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Abstract
Segregative behaviors, in which individuals with common characteristics are placed 
together and set apart from other groups, are commonly found in nature. In swarm robotics, 
these behaviors can be important in different tasks that require a heterogeneous group of 
robots to be divided in homogeneous sets according to their physical (sensors, actuators) 
or logical (algorithms) capabilities. In this paper, we propose a controller that can spatially 
segregate a swarm of robots in two specific ways: clusters and concentric rings. By segre-
gation, we mean that the swarm is partitioned in groups, with similar robots belonging to 
a same group, and these groups are spatially separated from each other. We achieve this by 
adapting and extending the differential potential concept, an abstraction of the mechanism 
by which cells achieve segregation. We present stability analysis and perform simulated 
experiments in 2D and 3D spaces in order to show the robustness of the proposed control-
ler. Experiments with a limited number of real robots are also presented as a proof of con-
cept. Results show that our approach allows a swarm of heterogeneous robots to segregate 
in a stable, compact, and collision-free fashion.

Keywords Swarm robotics · Segregation · Artificial potential fields · Differential 
adhesion · Control

1 Introduction

Robotic swarms are systems composed of a large number of robots that usually rely on self-
organized behaviors in order to solve complex problems. Such systems have been receiv-
ing significant attention in recent years due to current advances in technology, which are 
allowing the mass production of increasingly smaller robots. Şahin (2005) defines swarm 
robotics as the study and implementation of methods that allow a large number of simple, 
physically embodied agents to achieve a desired collective behavior in a robust, flexible, 
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and scalable manner. In a wide range of applications, these three properties provide key 
advantages such as low-cost distributed sensing, reduced chances of complete system fail-
ures, better workload distribution, and massive task parallelization.

Research in swarm robotics usually focuses on homogeneous systems, in which all 
robots have the same physical characteristics (Dudek et al. 1996). However, several appli-
cations require the use of heterogeneous teams of agents in order to complete a given 
task, as sometimes it is not possible to integrate all of the required sensing and actuation 
capabilities in a single robot. One example of a heterogeneous swarm is the swarmanoid 
robotic system (Dorigo et al. 2013), which comprises three distinct types of robots: foot-
bots, a differential drive unit; hand-bots, an agent that can climb structures and manipulate 
objects; and eye-bots, an indoor flying robot. Swarm systems such as swarmanoid may be 
especially useful in search and rescue missions, surveillance and perimeter protection sce-
narios, cooperative transportation of objects, among other applications.

In some scenarios, heterogeneous robots must be able to organize themselves in a spe-
cific manner so as to complete their assignments. For example, supply gathering robots 
may need to form teams that can maximize the throughput of a particular resource. A pos-
sible strategy would be to sort agents according to their specialization, in such a way that 
gatherers of the same resource stay in the same team. We can say that such system shows a 
segregative behavior, that is, the sorting process leads dissimilar robots into distinct teams.

Segregation is a natural phenomenon that is commonly used as a sorting mechanism by 
several biological systems. For example, ants sort their brood into annular patterns where 
distinct broods tend to be placed at particular annuli (Franks and Sendova-Franks 1992); 
odors can impact the spatial distribution of several species of cockroaches, whose larvae 
prefer their own strain odor to that of another (Ame et al. 2004); and the Law of Segrega-
tion from classic genetics explains trait inheritance as a process by which two genes sepa-
rate from each other during gamete formation, leading them to appear in different gametes 
of the offspring (Ridley 2003). Another important example is embryogenesis, in which 
cells segregate into distinct regions whose characteristics allow a particular type of tissue 
to be generated (Eduard and Wilkinson 2012). Phenomena such as these have been exten-
sively studied by biologists, but few robotics researchers have used them as inspiration for 
developing control strategies in swarm robotics.

In this paper, we present a controller that is able to sort a heterogeneous swarm of robots 
into homogeneous teams according to the characteristics of each robot. We refer to this 
sorting behavior as segregation and provide two distinct forms thereof: cluster segrega-
tion, in which similar robots form cohesive clusters, and dissimilar ones are separated from 
each other; and radial segregation, in which robots must form a joint, concentric annular 
formation that sorts unalike robots into different rings and like robots into a same ring (see 
Fig. 1). In order to validate the proposed controller, we employ a formal stability analysis 
and present simulations in 2D and 3D spaces. Furthermore, experiments using a limited 
number of real robots are provided as proof-of-concept of our methodology.

We believe that the use of large groups composed of robots of different types, with dif-
ferent sensors, different mobility capabilities, different actuators, etc., might be beneficial to 
several real applications that require flexibility of the swarm. In such scenario, as discussed 
by Ferreira Filho and Pimenta (2019a), it may be important to have swarms endowed with 
the ability of autonomously exhibiting segregation behaviors. Segregation can be seen as a 
collective behavior which allows for the formation of certain interesting geometric patterns 
such as clusters and rings. Executing a certain type of segregation behavior can be then an 
important intermediary step in the solution of complex tasks which are commonly tack-
led by considering hierarchical approaches where different software layers solve different 



261Swarm Intelligence (2020) 14:259–284 

1 3

sub-problems of the complete task. A high-level layer could be responsible for solving 
multi-robot task allocation problems (Gerkey and Matarić 2004) with the aim of assign-
ing robots of different types to groups so as to maximize performance. On the other hand, 
a low-level layer could be responsible for coordinating each group in the execution of each 
assigned task such as object manipulation, perimeter surveillance, and environment explo-
ration. In this context, a middle layer responsible for segregating the groups can also be 
necessary. For example, in scenarios where the agents of a specific group need to exchange 
a large amount of data before the execution of the assigned task, it is clear the advantage 
of creating spatial clusters formed by agents of the same group before sending the data. 
It is more efficient for the robots to communicate with other robots if they are close to 
each other. At the same time, interference is avoided if the robots of a group are separated 
from robots of other groups. This clearly motivates the application of cluster segregation 
behaviors as an intermediary step. Concerning radial segregation behaviors, in which dif-
ferent groups are deployed at circles of different radius values, it is possible to imagine its 
application in scenarios of perimeter surveillance with the objective of protecting certain 
regions of the environment from incoming invaders as presented in (Bajaj and Bopardikar 
2019). Considering swarms composed of robots that move at different speeds, faster robots 
could be assigned to surveil outer circles, while slower robots could be assigned to surveil 
inner circles.

This paper is organized as follows: We discuss related work on swarm controllers and 
segregative behaviors in Sect. 2. Our methodology is presented in Sect. 3, and experimen-
tal results in both simulated and real scenarios are detailed in Sect. 4. Finally, we close this 
paper with our conclusions and directions for future work in Sect. 5.

2  Related work

Inspired by the collective motion of flocks, herds, and schools, Reynolds (1987) presented 
one of the most influential algorithms for simulating the movement of a swarm of agents, 
known as the boids model. Three simple steering behaviors are applied to each agent in 
the system, with regard to its surrounding neighbors: separation, which avoids collisions; 
alignment, which steers agents toward their average heading; and cohesion, which moves 
agents toward their average positions. In every iteration, each agent computes and weighs 
all rules according to user-specified parameters, and the result is applied as a steering 

(a) Cluster Segregation (b) Radial Segregation

Fig. 1  The two behaviors displayed by our controller in a system consisting of 50 robots with two types
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input. Reif and Wang (1999) provided a generalization of these steering rules in their social 
potential field method, an extension for multi-agent systems of the well-known artificial 
potential fields technique (Khatib 1985), which is commonly used in robotics for obsta-
cle avoidance. In this framework, pairwise potential functions are defined among robots 
according to some desired behavior for the whole swarm, and control rules are then formu-
lated based on the gradient of these functions. Thus, robots are controlled as if they were 
particles moving in a vector field.

The idea of driving the motion of multiple robots as if they were particles subject to 
the action of artificial forces was explored in the work of Spears et  al. (2004). The pro-
posed framework was entitled “physicomimetics” in which, different from other works, the 
artificial forces were used to generate “way points” for the robots instead of directly pro-
viding the robot control inputs. Under this approach, homogeneous groups of robots were 
able to form lattices, perform goal tracking, obstacle avoidance, surveillance, and perim-
eter defense tasks. Another interesting example inspired by laws of physics is the work of 
Pimenta et al. (2013), in which robots are controlled using a fluid dynamics model. Basi-
cally, the whole swarm behaves as a fluid, of which every robot represents a portion, and 
Smoothed Particle Hydrodynamics, a numerical method frequently used to simulate fluids, 
is employed so as to derive decentralized control laws for the swarm.

These works have been widely used as foundations to several control strategies and 
applications in swarm robotics. Some examples include, but are not limited to: pattern for-
mation (Hsieh et  al. 2008; Coppola et  al. 2019), leader-follower strategies (Leonard and 
Fiorelli 2001; Tanner et al. 2004), shepherding (Lien et al. 2004), congestion control (Mar-
colino et al. 2017) and flocking (Olfati-Saber 2006; Tanner et al. 2007).

Another type of approach considers a mathematical model of synchronizing oscilla-
tors able to move in the environment (Iwasa et  al. 2010; Starnini et  al. 2016), a repre-
sentation for self-organizing groups of individuals found in nature. The elements of such 
systems were then called ‘swarmalators’ by O’Keeffe et al. (2017), an intuitive name for 
systems that mix swarming and synchronization. The phase and spatial dynamics of such 
systems result from a location-dependent synchronization and phase-dependent aggrega-
tion, respectively. However, such two-way space-phase coupling is difficult to find in real-
world systems (O’Keeffe et al. 2018). This approach is also another example of strategy 
that considers the composition of pairwise attractive and repulsive virtual forces acting on 
the agents. In robotic swarms, this is indeed an effective strategy to generate patterns and 
gives rise to interesting emergent behaviors. Differently from most works in robotics lit-
erature, in this case the attractive and repulsive forces are functions not only of the relative 
displacement of agents but also of the third state variable called phase. The dynamics of 
this third variable is also dependent on the relative displacement giving rise to a coupled 
system. This is quite interesting as it allows for the coupling between swarming and syn-
chronization behaviors. For such systems, different stationary and non-stationary states are 
observed depending on the values of the model parameters. Among the collective states 
swarmalators can exhibit, the splintered phase wave can be seen as a segregative behavior, 
as a set of clusters of robots with the same phase are formed. However, it is important to 
emphasize this is a non-stationary state where agents keep moving even after convergence 
and according to O’Keeffe et al. (2017), it is not clear yet what determines the exact num-
ber of clusters that will be formed. As discussed by O’Keeffe and Bettstetter (2019), the 
theoretical works developed in this field are mainly concerned with the problem of find-
ing which spatiotemporal patterns will emerge given the mathematical swarmalator model. 
Just recently, real-world implementation of these models has been undertaken and some 
of the theoretical patterns have been also observed in real robots (Barciś et al. 2019). The 
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results on swarmalators provide evidence that the application of these models in robotics is 
promising and may pave the way for the solution of complex tasks. This will become pos-
sible when future research provides the tools that will enable one to design a model given 
an arbitrary desired spatiotemporal pattern to be formed. A comprehensive review of swar-
malators is presented in (O’Keeffe and Bettstetter 2019).

In this work, we consider a potential field-based approach, which relies only on the dif-
ference of positions and its derivatives, without the need of considering any kind of inter-
nal state dynamics for the agents (phase) as in the case of swarmalators. Potential fields are 
well established and have proven their efficacy in a large body of real-world scenarios in 
the last decades. Besides its intrinsic robustness and its low computational cost, it has also 
another appealing feature which is the possibility of considering the associated potential 
function in the process of construction of a Lyapunov function to be used in stability analy-
sis. Being able to successfully apply Lyapunov theorems, or extensions such as LaSalle’s 
theorems, in such analysis depends highly on the ability to find such a function, which 
might be very tricky for general nonlinear systems. In robotic systems this process can be 
facilitated when considering potential field-based controllers. In this work, we benefit from 
this important feature allowing us to prove convergence to invariant sets and collision-
free motion in segregation tasks for swarms composed of agents with double integrator 
dynamics.

None of the previously cited works presented strategies dedicated to induce segrega-
tion behaviors in heterogeneous groups of robots. On the subject of segregation in swarm 
robotics, research has been mostly focused on using it as a mechanism by which robots sort 
a set of objects (e.g., see Deneubourg et al. (1991)). Few authors have specifically studied 
segregation in heterogeneous swarms in a similar sense as we do. One example is Groß 
et al. (2009), which presented a motor schema that allowed robots to organize into annular 
structures. Their work was based on the Brazil Nut Effect, a convection phenomenon by 
which a mixture of granular material subjected to vibrations ends up with its largest parti-
cles close to the surface (Rosato et al. 1987). The authors designed a distributed controller 
that considered robots as grains of different sizes, and local interactions among neighbors 
made “larger” agents move outward. Despite the interesting results, their controller relies 
on randomized input and requires all robots to share a common target in order to simu-
late vibrational and gravitational forces, respectively. This behavior was demonstrated with 
swarms of physical e-puck robots by Chen et al. (2012a). Also inspired by this convection 
phenomenon, de la Croix and Egerstedt (2013) devised a weighted consensus protocol in 
which similar robots had the same weight and were subjected to an external control signal 
that separated the system into a desired number of clusters. Nevertheless, this signal must 
come from a centralized source, which may hinder the scalability of the system in real 
scenarios.

Ferreira Filho and Pimenta (2015) introduced an approach to swarm cluster segregation 
based on hierarchical abstractions, which are virtual structures that embody the pose and 
shape of a team of robots (Tan and Lewis 1996). Abstractions were modeled as circles, 
and control equations were derived to separate these circles so that robots belonging to the 
same group stay inside the same circle. The authors presented stability and convergence 
proofs of segregation, but their method was not collision-free, and a practical implementa-
tion may require a centralized unit that broadcasts inputs for all abstractions or a networked 
consensus algorithm to be employed among robots. This approach was extended in Fer-
reira Filho and Pimenta (2019a) in which a collision avoidance scheme based on the solu-
tion of an optimization problem which does not interfere in the solution of the segregation 
problem is incorporated in the method.
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Decentralized radial segregation was also tackled by these authors. In Ferreira  Filho 
and Pimenta (2019b), they present a method based on the use of consensus protocols and 
some heuristics to find where the segregation is going to take place and the correct radius 
for each group. Although the method is able to run in a decentralized way, it assumes the 
maintenance of an underlying fixed communication topology during the execution of the 
task.

In Edwards et  al. (2016), the swarm segregation was formulated as a convex optimi-
zation problem, which results in provably correct segregation, however, relying on global 
knowledge. More recently, St-Onge et al. (2018) proposed a minimalistic reactive approach 
based on local information to obtain a circular behavior, concept that was later used in 
(Mitrano et  al. 2019) to achieve segregation. Also considering local information only, 
Inácio et  al. (2019) presented an evolutionary-based strategy that combines concepts of 
the particle swarm optimization (PSO) with the optimal reciprocal collision avoidance 
(ORCA) algorithm to keep groups segregated as they navigate.

A superset behavior of segregation is splitting: when a large, coherent cluster of agents 
separates into two or more smaller clusters, without regarding any intrinsic characteristic 
of each robot. In this context, Chen et  al. (2012b) employed artificial forces having dis-
tinct effective ranges to control splitting as well as merging behaviors in a homogeneous 
system. More precisely, they used a long-range, attractive force; a short-range, repulsive 
force; and an intermediate-range, Gaussian-shaped, repulsive force. By tuning the magni-
tude of the intermediate-range repulsion, they achieved splitting or merging behaviors for 
the whole swarm. In another work, Zhao et al. (2011) provided decentralized density-based 
controllers for swarms of robots, and they observed that a segregative behavior emerged 
when applying their control method on a homogeneous swarm, i.e., robots were split into 
subgroups that formed circular patterns after reaching equilibrium. These circular arrange-
ments changed from multiple ring-like patterns to a single ring when decreasing the ref-
erence density of the system. Unfortunately, the authors indicated that a mathematical 
explanation for such behavior is still open. Altogether, in both of these works, there is no 
straightforward manner of selecting which robots must be segregated, since the authors 
considered the swarm to be homogeneous. Also, as a side note, Zhao et al. (2011) classi-
fied the behavior of their controller as being segregative, but we consider that it actually is 
a splitting behavior, because segregation occurs when the split is due to differences in an 
intrinsic characteristic that is shared among agents.

To some extent, another problem related to segregation is stationary clustering: when 
robots are spatially assembled into different groups by relying on communication, but not 
movement. One such approach is by Di Caro et al. (2012), who introduced a token-based 
communication protocol that relies on spatial awareness. Each robot uses a local ad hoc 
network to propagate messages containing tokens that represent the density of robots in 
its surrounding area, and a load-balancing protocol transports tokens among robots so that 
after convergence agents can be split into two groups: those that hold tokens and those that 
do not. This approach was later extended to handle clustering into more than two groups 
(Cruz et al. 2015).

In biological theory, the Differential Adhesion Hypothesis (DAH) (Steinberg 1963) 
states that differences in cell adhesion generate mechanical forces that drive cellular 
segregation. In other words, a cell population experience stronger cohesive forces when 
among similar cells than when among dissimilar ones, and this imbalance is responsible 
for the segregative behavior (Eduard and Wilkinson 2012). Based on the DAH, Kumar 
et  al. (2010) proposed that robots should experience different magnitudes of potential 
while interacting with different agents so as to achieve segregation, namely the differential 
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potential concept. They devised a controller that was able to segregate a swarm comprising 
of two types of robots into two distinct clusters in a smooth and concise fashion.

By following the DAH approach proposed by Kumar et  al. (2010), we introduced a 
modified version of their controller that is able to handle segregation of a heterogeneous 
swarm into multiple clusters (Santos et  al. 2014). Moreover, stability results and colli-
sion avoidance guarantees were provided. In spite of the efficacy of both approaches, only 
numerical simulations were provided in the papers, and implementations on real robots 
were not presented. Thus, in comparison with our previous work (Santos et al. 2014), in 
this paper we present further extensions of our controller, novel metrics for measuring seg-
regation, an improved discussion and analysis of the proposed method, including some of 
its limitations, and new simulations as well as experiments with real robots.

3  Methodology

We consider a set of fully actuated, heterogeneous mobile agents whose dynamics are 
given by the following double integrator:

in which qi ∈ ℝ
p , vi ∈ ℝ

p , and ui ∈ ℝ
p are the position, velocity, and control input of 

robot i, respectively (p ≥ 2) . The heterogeneity of the system is modeled by a partition 
� = {�1, �2,… , �m} , with each 𝜏k ⊂ 𝛶  containing all agents of type k. We assume that 
∀j, k ∶ j ≠ k → �j ∩ �k = � and ∀j, k ∶ |�j|≈|�k| , i.e., each robot is uniquely assigned to a 
single type and the partition sizes are balanced1.

Our goal is to sort robots of different types into m distinct groups so that each group 
contains only similar agents. This task can be done by our controller in two distinct ways: 
cluster segregation and radial segregation. In the former, robots belonging to a particular 
�k must be cohesively grouped into a single cluster while being split from other agents. In 
the latter, the whole swarm must form a joint, concentric annular formation in which robots 
of �k must belong to a same ring, while agents of different types must belong to different 
ones.

3.1  Control law

Given a heterogeneous system with type partition � on n mobile agents, whose dynamics 
are described by (1), we propose the following control law:

in which Uij(‖qij‖) is an artificial potential function that rules the interaction between 
agents i and j, ‖qij‖ is the Euclidean norm of the vector qi − qj , and ∇qi

 is the gradient with 
respect to the coordinates of agent i. The first term in (2) represents the interactions of 
robot i with all other agents, and the second term forces robots to match their velocities. 

(1)q̇i = vi and v̇i = ui i ∈ 𝛶 = {1, 2,… , n},

(2)ui = −
�
j≠i

∇qi
Uij(‖qij‖) −

�
j≠i

(vi − vj),

1 Situations in which the size of the groups is unbalanced can lead to non-segregated states. As will be dis-
cussed in Sect. 4, we observed these situations when the size of one group is less or equal to 20% the size of 
the others
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The artificial potential field Uij ∶ ℝ → ℝ>0 is a function of the relative distance between a 
pair of agents, i.e.,

in which 𝛼 ∈ ℝ>0 is a scalar control gain, and dij ∈ ℝ>0 is a parameter that controls the seg-
regative behavior between i and j, as discussed in the next paragraph. The initial conditions 
and dynamics of the system exclude all situations where (3) is undefined. In other words, 
if there are no collisions at the initial state, then the system is collision-free throughout all 
time steps (see Proposition 2). Moreover, an important assumption in these equations is 
that each robot is capable of computing its distance qij and relative velocities to all other 
robots. In Sect. 4 we present experiments relaxing this assumption.

We apply the differential potential concept (Kumar et al. 2010) to control the robots, i.e., 
pairs of dissimilar agents must experience different magnitudes of potential than pairs of 
similar agents. We accomplish this by specifying dij according to the following definition:

where d(k)
AA

 is a particular constant for each �k . We state by (4) that interactions among simi-
lar robots of type k are ruled by d(k)

AA
 , while interactions among robots of different types are 

ruled by dAB . The system achieves two distinct behaviors according to the values of these 
constants as shown in Table 1.

We show in Fig. 2a a plot of the artificial potential function Uij(‖qij‖) , whose minimum 
is located at ‖qij‖ = dij , and display the possible interaction forces between a pair of robots 
in Fig. 2b. The latter actually depicts the scalar part of the gradient

of which we ignore the normalized vector term qij∕‖qij‖ . It is easy to see that when 
d
(k)

AA
< dAB , at any given distance, forces among agents of similar types are greater than 

those among different types, and the opposite is true for d(k)
AA

> dAB . Therefore, our control-
ler effectively implements some of the key ideas in Steinberg’s differential adhesion model 
(Steinberg 1963) for cellular segregation.

3.2  Controller analysis

In this section, we analyze the convergence and some properties of the multi-agent system 
when using the proposed control law. Let V(�, �) be the Lyapunov function

(3)Uij(‖qij‖) = �

�
1

2
(‖qij‖ − dij)

2 + ln ‖qij‖ +
dij

‖qij‖
�
,

(4)dij =

{
d
(k)

AA
, if i ∈ �k and j ∈ �k

dAB, if i ∈ �k and j ∉ �k
,

(5)∇Uij(‖qij‖) = �

�
‖qij‖ − dij +

1

‖qij‖ −
dij

‖qij‖2
�

qij

‖qij‖ ,

Table 1  Constraints on the 
parameter dij for achieving cluster 
and radial segregation

Behavior Constraint

Cluster segregation d
(1)

AA
= d

(2)

AA
= ⋯ = d

(m)

AA
< d

AB

Radial segregation d
(1)

AA
< d

AB
< d

(2)

AA
< ⋯ < d

(m)

AA
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in which � ∈ ℝ
np and � ∈ ℝ

np are stacked vectors whose components are the positions 
and velocities of all robots, respectively, and U(�) ∶ ℝ

np
→ ℝ>0 is the collective artificial 

potential function, which can be written as follows:

With this definition, we can model the collective dynamics of the system by

in which L̂(�) = L(�)⊗ Ip is the Kronecker product of the system’s Laplacian matrix L(�) 
and the p × p identity matrix Ip (please refer to (Olfati-Saber 2006) for a thorough descrip-
tion of (9)).

Proposition 1 The collective artificial potential function U(�) is strictly convex if 
∀i, j ∶ dij >

√
3

9
.

Proof The second derivative of Uij(‖qij‖) with respect to ‖qij‖ is given by

of which ‖qij‖ = 3dij is a minimum. By evaluating U′′

ij
 at this particular inter-agent distance, 

we have

(6)V(�, �) = U(�) +
1

2
�⊺�,

(7)

U(�) =
1

2

�
�k∈�

�
i∈�k

�
j∈�k ,j≠i

Uij(‖qij‖)

+
1

2

�
�k∈�

�
i∈�k

�
j∈� ⧵�k

Uij(‖qij‖).

(8)�̇ = �

(9)�̇ = −∇U(�) − L̂(�)�,

(10)U
��

ij
(‖qij‖) = �

�
1 −

1

‖qij‖2
+

2dij

‖qij‖3
�
,
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Fig. 2  Plot of the potential field Uij(‖qij‖) and its underlying forces given d(1)
AA

= 2 , dAB = 5 , and d(2)
AA

= 8
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which is positive for dij >
√
3

9
 . Hence, given this constraint, Uij(‖qij‖) is strictly convex on 

(0,∞) . The same is also true for U(�) in its respective domain because the set of convex 
functions is closed under addition.   ◻

Proposition 2 Assuming that the adjacency graph of the swarm system is complete at 
all times, and that ∀i, j ∶ dij >

√
3

9
 , for any initial condition that belongs to the level set 

�C = {(�, �) ∣ V(�, �) ≤ C} , with C > 0 , a heterogeneous system with type partition � on 
n mobile agents, whose dynamics and control laws are, respectively, given by (1) and (2), 
asymptotically converges to the largest invariant set in 𝛺I = {(�, �) ∈ 𝛺C ∣ V̇(�, �) = 0} , 
without any inter-agent collisions. At this largest invariant set, the velocity of each agent 
is bounded, all velocities match, and the system’s collective potential reaches a global 
minimum.

Proof We aim to demonstrate that V̇(�, �) ≤ 0 so as to apply LaSalle’s Invariance Principle 
in order to show stability. Thus, we can differentiate V(�, �) with respect to time and then 
substitute (8) and (9) as follows:

The last step in (12) holds because the system’s adjacency graph is complete (Olfati-Saber 
2006). Therefore, using LaSalle’s Invariance Principle, all initial conditions that lie on �C 
will lead the system to the largest invariant set in �I , in which V̇(�, �) = 0.

During convergence to this largest invariant set, assume that robots i and j collide (i.e., 
‖�ij‖ = 0 ). We see by (3) and (7) that this would take U(�) → ∞ , which contradicts the 
facts that V(�, �) ≤ C and V̇(�, �) ≤ 0 . Hence, the system is collision-free. Furthermore, 
by applying V(�, �) ≤ C into (6), we can conclude that �⊺� ≤ 2C , leading to ‖�‖ ≤ √

2C . 
Consequently, all individual velocities are bounded by 

√
2C as well.

At the largest invariant set in �I , we showed that V̇(�, �) = 0 , which, in conjunction 
with (12), entails that all velocities must match (i.e., ∀i, j ∶ �i = �j ), because this is the only 
scenario in which (12) can be equal to zero. Matching velocities imply that inter-agent dis-
tances remain constant (i.e., ∀i, j ∶ �̇ij = � ), and by differentiating (7) with respect to time 
we find

which allows us to conclude that U(�) is constant at the steady state. Moreover, matching 
velocities also indicate that L̂(�)� = � , which reduces (9) to

(11)U
��

ij
(3dij) = �

(
1 −

1

27d2
ij

)
,

(12)

V̇(�, �) = �̇⊺∇U(�) + �⊺�̇

= �⊺∇U(�) + �⊺(−∇U(�) − L̂(�)�)

= −�⊺L̂(�)�

= −
1

2

�
i

�
j

‖�i − �j‖2 ≤ 0.

(13)

U̇(�) =
1

2

�
𝜏k∈𝜏

�
i∈𝜏k

�
j∈𝜏k ,j≠i

�̇
⊺

ij
∇�ij

Uij(‖�ij‖)

+
1

2

�
𝜏k∈𝜏

�
i∈𝜏k

�
j∈𝛶 ⧵𝜏k

�̇
⊺

ij
∇�ij

Uij(‖�ij‖) = 0,
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Therefore, ∇U(�) must be the zero vector, as otherwise the collective potential would reach 
a lower value instead of being constant. This implies that the system has reached a local 
minimum of U(�) , and velocities must not change. By Proposition 1, the system actually 
reaches a global minimum because all local minima of a convex function in an open, con-
vex set are always global extrema.   ◻

Proposition 2 demonstrates that our controller is not hindered by local minima, a common 
problem in potential-based control strategies, especially in motion planning scenarios (Cho-
set et al. 2005). Notice that this does not indicate that the system is always segregated at the 
steady state. Instead, it shows that the collective potential energy of the swarm is completely 
minimized.

We now present two distinct metrics for evaluating the convergence of the system into a 
segregated state in a quantitative sense. The metric for cluster segregation is based on the 
intersection area of convex hulls, and the metric for radial segregation relies on a discrete 
counting procedure.

3.3  Cluster segregation metric

We evaluate our metric by computing the pairwise intersection area between the convex 
hulls of the robots according to their type partition. That is, the convex hull of all robots of 
type k is computed and intersected with each other. Formally, metric Mclu(�, �) is given by

in which A(Q) and CH(Q) denote the area and the convex hull of set Q, respectively. We 
have chosen this metric because the convex hull can be used as a simple and well-defined 
shape representation of a cluster. This means that cluster segregation occurs when there is 
no overlap among clusters. Thus, we say that the system is fully segregated when Mclu(�, �) 
approaches zero.

3.4  Radial segregation metric

In order to measure radial segregation, we adapt the metric proposed by Groß et al. (2009) 
to suit the conditions of our system. Their metric requires robots to segregate around a 
stationary point c ∈ ℝ

p , and, as this is not the case in our controller, we must simply define 
this particular point as being the centroid of the swarm,

which can be shown to be a stationary point of the swarm (Gazi and Passino 2011). 
Accordingly, we denote the radial segregation metric as

(14)�̇ = −∇U(�).

(15)Mclu(�, �) =
∑
�k∈�

∑
�l∈�,l≠k

A

(
CH(

⋃
i∈�k

qi)
⋂

CH(
⋃
j∈�l

qj)

)
,

(16)c =
1

n

∑
i∈�

qi,

(17)Mrad(�, �) =
1

n2

∑
i∈�

∑
j∈�

�ij(�, �),
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in which �ij(�, �) is the radial segregation error between a pair of robots, given by

Equation (17) counts the number of robots outside the correct spherical shells according to 
the values of each d(k)

AA
 and normalizes the result into the unit interval. Therefore, in order 

to minimize (17), given d(k)
AA

< d
(l)

AA
 , robots belonging to �k must be inside an inner shell, 

whereas robots belonging to �l must be inside an outer shell. In this manner, robots are 
radially segregated when Mrad(�, �) approaches zero.

4  Experiments

In order to analyze our controller under both metrics, we performed an extensive sequence 
of 2D numerical simulations in a swarm system consisting of 150 robots and a varying 
number of robot types (5, 10, and 15 distinct types). Experiments considering noise in the 
robot sensing model and also relaxing the complete graph assumption were also performed. 
At the outset of every experiment, all velocities were set to zero, robots were positioned 
according to a two-dimensional uniform distribution, and a minimum distance constraint 
was maintained among agents to avoid collisions at the initial state. We also developed 3D 
numerical simulations and evaluated our metrics accordingly. Finally, additional experi-
ments using real robots were performed in a controlled environment as proof-of-concept. A 
video of the experiments is available at https ://youtu .be/jb3DD 0mgGE E.

4.1  Cluster segregation

In our numerical simulations of cluster segregation, we set ∀k ∶ d
(k)

AA
= 2 , dAB = 5 , and 

� = 1 for all tests. We present in Fig. 3a the mean and the 95% confidence interval of metric 

(18)𝜖ij(�, 𝜏) =

⎧
⎪⎪⎨⎪⎪⎩

1, i ∈ 𝜏k, j ∈ 𝜏l, k ≠ l,

d
(k)

AA
< d

(l)

AA
, ‖qi − c‖ ≥ ‖qj − c‖

1, i ∈ 𝜏k, j ∈ 𝜏l, k ≠ l,

d
(k)

AA
> d

(l)

AA
, ‖qi − c‖ < ‖qj − c‖

0, otherwise

.

(a) (b)

Fig. 3  Mean values of Mclu(�, �) and Mrad(�, �) for 100 experiments with cluster and radial segregation, 
respectively, with a varying number of robot types. Dashed lines represent a 95% confidence interval

https://youtu.be/jb3DD0mgGEE
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Mclu(�, �) among 100 experiments given the aforementioned initial conditions. In all cases, 
it is easy to see that both the mean and the confidence interval approach zero as the num-
ber of iterations increases. Likewise, experiments comprising fewer types of robots tend 
to converge to a segregated state faster than those comprising more types. Such result is 
expected, since using a large number of types results in few robots per cluster, lowering the 
magnitude of the resultant force acting on a robot toward its respective cluster.

We composed in Fig. 4 a series of snapshots from particular instances of our experi-
ments. We can see that similar robots form clusters whose sizes grow as other agents join 
them. Moreover, interesting symmetric patterns can be observed at the stable state. When 
running these experiments, we also noticed two particular behaviors that are not explicit in 
the snapshots: large clusters usually move to the outskirts of the whole swarm, and adja-
cent clusters comprised of different robots form corridor-like structures, which were used 
by agents of a third type to move at higher speeds toward their own cluster. Both behaviors 
contributed to an overall opening of free space, whereby smaller clusters took advantage to 
increase their size by joining with lone robots or other small clusters.

These experiments were performed with balanced groups. We also made experiments 
with unbalanced groups and, in some experiments in which the size of one group is less 
or equal to 20% the size of the others, we reached equilibrium states in which the smaller 
groups are not segregated. Normally these situations happen when the robots of the smaller 
groups reach a symmetrical configuration in which their attractive force is annulled by the 
repulsive force of the other groups. It means that the minimum of the collective potential is 
reached without converging to a configuration of segregation. Figure 5 shows snapshots of 
two scenarios with unbalanced groups. In Fig. 5a, we have four groups with 30 robots and 
one group with 5. While the large groups segregate, robots of the smaller group stay outside 
and do not segregate (notice the purple robots close to the coordinates (−4, 2), (−2,−4) and 

(a) 5 Heterogeneous Types.

(b) 10 Heterogeneous Types.

(c) 15 Heterogeneous Types.

Fig. 4  Snapshots of numerical simulations of cluster segregation using 150 robots and a varying number of 
heterogeneous types in 2D. The type of each robot is represented by a different color. In each sequence, the 
left and right images represent the initial and final configuration, respectively
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(4,−2)) . Another example is shown in Fig. 5b, with eight groups of 20 robots each and two 
with 4 robots (notice the purple and pink robots close to the coordinates (−3, 2), (−3,−4) 
and (4,−3)) . In these simulations, we set ∀k ∶ d

(k)

AA
= 4 and dAB = 5.

Due to situations like these, we have the restriction that group sizes should be balanced. 
Possible alternatives to cope with this problem will be discussed in Sect. 5.

4.2  Radial segregation

In our simulations of radial segregation, dAB was set to 7.5, and each value for d(k)
AA

 was lin-
early increased in steps of five units, starting from d(1)

AA
= 5 , and the initial conditions were 

set in the same manner as before. We present in Fig. 3b the mean and the 95% confidence 
interval of Mrad(�, �) among 100 experiments. In all cases, the mean and the confidence 
interval approached zero as the iterations increased, as expected.

Figure 6 contains another series of snapshots from this particular set of experiments. 
In every sequence, the leftmost and rightmost images show the initial and final states, cor-
respondingly, and the latter also depicts circles as visual aid so that the radial segrega-
tion among robots can be more easily observed. Through a visual inspection, we can see 
that robots entered into an annular, segregated formation whose radius depends on d(k)

AA
 , of 

which the innermost and outermost group of robots have the lowest and highest value, i.e., 
d
(1)

AA
 and d(m)

AA
 , respectively. Furthermore, if the number of robots per type ( |�k| ) is sufficiently 

low when compared to the radius of the annular formation, then the latter degenerates into 
a perfect circular shape.

4.3  Noise in the sensor model

As mentioned in Sect.  3, we assume that the adjacency graph is complete, i.e., 
each robot can measure its distance ‖qij‖ to all the other robots in the swarm. To 
relax this assumption a little, we performed some simulations adding noise to these 

(a) 4 groups with 30 robots,
1 with 5.

(b) 8 groups with 20 robots,
2 with 4.

Fig. 5  Scenarios with unbalanced groups. We can see that the robots of the smaller groups stay at the bor-
ders and are not able to segregate
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measurements. Basically, we set a maximum error percentage � and added Gaussian 
noise N(qij, �) to the sensor inputs by setting the variance � to one-third of the maxi-
mum noise. That allows the random model to obtain 99.7% of precision according to 
the 68–95–99.7 rule. We conduct the experiments with different values of � , specifi-
cally: 0%, 1%, 5%, 10%, and 20% maximum errors.

Figure 7a shows the mean and the 95% confidence interval of the metric Mclu(�, �) 
over 100 experiments using 150 robots, 5 agents types, for different values of � . 
The results show that the sensor noise does not affect the segregative behavior, 
since Mclu(�, �) approaches zero as the experiment evolves, similarly to the behavior 
observed in the experiments without noise. The differences among the various values 
of � are very small and can be seen through the zoom in the figure. But it is interest-
ing to note in Fig. 7b that the control input 

∑
i ��ui�� does not approach zero for larger 

values of � , implying that the robots will keep moving even in a segregated state due 
to the noisy measurements. This can be minimized by adjusting the damping term in 
the control input. We also perform these experiments with radial segregation and the 
results are similar.

(a) 5 Heterogeneous Types.

(b) 10 Heterogeneous Types.

(c) 15 Heterogeneous Types.

Fig. 6  Snapshots of numerical simulations of radial segregation using 150 robots and a varying number of 
heterogeneous types in 2D. The type of each robot is represented by a different color. In each sequence, the 
left and right images represent the initial and final configuration, respectively. The rightmost image also dis-
plays circles fitted to the convex hull of each set of types to provide visual aid
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4.4  Local perception

We know that the assumption of a complete adjacency graph can be hard to enforce consid-
ering large swarms. Thus, besides the evaluation of the method with the addition of noise 
in the sensor model, it is important to relax even more the assumption that each robot is 
capable of measuring its distance and relative velocities to every other robot in the swarm, 
and study the performance of the method considering that each robot can only detect other 
robots within a certain neighborhood.

Basically, without detecting the other robots, specially robots within the same group/
type, there will be multiple clusters with robots of the same type, since they will not attract 
themselves without knowing the existence of each other.

To evaluate this, we performed a series of simulations varying the perception radius r 
and observing the performance of the algorithm. We considered 150 robots belonging to 5 
different types in a experimental area of 80x80 squared meters. The values of d(k)

AA
 and dAB 

were set, respectively, to 2 and 8 and we vary the perception radius r from 4 to 24 meters 
with 2 meter intervals. For each value of r we performed 100 repetitions with robots start-
ing at random positions.

The graph of Fig. 8a shows the number of formed clusters. Since we have 5 different 
types, we would expect to have the robots segregated in 5 different groups. But observ-
ing the graph, we see that this only happens for values of r greater than 8. Another way of 
analyzing this is to observe the average distance between robots of the same type and of 
different types, as shown in Fig. 8b. We would expect these distances to converge to the 
desired values of d(k)

AA
 and dAB (2 and 8 respectively), but this only happens in all repetitions 

for values of r greater than 8.
Figure 9 shows snapshots of the final configurations of the robots in simulations with 

the sensing radius set to 4, 6, 10 and 24 m. The small circles represent the robots and the 
large circles their sensing areas. We can notice that in the first two snapshots ( r = 4 and 
r = 6 ) robots are not segregated and there are multiple clusters with robots of the same 
types.

Hence, we can see that while we may not need a strict complete adjacency graph, it is 
necessary at least a large perception radius so robots can be able to detect their peers and 
segregate. A possible solution to overcome this problem is to explore control laws that 

(a) Cluster segregation with noise. (b) Control input.

Fig. 7  Mean values of metric Mclu(�, �) and the sum of control inputs of all robots 
∑

i ��ui�� for 100 experi-
ments with a varying of the sensor noise. Dashed lines represent a 95% confidence interval
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(a) Number of Clusters (b) Average Distance

Fig. 8  Number of formed clusters and average distances among robots when varying the perception radius 
r. Robots are only segregated for values of r greater than 8

(a) r = 4m (b) r = 6m

(c) r = 10m (d) r = 24m

Fig. 9  Snapshots of the final robot configurations for simulations with different sensing radius represented 
by the large circles. With smaller sensing radius the algorithm is not able to completely segregate the 
swarm, as shown in a and b 
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directly model local sensing and communication into their methodologies, as will be dis-
cussed in Sect. 5.

4.5  Simulations in 3D

We have executed simulations in 3D space and evaluated our metrics in this extended 
workspace. Figure 10 contains two images of the final configurations of a particular experi-
ment comprising 150 robots and 5 agent types. Initial conditions were chosen exactly as in 
the 2D simulations. The controller was able to achieve both cluster and radial segregation 
according to the chosen values of the parameter dij , and robots have displayed the same 
overall behavior as of their 2D counterparts. Particularly, we have noticed that it is easier 
for robots to segregate in this scenario because of the additional degree of freedom, which 
allows agents to maneuver in new directions. Thus, in the 3D case, it is unusual to find lone 
robots wandering toward their cluster/shell in later iterations.

We also ran a set of 100 experiments in 3D space and computed the mean and con-
fidence interval under both of our metrics. The results are very similar to those already 
presented in Fig. 3, i.e., both statistics converge to zero as the iterations increase. The plots 
of such results are purposefully omitted in this paper because they do not provide any more 
insights either on the capabilities or on the flaws of our control equations.

4.6  Real robots

To evaluate the feasibility of our controller in a real environment, we performed experi-
ments using nine e-puck robots (Mondada et al. 2009). These experiments are interesting to 
validate the performance of our approach in the presence of external noise such as sensing 
and actuation errors.

Each e-puck is a small-sized, differential wheeled platform equipped with a camera, a 
ring of 8 IR sensors, and a bluetooth interface that allows local communication among 
robots as well as receiving control input from a remote computer (see Fig.  11a). An 

Fig. 10  Examples of the final segregation state in simulated 3D experiments
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overhead camera system and a set of fiduciary markers were used for estimating the posi-
tion and orientation of each robot, providing global localization. At the software level, we 
employed the ROS framework (Quigley et al. 2009) for tracking the pose of all robots and 
sending their respective velocity inputs.

As mentioned, the e-puck is a differential drive platform and thus is subject to a non-
holonomic constraint. However, our controller, as specified in (2), is suitable only for fully 
actuated robots. To address this issue, we follow the same strategy presented by Pimenta 
et al. (2013). Let (xi, yi, �i) be the pose of an e-puck robot, first, we compute the integral of 
(2), with respect to time, so as to find a corresponding velocity vector

in which ẋi and ẏi are the desired velocity coordinates with respect to a global frame. Sec-
ond, we use this vector as an input in a static feedback linearization scheme (Desai et al. 
1998), which gives us both linear (vi) and angular (�i) speeds as proper inputs for the dif-
ferential drive model of the e-puck robot.

Equation (20) requires the specification of the parameter 𝛿 > 0 , which is a constant that 
corresponds to an offset from the reference point (xi, yi) (see Fig. 11b).

In our experiments, we employed nine robots divided in three balanced groups, which 
represent three distinct types of robots. For cluster segregation, we set the parameters 
� = 0.5 , dAB = 0.5 , and ∀k ∶ d

(k)

AA
= 0.2 . For radial segregation, these constants were set to 

� = 1.2 , dAB = 0.35 , and d(k)
AA

 was increased in steps of 0.25, starting at d(1)
AA

= 0.25.
The trajectories of all robots in both experiments, from the initial to the stable configu-

ration, are presented in Fig. 12. These trajectories are depicted as dashed lines that connect 
the starting and ending positions, which are represented by a circle and a square, respec-
tively. We also provide visual aid by providing simple overlaid shapes that indicate the final 
configuration of the clusters in Fig. 12a and the radial formation in Fig. 12b. Moreover, we 
evaluated both of our metrics while running our real implementation, and the outcomes are 
shown in Fig. 13. Based on these results, it is clear that the system was able to reach segre-
gation in these two instances.

(19)
[
ẋi
ẏi

]
= ∫ uidt,

(20)
[
vi
𝜔i

]
=

[
cos(𝜃i) sin(𝜃i)
− sin(𝜃i)

𝛿

cos(𝜃i)

𝛿

] [
ẋi
ẏi

]

(a) (b)

Fig. 11  a E-puck robot used during experiments. The depicted marker is used for localization. b The differ-
ential drive model used to control the robots
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Snapshots of the experiments can be seen in Fig. 14. The initial and final configuration 
of the system  are  displayed in the leftmost and rightmost images, respectively. As all 
e-puck robots are visually similar in these pictures, we distinguish their different types (i.e., 
the partition � ) by overlaying simple shapes that indicate which robots belong to a same 
group.

4.7  Aggregation and mixed behaviors

Another interesting aspect of our control equations is that robots are able to display other 
behaviors besides cluster and radial segregation. For instance, we can aggregate the whole 
swarm if the constraints required to achieve cluster segregation (see Table 1) are written in 
a different form, i.e.,

(21)dAB < d
(1)

AA
= d

(2)

AA
= ⋯ = d

(m)

AA
.

Fig. 12  The complete trajectories performed by nine e-puck robots in both segregation experiments consid-
ering three agent types

(a) (b)

Fig. 13  The metric values for the e-puck experiments. a Mclu(�, �) (Eq. 15) and b Mrad(�, �) (Eq. 17)
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In this manner, as every d(k)
AA

 is larger than dAB , forces between robots of different types 
will be stronger than forces between same-type agents, which is the exact opposite of the 
differential potential concept. Interestingly enough, this leads robots to aggregate together 
instead of segregating. We display in Fig. 15a an example of a stable state where robots are 
aggregated. Note that for any particular robot, most of its nearest neighbors belong to a dif-
ferent type than its own.

We also can employ cluster and radial segregation together in the same system by defin-
ing other constraints on the parameters d(k)

AA
 and dAB . For example, consider a system com-

posed of four types of robots and let the constraints be

Fig. 14  Snapshots along the execution of the experiments considering nine e-puck robots and three different 
agent types

(a) Aggregation. (b) Cluster and Radial Segregation.

Fig. 15  Other examples of behaviors displayed by our controller when different constraints other than those 
in Table 1 are used
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The first part of (22) forces robots of type 1 and 2 to segregate in clusters, while the second 
part makes robots of type 3 and 4 segregate radially, as shown in Fig. 15b (robots of type 4 
form the outermost ring because d(4)

AA
> d

(3)

AA
).

5  Conclusion

In this paper, we proposed a controller that is able to display distinct segregative behav-
iors when applied to a system comprising multiple heterogeneous mobile robots. This was 
accomplished by generalizing our previous work (Santos et al. 2014) based on the differ-
ential potential concept, an abstraction of the mechanisms by which biological systems 
achieve segregation. In our method, robots experience different magnitudes of potential 
when interacting with other agents. More specifically, similar robots adjust their interaction 
forces according to their particular type, whereas dissimilar robots have a fixed parameter 
that rules their interactions. We also presented novel metrics for measuring segregation, 
an improved discussion and analysis of the proposed method, including some of its limita-
tions, and new simulations as well as experiments with real robots

We mathematically showed the stability and convergence properties of the proposed 
method. In our proofs we demonstrated that the swarm system converges asymptotically to 
an invariant set which is associated with the minimum of the collective potential. A current 
limitation of our investigation is in the fact that we cannot always say that this minimum is 
obtained only when the system is segregated. Results showed that our controller is effec-
tive in achieving segregation into clusters and in a radial sense. In all the experiments with 
balanced groups and tuning parameters defined as proposed in this paper, it was possible 
to verify cluster and radial segregation as desired. We also suggested that our approach is 
able to mix these distinct behaviors as well as display the opposite behavior of segregation, 
that is, aggregation, by just tuning constants dAA and dAB in our control equations. There-
fore, investigating how the continuous change in those parameters and the variation of the 
difference among the groups in terms of number of robots impact the invariant set and 
consequently the geometric patterns described by the system when the collective potential 
reaches its minimum is an interesting topic for future investigation. This future investiga-
tion will then allow us to say what other segregative and non-segregative behaviors can be 
exhibited with this method. It is also important to mention that the absence of inter-robot 
collisions is mathematically guaranteed in our approach.

In spite of the positive results, our controller can still be improved. For instance, we 
assumed that robots are capable of measuring their relative displacements and velocities 
to all the other robots, as we require the adjacency graph of the system to be complete. 
We understand that this assumption may be difficult to enforce in general swarm appli-
cations, so we performed some experiments relaxing this assumption. These experiments 
showed that robots of the same type may form multiple clusters if they are unaware of 
the other groups, which may happen in scenarios with local sensing. To cope with this 
problem, we think it would be interesting to explore control laws that directly model local 
sensing and communication into their methodologies. This type of strategy was consid-
ered, for example, in Ferreira Filho and Pimenta (2019b) by applying consensus-based dis-
tributed controllers and some local information exchange-based heuristics to solve radial 

(22)d
(1)

AA
= d

(2)

AA
< dAB and dAB < d

(3)

AA
< d

(4)

AA
.
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segregation. Nonetheless, in this case it is still necessary to guarantee connectivity of the 
robotic network.

The requirement of balanced type partitions may also hinder the applicability of our 
method in general scenarios. As discussed in Sect.  4, the method may not work in sce-
narios with unbalanced groups due to the fact that the minimum of the potential might be 
reached without having reached segregation. A possible solution that we want to explore in 
future work is the use of weighted potential functions to counterbalance the asymmetry of 
the forces in the system.

Besides these two limitations, there are still some points that should be addressed for 
the application of this methodology in more general scenarios. While our proof of concept 
experiments showed the feasibility of our method using real robots, we relied on an over-
head camera to estimate the distance among the robots. To perform this estimation locally, 
robots should have some kind of range sensor, such as an infrared, and maybe a camera to 
identify the robot types. The e-puck has these sensors, but their resolution and processing 
capacity are not sufficient for this task2. We believe that with the advances in sensor and 
computing technologies, even simple robots will be able to do this kind of processing inex-
pensively in the near future.

Moreover, our methodology does not consider the presence of obstacles. Obstacle 
avoidance would require other repulsive forces that in conjunction with the segregative 
potentials could lead to local minima scenarios, for example, when the segregative forces 
are annulled by the repulsive forces from the obstacles in a non-segregated state. To cope 
with obstacles, we believe that it would be necessary to augment the controllers with some 
kind of high level planner or coordination mechanisms, similarly to the approach proposed 
in Marcolino and Chaimowicz (2005).

By exploring these issues, we think that a further extension of our methodology could 
be applicable to more general settings related to the segregation problem in swarm robotics.
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