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A B S T R A C T

Differential Evolution (DE) is a state-of-the art global optimization technique. Considerable research effort has
been made to improve this algorithm and apply it to a variety of practical problems. Nevertheless, analytical
studies concerning DE are rather rare. This paper surveys the theoretical results obtained so far for DE. A
discussion of genetic operators characteristic of DE is coupled with an overview of the population diversity and
dynamics models. A comprehensive view on the current-day understanding of the underlying mechanisms of DE
is complemented by a list of promising research directions.

1. Introduction

Differential Evolution (DE) is a simple and effective evolutionary
algorithm used to solve global optimization problems in a continuous
domain [1,2]. It was proposed by Price and Storn in 1995 in a series of
papers [3–5] and since then, it has attracted the interest of researchers
and practitioners. Comprehensive survey papers [6,7] provide an up-
to-date view on this algorithm and discuss its various modifications,
improvements and uses.

A growing interest in DE is reflected in the number of publications
citing the most distinguished original paper [5]. The top plot in Fig. 1
illustrates the citation count of this paper retrieved from the Scopus
database. For comparison, the bottom plot shows the relative increase
in the number of articles about evolutionary algorithms (EA) indexed
in the database. As the reference level 100%, we chose the number of
publications about EA from 1999. The above-average increase in inter-
est in DE is noticeable from 2004. In the last few years, the number of
citations stabilized at a level of over 1000 papers a year, which shows
the importance of this metaheuristic.

Roughly half of the papers citing the original DE article [5]
describe its application in various domains. The rest offer modifica-
tions and improvements of the algorithm. Despite this massive amount
of research, very few papers concern the theoretical foundations of
DE. These studies lead to a better understanding of the algorithm
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and also provide tips for tuning parameters and further modifica-
tions. Only single sections in Refs. [6–8] are devoted to discussing
the most prominent analytical results about the algorithm. This paper
addresses this gap by comprehensively surveying the theoretical studies
on DE.

Section 2 introduces the DE algorithm and establishes notation.
Results concerning convergence analysis of DE and the role of invari-
ances in this algorithm are discussed in section 3. Several papers have
been devoted to modelling the differential mutation and crossover oper-
ators and their influence on population diversity. These results are sum-
marized in section 4. To close the evolutionary loop, selection must
be applied to the offspring population. Modelling this step is chal-
lenging because of dependence on the generally unknown objective
function. The resulting population dynamics models are comprehen-
sive but rather complex. They are critically reviewed in section 5.
Several promising directions of further study in the theory of DE are
unfolded in section 6, which is followed by a brief conclusion of the
paper.

2. Differential Evolution

The DE algorithm processes the population 𝐗 =
{
𝐱1, 𝐱2,… , 𝐱Np

}
consisting of Np individuals encoded as n-dimensional vectors of real
numbers. After random initialization, the population iteratively under-
goes mutation, crossover and becomes subject to a selection mecha-
nism. The pseudocode of DE is given as Algorithm 1 We denote the
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Notation

Scalar values are written in italics. Lowercase bold letters are column vectors and
uppercase bold letters denote matrices. Textual subscripts are written in regular font
and indexing ones in italics.

Abbreviations
DE Differential Evolution
CDF cumulative distribution function
PDF probability density function

Greek symbols
𝜆 weight of the target vector, see equations (4) and (5)
Φ CDF of standard normal random variable

Latin symbols
Cr crossover rate (parameter of DE)
C covariance matrix
Cov, Ĉov covariance matrix operator and its estimator
E, Ê expectation vector operator and its estimator
f objective function
F scaling factor (parameter of DE)
g(F) generalized scaling factor, see (25)
h PDF of infinite population
hm PDF of mutants in infinite population model, see (32)
k number of difference vectors
n search space dimension
 (m, v) normal distribution with mean m and variance v
Np population size (parameter of DE)
O offspring population
 big O notation
oi vector encoding the ith offspring
pc probability of the cth realization of crossover
pf probability of strategy selection in DE/either-or, see (6)
pm probability of mutation (a function of Cr), see (15)
ℝ set of real numbers
T transposition of a vector or matrix
t iteration number (typically written as a superscript)
U mutant population
ui vector encoding the ith mutant, see (1–6)
Var , V̂ar variance operator (in one-dimension) and its estimator
v variance of a one-dimensional random variable
xi vector encoding the ith individual in the population
xbest best (fittest) individual in the population
xmean population midpoint, see (12)
xr randomly selected individual
X population of individuals in DE

iteration number by superscript t, but this is omitted whenever it does
not lead to ambiguity.

Algorithm 1 Differential Evolution (DE).
Initialize parameters Cr, F, and Np and iteration
counter t ← 0
Initialize population 𝐗 =

{
𝐱t

1, 𝐱
t
2,… , 𝐱t

Np

}
while stop condition not met do

for all i ∈ {1,2,… ,Np} do
ui ← differential mutation (F; i,X)
oi ← crossover

(
Cr; 𝐱t

i ,𝐮i

)
if f (𝐨i) ≤ f

(
𝐱t

i

)
then

𝐱t+1
i ← 𝐨i

else
𝐱t+1

i ← 𝐱t
i

end if
end for
t ← t + 1

end while
return argmax𝐱t

i
f
(
𝐱t

i

)

Price and Storn [5] proposed a few variants of the DE algo-
rithm, introducing notations DE/X/Y/Z, where X denotes the reproduc-
tion method, Ythe number of difference vectors, and Z indicates the
crossover operator.

2.1. Differential mutation

The differential mutation operator has a few basic variants which
are described in references [5,9]. The most common one, denoted as
DE/rand/1, consists of randomly choosing three individuals from the
population and adding to the first of them 𝐱r1

(known as the base vec-
tor) a scaled difference between two others 𝐱r2

and 𝐱r3

𝐮i ← 𝐱r1
+ F ·

(
𝐱r2

− 𝐱r3

)
. (1)

Parameter F is called a scaling factor, as it shrinks the length of the
difference vector (𝐱r2

− 𝐱r3
) appearing in equation (1). The indices that

are the realizations of a random variable are denoted by r, whereas the
indices that are deterministic are represented by other symbols such as
i or j. The indices of individuals used by the mutation operator are often
required to be pairwise distinct, however this assumption is usually not
taken into account in theoretical analyses; cf. [10–13]. Skipping this
condition causes independence of the location of the mutant ui from
the location of its parent xi. Keeping it would introduce only a weak
dependence, especially for large populations, and would not hinder the
optimization performance [14].

Price and Storn also defined the DE/rand/k variant which uses a
larger number of difference vectors:

𝐮i ← 𝐱r1
+ F1 ·

(
𝐱r2

− 𝐱r3

)
+ · · · + Fk ·

(
𝐱r2k

− 𝐱r2k+1

)
, (2)

where the scaling factors are usually assumed to be equal F1 = F2 =
… = Fk = F. In practice, the most frequently encountered mutation
operators have one or two difference vectors.

Replacing a random base vector 𝐱r1
with the best vector xbest from

the population gives another important variant of DE, denoted as
DE/best/1:

𝐮i ← 𝐱best + F ·
(
𝐱r1

− 𝐱r2

)
. (3)

The majority of differential mutation operators can be represented
as special cases of a generalized formula which uses a sum of k scaled
difference vectors and a weighted mean between the best individual
and a randomly selected one:

𝐮i ← 𝜆𝐱best + (1 − 𝜆) 𝐱r1
+

k∑
j=1

Fj ·
(
𝐱r2j

− 𝐱r2j+1

)
, (4)

where 𝜆 is a scalar taking values in the range from 0 to 1. In particular,
formula (4) covers several common variants of DE mutation: DE/rand/1
(𝜆 = 0, k = 1), DE/rand/2 (𝜆 = 0, k = 2), DE/best/1 (𝜆 = 1, k =
1).

A weighted mean between the best individual and current individual
(rather than a random one) is used in the DE/current-to-best/k opera-
tor:

𝐮i ← 𝜆𝐱best + (1 − 𝜆) 𝐱i +
k∑

j=1
Fj ·

(
𝐱r2j−1

− 𝐱r2j

)
. (5)

The most complex of the proposed mutation variants is DE/either-or
[9,15], in which with probability pf, mutants are generated according to
scheme DE/rand/1, and with probability 1 − pf, according to a modi-
fied relation:

𝐮i ←

⎧⎪⎨⎪⎩
𝐱r1

+ F ·
(
𝐱r2

− 𝐱r3

)
if rand (0,1) < pf,

xr1
+ K ·

(
𝐱r2

+ 𝐱r3
− 2𝐱r1

)
otherwise,

(6)
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Fig. 1. Top Figure: Number of citations of paper [5] introducing DE and the division of citations into disciplines based on the Scopus bibliography database; Bottom
Figure: Number of citations within evolutionary algorithms in percent.

where K = F+1
2 . This operator replaces both differential mutation and

crossover operators, ensuring rotational invariance of the resulting
algorithm.

2.2. Crossover

In DE, the crossover operator is based on exchanging elements
between vectors encoding the parent and the mutant. It is introduced
to promote the population diversity [6]. In n-dimensional space, an
offspring 𝐨i =

[
o1,… , on

]T is created through exchanging elements of
vectors that represent its parent 𝐱i =

[
x1,… , xn

]T and the mutant 𝐮i =[
u1,… , un

]T . The most common variant is binomial crossover, denoted
as DE/X/Y/bin. The offspring is created by randomly choosing elements
either from the parent or from the mutant:

oj =
{

uj if rand(0,1) ≤ Cr

xj otherwise
for j = 1,… , n. (7)

The number of elements inherited from the mutant is described
using binomial distribution with n independent repeats and success
probability Cr. The offspring is also required to contain at least one
element from the mutant, however this assumption is often neglected
in theoretical studies; cf. [10,11]. Under unit crossover rate Cr = 1,
the offspring is equal to the mutant oi = ui.

In exponential crossover DE/X/Y/exp, two numbers are randomly
drawn. The first one is the index k which is uniformly distributed in
the range from 1 to n, and the second is the length l, which is sampled
from a censored geometric distribution with success probability Cr. The
offspring is a clone of its parent, in which elements from k to k + l

(modulo search space dimension n) come from the mutant:

oj =
{

uj if j − 1 ∈ {k (mod n),… , k + l (mod n)}
xj otherwise

for j = 1,… , n.

(8)

The continuous equivalent of the geometric distribution is the expo-
nential distribution, which explains the symbol DE/X/Y/exp.

2.3. Reproduction and selection

The selective pressure in DE is introduced primarily by a competi-
tion between a parent and an offspring. However, the effect of guiding
the population towards regions with better values of the objective func-
tion is amplified by some of the differential mutation operators. This
additional selective pressure is imposed by the reproduction mecha-
nism, i.e. the choice of base vector, which is typically described as an
element of the differential mutation operator. In DE/rand/Y/Z, an indi-
vidual 𝐱r1

drawn randomly from the population reproduces, while in
DE/best/Y/Z only the best one xbest reproduces.

Selection consists of comparing an offspring with its parent. Only
the better of them is chosen for the next generation. The greediness of
this mechanism induces elitism, but it operates locally, which promotes
the maintenance of the population spread. This approach is distinct
from population-based methods of proportional and rank reproduction
[16].

Selection in DE can be implemented either after the completion of
the whole population of mutants or in a steady-state manner through
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immediately replacing the losing vector. Most of the theoretical studies
address the former approach.

2.4. Generalizations of DE

A large number of modifications to the original DE algorithm have
been proposed so far. These include:

1. Parameter and strategy adaptation in DE [17], e.g. randomization
and self-adaptation of parameters [18,19], adaptation of the popu-
lation size [20,21], strategy adaptation [22].

2. Modification of the differential mutation operator, e.g. by choosing
the individuals based on their mutual distances [23] or fitness values
[24].

3. Enhancing DE with new mechanisms such as population archive
[25], genotypic topology [26], opposition-based initialization [27]
etc.

4. Hybridization. For instance, algorithm AM-DEGL [28] uses global
and local neighbourhoods from paper [26], self-adaptation of
parameters inspired by article [22] and local optimization based on
the approach proposed in study [29] and conducted with a classical
optimizer [30].

These and many more algorithms are comprehensively discussed in
surveys [6,7]. The theoretical analyses are typically done for classi-
cal DE. Sometimes, the obtained results can be easily generalized to
describe more cases. However, the introduction of new evolutionary
mechanisms makes this task more challenging and creates a need for
tailored theoretical studies.

2.5. Minimalistic variants of DE

Obtaining analytical results is difficult for complex DE frameworks.
On the other hand, simple methods lead to clear, interpretable models
with low computational overhead. Such a bottom-up approach towards
algorithmic design does not necessarily hinder the performance of the
algorithm [31,32].

A minimalistic variant of DE was recently introduced by Price [33].
The Black-Box Differential Evolution (BBDE) algorithm consists only of
differential mutation and local selection. The current individual xi is
used as the base vector and generates an offspring through the addition
of a randomly scaled difference vector:

𝐨i ← 𝐱i + Fr ·
(
𝐱r1

− 𝐱r2

)
, (9)

where Fr is sampled from a log-normal distribution. Next, the offspring
competes with its parent for survival to the following generation.

Scrapping all non-essential elements of DE was done in an attempt to
introduce possibly many invariances to the search algorithm in order to
improve its robustness. This approach seems to be inspired by Hansen’s
work on another state-of-the-art evolutionary algorithm, CMA-ES [34].

3. Convergence and invariances

There is a large body of papers on the theoretical foundations of
classical evolutionary algorithms. Numerous studies concern individual
aspects of these algorithms, such as the encoding of individuals [35],
adaptation mechanisms [36] or constraint handling techniques [37].
Many papers address individual algorithms – their description can be
found e.g. in articles [38,39]. The usefulness of these studies is limited
by strong assumptions and significant differences between particular
algorithms.

In the following sections, we indicate the main areas of theoretical
studies of evolutionary algorithms to present the analyses conducted for
DE in a wider context.

3.1. Computational complexity

Evolutionary algorithms generally lack theoretically justified stop-
ping criteria. Usually, the algorithm is stopped after exceeding a max-
imum number of iterations Gmax. Stopping conditions could also be
based on monitoring the population diversity, the required value of the
objective function or the frequency of improvements of the best indi-
vidual [40]. Parallel and distributed processing poses new conceptual
challenges towards measuring complexity [41].

For serially processed DE, computational complexity is driven by the
number of calls to genetic operators [42]. Their execution time is pro-
portional to the search space dimension n. Consequently, the number of
elementary operations is proportional to the maximal iteration number
Gmax (the outer loop in Pseudocode 1) and the population size Np (the
inner loop):

(n · Np · Gmax). (10)

Formula (10) implicitly assumes that the computational complexity
of the objective function evaluation c(n) is at most linearly dependent
on the search space dimension n. Otherwise, the complexity of DE is not
driven by the execution of genetic operators but rather by the number
of objective function evaluations:

(c(n) · Np · Gmax). (11)

The termination of computations does not necessarily coincide with
finding the global minimum.

3.2. Convergence proofs

Rudolph [43] provided a sufficient condition for a weak conver-
gence of a continuous optimization method to the global optimum. An
algorithm, after initialization at any feasible point, must with non-zero
probability generate a finite series of points finishing in a non-zero mea-
sure neighbourhood of any other feasible point. Consequently, weak
convergence happens if the whole feasible set is sufficiently densely
sampled. This allows one to check which optimization methods can-
not guarantee global convergence. Classical DE is one of such meth-
ods. When the whole population is initialized within a sufficiently large
attraction basin of a single local optimum, the population cannot leave
this basin because of elitist selection. Formal proof of this statement
is given by Hu et al. [44] using drift analysis for a specially created
“deceptive” function.

Hu et al. [45] show that convergence with probability 1 can be
obtained after softening the selection in DE and adding a mutation strat-
egy that samples from the whole feasible set. Another way to introduce
the global optimization property to DE is to re-initialize the popula-
tion, or its part, every ktol iterations [46]. Although the global con-
vergence property is desirable for evolutionary algorithms, its practical
usefulness is typically limited by the prohibitively long time necessary
to ensure that the optimum is reached.

3.3. Invariances

Invariances imply homogeneous performance for classes of objec-
tive functions. This allows empirical and theoretical results to be gener-
alized. The incorporation of invariances is argued to be a fundamental
design criterion for the development of search algorithms [47]. Classi-
cal DE is characterized by scale and translation invariance. DE behaves
in the same way for an objective function f ∶ ℝn → ℝ and its transform
f1(x) = f(ax + b) if the initial population is scaled accordingly, where
a ≠ 0 is a scalar and 𝐛 ∈ ℝn a translation vector.

DE is also invariant to order-preserving transformations. The selec-
tion mechanism of DE requires only an indication of which of the two
solutions is preferable. Therefore, DE behaves in the same way for an
objective function f and its order-preserving transformations, such as
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shifting f2(x) = a + f(x), scaling by a positive number a > 0, f3(x) =
a · f(x), or composition with a strictly increasing function s ∶ ℝ → ℝ,
f4(x) = s(f(x)). Consequently, results obtained for simple models gen-
eralize to the whole classes of problems. For instance, DE behaves in
exactly the same way for the quadratic function f(x) = xTx as for
all radial functions, whose values depend solely on the distance from
the origin and are strictly increasing. DE uses only the order between
individuals and operates in an ordinal rather than interval scale. This
property might be useful in the rare cases when it is possible to com-
pare two solutions, but it is not feasible to quantify the objective
function, e.g. when comparing preference towards certain market bas-
kets.

Classical DE is not rotationally invariant. An angle-preserving trans-
formation of the search space changes the offspring distribution. This
is a result of crossover operators which exchange elements along the
axes of the coordinate system. This problem is addressed by rotationally
invariant crossover operators. In DE/either-or [9], arithmetic recombi-
nation is built into the differential mutation. As an alternative solution,
Guo and Yang [48] proposed crossover along the eigenvectors of the
population rather than the axes of the coordinate system. This approach
makes use of the experimentally observed adaptation of the population
to the local shape of the objective function, which is known as “contour
fitting”.

Price [15] analysed both classical DE and DE/either-or. He showed
that these algorithms suffer from mutation bias, i.e. a situation in which
the mutants are not centre-symmetrically distributed around the current
vector. The requirement of central symmetry is stronger than the coin-
cidence of the expectation of the mutant distribution with the current
vector.

Price [15] also underlined the presence of selection bias, i.e. a situ-
ation in which trial vectors are not symmetric around the current indi-
vidual but shifted towards the population midpoint:

𝐱mean = 1
Np

Np∑
i=1

𝐱i. (12)

Selection bias disappears if the current individual xi is used as the
base vector. These ideas have led to a drift-free DE, in which “each oper-
ation has a unique function: mutation explores, recombination homog-
enizes and selection improves” [15]. Price elaborated this approach fur-
ther in the BBDE algorithm [33] presented in section 2.4.

3.4. Universal optimization algorithm

The no free lunch theorem for optimization was proved by Wolpert
and Macready in article [49] and further discussed by Köppen et al.
[50]. It shows that in a finite search space for any non-repeating opti-
mization algorithm and any performance measure, obtaining above-
average performance for one class of problems correlates with below-
average performance for another class. There are some discussions
about the assumptions necessary to generalize the no free lunch theorem
to continuous domains [51]. No single “best” universal optimizer exists,
but for particular problem classes, some algorithms give much better
results than others [52].

Optimization methods are effective if they exploit the regularities of
the problem [53,54] such as symmetry, convexity or continuity. From
the theoretical point of view, a “typical” optimization task is extremely
noisy and has no structure [55]. On the other hand, practical problems
are most often characterized by a large number of regularities, such
as continuity. Consequently, the no free lunch theorem does not under-
mine the sense of developing new optimizers [53]. Instead, it shows
the necessity to appropriately match the problems with the algorithms
[52].

Properties of the optimization problem may themselves become the
subject of analyses. Characterizing the influence of the problem prop-
erties on the algorithm’s performance is a way to overcome the limita-

tions imposed by the no free lunch theorem by appropriately assigning
the algorithm to a given task [56].

3.5. Other approaches

Among the first theoretical results about genetic algorithms were
the schema theorem [57] and building block hypothesis [58]. These
approaches assume that the optimization problem is separable to some
degree. This echoes in the exponential crossover operator in DE, which
exchanges only consecutive elements of the vectors that encode the par-
ent and the mutant. However, the building block hypothesis does not
explain the performance-related issues of the search process [39,59].

Population drift in evolutionary algorithms can be also modelled
using supermartingales [60,61]. This kind of analysis can be used to
derive the lower bound of the expected runtime of the analysed algo-
rithm [62].

4. Population diversity in DE

Before discussing the results of studies concerning population diver-
sity and dynamics in DE, it is worth summarizing the assumptions com-
monly made by researchers:

1. Individuals for differential mutation are drawn with replacement,
i.e. the requirement of pairwise distinctness is abandoned, to make
these vectors independent [10–13,63–66].

2. It is not required that at least one element of the mutant must be
crossed over with the parent vector [10–12,64].

3. DE is run in a one-dimensional search space, which makes formulas
and proofs easier [10–12,64,67].

4. An infinite population is used, or the expected value of the popula-
tion distribution is calculated [11–13,68].

Assumptions 1 and 2 have a rather technical character, and 3 and 4
significantly restrict the applicability of results.

4.1. Diversity analyses

Zaharie [11] investigated the population diversity of DE/rand/1/bin
in one dimension. For a given population 𝐗 = {x1,… , xNp

}, mutants
U are realizations of a random variable. Consequently, their empiri-
cal variance V̂ar(𝐔) is also a one-dimensional random variable. Zaharie
used probability theory to prove that the expected variance of individ-
uals after mutation is given by

E
(

V̂ar(𝐔)
)
=

(
2F2 +

Np − 1
Np

)
V̂ar(𝐗), (13)

where V̂ar is an estimate of variance. The expectation of the empirical
variance is taken with respect to all possible mutant populations gen-
erated by differential mutation. This expectation can be estimated with
repetitive runs of the algorithm. After crossover between mutants and
the parents, the expected variance of the offspring population is given
by

E
(

V̂ar(𝐎)
)
=

(
1 + 2pmF2 − 2pm

Np
+

p2
m

Np

)
V̂ar(𝐗), (14)

where pm denotes the crossover probability that is defined for a general,
n-dimensional search space as [63]:

pm =
⎧⎪⎨⎪⎩

Cr
n − 1

n
+ 1

n
for binomial crossover,

1 − Cn
r

n · (1 − Cr)
for exponential crossover.

(15)

For binomial crossover, the relationship between crossover probabil-
ity pm and crossover rate Cr is linear, whereas for exponential crossover
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it is non-linear, especially in high-dimensional search spaces.
Relationships among the variances of parents, mutants, and off-

spring for several other DE variants are derived in papers [8,69] and
summarized in article [70]. In particular, for DE/best/1, the expected
variance after mutation and crossover reads:

E
(

V̂ar(𝐎)
)
=

(
1 + 2pmF2 − pm − pm(1 − pm)

Np

)
V̂ar(𝐗)

+ pm(1 − pm)
Np − 1

Np

(
xbest − Ê(𝐗)

)2
, (16)

whereas for DE/either-or, the expected offspring variance is:

E
(

V̂ar(𝐎)
)
= V̂ar(𝐗) ·

[
p2

f ·
(

1 + 2F2 − 1
Np

)

+ 2pf(1 − pf)
(

Np − 1
Np

+ F2 + 3K2 − 2K

)

+ (1 − pf)2
(

Np − 1
Np

+ 2
Np − 2

Np
(3K2 − 2K)

)]
. (17)

Results obtained by Zaharie show that for all considered DE variants,
a linear relationship holds between the expected variances of offspring
and the empirical variance of the population:

E
(

V̂ar(𝐎)
)
= c · V̂ar(𝐗) + d, (18)

where c and d are scalars [70].
Zaharie did not show how the variance of population changes after

selection, i.e. after completing the whole iteration of the algorithm. Dif-
ficulties in computing this quantity are related primarily to its depen-
dence on the objective function.

Formulas (13), (14), (16), and (17) directly depend on the popula-
tion size Np. For large populations, quantities (Np − 1)∕Np and 1∕Np
tend to 1 and 0 respectively. Thus the dependence weakens towards
insignificance, which simplifies the diversity equations. On the other
hand, for low Np values, the actual variances of the mutant and off-
spring populations may largely differ from their expectations. This is
due to the poor efficiency of small sample statistics.

Zaharie argues that her one-dimensional analysis generalizes to
multi-dimensional cases because all elements of vectors that encode
individuals are evolved according to the same rule, hence analysis can
be conducted componentwise [71]. Therefore, the expected values and
variances transform to the expectation vectors and covariance matrices
in higher-dimensional spaces.

Zaharie and Micota [70] generalized the variance formulas for con-
strained optimization. Offspring falling outside of the feasible range for
any dimension were randomly reinitialized. This led to a mixture of a
trimmed offspring distribution and a uniform one.

4.2. Critical regions for parameters

Formulas describing population diversity give insight into DE oper-
ators and provide bounds for setting the parameters. For instance, com-
paring the population variance before and after applying mutation and
crossover allows for determining the critical values of the parameters
for which the offspring population will have lower diversity than the
parent population. Such a diversity loss without imposing selective
pressure makes DE prone to premature convergence for every objec-
tive function [12]. For DE/rand/1/bin, equating the empirical variance
of population V̂ar(𝐗) to the expected empirical variance of the offspring
E
(

V̂ar(𝐎)
)

yields

2F2pm − 2pm
Np

+
p2

m
Np

= 0. (19)

Equation (19) allows for the calculation of the critical value of the
scaling factor Fcrit below which premature convergence is inevitable:

Fcrit =
√

1 − pm∕2
Np

. (20)

The critical regions were further analysed by Zaharie and Micota in
paper [70] and presented as several plots in the F − Cr domain for a
few DE variants. To avoid undesired behaviour, such as the premature
collapse of population diversity, parameters have to be chosen outside
of the critical regions.

Zaharie [8] equated the expected variances of the DE/either-or oper-
ator, described by formula (6), for two different pf settings. The result-
ing equation was solved with respect to K. To make the operator inde-
pendent on the choice of pf, values of K had to be very close to the
suggested dependence K = (F + 1)∕2. This result provides a theoreti-
cal background to an empirically-derived rule.

4.3. Binomial and exponential crossover

The crossover operator in DE was investigated by Zaharie
[63,65]. Her comparison of the two most common methods, binomial
DE/X/Y/bin and exponential DE/X/Y/exp was based on the crossover
probability pm provided in equation (15). She concluded that the differ-
ence in performance of these operators mainly follows from the number
of elements exchanged between the vectors that encode the offspring
and the parent.

In high-dimensional search spaces, the impact of the crossover rate
on crossover probability strongly depends on the operator used [63].
For binomial crossover, the difference between pm and Cr is small and
vanishes completely if the individuals taking part in DE are not required
to be pairwise distinct. These parameters are therefore approximately
equal pm ≈ Cr. The expected number of exchanged elements is npm =
(n − 1)Cr + 1.

In the exponential crossover operator, crossover probability depends
non-linearly on the crossover rate. The enumerator in formula (15)
quickly vanishes due to the exponentiation of Cr ∈ [0,1]. The expected
number of exchanged elements is npm = (1 − Cn

r )∕(1 − Cr). Conse-
quently, exponential crossover is sensitive only to a very small range
of Cr values, such as Cr ∈ [0.9,1]. This range narrows further for higher
search space dimensions n. In a limit, when n → ∞, mutation probabil-
ity is zero for all crossover rates smaller than one [63]:

lim
n→∞

pm =
⎧⎪⎨⎪⎩

Cr for binomial crossover,
0 for exponential crossover and 0 ≤ Cr < 1,
1 for exponential crossover and Cr = 1.

(21)

These results show that the crossover rate Cr ≈ 1 is necessary for
exponential crossover to avoid very low crossover probabilities pm in
high-dimensional search spaces.

4.4. Generalized scaling factors

Opara and Arabas [66] used the Central Limit Theorem to show
that the distribution of a sum of k difference vectors (2) weakly con-
verges for k → ∞ to a multivariate Gaussian distribution. Following the
approach by Zaharie [11], their analysis was based on the expectation
vector and the covariance matrix of the mutant population. These statis-
tics, which determine Gaussian distribution, are given as

E
(

Ê(𝐔)
)
= 𝐱base, (22)

E
(

Ĉov(𝐔)
)
=

(
1 + 2

k∑
j=1

F2
j

)
· Ĉov(𝐗), (23)
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where Ĉov(𝐗) denotes the empirical covariance matrix of the current
population. Weak convergence means that for large k differential muta-
tion (2) can be approximated with Gaussian mutation:

𝐮i ← 𝐱r1
+

√
2kF · 𝐪∞, where 𝐪∞ ∼  (

0, Ĉov (𝐗)
)
. (24)

For many DE variants, the expected covariance matrix of mutants
is proportional to the covariance matrix of the parent population, i.e.
d = 0 or d ≈ 0 in equation (18). Consequently, DE mutation operators
differ in the mutation range but keep the same search directions. This
is described by a generalized scaling factor g(F):

E
(

Ĉov(𝐔)
)
= g(F) · Ĉov(𝐗). (25)

One can compensate for the differences among mutation ranges
with appropriate modification of the scaling factor [72]. The gener-
alized scaling factors show that many variants of differential muta-
tion can be modelled with a base variant with an appropriately trans-
formed, equivalent scaling factor. For instance, DE/current-to-best/1,
defined by formula (5), corresponds to DE/best/1 with generalized
scaling factor FDE∕best∕1 =

√
1
2 [(1 − F1)2 + 2F2

2 ] and to DE/rand/1 with

FDE∕rand∕1 =
√

1
2 [(1 − F1)2 + 2F2

2 − 1].
The generalized scaling factors for several differential mutation

operators are listed in a table in paper [72]. This allows for a com-
mon, synthetic analysis of many DE variants. Moreover, the choice of
a particular mutation operator does not change the optimization per-
formance much when the generalized scaling factor is kept at the same
value. This effect is particularly well observed for mutation operators
using a larger number of random elements, such as DE/rand/2.

5. Population dynamics models

Evolutionary algorithms are often modeled as Markov chains
[38,73,74], which enables the population diversity to be analysed in
consecutive iterations. Most DE variants, including the classical one,
satisfy the Markov property, i.e. the distribution of the next population
depends only on the current population rather than on a series of the
previous ones.

It is convenient to assume an infinite population that is spread over
the search space, as it enables the use of calculus [75–77]. In this
case, the global minimum is already found in the first iteration. Conse-
quently, properties such as “convergence speed” must be redefined. This
is typically done through analysing statistics that describe population
distribution, such as its expectation vector or covariance matrix. Con-
vergence is not understood as hitting the neighbourhood of the global
optimum, but rather as the growth of sampling density in that region.

The infinite population model describes the expected location of the
population midpoint, which does not necessarily coincide with observa-
tions obtained for a single run of the algorithm with a finite population.
Consider a bimodal, symmetric objective function. With a low mutation
range, the whole population (and its mean) converges to either of the
optima. However, the expected population distribution is bimodal, with
a mean located halfway between the optima [78]. The infinite popula-
tion model does not describe a single run of the algorithm but rather an
average of many independent runs.

5.1. Dynamics of a one-dimensional population

The mutant distribution is described by a sum of random variables
corresponding to choosing individuals that take part in differential
mutation. Ali [79] derived the probability density of the mutant dis-
tribution for DE. He used direct integration for a uniformly distributed
population in a one-dimensional search space based on an infinite popu-
lation model. Wang and Huang [67] advanced Ali’s results by analysing
crossover and computing the distribution of the next population for a

monotonous objective function. They also provided illustrative exam-
ples showing how the population distribution changes over the first
iteration.

Ali and Fatti [80] approximated differential mutation with beta dis-
tribution, which allowed them to avoid generating mutants outside the
box constraints. Wang and Huang [67] explicitly analysed the projec-
tion of unfeasible solutions on the box constraints. This aspect is rarely
considered in theoretical analyses of DE, despite its significant influence
on optimization performance [81].

Xue et al. [82,83] used the DE/current-to-best/k operator, defined
by equation (5), for multi-objective optimization. They provided a pop-
ulation diversity model based on componentwise Gaussian approxima-
tion of differential mutation. Next, they developed population dynamics
formulas that were greatly simplified because the analysed algorithm
did not use a selection operator. The populations in consecutive iter-
ations were approximately Gaussian. The following condition on the
parameters is necessary to avoid premature convergence in this model:

2kF2 + (1 − 𝜆) > 1. (26)

Inequality (26) was derived from a condition describing the expo-
nential vanishing of the population covariance matrix without selective
pressure.

5.2. Differential Evolution as a dynamic system

Dasgupta et al. [10,64] described the population of DE/rand/1/bin
in a one-dimensional search space as a dynamic system. They used
notions from probability theory and calculus. In their approach, each
individual was treated as a particle moving with a certain velocity. The
iterative character of DE was interpreted as a discrete approximation of
continuous time. Their analysis was performed in the neighbourhood
of the minimum, assuming that the objective function was twice dif-
ferentiable and did not change too rapidly (i.e. fulfilled the Lipschitz
condition). In this case, the expected velocity of individual xt

i in itera-
tion t could be approximated with

E

(
dxt

i
dt

)
≈ − k

8
Cr ·

(
(2F2 + 1)V̂ar(𝐗t) + (xt

mean − xt
i )

2
) df (xt

i )
dx

+ 1
2

Cr · (xt
mean − xt

i ), (27)

where df (x)
dx is a spatial differential of the objective function, and V̂ar(𝐗t)

denotes the empirical variance of population distribution. The dif-
ference between the population midpoint and the current individual
xt

mean − xt
i appearing in formula (27) is a symptom of the selection bias.

In the above work, a step function modelling “greedy selection” was
approximated with a logistic, sigmoidal function. This was then sub-
stituted with a linear term from the Maclaurin series. Therefore, in
equation (27), factor k appeared, which is a “moderate value” of the
constant from the exponent of the logistic function. These transforma-
tions implicitly modify the replacement mechanism in DE that lowers
the selective pressure. This introduces a possibility that a weaker off-
spring replaces a stronger parent.

Dasgupta et al. [10,64] underlined the similarity between the form
of equation (27) and the gradient descent optimization described with
formula

dx
dt

= −a df (x)
dx

+ b, (28)

where a is the learning rate and b is the momentum. In equation (27),
the learning rate would be

aDE = k
8

Cr ·
(
(2F2 + 1)V̂ar(𝐗t) + (xt

mean − xt
i )

2
)
, (29)

and momentum

bDE = 1
2

Cr · (xt
mean − xt

i ). (30)
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The term −aDE
df (xt

i )
dx is responsible for guiding the population in the

direction of the decreasing gradient, whereas bDE represents velocity
towards the population midpoint. In contrast to the classical gradient
descent method, quantities aDE and bDE are not constant but depend on
the population distribution. To some extent, this distorts the analogy
with gradient decent, which can be noted in a reformulation of equation
(27)

dxt
i

dt
= −aDE(xt

i ,𝐗
t)

df (xt
i )

dx
+ bDE(xt

i , x
t
mean). (31)

DE is invariant under monotonic (order-preserving) transforma-
tions of the objective function. Weakening this assumption through
modelling selection with a linear approximation of the logistic func-
tion implicitly changes the selection mechanism from elitist to quasi-
proportional. This allows the mechanisms of DE to be highlighted. Infor-
mally, these mechanisms are described as performing “gradient opti-
mization without computing gradient” and adjusting the speed of DE
using the spread of the population.

5.3. Dynamics of infinite population

For a model of infinite population whose distribution in iteration t
is described with the probability density function (PDF) ht(x), Ghosh et
al. [68] proved that the PDF of mutants ht

m,i(𝐱) corresponding to the
i-th parent is given by

ht
m,i(𝐱) =

1
F2P3,Np−1

∑
i1

∑
i2

∑
i3

i1≠i2≠i3≠i

ht
i1
(𝐱) ∗ht

i2

(𝐱
F

)
∗ht

i3

(
−𝐱

F

)
, (32)

where constant P3,Np−1 denotes the number of permutations of three
elements from Np − 1, and symbol ∗ indicates n-dimensional convolu-
tion.

Ghosh et al. [68] also introduced a special notation to describe the
result of a particular crossover execution c. Indices of elements origi-
nating from either mutant or parent are denoted as ac and bc. Notation
𝐱𝐚c

, 𝐲𝐛c
describes a vector formed from elements of vector x in positions

ac and vector y in positions bc. For instance, for a five-dimensional
search space and values

𝐱 = [x1, x2, x3, x4, x5]T , (33)

𝐲 = [y1, y2, y3, y4, y5]T , (34)

𝐚c = {1,2,4} , (35)

𝐛c = {3,5} , (36)

we obtain

𝐱𝐚c
, 𝐲𝐛c

= [x1, x2, y3, x4, y5]T . (37)

This notation facilitates the common analysis of binomial and expo-
nential crossover. Consider a particular crossover execution in which
elements with indices ac originate from the mutant and elements with
indices bc from the parent. To generate an offspring at point 𝐨 = 𝐨𝐚c

, 𝐨𝐛c
we need a mutant with elements of o at coordinates ac and a parent
with elements of o at coordinates bc. The remaining coordinates do not
influence the offspring. Therefore, the PDF of an offspring ht

o is given
by an integral of a product of PDFs of the mutant ht

m(𝐨𝐚c
,𝐮𝐛c

) and the
parent ht(𝐲𝐚c

, 𝐨𝐛c
):

ht
o

(
𝐨𝐚c

, 𝐨𝐛c

)
= ∫ℝ|𝐚c|×ℝ|𝐛c|ht

m

(
𝐨𝐚c

,𝐮𝐛c

)
ht

(
𝐲𝐚c

, 𝐨𝐛c

)
d𝐲𝐚c

d𝐮𝐛c
, (38)

where |ac| and |bc| denote the number of elements originating from
the mutant and the parent, |ac| + |bc| = n. Variables 𝐲𝐚c

and 𝐮𝐛c

denote the irrelevant elements of the vectors encoding the parent and
the mutant, which are integrated out.

The choice of an individual that survives to the next iteration
depends on the comparison of the objective function values for the
parent and the offspring. This can be described through integration
over the level sets i.e. the regions for which the value of the objective
function is better (or worse) than for the offspring f (𝐱) = f (𝐱𝐚c

, 𝐱𝐛c
) ≥

f (𝐨𝐚c
, 𝐱𝐛c

). In this way, the population PDF in the next iteration
becomes:

ht+1
pc

(𝐱) = ht(𝐱) ∫
f (𝐱)<f (𝐨𝐚c ,𝐱𝐛c )

ht
m(𝐨𝐚c

,𝐮𝐛c
)d𝐨𝐚c

d𝐮𝐛c

+ ∫
f (𝐱)≥f (𝐲𝐚c ,𝐱𝐛c )

ht
m(𝐱𝐚c

,𝐮𝐛c
)ht(𝐲𝐚c

, 𝐱𝐛c
)d𝐲𝐚c

d𝐮𝐛c
. (39)

The first summand in equation (39) describes a situation in which
the offspring is rejected in selection and its parent gets to the next pop-
ulation. The integral describes the probability of such an event. The
second integral denotes the opposite case: the offspring generated in
point 𝐱 = 𝐱𝐚c

, 𝐱𝐛c
wins the competition against the parent 𝐲𝐚c

, 𝐱𝐛c
.

The derivation of formula (39) was conducted for a fixed choice
of indices ac and bc. To describe the general case, Ghosh et al. [68]
summed density (39) over all possible executions of the crossover
operator using the probability of particular crossover outcomes pc as
weights:

ht+1(𝐱) =
2n−1∑
c=1

pcht+1
pc

(𝐱). (40)

The summation runs over all 2n − 1 possible realizations of the
crossover operator (at least one element was required to come from the
mutant). Hence, the model’s computational complexity grows exponen-
tially with the search space dimension n, which significantly constrains
the scope of its application.

After the substitution of equation (39) into (40) the final dynamics
formula becomes:

ht+1(𝐱) =
2n−1∑
c=1

pc

(
ht(𝐱)∫f (𝐱)<f (𝐨𝐚c ,𝐱𝐛c )

ht
m(𝐨𝐚c

,𝐮𝐛c
)d𝐨𝐚c

d𝐮𝐛c

+ ∫f (𝐱)≥f (𝐲𝐚c ,𝐱𝐛c )
ht

m(𝐱𝐚c
,𝐮𝐛c

)ht(𝐲𝐚c
, 𝐱𝐛c

)d𝐲𝐚c
d𝐮𝐛c

)
. (41)

Equation (41) links the population distribution in subsequent itera-
tions. The influence of the mutation operator is described by the inte-
grands, selection is depicted in the regions of integration, and crossover
is modelled by an exhaustive sum.

5.4. Convergence analysis with Lyapunov’s second method

Modelling the population in DE as a dynamic system allows its
stability and convergence to be investigated using Lyapunov’s second
method. This method provides the conditions which ensure that a sys-
tem with constantly decreasing energy will reach the zero energy state
identified by a stationary point. The main advantage of this method is
the possibility of analysing the stability of the solution without solving
the dynamics equations.

Dasgupta et al. [64] used Lyapunov’s second method to show that
a population located close to an isolated optimum approaches it in a
stable way and without any kind of oscillatory behaviour. These results
were further developed in a paper by Ghosh et al. [68]. Derivation of
the Lyapunov function was based on the population dynamics model
detailed in Section 5.3.

Ghosh et al. [68] did not solve equation (41). Instead, they used it to
derive a non-constructive proof of the convergence of DE. They defined
a Lyapunov function as the difference between the expected values of
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the objective function with respect to measures given by population
distributions in two consecutive populations. Next, they showed that
this function equals zero in the global minimum and is positive for all
other arguments. Its changes between consecutive iterations, which are
an approximation of a time derivative, decrease during the execution of
the algorithm. Lyapunov’s second method ensures convergence of the
population to a one-point distribution located in the global minimum.

The above theoretical result seems to contradict experimentally
observed cases in which DE does not find the global minimum but con-
verges to a local one. Ghosh et al. [68] use an important additional
assumption of an infinite population initialized in an area containing
the global minimum. Therefore, for all individuals outside of the neigh-
bourhood of the minimum, there is a non-zero probability that an off-
spring falls there and then replaces the parent. The theorem proved
in paper [68] means that infinite population distribution almost surely
converges to the global minimum, which is hit already in the first iter-
ation.

Similar results are derivable with the standard probability theory.
However, use of Lyapunov’s second method potentially opens new pos-
sibilities. For instance, one can analyse convergence speed through
investigating the values of the Lyapunov function in consecutive iter-
ations [68].

5.5. Gaussian approximation

Zhang and Sanderson devoted a chapter in their monograph [13]
to analysing the dynamics of DE/rand/k/none (for Cr = 1, so that
mutants directly become offspring). They considered an n-dimensional,
quadratic objective function. Without the loss of generality, it was
assumed that the population midpoint was located on the first coor-
dinate axis. This property held for the expected distributions in consec-
utive populations.

It was also assumed that the population in each iteration t =
1,2,3,… had uncorrelated, multivariate Gaussian distribution

𝐗t ∼  (𝐱t
mean,𝐂t), (42)

with expectation vector 𝐱t
mean = [mt ,0,… ,0]T and diagonal covariance

matrix

𝐂t =

⎡⎢⎢⎢⎢⎢⎣

vt
1 0 · · · 0

0 vt
2 ⋮

⋮ ⋱ 0

0 · · · 0 vt
2

⎤⎥⎥⎥⎥⎥⎦
. (43)

Gaussian approximation (42) accurately represents the axial sym-
metry of the considered case, but it neglects the skewness of the distri-
bution of the population approaching the minimum.

Zhang and Sanderson derived equations describing the parameters
of the expected population distribution in iteration t + 1 based on their
values in iteration t, which constituted a system:

(
mt+1)2 =

(
mt −Δmt)2 +

vt+1
1 + (n− 1)vt+1

2
Np

, (44)

vt+1
1 = 𝜋 − 1

𝜋

vt
1 + wt

1
2

, (45)

vt+1
2 = vt

2Φ
⎛⎜⎜⎝−

mt
−√
vt
+

⎞⎟⎟⎠ + wt
2Φ

⎛⎜⎜⎝
mt
−√
vt
+

⎞⎟⎟⎠ + (46)

−
2
((

vt
2
)2 +

(
wt

2
)2)2√

2𝜋vt
+

(
−
(mt

−)2

2vt
+

)
,

where Φ denotes the cumulative distribution function (CDF) of the stan-
dard normal distribution, wt

1 and wt
2 describe variances of the mutant

population

wt
1 = (1 + 2kF2)vt

1, (47)

wt
2 = (1 + 2kF2)vt

2, (48)

and symbols Δmt, mt
− and vt

+ depict the following quantities:

Δmt =
2mt (vt

1 + wt
1
)

√
2𝜋

√
4(mt)2

(
vt

1 + wt
1
)
+ 2 (n − 1)

((
vt

2
)2 +

(
wt

2
)2) · (49)

·exp
⎛⎜⎜⎝−

(n− 1)2
(
vt

2 − wt
2
)2

8(mt)2
(
vt

1 + wt
1
)
+ 4 (n − 1)

((
vt

2
)2 +

(
wt

2
)2)⎞⎟⎟⎠ , (49)

mt
− = (n − 1)(vt

2 − wt
2) + (vt

1 − wt
1), (50)

vt
+ = 4

(
mt)2(vt

1 + wt
1) + 2

((
vt

1

)2
+

(
wt

1

)2
)

(51)

+ 2(n − 1)
((

vt
2

)2
+

(
wt

2

)2
)
.

Equations (44)–(46) describe the elements of the expectation vec-
tor and covariance matrix of the expected population distribution. This
model adequately describes the dynamics of large populations in which
the empirical distribution is close to the expected distribution. Based on
a simulation study, Zhang and Sanderson [13] conjectured that after a
certain time, the rate of change of parameters of the Gaussian distribu-
tion stabilizes.

The results from Zhang and Sanderson allow practitioners to com-
pute the critical value of the scaling factor F, below which the undesir-
able phenomenon of premature convergence occurs. Far away from the
minimum, the quadratic objective function locally resembles a hyper-
plane and the critical value is F =

√
1∕(𝜋 − 1) ≈ 0.683, whereas in the

neighbourhood of the minimum it drops to F = 0.48.

5.6. DE and Markov chain Monte Carlo

Ter Braak [84] introduced DE into a framework of Markov chain
Monte Carlo methods. The goal was to draw samples with a density pro-
portional to the objective function values rather than perform standard
optimization. The objective function was assumed to be the density of
some continuous probability distribution, i.e. a non-negative function
with a unit integral.

The DE-MC algorithm [84] differs from classical DE in two respects.
First, differential mutation uses the parent as the base vector and adds
a realization of a normal random variable:

𝐮i ← 𝐱i + F ·
(
𝐱r1

− 𝐱r2

)
+ 𝐞, where 𝐞 ∼  (0, b · 𝐈) , (52)

where b is a small positive scalar and I is an identity matrix.
Second, greedy selection between the parent xi and offspring oi =

ui is replaced with the Metropolis acceptance rule. The replacement
probability equals

pr =
⎧⎪⎨⎪⎩

min
(

f (𝐮i)
f (𝐱i)

,1
)

if f (𝐱i) > 0,

1 if f (𝐱i) = 0.
(53)

The DE-MC algorithm yields a Markov chain, which has a unique
stationary distribution with density f. In the proof, Ter Braak first shows
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that the resulting chain is reversible and therefore the stationary distri-
bution is proportional to f. To derive the uniqueness of the chain, the
unboundedness of the support of e is necessary, so that the population
can move between all of the local optima by means of macromutation.

From the Bayesian point of view, the significance of Ter Braak’s
results consists of the fact that the DE-MC algorithm adapts
the direction and range of the sampling distribution and effec-
tively accommodates heavy-tailed and multimodal target distributions
[85].

The resulting population dynamics in DE-MC is quite different from
other DE variants. Rather than converging to a single optimum, DE-MC
maintains population diversity. The population traverses the whole fea-
sible set, with sampling density proportional to the objective function.
The resulting algorithm has an exploratory character and seems more
appropriate for Monte Carlo sampling than for optimization.

6. Discussion and further study

6.1. Comparison of theoretical results on DE

In sections 4 and 5, we discussed theoretical results on the diversity
and dynamics of the population in DE. Comparison of these models can
be based on the analysis of their assumptions, the scope of applicability,
obtained results and mathematical tools used. These criteria were used
to summarize the current state of knowledge about population dynam-
ics in DE in Table 1.

Most dynamics models focus on the classical DE/rand/1 variant.
Sometimes, certain modifications are added, such as the introduction of
soft selection. The latter makes it possible to prove global convergence.
It also facilitates the use of calculus by smoothing the discontinuous
step function describing greedy selection into a continuous, differen-
tiable sigmoid.

Several of the theoretical models are derived in a one-dimensional
space. This simplifies the necessary mathematical formalisms. However,
crossover based on exchanging elements of vectors is trivialized in a
one-dimensional space. Moreover, it is not possible to analyse the adap-
tation of search directions.

Many papers focus on the diversity of populations of parents,
mutants, and offspring. Diversity is typically measured with the sec-
ond central moment, i.e. variance (covariance matrix). Together with
the population midpoint (expectation vector) we obtain parameters that
uniquely characterize Gaussian distribution, which is another tool com-
monly used in theoretical analyses of DE.

There is still a gap between the results obtained on a theoret-
ical basis and their practical use. However, it is worth mentioning
approaches which have successfully bridged these two areas. Among
the results that have influenced applications is Zaharie’s analysis of
critical values for the scaling factor and crossover rate. The develop-
ments of DE/either-or and BBDE by Price were also motivated by the-
oretical considerations. Recently, Arabas and Biedrzycki improved the

efficiency of various EAs, including several types of DE, through the
analysis of the midpoint dynamics [86].

6.2. Further study

Theoretical results concerning DE are still scarce and often of an
abstract nature. This is clear from bibliometric analysis, which indicates
huge disproportion between theory-oriented and experimental studies.
Despite several valuable results obtained from previous studies, there
are still many open issues within theoretical analyses of DE. Below we
unfold some of the promising research directions.

1. The two features distinguishing DE from classical evolutionary
algorithms are differential mutation and local, greedy selection.
Although the former has been the focus of several studies, the
latter seems largely unexplored. Direct modelling of selection in
DE is a difficult task due to its elitist, local character and depen-
dence on the objective function. Nevertheless, the impact of the
selection mechanism on search dynamics is profound. Investiga-
tions into this issue could clarify whether DE resembles an adap-
tive swarm optimizer or rather a group of loosely related hill-
climbers.

2. Population dynamics models for DE need further development. The
ones currently available provide little operational advice. Moreover,
the models are much more mathematically complicated than the
original DE algorithm. Consequently, conclusions are less straight-
forward, which hinders their translation into new algorithmic devel-
opments. Population dynamics models are a possible way to com-
pute statistics such as the expected first hitting time, i.e. the average
time necessary to find an optimal solution.

3. Population size Np has gained the least attention of all the con-
trol parameters of DE. In theoretical studies it is usually bypassed
by analysing infinite population size. This assumption is some-
times implicitly introduced as a consequence of replacing the par-
ticular population characteristics with their expectations. The infi-
nite size assumption is however poorly fulfilled in cases of small
or dynamic populations, which often lead to improved perfor-
mance [21]. It would be interesting to generalize the population
diversity and dynamics models to explicitly handle the population
size.

4. Over consecutive iterations, population distribution in DE adapts
to the local shape of the optimized function. This phenomenon is
known as “contour fitting” and plays a significant role in the opti-
mization of highly-conditioned functions. Despite common empiri-
cal evidence, “contour fitting” is still waiting for theoretical ground-
ing.

5. The formal analysis is best suited to simple algorithms with a
clear, coherent internal structure. Classical DE is only partially
characterized by these qualities because recombination is present
in both mutation and crossover. Moreover, some variants of dif-

Table 1
Comparison of population dynamics models in DE.

Author DE variant Main results Assumptions and techniques

Zaharie [11,63,70] DE/rand/1/Z Population diversity after mutation and crossover,
critical regions for parameters

Analysis of the moments of population distribution

Zhang and Sanderson [13] DE/rand/k Dynamics for the radial objective function Gaussian distribution of populations, geometrical
approach

Dasgupta et al. [10,64] DE/rand/1 soft selection Analogy with gradient descent, stability near the
optimum

Dynamic system, non-elitist selection

Ghosh et al. [68] DE/rand/1 General dynamics equation, asymptotic global
convergence

Dynamic system, non-elitist selection, Lyapunov’s
second method for stability

Ter Braak [84,85] DE-MC soft selection Characterization of a stationary population
distribution over the feasible set

Existence and uniqueness of a stationary Markov
chain

Xue et al. [82,83] Multiobj. DE/current-to-best/k Constraints on the critical region of parameters No selection, componentwise Gaussian
approximation of mutation
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ferential mutation such as DE/best not only introduce diversity
but also exert selective pressure. The state-of-the-art modifica-
tions of DE contain additional, non-trivial elements. The com-
plex form of an algorithm and its numerous variants make mod-
elling troublesome. From the theoretical perspective it is advis-
able to look for minimalistic, analysis-friendly variants of DE. Low
complexity facilitates theoretical studies and allows for stronger
conclusions with clearer interpretations to be drawn. Algorithmic
simplicity does not necessarily hinder performance [31,32]. The
search for a general, synthetic framework may concern not only
whole algorithms but also their elements, such as genetic opera-
tors.

6. DE would benefit from transferring theoretical results developed for
other metaheuristic optimization methods, such as Evolution Strate-
gies or Estimation of Distribution Algorithms. Adaptation of these
results would also show similarities and contrasts between DE and
other global optimizers.

7. It would be useful to characterize the properties of optimiza-
tion problem classes that would be particularly easy, or partic-
ularly hard, to be solved by DE. The existence of such classes
of tasks is a consequence of the no free lunch theorem. Although
some guidelines in this area are available [87], they are of exper-
imental origin and have a general, descriptive character. These
guidelines would benefit from being grounded in mathematical
derivation. However, it is not clear to what extent it is fea-
sible to formalize non-trivial features such as deceptiveness or
a lack of clear structure [88]. Apart from the algorithm as a
whole, guidelines could also address the use of particular ele-
ments of DE, for instance the choice of appropriate mutation opera-
tors.

7. Conclusions

The theory of DE is still behind empirical developments and to a
larger extent explains already known phenomena rather than guides
new research or provides practical advice. This situation is typical for
evolutionary algorithms. The importance of theoretical studies lies in
the possibility to better understand the principles and mechanics of the
optimizer. Analytical results often inspire improvements and modifica-
tions to the algorithm. Finally, well-developed theoretical foundations
build trust in the analysed methods.

This paper surveyed the theoretical results concerning DE. It pro-
vided an overview of the convergence studies, invariances, as well as
investigations into differential mutation, crossover operators, and pop-
ulation diversity. A detailed presentation of the population dynam-
ics models stressed their advantages and weaknesses. Despite huge
research effort into DE, there are still many open problems waiting for
analytical study, the most promising of which have been unfolded in
this paper.
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