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Abstract - Recommender systems are new types of 
internet-based software tools, designed to help users 
lind their wag through today’s complex on-line shops 
and entertainment websites. This paper describes a 
new recommender system, which employs a particle 
swarm optimization (PSO) algorithm to learn personal 
preferences o f  users and provide tailored suggestions. 
Experiments are carried out  to observe the 
performance of the system and results are compared to 
those obtained from the genetic algorithm (CA) 
recommender system 111 and a standard, non-adaptive 
system based on the Pearson algorithm 121. 

1. 1NTRODUCTION 

Decision-making is an integral pan of everyday life. When 
faced with a dilemma, most of us are likely to gather some 
relevant information before making an informed decision. 
This information may come from various sources - known 
facts, predefined rules, opinions or even just gut feeling. 

Many general lifestyle activities such as shopping for 
clothes, eating out and going to the cinema are highly 
dependent on personal tastes. It is this “personal” aspect that 
makes them much more difficult to recommend as they have 
ii greater dependency on the person’s personality. Therefore, 
people often seek advice from their friends, who can make 
suggestions based on their relationship and familiarity. 
However. there will come a time when friends cannot help 
due to the large number of choices available. 

Recommender systems provide one way of circumventing 
this problem. As the name suggests, their task is to 
recommend or suggest items or products to the customer 
based on hislher preferences. These systems are often used by 
E-commerce websites as marketing tools to increase revenue 
by presenting products that the customer is likely to buy. An 
intemet site using a recommender system can exploit 
knowledge of customers’ likes and dislikes to build an 
understanding of their individual needs and thereby increase 
customer loyalty [3,4]. 

This paper focuses on the use of particle swarm 
optimization (PSO) algorithm to fine-tune a profile-matching 
algorithm within a recommender system, tailoring it to the 
preferences of individual users. This enables the 
recommender system to make more accurate predictions of 
users’ likes and dislikes, and hence better recommendations 
to users. The PSO technique was invented by Eberhart and 
Kennedy in 1995 and inspired by behaviours of social 
anininls such as bird flocking or fish schooling. The 
algorithm itself is simple and involves adjusting a few 

parameters. With little modification, it can be applied to a 
wide range of applications. Because of this, PSO has received 
growing interest from researchers in various fields. 

The paper is organised as follows: section I1 outlines 
related work, and section 111 describes the recommender 
system and PSO algorithm. Section IV provides experimental 
results and analysis. Finally section V concludes. 

11. BACKGROUND 

A. Recommender Swtems 
From the literature, i t  seems that the definition of the term 

“recommender system” varies depending on the author. Some 
researchers use the concepts: “recommender system”, 
“collaborative filtering” and “social filtering” 
interchangeably [2]. Conversely, others regard 
“recommender system” as a generic descriptor that represents 
various recommendatiodprediction techniques including 
collaborative, social, and content based filtering, Bayesian 
networks and association rules [5,6].  In this paper, we adopt 
the latter definition when referring to recommender systems. 

MovieLens (htt”://www.moviclcns.umn.cdu), a well- 
known research movie recommendation website, makes use 
of collaborative filtering technology to make its suggestions. 
This technology captures user preferences to build a profile 
by asking the user to rate movies. It searches for similar 
profiles (i.e., useti that share the same or similar taste) and 
uses them to generate new suggestions (The dataset collected 
through the MovieLens website has been made available for 
research purposes and is used to test the PSO recommender 
system.) 

By contrast, LIBRA (http://www.cs.utexas.edu/u~~s/ m) combines a content-based approach with machine 
learning to make book recommendations. The content-based 
approach differs from collaborative filtering in that it 
analyses the contents of the items being recommended. 
Furthermore, each user is treated individually - there is no 
sense of ‘hommunity” which forms the basis of collaborative 
filtering. 

Dooyoo (http:llwww.doovoo.co.uk) operates in a slightly 
different way. It too is a useful resource that provides 
recommendations to those seeking advice, but it focuses 
mainly on gathering qualitative opinions from its users, and 
then making them available to others. Visitors will often 
submit reviews on items or services ranging from health spas 
to mobile phones. These items are categorised in a similar 
fashion to the layout on a structured search engine, such as 
Yahoo! 
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Researchers at the University of the West of England have 
also been working on a movie Recommender System [XI. 
Their idea is to use the immune system to tackle the problem 
of preference matching and recommendation. User 
preferences are treated as a pool of antibodies and the active 
user is the antigen. The difference in their approach and the 
other existing methods is that they are not interested in 
finding the one best match but a diverse set of antibodies that 
are a close match. 

The Genetic Algorithm (GA) Recommender System used 
in the experiments is pan ofthe previous work. More detailed 
descriptions can be found in [ I ] .  The system follows the 
same structure as the PSO recommender system, discussed 
later in section Ill.  The only difference is that the GA system 
used a genetic algorithm to evolve feature weights for the 
active user (in this paper a PSO algorithm is used for the 
same purpose). An individual in the population represented a 
possible solution which in this case was a set of feature 
weights that defines the active user's preference. A fitness 
function using a modified Euclidean distance function was 
employed. Experimental results showed that the GA system 
performed very well compared to a non-adaptive approach 
based on the Pearson algorithm. 

B. Particle Swarm Oprimizarion 
Although particle swarm optimization is a population- 

based evolutionary technique like genetic algorithms, it 
differs in that each particle or solution contains a position, 
velocity and acceleration. The velocity and acceleration are 
responsible for changing the position of the particle to 
explore the space of all possible solutions, instead of using 
existing solutions to reproduce [9]. As particles move around 
the space, they sample different locations. Each location has 
a fitness value according to how good i t  is at satisfying the 
objective, in this case, defining the user's preferences. 
Because of the rules goveming the swarming process, 
particles will eventually swarm around the area in the space 
where fittest solutions are. PSO is becoming popular for 
many diverse applications, for example: 

Van den Bergh et. a l  applied the original Particle Swarm 
Optimisation as well as the Cooperative Particle Swarm 
Optimiser (a  variation of i t )  to the task of training neural 
networks [ 121. Particle swarms were used to find the optimal 
weights of a Product Unit Neural Network. The Cooperative 
Optimiser employs multiple swarms where each swarm 
handles a part of the vector being optimised. The splitfactor, 
a parameter added to the original PSO algorithm, determines 

the number of swarms used. 5 23 0 

space of adjustable parameters, improvisations are produced 
interactively with extemal musicians [9]. 

111. SYSTEM OVERVIEW 

The system described in this paper is based around a 
collaborative filtering approach, building up profiles of users 
and then using an algorithm to find profiles similar to the 
current user. (In this paper, we refer to the current user as the 
active mer,  A). Selected data from those profiles are then 
used to build recommendations. Because profiles contain 
many attributes. many o f  which have sparse or incomplete 
data [7], the task of finding appropriate similarities is often 
difficult. To overcome these problems, current systems (such 
as MovieLens) use stochastic and heuristic-based models to 
speed up and improve the quality of profile matching. This 
work takes such ideas one step further, by applying a particle 
swarm optimization algorithm to the problem of profile 
matching. 

In this research, the MovieLens dataset was used for initial 
experiments. It contains details of 943 users, each with many 
parameters orfeatures: demographic information such as age, 
gender and occupation is collected when a new user registers 
on the system. Every time a vote is submitted by a user, it is 
recorded in the database with a timestamp. The movie 
information in the dataset includes genres, and theatre and 
video release dates. Both the PSO and CA recommender 
systems use 22 features from this data set: movie rating, age, 
gender, occupation and I X  movie genre frequencies: action, 
adventure, animation, children, comedy, crime, documentary, 
drama, fantasy, film-noir, horror, musical, mystery, romance, 
sci-fi, thriller, war, western. 

A. Profile Generutor 
Before recommendations can be made, the movie data 

must first be processed into separate profiles, one for each 
person, defining that person's movie preferences. 

A profile for userj, denoted profile(i), is represented as an 
array of 22 values for the 22 features considered. The profile 
has two parts: a variable part (the rating value, which changes 
according to the movie item being considered at the time), 
and a fixed part (the other 21 values, which are only retrieved 
once at the beginning o f  the program). Because user j may 
have rated many different movies, we define profi1eeli.i) to 
mean the profile for user j  on movie item I ,  see fig. 1. 
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which are interpreted as musical events. These particles 
interact with each other according to rules that are based on 
flocking and swarming nlodels. The music space has 
dimensions that represent musical parameters such as pulse, 
pitch and loudness. The swarm is attracted to the targets 
which are external musical events that are captured and 
placed in the space. As the particles move around the music 

Once profiles are built, the process of recommendation can 
begin. Given an active user A, a set of profiles similar to 
proJile(A) must be found. 

B. Neighbowhood Selection 
The success of a collaborative filtering system is highly 

dependent upon the effectiveness of the algorithm in finding 
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the set or neighbourhood of profiles that are most similar to 
that of the active user. It is vital that, for a particular 
neighbourhood method, only the best or closest profiles are 
chosen and used to generate new recommendations for the 
user. There is little tolerance for inaccurate or irrelevant 
predictions. 

The neighbourhood selection algorithm consists of three 
main tasks: ProJile Selecriun, PrcJ/ile Mdching and Best 
P w / i / e  Collecrion. 

1) Pri,fi/r Srlrcrion 
I n  an ideal world, the entire database of profiles would be 

used to select the best possible profiles. However this is not 
always a feasible option, especially when the dataset is very 
large or if resources are not available. As a result, most 
systems opt for random sampling and this process is the 
responsibility of the profile selection part ofthe algorithm. 

This work investigates two methods ofprofile selection: 

I. 

2. 

where n = I O  or 50 in our experiments. 

Fixed: the first n users from the database are always used 
i n  every experiment 
Random: n users are picked randomly from the database, 

2) Prufile Murching 
After profile selection, the profile matching process then 

coniputes the distance or similarity between the selected 
profiles and the active user's profile using a distance function. 
This research focuses on this profile matching task, i.e., the 
PSO algorithm is used to fine-tune profile matching for each 
active user. 

From the analysis of Breese et. a1 [2]. it seems that most 
current recommender systems use standard algorithms that 
consider only "voting information" as the feature on which 
the comparison between two profiles is made. However in 
real life. the way in which two people are said to be similar is 
nor based solely on whether they have complimentary 
opinions on a specific subject, e.g., movie ratings, but also on 
other factors, such as their background and personal details. 
If  we apply this to the profile matcher, issues such as 
demographic and lifestyle information which include user's 
age, gender and preferences of movie genres must also he 
taken into account. Every user places a different importance 
or priority on each feature. These priorities can he quantified 
or enumerated. Here we refer to these asfeartire weighrs. For 
example. if a male user prefers to be given recommendations 
based on the opinions of other men, then his feature weight 
for gender would be higher than other features. In order to 
implement a truly personalised recommender system, these 
weights need to be captured and fine-tuned to reflect each 
user's preference. Our approach shows how such weights can 
be found using a particle optimization technique. 

A potential solution to the problem of fine-tuning feature 
weights, w(A) ,  for the active user, A is represented as a set of 
weights as shown below in Figure 2. 

w ,  w 2  I W I  ... I W l ?  
Figure 2: A sei oiweighra reprrsenrmg a UECT'S prefermce. 

where w,.is the weight associated with feature /.' Each set 
contains 22 weighting values, representing a position of a 
particle in 22-dimensional search space. As particles move 
around the space, these values are continuously adjusted 
(described in section D) in order to find the best particle with 
a set of weights which accurately describes the active user's 
preference. 

The comparison between two profiles can now be 
conducted using a modified Euclidean distance function, 
which takes into accounr multiple features. Eiiclideun(Aj) is 
the similarity between active user A and userj: 

: 22 
etrclidean(A, j )  = ~ ~ w ~ * d i f f ; . . i . ( A , J ) '  

where: A is the active user 
j is a user provided by the profile selection process, 
where j f A 
z is the number of common movies that users A and j 
have rated. 
w,. is the active user's weight for feature/ 
i is a common movie item, where prufile(A,i) and 
proJi1efi.i) exists. 
d&(A,j) is the difference in profile value for feature 

/between users A and j on movie item i .  

i ;=I ,/=I 

Note that before this calculation is made, the profile values 
are normalised to ensure they lie between 0 and I .  When the 
weight for any feature is zero, that feature is ignored. This 
way we enable feature selection to be adaptive IO each user's 
preferences. The difference in profile values for occupation is 
either 0, if the two users have the same occupation or 1 
otherwise. 

I . 
profi1efA.i) profile(l,i) 

. .  
euciidean(A,I) = simllanty(AJ 

t 
weightsin) : .:..: .... i . . l . ' ' ' ' . . ~  : . . '.:zzlea@~res 
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Figure 3:  Calculalirig the similarity between A and j 

3) Best fruJi/e Collecriun 
Once the Euclidean distances, eirclic/ean(A,j), have been 

found between pruJile(A) and prufilefi) for all values of j 



picked by the profile selection process, the "best profile 
collection" algorithm is called. This ranks every prufilefi) 
according to its similarity to prufile(A). The system then 
simply selects the users whose Euclidean distance is above a 
certain threshold value (considered most similar to the active 
user) as the neighbourhood of A. This value is a system 
constant that can be changed. 

C. Muking Recummendrrtiun 
To make a recommendation. given an active user A and a 

neighbourhood set of similar profiles to A, it is necessary to 
find movie items seen (and liked) by the users in the 
neighbourhood set that the active user has not seen. These are 
then presented to the active user through a user interface. 
Because the neighbourhood set contains those users who are 
most similar to A (using in our case the specific preferences 
of A through attained weighting values), movies that these 
users like have a reasonable probability of being liked by A. 

D. PSO Algurithm 
The PSO algorithm has been used to attain feature weights 

for the active user, and hence help tailor the matching 
function to the userk specific personality and tastes. 

I )  Purricle Dynamics 
A conventional PSO algorithm [ I O ]  with the velocity 

clamping rule introduced in [9] was chosen. The PSO has 22- 
dimensional space, each axis has values ranging from 0 to 
255 (corresponding to the simple unsigned binary genetic 
encoding with 8 bits for each of the 22 genes, used in the 
implementation of the genetic algorithm (CA) recommender 
system in the Background section). As mentioned above, 
each particle has a position and a velocity (their values are 
randomised initially). The position with the highest fitness 
score (the fitness function is described below) in each 
iteration is set to be the entire swarm's global best (gbest) 
position, towards which other particles move. In addition, 
each panicle keeps its best position that i t  has visited, known 
as the particle's personal best (pbest). The particle dynamics 
are governed by the following rules which update particle 
positions and velocities: 

VI = ww + ciri(xp6rrr. i - 1;) + czr2(xybr9, - ,r;) 
i/'(lv,/>vm.,) v ; = ( V n l r d I V , / ) V ,  

.r( =a + vI 
where 

x; is the current position of particle i 
xUh.,, is the best position attained by particle i 
xxb,, is the swarm's global best position 
vi is the velocity of particle i 
M' is a random inertia weight between 0.5 and I 
CI and c? are spring constants whose values are set to 1.494 

1') and r2 are random numbers between 0 and I 
2) Fitness Frmctiun 
Calculating the fitness for this application is not trivial. A 

set of feature weights can be calculated from the position 

[ I O 1  
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values. First. the importance of the 18 genre frequencies are 
reduced by a given factor, the weigltt redircriun size. This is 
done because the 18 genres can he considered different 
categories of a single larger feature, Genre. Reducing the 
effect of these weights is therefore intended to give the other 
unrelated features (movie rating, age, gender, occupation) a 
more equal chance of being used. Second, the total value of 
the position is then calculated by summing the position 
values on all 22 axes. Finally, the weighting value for each 
feature can he found by dividing the real value by the total 
value. The sum of all the weights will then add up to unity. 

Every particle's current position (set of weights) in the 
swarm must he employed by the profile matching processes 
within the recommender system. So the recommender system 
must be re-run on the MovieLens dataset for each new 
position, in order to calculate its fitness. 

It was decided to reformulate the problem as a supervised 
learning task. As described previously, given the active user 
A and a set of neighbouring profiles, recommendations for A 
can be made. In addition to these recommendations, it is 
possible to predict what A might think of them. For example, 
if a certain movie is suggested because similar users saw it, 
but those users only thought the movie was "average", then it 
is likely that the active user might also think the movie was 
"average". Hence, for the MovieLens dataset, it was possible 
for the system to both recommend new movies and to predict 
how the active user would rate each movie, should he go and 
see it. 

m l e  Selguol and Malcrvrg 

euciidean(A,j) 

lc"Sl1 ".+me/\ * j  

Neighrmmmd se! 

I 
predict vote(A,i) 

larail i h  i, ... in Vsrung3Ei 
.~ .. 

1 
Fitness Score 

Figure 4 finding the fitness score of  a panicle's cumnt position (the active 
user's fearurr weighis). 

The predicted vote computation used in this paper has been 
taken from [2] and modified such that the Euclidean distance 
function (Profile Mmching section) now replaces the weight 



in the original equation. The predicted vote, predict-vure(A,i), 
for A on item i .  can be defined as: 

pwdirL v u l ~ A . i )  = memi + t nd;tleu,fA. j ) ( v o I < ; ~ i )  - nieon ) 
A ;=I i 

where: meani is the mean vote for userj 
k is a normalising factor such that the sum of the 
euclidean distances is equal to I .  
vote(j,i) is the actual vote that user j has given on 
item i 
n is the size of the neighbourhood. 

All the movie items that the active user has seen are 
randomly partitioned into two datasets: a training set (113) 
and a test set (213). To calculate a fitness measure for a 
paflicle’s current position, the recommender system finds a 
set of neighbourhood profiles for the active user, as described 
in Neighbourhood Selection section. The ratings of the users 
in the neighbourhood set are then employed to compute the 
predicted rating for the active user on each movie item in the 
training set. Because the active user has already rated the 
movie items, it is possible to compare the actual rating with 
the predicted rating. So, the average of the differences 
between the actual and predicted votes of all items in the 
training set are used as fitness score to guide future swarming 
process. see figure 4. 

IV. EXPERIMENTS 

Four sets of experiments were designed to observe the 
difference in performance between the PSO, CA [ I ]  and a 
standard, non-adaptive recommender systems based on the 
Pearson algorithm [Z]. In each set of experiments, the 
predicted votes of all the movie items in the test set (the items 
that the active user has rated but were not used in fitness 
evaluation) were computed using the final feature weights for 
that run. These votes were then compared against those 
produced from the simple Pearson algorithm and the GA 
system. 

The four experiments evaluated two system variables to 
assess their effect on system performance: the profile 
selecrion task (the way in which profiles were selected from 
the database), and the size of the neighbourhood. 

The four sets of experiments were as follows: 
Experiment I :  Each of the first 10 users was picked as the 
active user in turn, and the first 10 users (fixed) were used to 
provide recommendations. 
Experiment 2: Each of the first 50 users was picked as the 
active user in turn, and the first 50 users (fixed) were used to 
provide recommendations. 
Experiment 3: Each of the first 10 users was picked as the 
active user in turn, and 10 out of 944 users were picked 
randomly and used to provide recommendations (the same I0 
used per run for all three systems). 
Experiment 4: Each of the first 50 users was picked as the 
active user in turn, and 50 out of 944 users were picked 
randomly and used to provide recommendations (the same 50 
used per run for all three systems). 

These were performed on two versions ofthe system: 

Zero folerunce - the accuracy of the system is found by 
calculating the percentage of the number of ratings that the 
system predicted correctly out of the total number of 
available ratings by the current active user. The results for 
experiments I to 4 with zero tolerance are shown in figures 5 
to 8, respectively. 
At-Mosr-One tolerunce - same as zero tolerance but if the 
difference between the predicted and actual ratings is less 
than or equal to I then this predicted rating is considered to 
be correct. This takes into account the vulnerability of the 
rating system - ratings on an item can vary depending on 
many factors such as the time of the day and the user’s mood 
at this time. For example, if the system predicts 4 out of 5 for 
an item and the actual rating from the user is 5, the prediction 
still shows that the user demonstrates a strong preference 
towards the item. Figures 9 to 12 show the results for 
experiments I to 4 with at-most-one tolerance. 

The following parameter values were kept the same in all 
four experiments: 

1. swarm/poprrlufion sire = 7 5 .  The number of 
particles1individuals in the swarmipopulation at each 
generation. 
2 .  maxinrirm number of iterutionsfor eurh rim = 300. If the 
number of iterations reaches this value and the solution has 
not been found, the best solution for that iteration is used as 
the final result. 
3. weight redirction size = 4. The scaling factor for the 18 
genre frequencies. 
4. number o/rrms = 30. The number of times the system was 
run for each active user. 

The Pearson algorithm (PA) used in the experiments is 
based on the k Nearest Neighbour algorithm. A correlation 
coefficient, shown below. is used as the matching function 
for selecting the k users that are most similar to the active 
user to give predictions. This replaces the Eirclideun function 
described earlier; all other details remain the same. 

x:(vore(  A , i )  - mrun,, )(vorc(j,i) - meon, ) 
ca.rduriun(d,;) = ‘=I 

(vole( A , ? )  - meon,, )’( vorr( j , i )  - meon, 1’ 

The Genetic Algorithm Recommender System used an 
elitist genetic algorithm, where a quarter of the best 
individuals in  the population were kept for the next 
generation. When creating a new generation, individuals 
were selected randomly out of the top 40% of the whole 
population to be parents. Two offspring were produced from 
every pair of parents, using single-point crossover with 
probability 1.0. Mutation was applied to each locus in 
genotype with probability 0.01. A simple unsigned binary 
genetic encoding was used in the implementation. using 8 
bits for each of the 22 genes which represented the 22 
features considered. 
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Figure 5:  Results for experiment I -Zero tolerance 
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Figure 7 Remlis for experiment 3 ~ Z e m  tolerance 

Experiment 4 
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Figure 8: Results for experiment 4 -Zero tolerance 
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Figure 9: Results far experiment I - At-Most-One IOIcrance 
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Figure 12: Results far experiment 4 - At-Most-One tolerance 
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Figure 13, Average Prediction Accuracy 

A .  R ~ S I I ~ I J  By looking at the results obtained from the experiments, the 
following observations have been found 

Whilst the predictions computed with the Pearson On the whole the PSO performed significantly well 
algorithm always remain the same given the same compared to the other two systems, see figures 5 to 8 for 
parameter values, those obtained from the PSO and GA results obtained from experiments 1 to 4. 
vary according to the feature weights of that run. Out of When random profile selection was used, in most cases the 
the 30 ntns for each active user in  each experiment, the prediction accuracy for PSO rose considerably and 
run with the best feature weights (that gave the highest outperformed the other two systems. Figures 7 and 8 show the 
percentage of right predictions) was chosen and plotted results for experiments 3 and 4. 
against the result from the Pearson algorithm.' e The performance of the PSO system improved greatly from 

being 40-50% accurate with zero tolerance level to 60-100°% 
when at-most-one tolerance level was employed. Figure 13 
shows average prediction accuracy for all four experiments I The best rather than average was plotted since this is closest 

to the real world scenario where this system could be run off- ,3,jvith both zero and at-most-one tolerance levels. 
line and the current best set of feature weights would be set as 
the initial preference of the active user. 



The speed of execution of the PSO system was over 
10% faster than that ofthe GA. 

B. Anu/y.s;s o/Resu/rs 

It was found that the PSO performed very well 
compared to the other two systems for all four 
experiments with both Zero and At-Most-One tolerance 
levels. However, the observation found in [ I ]  that as the 
number of users goes up, the probability of finding a 
better matched profile should be higher and hence the 
accuracy of the predictions should increase, still applies 
to the GA system here, but is not the case for the PSO 
recotntnender. One explanation to this fall in the average 
accuracy level as the number of users increases is that 
originally the users that were selected to be part of the 
neighbourhood to give recommendations are highly 
similar to the active user. As the number of users 
increases, more users are being considered and this 
could sotlietimes result in many less similar users being 
added to the neighbourhood and hence, lower overall 
prediction accuracy. This probletii will be examined in 
more detail and tackled in future work where we treat 
the users theinselves as panicles in the swarm. 

Results for the PSO from experiments 3 and 4 confirm 
the observation found in the last published work on the 
GA recommender [I] that random sampling is better 
than fixing which users to select. This is because i t  
allows the search to consider a greater variety o f  profiles, 

In addition, average and worst results were examined 
and compared among the three methods. It was found 
that PSO still achieved the best performance in most 
experiments compared to the GA and PA systems. The 
only case when PSO did not achieve the highest 
perfoniiance was when worst results were considered in 
experiment 2, emphasising the problem of increased 
number of users mentioned earlier. However, this 
probletn does not have any effect on the performance of 
PSO in experiment 4 when random sampling was used. 

As mentioned earlier, only the run@) with the best 
feature weights for each active user were considered for 
this analysis. We now look into these runs in more detail 
to see how the feature weights obtained and users 
selected for the neighbourhood in these runs played a 
part in determining user preference. In the GA 
recommender, when more than 1 run for an active user 
achieved the same best performance (highest number of 
votes being predicted correctly) results indicate that the 
same set of users had been selected for the 
neighbourhood to give recommendations [ I ] .  However, 
this is not the case for the PSO system: many runs that 
attained the same best performance did not select the 
same set of users. By looking at the history of particle 
paths, when more than I panicle attained the same best 
perfonnance, the global best position was picked 
randomly froin one of these particles and it is this 
position that other panicles move towards. It is possible 
that the other “best” particles that were neglected could 
have contained better solution had they been given the 
chance for the swarm to explore their surrounding space. 
Future work will explore this in more detail by adding131 
another rule to the swanning process making the 

particles move towards the central location of a11 “best” 
particles. 

A duplicate user to active user 1 was inserted into a run for 
active user 1 in experiment 3 and two runs in experiment 4 in 
order to observe how good the system was at using the 
information from this duplicate user to give recommendations. 
The results demonstrate the best run was obtained from the 
runs which contain the duplicate user and that the PSO picked 
this to be the only user in the neighbourhood resulting in 
100% prediction accuracy for the active user. 

V. CONCLUSIONS 

This work has shown how particle s w a m  optimization can 
be employed to fine-tune a profile-matching algorithm within 
a recommender system, tailoring it to the preferences of 
individual users Experiments demonstrated that the PSO 
system outperformed a non-adaptive approach and obtained 
higher prediction accuracy than the Genetic Algorithm system 
and Pearson algorithm in most cases. In addition, compared 
to the GA approach, the PSO algorithm achieved the final 
solution significantly faster, making it a more efficient way of 
improving perfonnance where computation speed plays an 
important part in recotnmender systems. 
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