

𝐹
12

𝐹
13

𝐹
14

Adaptive Cauchy DE 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
DE/rand/1/bin 100% 100% 38% 100% 100% 0% 0% 100% 96% 100% 100% 100% 0% 18%
jDE 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SaDE 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
MDE 100% 100% 100% 100% 72% 0% 0% 100% 58% 100% 100% 100% 0% 100%

Table 4: The experiment result of comparison of adaptive Cauchy DE with FEP and CEP.

GEN Adaptive Cauchy DE DE/rand/1/bin FEP CEP
Mean Std Mean Std Mean Std Mean Std

𝐹
1

1500 5.0E − 36 9.4E − 36 7.9𝐸 − 14 6.8𝐸 − 14 5.7𝐸 − 04 1.3𝐸 − 04 2.2𝐸 − 04 5.9𝐸 − 04

𝐹
2

2000 2.4E − 30 1.6E − 30 1.2𝐸 − 09 6.7𝐸 − 10 8.1𝐸 − 03 7.7𝐸 − 04 2.6𝐸 − 03 1.7𝐸 − 04

𝐹
3

5000 2.9E − 12 1.1E − 12 3.3𝐸 − 02 7.2𝐸 − 02 3.0𝐸 − 01 5.0𝐸 − 01 2.0𝐸 + 00 1.2𝐸 + 00

𝐹
4

1500 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00 5.8𝐸 + 02 1.1𝐸 + 03

𝐹
5

3000 3.0E − 03 6.9E − 04 4.6𝐸 − 03 1.0𝐸 − 03 7.6𝐸 − 03 2.6𝐸 − 03 1.8𝐸 − 02 6.4𝐸 − 03

𝐹
6

9000 −12569.5 7.3E − 12 −11095.3 5.2𝐸 + 02 −12554.5 5.3𝐸 + 01 −7917.1 6.3𝐸 + 02

𝐹
7

5000 0.0E + 00 0.0E + 00 7.1𝐸 + 01 2.9𝐸 + 01 4.6𝐸 − 02 1.2𝐸 − 02 8.9𝐸 + 01 2.3𝐸 + 01

𝐹
8

1500 3.3E − 15 7.0E − 16 9.2𝐸 − 08 4.0𝐸 − 08 1.8𝐸 − 02 2.1𝐸 − 03 9.2𝐸 + 00 2.8𝐸 + 00

𝐹
9

2000 0.0E + 00 0.0E + 00 3.9𝐸 − 04 2.0𝐸 − 03 1.6𝐸 − 02 2.2𝐸 − 02 8.6𝐸 − 02 1.2𝐸 − 01

𝐹
10

1500 1.6E − 32 5.5E − 48 6.5𝐸 − 15 5.6𝐸 − 15 9.2𝐸 − 06 3.6𝐸 − 06 1.8𝐸 + 00 2.4𝐸 + 00

𝐹
11

1500 1.3E − 32 1.1E − 47 5.9𝐸 − 14 4.9𝐸 − 14 1.6𝐸 − 04 7.3𝐸 − 05 1.4𝐸 + 00 3.7𝐸 + 00

method to adapting control parameter values. This method
should also consider the outliers.

4.3. The Proposed Algorithm. The proposed algorithmmakes
use of DE/rand/1/bin as a basic framework, in which the
mutation is one of weaker greedy mutation strategies. In
general, this mutation strategy is not so efficient in solving
the unimodal problems since its lack of the fast convergence
property makes the population slowly converge into the
global minimum. However, if the control parameters are
adapted suitably, this strategy can also demonstrate a good

performance property in the unimodal and the multimodal
problems.

The proposed algorithm adjusts two control parameters,
𝐹 and CR, except for NP. The control parameter NP does
not seriously affect the performance of DE more than the
other two control parameters. Prior to explaining the adap-
tation procedures, the characteristics of these parameters
are described. The control parameter 𝐹 is related to the
convergence speed of DE. Therefore, a higher value of 𝐹

encourages the exploration power which is generally useful
in the early stage of DE. On the other hand, a lower value of
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Table 5: The experiment result of comparison of adaptive Cauchy DE with adaptive LEP and best Lévy.

GEN Adaptive Cauchy DE DE/rand/1/bin Adaptive LEP Best Lévy
Mean Std Mean Std Mean Std Mean Std

𝐹
1

1500 4.7E − 36 5.1E − 36 7.2𝐸 − 14 7.9𝐸 − 14 6.3𝐸 − 04 7.6𝐸 − 05 6.6𝐸 − 04 6.4𝐸 − 05

𝐹
6

1500 −12569.5 7.3E − 12 −6506.71 6.7𝐸 + 02 −11469.2 5.8𝐸 + 01 −11898.2 5.2𝐸 + 01

𝐹
7

1500 0.0E + 00 0.0E + 00 1.7𝐸 + 02 1.2𝐸 + 01 5.9𝐸 + 00 2.1𝐸 + 00 1.3𝐸 + 01 2.3𝐸 + 00

𝐹
8

1500 3.2E − 15 5.0E − 16 9.1𝐸 − 08 3.7𝐸 − 08 1.9𝐸 − 02 1.0𝐸 − 03 3.1𝐸 − 02 2.0𝐸 − 03

𝐹
9

1500 0.0E + 00 0.0E + 00 2.2𝐸 − 13 1.4𝐸 − 13 2.4𝐸 − 02 2.8𝐸 − 02 1.8𝐸 − 02 1.7𝐸 − 02

𝐹
10

1500 1.6E − 32 5.5E − 48 7.5𝐸 − 15 7.2𝐸 − 15 6.0𝐸 − 06 1.0𝐸 − 06 3.0𝐸 − 05 4.0𝐸 − 06

𝐹
11

1500 1.3E − 32 1.1E − 47 5.4𝐸 − 14 4.9𝐸 − 14 9.8𝐸 − 05 1.2𝐸 − 05 2.6𝐸 − 04 3.0𝐸 − 05

Table 6: The experiment result of comparison of various failure counters.

GEN FC
𝐹
= 0, FCCR = 0 FC

𝐹
= 0, FCCR = 1 FC

𝐹
= 1, FCCR = 0 FC

𝐹
= 1, FCCR = 1 FC

𝐹
= 2, FCCR = 2

Mean Std Mean Std Mean Std Mean Std Mean Std
𝐹
1

1500 5.0𝐸 − 36 9.4𝐸 − 36 4.0𝐸 − 31 5.2𝐸 − 31 6.9E − 40 6.8E − 40 2.1𝐸 − 35 4.1𝐸 − 35 1.4𝐸 − 30 2.0𝐸 − 30

𝐹
2

2000 2.4𝐸 − 30 1.6𝐸 − 30 1.7𝐸 − 26 1.5𝐸 − 26 8.7E − 34 5.2E − 34 3.4𝐸 − 30 3.1𝐸 − 30 2.0𝐸 − 26 1.4𝐸 − 26

𝐹
3

5000 2.9E − 12 1.1E − 12 1.9𝐸 − 04 3.0𝐸 − 05 2.5𝐸 + 00 2.9𝐸 + 00 4.7𝐸 − 01 9.7𝐸 − 01 1.1𝐸 + 00 1.5𝐸 + 00

𝐹
4

1500 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
5

3000 3.0E − 03 6.9E − 04 3.1𝐸 − 03 8.4𝐸 − 04 3.1𝐸 − 03 8.9𝐸 − 04 3.0𝐸 − 03 8.0𝐸 − 04 3.1𝐸 − 03 8.3𝐸 − 04

𝐹
6

9000 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −12567.1 1.7𝐸 + 01

𝐹
7

5000 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
8

1500 3.3E − 15 7.0E − 16 1.4𝐸 − 14 4.5𝐸 − 15 3.1𝐸 − 15 0.0𝐸 + 00 3.0𝐸 − 07 2.1𝐸 − 06 1.5𝐸 − 14 2.6𝐸 − 15

𝐹
9

2000 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
10

1500 1.6E − 32 5.5E − 48 9.6𝐸 − 32 6.6𝐸 − 32 4.8𝐸 − 07 3.4𝐸 − 06 1.6𝐸 − 32 3.6𝐸 − 34 1.7𝐸 − 31 1.6𝐸 − 31

𝐹
11

1500 1.3E − 32 1.1E − 47 7.3𝐸 − 31 1.1𝐸 − 30 1.4𝐸 − 32 6.9𝐸 − 34 1.3𝐸 − 32 1.1𝐸 − 47 8.5𝐸 − 31 7.8𝐸 − 31

𝐹
12

3000 6.1𝐸 − 22 5.0𝐸 − 22 1.6𝐸 − 18 1.8𝐸 − 18 1.4E − 23 6.9E − 23 2.0𝐸 − 21 2.1𝐸 − 21 1.4𝐸 − 18 1.4𝐸 − 18

𝐹
13

1000 5.0𝐸 − 20 3.4𝐸 − 20 1.7𝐸 − 16 1.4𝐸 − 16 5.8E − 23 3.3E − 23 8.6𝐸 − 20 5.9𝐸 − 20 4.7𝐸 − 17 4.1𝐸 − 17

𝐹
14

3000 3.5𝐸 − 22 2.5𝐸 − 22 7.2𝐸 − 19 7.1𝐸 − 19 9.5E − 25 1.1E − 24 8.0𝐸 − 22 8.9𝐸 − 22 8.3𝐸 − 19 6.6𝐸 − 19

𝐹 promotes the exploitation power that is usually desirable in
the later stage ofDE.Moreover, the value of control parameter
CR is related to the diversity of population.

The parameter adaptation of proposed algorithm utilizes
𝐹 Memory and CR Memory. The successfully evolved indi-
viduals’ scaling factors and crossover rates are stored in these
memories. When performing parameter adaptation, arith-
metic mean function is applied to extract mean values and
these are actual parameter values of the Cauchy distribution
as location parameters. The Cauchy distribution is one of
the long tail distributions. The Cauchy distribution generates
the large step from the peak location with higher probability.
There is a possibility that the current appropriate parameter
values might be the inappropriate parameter values in next
generation. Therefore, we cannot assure that the average
parameter value is still the well-suited parameter value for the
future generations. In view of the above considerations, the
parameter adaptation of the proposed algorithm utilizes the
Cauchy distribution as a large step method.Through this, the
control parameters of each individual are assigned either near
the average parameter value or far from that of the average
parameter value which might be the better parameter value
of the next generation.

The details of the proposed algorithm are given as follows.
First of all, all individuals have their own control param-
eters, 𝐹

𝑖
and CR

𝑖
where 𝑖 is the individual’s index. At the

initialization stage, these parameters are initialized as 0.5 and
0.9, respectively.Themutation and crossover operations used
in DE/rand/1/bin are employed. In the selection operation,
if the trial vector is selected as an individual for the next
generation, the control parameter values of this individual are
stored in the 𝐹 Memory and CR Memory. After the selection
operation, the parameter adaptation is carried out.

The parameter 𝐹
𝑖
is adapted by the Cauchy distribution

with the average parameter value. After that, the 𝐹
𝑖
is

truncated to 0.1 or 1 if the 𝐹
𝑖
is less than 0.1 or greater than 1.

The adaptation of the scaling factor is performed as follows:

𝐹
𝑖,𝐺+1

= 𝐶 (0, 𝛾
𝐹
) + 𝐹avg,𝐺, (13)

where 𝐹avg,𝐺 is the average parameter value of the accumu-
lated information in the𝐹 Memory as the location parameter
of the Cauchy distribution. The 𝛾

𝐹
is scaling factor of the

equation and is assigned 0.1.
Similarly, the CR

𝑖
is adapted by the Cauchy distribution

with the average parameter value. After that, the CR
𝑖
is
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truncated to 0 or 1 if the CR
𝑖
is less than 0 or greater than

1. The adaptation of the crossover rate is given as follows:

CR
𝑖,𝐺+1

= 𝐶 (0, 𝛾CR) + CRavg,𝐺, (14)

where CRavg,𝐺 is the average parameter value of the accu-
mulated information in the CR Memory as the location
parameter of the Cauchy distribution.The 𝛾

𝐹
is scaling factor

of the equation and is assigned 0.1. Algorithm 1 describes the
pseudocode of the proposed algorithm.

When performing parameter adaptation, if there is no
successfully evolved individual, then the average parameter
values are assigned the average parameter values of last
generation.

5. Performance Evaluation

5.1. Benchmark Functions. The performance of proposed
algorithm was evaluated by fourteen benchmark functions.
The first eleven benchmark functions are from [14, 15]
and the rest benchmark functions are Extended 𝑓

12
(𝐹
12
),

Bohachevsky (𝐹
13
), and Schaffer (𝐹

14
). The functions are

shown in Table 1.
The characteristics of the benchmark functions are

described as follows:𝐹
1
–𝐹
3
are continuous unimodal func-

tions, 𝐹
4
is a discontinuous step function, 𝐹

5
is a noise

quadratic function, and 𝐹
6
–𝐹
14

are continuous multimodal
functions that the number of local minima exponentially
increases when their dimension grows. A more detailed
description of each function is given in [14, 15].

5.2. Experiment Setup. The proposed algorithm was com-
pared to standard DE algorithm and several state-of-art
adaptive DE algorithms. The five algorithms in comparison
are listed as follows:

(1) adaptive Cauchy DE;
(2) DE/rand/1/bin with𝐹 = 0.5 andCR = 0.9 [1, 4, 16, 17];
(3) jDE [4];
(4) SaDE [7];
(5) MDE with MFC = 5 [9].

All of the used parameter values are the recommended
or utilized parameter values by their authors. The population
size NP is fixed by 100 in all experiments. The maximum
number of generations is assigned by 1500 for 𝐹

1
, 𝐹
4
, 𝐹
8
, 𝐹
10
,

and 𝐹
11
; 2000 for 𝐹

2
and 𝐹
9
; 3000 for 𝐹

5
, 𝐹
12
, and 𝐹

14
; 5000 for

𝐹
3
and 𝐹

7
; 9000 for 𝐹

6
; 1000 for 𝐹

13
. All experiment results

were run 50 times, independently. For clarity, the result of
the best algorithm is marked in boldface. If the difference
between the global minimum and the best fitness is lower
than 10

−5 (In 𝐹
5
, 10
−2), we countered the experiment is

successful.

5.3. Comparison of Adaptive Cauchy DE with Adaptive
DE Algorithms. The mean and the standard deviation of
experiment results obtained by adaptive Cauchy DE and

/∗ Initialization ∗/
Generate the initial population
Evaluate the initial population
FOR 𝑖 = 0 to NPDO

𝐹
𝑖
= 0.5

CR
𝑖
= 0.9

ENDFOR

WHILEThe termination condition is not satisfied DO
/∗ Mutation operation ∗/
FOR 𝑖 = 0 to NPDO

Generate a mutant vector 𝑉
𝑖,𝐺

Randomly select three donor vectors𝑋
𝑟1
, 𝑋
𝑟2
, 𝑋
𝑟3

𝑉
𝑖,𝐺

= 𝑋
𝑟1 ,𝐺

+ 𝐹
𝑖
⋅ (𝑋
𝑟2 ,𝐺

− 𝑋
𝑟3 ,𝐺

)

ENDFOR

/∗ Crossover operation ∗/
FOR 𝑖 = 0 to NPDO

Generate a trial vector 𝑈
𝑖,𝐺

Select a random number 𝑗rand lying between [1, 𝐷]

FOR 𝑗 = 0 to𝐷DO
IF rand[0, 1) ≤ CR

𝑖
or 𝑗 == 𝑗rand THEN

𝑢
𝑖,𝑗,𝐺

= 𝑣
𝑖,𝑗,𝐺

ELSE
𝑢
𝑖,𝑗,𝐺

= 𝑥
𝑖,𝑗,𝐺

END IF
ENDFOR

ENDFOR

/∗ Selection operation ∗/
𝑘 = 0

FOR 𝑖 = 0 to NPDO
IF𝑓(𝑈

𝑖,𝐺
) ≤ 𝑓(𝑋

𝑖,𝐺
)THEN

𝑋
𝑖,𝐺+1

= 𝑈
𝑖,𝐺

F Memory[𝑘] = 𝐹
𝑖

CR Memory[𝑘] = CR
𝑖

𝑘+ = 1

ELSE
𝑋
𝑖,𝐺+1

= 𝑋
𝑖,𝐺

END IF
ENDFOR

/∗ Parameter adaptation ∗/
IF 𝑘 ̸= 0THEN

𝐹avg,𝐺 = mean(F Memory, 𝑘)
CRavg,𝐺 = mean(CR Memory, 𝑘)

END IF
FOR 𝑖 = 0 to NPDO

𝐹
𝑖,𝐺+1

= 𝐶(0, 𝛾
𝐹
) + 𝐹avg,𝐺

CR
𝑖,𝐺+1

= 𝐶(0, 𝛾CR) + CRavg,𝐺
ENDFOR

ENDWHILE

Algorithm 1: Adaptive Cauchy DE.

the compared DE algorithms for 𝐹
1
–𝐹
14

for 𝐷 = 30 are
summarized in Table 2.

The proposed algorithm shows better performance on
solving the unimodal problems as well as in the multimodal
problems except 𝐹

3
benchmark function. jDE shows the

best performance in 𝐹
3
benchmark function. The proposed
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Table 7: The success rate of comparison of various failure counters.

Success rate 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

𝐹
11

𝐹
12

𝐹
13

𝐹
14

FC
𝐹
= 0, FCCR = 0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

FC
𝐹
= 0, FCCR = 1 100% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

FC
𝐹
= 1, FCCR = 0 100% 100% 0% 100% 100% 100% 100% 100% 100% 98% 100% 100% 100% 100%

FC
𝐹
= 1, FCCR = 1 100% 100% 0% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100% 100%

FC
𝐹
= 2, FCCR = 2 100% 100% 0% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100%

Table 8: The experiment result of comparison of various mathematical functions for utilizing success memories.

GEN Arithmetic mean Median Best individual Itself
Mean Std Mean Std Mean Std Mean Std

𝐹
1

1500 5.0E − 36 9.4E − 36 2.9𝐸 − 27 4.0𝐸 − 27 2.4𝐸 − 31 8.2𝐸 − 31 4.2𝐸 − 19 2.5𝐸 − 19

𝐹
2

2000 2.4E − 30 1.6E − 30 5.5𝐸 − 23 4.4𝐸 − 23 8.1𝐸 − 28 2.4𝐸 − 27 2.9𝐸 − 16 1.2𝐸 − 16

𝐹
3

5000 2.9E − 12 1.1E − 12 2.1𝐸 + 00 2.5𝐸 + 00 8.1𝐸 + 00 7.5𝐸 + 00 4.7𝐸 − 04 3.3𝐸 − 03

𝐹
4

1500 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
5

3000 3.0E − 03 6.9E − 04 4.6𝐸 − 03 1.2𝐸 − 03 4.1𝐸 − 03 1.4𝐸 − 03 4.4𝐸 − 03 1.1𝐸 − 03

𝐹
6

9000 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −12569.5 7.3E − 12 −12567.1 1.7𝐸 + 01

𝐹
7

5000 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
8

1500 3.3E − 15 7.0E − 16 3.0𝐸 − 14 8.4𝐸 − 15 7.4𝐸 − 15 2.7𝐸 − 14 1.7𝐸 − 10 6.7𝐸 − 11

𝐹
9

2000 0.0E + 00 0.0E + 00 0.0𝐸 + 00 0.0𝐸 + 00 3.5𝐸 − 04 1.7𝐸 − 03 3.9𝐸 − 04 2.0𝐸 − 03

𝐹
10

1500 1.6E − 32 5.5E − 48 4.8𝐸 − 29 4.1𝐸 − 29 5.0𝐸 + 00 3.5𝐸 + 01 1.2𝐸 − 20 1.2𝐸 − 20

𝐹
11

1500 1.3E − 32 1.1E − 47 8.0𝐸 − 28 1.1𝐸 − 27 1.1𝐸 − 02 7.5𝐸 − 02 1.4𝐸 − 19 1.2𝐸 − 19

𝐹
12

3000 6.1E − 22 5.0E − 22 1.1𝐸 − 16 9.2𝐸 − 17 4.1𝐸 + 03 2.7𝐸 + 04 4.0𝐸 − 11 2.8𝐸 − 11

𝐹
13

1000 5.0E − 20 3.4E − 20 2.3𝐸 − 15 8.7𝐸 − 16 1.3𝐸 − 02 3.5𝐸 − 02 1.2𝐸 − 10 5.1𝐸 − 11

𝐹
14

3000 3.5E − 22 2.5E − 22 1.5𝐸 − 15 1.8𝐸 − 15 2.3𝐸 − 01 5.3𝐸 − 01 1.1𝐸 − 09 6.6𝐸 − 10

algorithm outperformed all multimodal problems. The sec-
ond best algorithm is jDE. Although SaDE utilizes strategy
adaptation as well as parameter adaptation, jDE shows better
results than SaDE in all benchmark functions. It means
that parameter adaptation is more important to improve
the performance of DE. MDE shows better performance
than DE/rand/1/bin in several unimodal and multimodal
problems.

Table 3 shows the success rate of comparison results. The
success rate is obtained by a mount of successful counter
divided by a mount of experiment runs (50). The proposed
algorithm and two adaptive DE algorithms (jDE and SaDE)
show perfect success rates. However, DE/rand/1/bin and
MDE show lower success rate than the proposed algorithm
and they totally failed to find global optimum in several
benchmark functions.

Figure 2 shows the average best graphs of adaptive
Cauchy DE and the compared DE algorithms.

5.4. Comparison of Adaptive Cauchy DE and FEP and CEP.
Themean deviation and the standard deviation of experiment
results obtained by adaptive Cauchy DE, DE/rand/1/bin,
FEP (Fast Evolutionary Programming), and CEP (Classic
Evolutionary Programming) for 𝐹

1
–𝐹
11

for 𝐷 = 30 are
summarized in Table 4.The results of FEP and CEP are taken
from [13, Tables 2-4].

The proposed algorithm shows better performance on
solving all benchmark functions than DE/rand/1/bin, FEP,
and CEP. The second best algorithm is DE/rand/1/bin. How-
ever, DE/rand/1/bin shows lower performance than FEP in
several benchmark functions (𝐹

6
and 𝐹

7
).

5.5. Comparison of Adaptive Cauchy DE and Adaptive LEP
and Best Lévy. The mean deviation and the standard devi-
ation of experiment results obtained by adaptive Cauchy
DE, DE/rand/1/bin, adaptive LEP, and best Lévy for 𝐹

1
and

𝐹
6
–𝐹
11

for 𝐷 = 30 are summarized in Table 5. The results
of adaptive LEP and best Lévy are taken from [18, Table 3].
The population size NP is fixed by 100 in all experiments.The
maximum number of generations is assigned by 1500 for all
benchmark functions.

The proposed algorithm shows better performance on
solving all benchmark functions than DE/rand/1/bin, FEP,
and CEP. The second best algorithm is DE/rand/1/bin again.
However, DE/rand/1/bin shows lower performance than
adaptive LEP and best Lévy in several benchmark functions
(𝐹
6
and 𝐹

7
).

5.6. Parameter Study. Tables 6 and 7 show that various failure
counter experiment results. The goal of this experiments is
finding appropriatemoments of parameter adaptation. FC

𝐹
=

𝑛 means if an individual fails to evolve itself consequently 𝑛
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Table 9: The success rate of comparison of various mathematical functions for utilizing success memories.

Success rate 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

𝐹
11

𝐹
12

𝐹
13

𝐹
14

Arithmetic mean 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Median 100% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Best individual 100% 100% 0% 100% 100% 100% 100% 100% 96% 90% 96% 92% 74% 82%
Itself 100% 100% 90% 100% 100% 98% 100% 100% 96% 100% 100% 100% 100% 100%
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Figure 2: Average best graphs of Adaptive Cauchy DE with the compared DE algorithms.

times, the scaling factor of individual is adapted. Similarly,
FCCR = 𝑛 means if an individual fails to evolve itself
consequently 𝑛 times, the crossover rate of individual is
adapted. For example, if FC

𝐹
= 1 and FCCR = 0, then an

individual’s scaling factor is adapted when the individual fails
to evolve itself, the last selection operation and the crossover
of individual aer adapted in every generation.

The results show that adapting control parameters FC
𝐹
=

0 with FCCR = 0 and FC
𝐹

= 1 with FCCR = 0 had good
performance in the comparison. However, when comparing
success rate, FC

𝐹
= 0 with FCCR = 0 had higher success rate

than FC
𝐹
= 1 with FCCR = 0 in 𝐹

3
benchmark function.

Note that when failure counter is increasing, the perfor-
mance of algorithm decreased. Therefore, parameter adapta-
tion should be performed in every generation.This is because
the individuals of DE are evolved for exploring new regions.
Therefore, it is hard to assure that the previous suitable
control parameter values are still suitable until satisfying
some probabilities or during some periods.

Tables 8 and 9 show the various parameter adapta-
tion method experiment results. The goal of these exper-
iments is finding proper method of utilizing 𝐹 Memory
and CR Memory for parameter adaptation. Arithmetic mean
indicates that the proposed algorithm utilized arithmetic
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Table 10: The experiment result of comparison of Cauchy distribution with Gaussian distribution for parameter adaptation.

GEN Cauchy 𝛾 = 0.1 Cauchy 𝛾 = 0.3 Gaussian Std = 0.1 Gaussian Std = 0.3
Mean Std Mean Std Mean Std Mean Std

𝐹
1

1500 5.0E − 36 9.4E − 36 1.6𝐸 − 28 1.2𝐸 − 28 2.8𝐸 − 32 3.4𝐸 − 32 2.8𝐸 − 30 2.8𝐸 − 30

𝐹
2

2000 2.4E − 30 1.6E − 30 3.1𝐸 − 24 1.3𝐸 − 24 1.9𝐸 − 27 2.1𝐸 − 27 7.4𝐸 − 26 4.7𝐸 − 26

𝐹
3

5000 2.9E − 12 1.1E − 12 1.3𝐸 − 02 6.7𝐸 − 02 1.3𝐸 − 01 5.6𝐸 − 01 5.3𝐸 − 12 9.0𝐸 − 12

𝐹
4

1500 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
5

3000 3.0E − 03 6.9E − 04 4.0𝐸 − 03 1.3𝐸 − 03 3.4𝐸 − 03 1.6𝐸 − 03 3.1𝐸 − 03 8.4𝐸 − 04

𝐹
6

9000 −12569.5 7.3𝐸 − 12 −12569.5 7.3𝐸 − 12 −12569.5 7.3𝐸 − 12 −12569.5 7.3𝐸 − 12

𝐹
7

5000 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00 0.0𝐸 + 00

𝐹
8

1500 3.3E − 15 7.0E − 16 8.7𝐸 − 15 2.7𝐸 − 15 4.2𝐸 − 15 1.6𝐸 − 15 6.3𝐸 − 15 1.1𝐸 − 15

𝐹
9

2000 0.0E + 00 0.0E + 00 2.0𝐸 − 04 1.4𝐸 − 03 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00
𝐹
10

1500 1.6E − 32 5.5E − 48 6.2𝐸 − 30 4.9𝐸 − 30 1.9𝐸 − 32 6.7𝐸 − 33 2.9𝐸 − 31 1.9𝐸 − 31

𝐹
11

1500 1.3E − 32 1.1E − 47 1.0𝐸 − 28 9.4𝐸 − 29 6.0𝐸 − 32 7.6𝐸 − 32 2.3𝐸 − 30 2.8𝐸 − 30

𝐹
12

3000 6.1E − 22 5.0E − 22 3.7𝐸 − 17 2.9𝐸 − 17 1.5𝐸 − 19 2.1𝐸 − 19 3.5𝐸 − 18 2.6𝐸 − 18

𝐹
13

1000 5.0E − 20 3.4E − 20 2.7𝐸 − 16 1.1𝐸 − 16 1.6𝐸 − 17 8.0𝐸 − 18 6.7𝐸 − 17 2.8𝐸 − 17

𝐹
14

3000 3.5E − 22 2.5E − 22 4.4𝐸 − 17 6.6𝐸 − 17 2.1𝐸 − 19 2.4𝐸 − 19 2.9𝐸 − 18 2.5𝐸 − 18

Table 11: The success rate of comparison Cauchy distribution with Gaussian distribution for parameter adaptation.

Success rate 𝐹
1

𝐹
2

𝐹
3

𝐹
4

𝐹
5

𝐹
6

𝐹
7

𝐹
8

𝐹
9

𝐹
10

𝐹
11

𝐹
12

𝐹
13

𝐹
14

Cauchy 𝛾 = 0.1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Cauchy 𝛾 = 0.3 100% 100% 78% 100% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100%
Gaussian Std = 0.1 100% 100% 72% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Gaussian Std = 0.3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

mean function to extract mean values from 𝐹 Memory and
CR Memory and each individual’s control parameter values
are adapted based on the mean values as location param-
eters of the Cauchy distribution for parameter adaptation.
Similarly, median indicates that the proposed algorithm
utilized median function to extract median values from
𝐹 Memory and CR Memory and each individual’s control
parameter values are adapted based on the median values as
location parameters of the Cauchy distribution for parameter
adaptation. Best individual indicates that each individual’s
control parameter values are adapted based on the best
individual’s control parameter values as location parameter
of the Cauchy distribution. Finally, itself indicates that each
individual’s control parameter values are adapted based on
its own control parameter values as location parameter of the
Cauchy distribution.

The results show that adapting control parameters based
on arithmetic mean function had good performance than
median function. This is because the outliers give us the
information about a new possibility of better control param-
eter values. Therefore, the arithmetic mean function is more
applicable thanmedian function. Parameter adaptation based
on its own control parameter values shows good success
rate in the comparison. However, the performance was lower
than that of other methods. Parameter adaptation based
on best individual’s control parameter values shows good
performance in only unimodal problems.

Tables 10 and 11 show the comparison results of the
Cauchy distribution with the Gaussian distribution for

parameter adapation method. The goal of these experiments
is finding which distribution property (short or long tail)
is more suitable for parameter adaptation. Cauchy 𝛾 =

0.1 indicates that parameter adaptation is performed based
on the Cauchy distribution and the scaling parameter of
distribution is assigned 0.1. Gaussian Std = 0.1 indicates that
parameter adaptation is performed based on the Gaussian
distribution and the standard deviation parameter of distri-
bution is assigned 0.1.

The experiment results show that the Cauchy distribution
with 𝛾 = 0.1 had good performance than others. This is
because, the Cauchy distribution generates the large step
from the peak location with higher probability.Therefore, the
control parameters of each individual are assigned either near
the average parameter value or far from that of the average
parameter value which might be the better parameter value
of the next generation.

6. Conclusion

Theparameters of DE should be adequately assigned to attain
better performance. But finding suitable values demands a
lot of computational resources. In this sense, we present a
newDE algorithmwhich utilizes success memories of scaling
factors and crossover rates to properly adjust the control
parameters of DE; the control parameters are adapted at
each generation based on the Cauchy distribution with mean
values of success memories. Experimental results showed
that the adaptive Cauchy DE algorithm generally achieves
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better performance than existing DE variants on various
multimodal and unimodal test problems. The results also
supported the claim that a long tail distribution is more
reliable than a short tail distribution in adjusting the control
parameters.
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