
Particle Swarm Optimization Recommender System

Supiya Ujjin and Peter J. Bentley
University College London

Department of Computer Science
Cower Street. London WClE 6BT

s.i,iiin~rs.rrcl.ac.~rk

Abstract - Recommender systems are new types of
internet-based software tools, designed to help users
lind their wag through today’s complex on-line shops
and entertainment websites. This paper describes a
new recommender system, which employs a particle
swarm optimization (PSO) algorithm to learn personal
preferences o f users and provide tailored suggestions.
Experiments are carried out to observe the
performance of the system and results are compared to
those obtained from the genetic algorithm (CA)
recommender system 111 and a standard, non-adaptive
system based on the Pearson algorithm 121.

1. 1NTRODUCTION

Decision-making is an integral pan of everyday life. When
faced with a dilemma, most of us are likely to gather some
relevant information before making an informed decision.
This information may come from various sources - known
facts, predefined rules, opinions or even just gut feeling.

Many general lifestyle activities such as shopping for
clothes, eating out and going to the cinema are highly
dependent on personal tastes. It is this “personal” aspect that
makes them much more difficult to recommend as they have
ii greater dependency on the person’s personality. Therefore,
people often seek advice from their friends, who can make
suggestions based on their relationship and familiarity.
However. there will come a time when friends cannot help
due to the large number of choices available.

Recommender systems provide one way of circumventing
this problem. As the name suggests, their task is to
recommend or suggest items or products to the customer
based on hislher preferences. These systems are often used by
E-commerce websites as marketing tools to increase revenue
by presenting products that the customer is likely to buy. An
intemet site using a recommender system can exploit
knowledge of customers’ likes and dislikes to build an
understanding of their individual needs and thereby increase
customer loyalty [3,4].

This paper focuses on the use of particle swarm
optimization (PSO) algorithm to fine-tune a profile-matching
algorithm within a recommender system, tailoring it to the
preferences of individual users. This enables the
recommender system to make more accurate predictions of
users’ likes and dislikes, and hence better recommendations
to users. The PSO technique was invented by Eberhart and
Kennedy in 1995 and inspired by behaviours of social
anininls such as bird flocking or fish schooling. The
algorithm itself is simple and involves adjusting a few

parameters. With little modification, it can be applied to a
wide range of applications. Because of this, PSO has received
growing interest from researchers in various fields.

The paper is organised as follows: section I1 outlines
related work, and section 111 describes the recommender
system and PSO algorithm. Section IV provides experimental
results and analysis. Finally section V concludes.

11. BACKGROUND

A. Recommender Swtems
From the literature, i t seems that the definition of the term

“recommender system” varies depending on the author. Some
researchers use the concepts: “recommender system”,
“collaborative filtering” and “social filtering”
interchangeably [2]. Conversely, others regard
“recommender system” as a generic descriptor that represents
various recommendatiodprediction techniques including
collaborative, social, and content based filtering, Bayesian
networks and association rules [5,6]. In this paper, we adopt
the latter definition when referring to recommender systems.

MovieLens (htt”://www.moviclcns.umn.cdu), a well-
known research movie recommendation website, makes use
of collaborative filtering technology to make its suggestions.
This technology captures user preferences to build a profile
by asking the user to rate movies. It searches for similar
profiles (i.e., useti that share the same or similar taste) and
uses them to generate new suggestions (The dataset collected
through the MovieLens website has been made available for
research purposes and is used to test the PSO recommender
system.)

By contrast, LIBRA (http://www.cs.utexas.edu/u~~s/ m) combines a content-based approach with machine
learning to make book recommendations. The content-based
approach differs from collaborative filtering in that it
analyses the contents of the items being recommended.
Furthermore, each user is treated individually - there is no
sense of ‘hommunity” which forms the basis of collaborative
filtering.

Dooyoo (http:llwww.doovoo.co.uk) operates in a slightly
different way. It too is a useful resource that provides
recommendations to those seeking advice, but it focuses
mainly on gathering qualitative opinions from its users, and
then making them available to others. Visitors will often
submit reviews on items or services ranging from health spas
to mobile phones. These items are categorised in a similar
fashion to the layout on a structured search engine, such as
Yahoo!

0-7803-7914-4/03/$10.0002003 IEEE 124

http:llwww.doovoo.co.uk

Researchers at the University of the West of England have
also been working on a movie Recommender System [XI.
Their idea is to use the immune system to tackle the problem
of preference matching and recommendation. User
preferences are treated as a pool of antibodies and the active
user is the antigen. The difference in their approach and the
other existing methods is that they are not interested in
finding the one best match but a diverse set of antibodies that
are a close match.

The Genetic Algorithm (GA) Recommender System used
in the experiments is pan ofthe previous work. More detailed
descriptions can be found in [I] . The system follows the
same structure as the PSO recommender system, discussed
later in section Ill. The only difference is that the GA system
used a genetic algorithm to evolve feature weights for the
active user (in this paper a PSO algorithm is used for the
same purpose). An individual in the population represented a
possible solution which in this case was a set of feature
weights that defines the active user's preference. A fitness
function using a modified Euclidean distance function was
employed. Experimental results showed that the GA system
performed very well compared to a non-adaptive approach
based on the Pearson algorithm.

B. Particle Swarm Oprimizarion
Although particle swarm optimization is a population-

based evolutionary technique like genetic algorithms, it
differs in that each particle or solution contains a position,
velocity and acceleration. The velocity and acceleration are
responsible for changing the position of the particle to
explore the space of all possible solutions, instead of using
existing solutions to reproduce [9]. As particles move around
the space, they sample different locations. Each location has
a fitness value according to how good i t is at satisfying the
objective, in this case, defining the user's preferences.
Because of the rules goveming the swarming process,
particles will eventually swarm around the area in the space
where fittest solutions are. PSO is becoming popular for
many diverse applications, for example:

Van den Bergh et. a l applied the original Particle Swarm
Optimisation as well as the Cooperative Particle Swarm
Optimiser (a variation of i t) to the task of training neural
networks [121. Particle swarms were used to find the optimal
weights of a Product Unit Neural Network. The Cooperative
Optimiser employs multiple swarms where each swarm
handles a part of the vector being optimised. The splitfactor,
a parameter added to the original PSO algorithm, determines

the number of swarms used. 5 23 0

space of adjustable parameters, improvisations are produced
interactively with extemal musicians [9].

111. SYSTEM OVERVIEW

The system described in this paper is based around a
collaborative filtering approach, building up profiles of users
and then using an algorithm to find profiles similar to the
current user. (In this paper, we refer to the current user as the
active mer, A). Selected data from those profiles are then
used to build recommendations. Because profiles contain
many attributes. many o f which have sparse or incomplete
data [7], the task of finding appropriate similarities is often
difficult. To overcome these problems, current systems (such
as MovieLens) use stochastic and heuristic-based models to
speed up and improve the quality of profile matching. This
work takes such ideas one step further, by applying a particle
swarm optimization algorithm to the problem of profile
matching.

In this research, the MovieLens dataset was used for initial
experiments. It contains details of 943 users, each with many
parameters orfeatures: demographic information such as age,
gender and occupation is collected when a new user registers
on the system. Every time a vote is submitted by a user, it is
recorded in the database with a timestamp. The movie
information in the dataset includes genres, and theatre and
video release dates. Both the PSO and CA recommender
systems use 22 features from this data set: movie rating, age,
gender, occupation and I X movie genre frequencies: action,
adventure, animation, children, comedy, crime, documentary,
drama, fantasy, film-noir, horror, musical, mystery, romance,
sci-fi, thriller, war, western.

A. Profile Generutor
Before recommendations can be made, the movie data

must first be processed into separate profiles, one for each
person, defining that person's movie preferences.

A profile for userj, denoted profile(i), is represented as an
array of 22 values for the 22 features considered. The profile
has two parts: a variable part (the rating value, which changes
according to the movie item being considered at the time),
and a fixed part (the other 21 values, which are only retrieved
once at the beginning o f the program). Because user j may
have rated many different movies, we define profi1eeli.i) to
mean the profile for user j on movie item I , see fig. 1.

1 2 3 4 . . 22

45 000000100010000000

r~~~ ~~~~~

which are interpreted as musical events. These particles
interact with each other according to rules that are based on
flocking and swarming nlodels. The music space has
dimensions that represent musical parameters such as pulse,
pitch and loudness. The swarm is attracted to the targets
which are external musical events that are captured and
placed in the space. As the particles move around the music

Once profiles are built, the process of recommendation can
begin. Given an active user A, a set of profiles similar to
proJile(A) must be found.

B. Neighbowhood Selection
The success of a collaborative filtering system is highly

dependent upon the effectiveness of the algorithm in finding

125

the set or neighbourhood of profiles that are most similar to
that of the active user. It is vital that, for a particular
neighbourhood method, only the best or closest profiles are
chosen and used to generate new recommendations for the
user. There is little tolerance for inaccurate or irrelevant
predictions.

The neighbourhood selection algorithm consists of three
main tasks: ProJile Selecriun, PrcJ/ile Mdching and Best
P w / i / e Collecrion.

1) Pri,fi/r Srlrcrion
I n an ideal world, the entire database of profiles would be

used to select the best possible profiles. However this is not
always a feasible option, especially when the dataset is very
large or if resources are not available. As a result, most
systems opt for random sampling and this process is the
responsibility of the profile selection part ofthe algorithm.

This work investigates two methods ofprofile selection:

I.

2.

where n = I O or 50 in our experiments.

Fixed: the first n users from the database are always used
i n every experiment
Random: n users are picked randomly from the database,

2) Prufile Murching
After profile selection, the profile matching process then

coniputes the distance or similarity between the selected
profiles and the active user's profile using a distance function.
This research focuses on this profile matching task, i.e., the
PSO algorithm is used to fine-tune profile matching for each
active user.

From the analysis of Breese et. a1 [2]. it seems that most
current recommender systems use standard algorithms that
consider only "voting information" as the feature on which
the comparison between two profiles is made. However in
real life. the way in which two people are said to be similar is
nor based solely on whether they have complimentary
opinions on a specific subject, e.g., movie ratings, but also on
other factors, such as their background and personal details.
If we apply this to the profile matcher, issues such as
demographic and lifestyle information which include user's
age, gender and preferences of movie genres must also he
taken into account. Every user places a different importance
or priority on each feature. These priorities can he quantified
or enumerated. Here we refer to these asfeartire weighrs. For
example. if a male user prefers to be given recommendations
based on the opinions of other men, then his feature weight
for gender would be higher than other features. In order to
implement a truly personalised recommender system, these
weights need to be captured and fine-tuned to reflect each
user's preference. Our approach shows how such weights can
be found using a particle optimization technique.

A potential solution to the problem of fine-tuning feature
weights, w(A) , for the active user, A is represented as a set of
weights as shown below in Figure 2.

w , w 2 I W I ... I W l ?
Figure 2: A sei oiweighra reprrsenrmg a UECT'S prefermce.

where w,.is the weight associated with feature /.' Each set
contains 22 weighting values, representing a position of a
particle in 22-dimensional search space. As particles move
around the space, these values are continuously adjusted
(described in section D) in order to find the best particle with
a set of weights which accurately describes the active user's
preference.

The comparison between two profiles can now be
conducted using a modified Euclidean distance function,
which takes into accounr multiple features. Eiiclideun(Aj) is
the similarity between active user A and userj:

: 22
etrclidean(A, j) = ~ ~ w ~ * d i f f ; . . i . (A , J) '

where: A is the active user
j is a user provided by the profile selection process,
where j f A
z is the number of common movies that users A and j
have rated.
w,. is the active user's weight for feature/
i is a common movie item, where prufile(A,i) and
proJi1efi.i) exists.
d&(A,j) is the difference in profile value for feature

/between users A and j on movie item i .

i ;=I ,/=I

Note that before this calculation is made, the profile values
are normalised to ensure they lie between 0 and I . When the
weight for any feature is zero, that feature is ignored. This
way we enable feature selection to be adaptive IO each user's
preferences. The difference in profile values for occupation is
either 0, if the two users have the same occupation or 1
otherwise.

I .
profi1efA.i) profile(l,i)

. .
euciidean(A,I) = simllanty(AJ

t
weightsin) : .:..: i . . l . ' ' ' ' . . ~ : . . '.:zzlea@~res

' PmiIbnlo*e(gh6mpping

. . ..

i . *' . Particle Swarm . : '
,,. Optimization

Figure 3: Calculalirig the similarity between A and j

3) Best fruJi/e Collecriun
Once the Euclidean distances, eirclic/ean(A,j), have been

found between pruJile(A) and prufilefi) for all values of j

picked by the profile selection process, the "best profile
collection" algorithm is called. This ranks every prufilefi)
according to its similarity to prufile(A). The system then
simply selects the users whose Euclidean distance is above a
certain threshold value (considered most similar to the active
user) as the neighbourhood of A. This value is a system
constant that can be changed.

C. Muking Recummendrrtiun
To make a recommendation. given an active user A and a

neighbourhood set of similar profiles to A, it is necessary to
find movie items seen (and liked) by the users in the
neighbourhood set that the active user has not seen. These are
then presented to the active user through a user interface.
Because the neighbourhood set contains those users who are
most similar to A (using in our case the specific preferences
of A through attained weighting values), movies that these
users like have a reasonable probability of being liked by A.

D. PSO Algurithm
The PSO algorithm has been used to attain feature weights

for the active user, and hence help tailor the matching
function to the userk specific personality and tastes.

I) Purricle Dynamics
A conventional PSO algorithm [I O] with the velocity

clamping rule introduced in [9] was chosen. The PSO has 22-
dimensional space, each axis has values ranging from 0 to
255 (corresponding to the simple unsigned binary genetic
encoding with 8 bits for each of the 22 genes, used in the
implementation of the genetic algorithm (CA) recommender
system in the Background section). As mentioned above,
each particle has a position and a velocity (their values are
randomised initially). The position with the highest fitness
score (the fitness function is described below) in each
iteration is set to be the entire swarm's global best (gbest)
position, towards which other particles move. In addition,
each panicle keeps its best position that i t has visited, known
as the particle's personal best (pbest). The particle dynamics
are governed by the following rules which update particle
positions and velocities:

VI = ww + ciri(xp6rrr. i - 1;) + czr2(xybr9, - ,r;)
i/'(lv,/>vm.,) v ; = (V n l r d I V , /) V ,

.r(=a + vI
where

x; is the current position of particle i
xUh.,, is the best position attained by particle i
xxb,, is the swarm's global best position
vi is the velocity of particle i
M' is a random inertia weight between 0.5 and I
CI and c? are spring constants whose values are set to 1.494

1') and r2 are random numbers between 0 and I
2) Fitness Frmctiun
Calculating the fitness for this application is not trivial. A

set of feature weights can be calculated from the position

[I O 1

127

values. First. the importance of the 18 genre frequencies are
reduced by a given factor, the weigltt redircriun size. This is
done because the 18 genres can he considered different
categories of a single larger feature, Genre. Reducing the
effect of these weights is therefore intended to give the other
unrelated features (movie rating, age, gender, occupation) a
more equal chance of being used. Second, the total value of
the position is then calculated by summing the position
values on all 22 axes. Finally, the weighting value for each
feature can he found by dividing the real value by the total
value. The sum of all the weights will then add up to unity.

Every particle's current position (set of weights) in the
swarm must he employed by the profile matching processes
within the recommender system. So the recommender system
must be re-run on the MovieLens dataset for each new
position, in order to calculate its fitness.

It was decided to reformulate the problem as a supervised
learning task. As described previously, given the active user
A and a set of neighbouring profiles, recommendations for A
can be made. In addition to these recommendations, it is
possible to predict what A might think of them. For example,
if a certain movie is suggested because similar users saw it,
but those users only thought the movie was "average", then it
is likely that the active user might also think the movie was
"average". Hence, for the MovieLens dataset, it was possible
for the system to both recommend new movies and to predict
how the active user would rate each movie, should he go and
see it.

m l e Selguol and Malcrvrg

euciidean(A,j)

lc"Sl1 ".+me/\ * j

Neighrmmmd se!

I
predict vote(A,i)

larail i h i, ... in Vsrung3Ei
.~ ..

1
Fitness Score

Figure 4 finding the fitness score of a panicle's cumnt position (the active
user's fearurr weighis).

The predicted vote computation used in this paper has been
taken from [2] and modified such that the Euclidean distance
function (Profile Mmching section) now replaces the weight

in the original equation. The predicted vote, predict-vure(A,i),
for A on item i . can be defined as:

pwdirL v u l ~ A . i) = memi + t nd;tleu,fA. j) (v o I < ; ~ i) - nieon)
A ;=I i

where: meani is the mean vote for userj
k is a normalising factor such that the sum of the
euclidean distances is equal to I .
vote(j,i) is the actual vote that user j has given on
item i
n is the size of the neighbourhood.

All the movie items that the active user has seen are
randomly partitioned into two datasets: a training set (113)
and a test set (213). To calculate a fitness measure for a
paflicle’s current position, the recommender system finds a
set of neighbourhood profiles for the active user, as described
in Neighbourhood Selection section. The ratings of the users
in the neighbourhood set are then employed to compute the
predicted rating for the active user on each movie item in the
training set. Because the active user has already rated the
movie items, it is possible to compare the actual rating with
the predicted rating. So, the average of the differences
between the actual and predicted votes of all items in the
training set are used as fitness score to guide future swarming
process. see figure 4.

IV. EXPERIMENTS

Four sets of experiments were designed to observe the
difference in performance between the PSO, CA [I] and a
standard, non-adaptive recommender systems based on the
Pearson algorithm [Z]. In each set of experiments, the
predicted votes of all the movie items in the test set (the items
that the active user has rated but were not used in fitness
evaluation) were computed using the final feature weights for
that run. These votes were then compared against those
produced from the simple Pearson algorithm and the GA
system.

The four experiments evaluated two system variables to
assess their effect on system performance: the profile
selecrion task (the way in which profiles were selected from
the database), and the size of the neighbourhood.

The four sets of experiments were as follows:
Experiment I : Each of the first 10 users was picked as the
active user in turn, and the first 10 users (fixed) were used to
provide recommendations.
Experiment 2: Each of the first 50 users was picked as the
active user in turn, and the first 50 users (fixed) were used to
provide recommendations.
Experiment 3: Each of the first 10 users was picked as the
active user in turn, and 10 out of 944 users were picked
randomly and used to provide recommendations (the same I0
used per run for all three systems).
Experiment 4: Each of the first 50 users was picked as the
active user in turn, and 50 out of 944 users were picked
randomly and used to provide recommendations (the same 50
used per run for all three systems).

These were performed on two versions ofthe system:

Zero folerunce - the accuracy of the system is found by
calculating the percentage of the number of ratings that the
system predicted correctly out of the total number of
available ratings by the current active user. The results for
experiments I to 4 with zero tolerance are shown in figures 5
to 8, respectively.
At-Mosr-One tolerunce - same as zero tolerance but if the
difference between the predicted and actual ratings is less
than or equal to I then this predicted rating is considered to
be correct. This takes into account the vulnerability of the
rating system - ratings on an item can vary depending on
many factors such as the time of the day and the user’s mood
at this time. For example, if the system predicts 4 out of 5 for
an item and the actual rating from the user is 5, the prediction
still shows that the user demonstrates a strong preference
towards the item. Figures 9 to 12 show the results for
experiments I to 4 with at-most-one tolerance.

The following parameter values were kept the same in all
four experiments:

1. swarm/poprrlufion sire = 7 5 . The number of
particles1individuals in the swarmipopulation at each
generation.
2 . maxinrirm number of iterutionsfor eurh rim = 300. If the
number of iterations reaches this value and the solution has
not been found, the best solution for that iteration is used as
the final result.
3. weight redirction size = 4. The scaling factor for the 18
genre frequencies.
4. number o/rrms = 30. The number of times the system was
run for each active user.

The Pearson algorithm (PA) used in the experiments is
based on the k Nearest Neighbour algorithm. A correlation
coefficient, shown below. is used as the matching function
for selecting the k users that are most similar to the active
user to give predictions. This replaces the Eirclideun function
described earlier; all other details remain the same.

x:(vore(A , i) - mrun,,)(vorc(j,i) - meon,)
ca.rduriun(d,;) = ‘=I

(vole(A , ?) - meon,,)’(vorr(j , i) - meon, 1’

The Genetic Algorithm Recommender System used an
elitist genetic algorithm, where a quarter of the best
individuals in the population were kept for the next
generation. When creating a new generation, individuals
were selected randomly out of the top 40% of the whole
population to be parents. Two offspring were produced from
every pair of parents, using single-point crossover with
probability 1.0. Mutation was applied to each locus in
genotype with probability 0.01. A simple unsigned binary
genetic encoding was used in the implementation. using 8
bits for each of the 22 genes which represented the 22
features considered.

128

~ . ..
Figure 5: Results for experiment I -Zero tolerance

Expsrlment 2

I
.~ ~" ... ~ ,." " . . . ~ _ _ _ _

1 2 3 1 5 6 7 8 0 1 0

MI". U-,

Figure 7 Remlis for experiment 3 ~ Z e m tolerance

Experiment 4

~. . ~ ~~ ~ ~~ ~~ .~~~~~ ~.
Figure 8: Results for experiment 4 -Zero tolerance

dbd
I EA
0 PSO

1 1 0 1 5 6 7 8 B 10

h I 1 " . U",
~~ ~ . ~ . . . ~ ~~ ~~

Figure 9: Results far experiment I - At-Most-One IOIcrance

129

AS,,". ""r

.
Figure IO: Results For experiment 2 ~ At-Mast-One lolerance

. ,. .
Exp..," 1 (,=.Mo.,.on-,

1 2 3 4 s 6 7 8 9 10

.et,". "-7

Figure I I : Results for experiment 3 - At-Most-One tolermce

~~~ . .
Experlmnl4 (PL-MosI-OneI

Mr U-.
. . ~ . . .~

Figure 12: Results far experiment 4 - At-Most-One tolerance

.
A v e m ~ e Predbtlon AscYreoy

. __

..P(a" ".PJ *"SA

Figure 13, Average Prediction Accuracy

A . R ~ S I I ~ I J By looking at the results obtained from the experiments, the
following observations have been found

Whilst the predictions computed with the Pearson On the whole the PSO performed significantly well
algorithm always remain the same given the same compared to the other two systems, see figures 5 to 8 for
parameter values, those obtained from the PSO and GA results obtained from experiments 1 to 4.
vary according to the feature weights of that run. Out of When random profile selection was used, in most cases the
the 30 ntns for each active user in each experiment, the prediction accuracy for PSO rose considerably and
run with the best feature weights (that gave the highest outperformed the other two systems. Figures 7 and 8 show the
percentage of right predictions) was chosen and plotted results for experiments 3 and 4.
against the result from the Pearson algorithm.' e The performance of the PSO system improved greatly from

being 40-50% accurate with zero tolerance level to 60-100°%
when at-most-one tolerance level was employed. Figure 13
shows average prediction accuracy for all four experiments I The best rather than average was plotted since this is closest

to the real world scenario where this system could be run off- ,3,jvith both zero and at-most-one tolerance levels.
line and the current best set of feature weights would be set as
the initial preference of the active user.

The speed of execution of the PSO system was over
10% faster than that ofthe GA.

B. Anu/y.s;s o/Resu/rs

It was found that the PSO performed very well
compared to the other two systems for all four
experiments with both Zero and At-Most-One tolerance
levels. However, the observation found in [I] that as the
number of users goes up, the probability of finding a
better matched profile should be higher and hence the
accuracy of the predictions should increase, still applies
to the GA system here, but is not the case for the PSO
recotntnender. One explanation to this fall in the average
accuracy level as the number of users increases is that
originally the users that were selected to be part of the
neighbourhood to give recommendations are highly
similar to the active user. As the number of users
increases, more users are being considered and this
could sotlietimes result in many less similar users being
added to the neighbourhood and hence, lower overall
prediction accuracy. This probletii will be examined in
more detail and tackled in future work where we treat
the users theinselves as panicles in the swarm.

Results for the PSO from experiments 3 and 4 confirm
the observation found in the last published work on the
GA recommender [I] that random sampling is better
than fixing which users to select. This is because i t
allows the search to consider a greater variety o f profiles,

In addition, average and worst results were examined
and compared among the three methods. It was found
that PSO still achieved the best performance in most
experiments compared to the GA and PA systems. The
only case when PSO did not achieve the highest
perfoniiance was when worst results were considered in
experiment 2, emphasising the problem of increased
number of users mentioned earlier. However, this
probletn does not have any effect on the performance of
PSO in experiment 4 when random sampling was used.

As mentioned earlier, only the run@) with the best
feature weights for each active user were considered for
this analysis. We now look into these runs in more detail
to see how the feature weights obtained and users
selected for the neighbourhood in these runs played a
part in determining user preference. In the GA
recommender, when more than 1 run for an active user
achieved the same best performance (highest number of
votes being predicted correctly) results indicate that the
same set of users had been selected for the
neighbourhood to give recommendations [I] . However,
this is not the case for the PSO system: many runs that
attained the same best performance did not select the
same set of users. By looking at the history of particle
paths, when more than I panicle attained the same best
perfonnance, the global best position was picked
randomly froin one of these particles and it is this
position that other panicles move towards. It is possible
that the other “best” particles that were neglected could
have contained better solution had they been given the
chance for the swarm to explore their surrounding space.
Future work will explore this in more detail by adding131
another rule to the swanning process making the

particles move towards the central location of a11 “best”
particles.

A duplicate user to active user 1 was inserted into a run for
active user 1 in experiment 3 and two runs in experiment 4 in
order to observe how good the system was at using the
information from this duplicate user to give recommendations.
The results demonstrate the best run was obtained from the
runs which contain the duplicate user and that the PSO picked
this to be the only user in the neighbourhood resulting in
100% prediction accuracy for the active user.

V. CONCLUSIONS

This work has shown how particle s w a m optimization can
be employed to fine-tune a profile-matching algorithm within
a recommender system, tailoring it to the preferences of
individual users Experiments demonstrated that the PSO
system outperformed a non-adaptive approach and obtained
higher prediction accuracy than the Genetic Algorithm system
and Pearson algorithm in most cases. In addition, compared
to the GA approach, the PSO algorithm achieved the final
solution significantly faster, making it a more efficient way of
improving perfonnance where computation speed plays an
important part in recotnmender systems.

Acknowledgement
This work is funded by a scholarship provided by the Thai Gavemment.

Re/erences

[I] Ujjin, S. and Bentley, P. J . 2002. Learning User Preferences Using
Evoliition. In Proceedings of the 4’h Asia-Pacific Conference on
Simulatcd Evolution and Learning. Singapore.
Breese. J.S., Heckerman, D. and Kadie. C. 1998. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence, pp. 43-52.
Schdfer. J. 8. . Konstan. J . A . and Riedl. J. January 2001. E-Commerce
Reconimendution Applications. Journal of Data Mining and Knowledge
Discovery.
Schsfer. J. 8.. Konstan. J. and Riedl. J. 1999. Recommender Systems in
E-Commerce. Proceedings o f the ACM 1999 Conference an Electronic
Commerce.

[5] Tween, L. and Hill. W. 2001. Beyond Recommender Systems:
Helping People Help Each Other. In HCI In The New Millmiam.
Csrroll. J. ed. Addison-Wesley.
Delgado. J.A. February 2000. Agent-Based lnfornwtion Filtering and
Recommender Systems on the Internet. PhD thesis. Nagoya Institute o f
Technology.

[7] Herlocker, J.L., Konstan, J . A. and Riedl, J. 2000. Explaining
Collaborative Filtering Recommendations. Proceedings of the ACM
2000 Conference on Computer Supported Cooperative Work.
Cayzer, S. and Aiekelin U . 2001, A Recommender System based an the
Immune Network. Submitted and under review.
Blackwell, T.M. and Bentley, P.J. 2002. Dynamic Search with Charged
Swarms. In Proceedings of the Generic and Evolutionary Computation
Conference 2002. New York.

[IO] Eberhan. R.C. and Shi, Y . 2001. Particle Swarm Optimiution:
Developments, Applications and Resources. In Proceedings of the 2001
Congress on Evolutionary Computation. vol.l, pp.8 1-86.

[I I] Bentley. P. J. and Corne, D. W. 2001. Creative Evolutionary Systems.
Morgan K a u f i n Pub.

[I21 van den Bergh, F. and Engelbrecht, A.P. 2001. Training Product Unit
Networks using Cooperalive Particle Swarm Optimiserr. In Proceedings
of IJCNN 2001, Washington DC.

121

[3]

[4]

[6]

[8]

[9]

