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IN GENETIC PROGRAMMING

Lee Spector1 and Jon Klein1,2
1Cognitive Science, Hampshire College, Amherst, MA, 01002-3359 USA.; 2Physical Resource
Theory, Chalmers University of Technology & Göteborg University, Göteborg, Sweden.

Abstract Geographical distribution is widely held to be a major determinant of evolution-
ary dynamics. Correspondingly, genetic programming theorists and practitioners
have long developed, used, and studied systems in which populations are struc-
tured in quasi-geographicalways. Herewe show that a remarkably simple version
of this idea produces surprisingly dramatic improvements in problem-solving
performance on a suite of test problems. The scheme is trivial to implement, in
some cases involving little more than the addition of a modulus operation in the
population access function, and yet it provides significant benefits on all of our
test problems (ten symbolic regression problems and a quantum computing prob-
lem). We recommend the broader adoption of this form of “trivial geography” in
genetic programming systems.

Keywords: geography, locality, demes, symbolic regression, quantum computing

1. Geography
All biological populations are distributed in space, with the result that some

organisms are close neighbors while others live at great distances from one
another. It has long been recognized that such geographical distribution, even
inuniformenvironments, can influence evolutionarydynamics in significant and
complexways (Mayr, 1942,Wright, 1945, Avise, 2000, Lieberman et al., 2005).
In particular, positive influences of geographical distribution on the evolution of
individuals with certain desirable features (e.g. altruistic behavior) have been
demonstrated in both analytical models and simulations (Eshel, 1972, Nowak
and May, 1992, Axelrod et al., 2004, Spector and Klein, 2005a).
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It is therefore not surprising that many evolutionary computation systems
also model some form of geography, locating their evolving individuals within
grid-based or continuous virtual spaces. This is a particularly natural move
for systems that are designed to model aspects of natural ecosystems (Ray,
1991, Holland, 1995, Ofria and Wilke, 2004). But it is also a popular move
in problem-solving evolutionary computation systems, in the context of which
geography is often justified by the ways in which it can be usedto maintain
population diversity.

Standard genetic algorithms and genetic programming techniques are non-
spatial in their most common formulations (Holland, 1992, Koza, 1992, Banzhaf
et al., 1998). However, many researchers and practitionersroutinely divide their
populations in to discrete or overlapping sub-populations, often calleddemes,
that provide a form of geography (Collins and Jefferson, 1991). In these systems
selection and competition takes place locally but selectedindividuals occasion-
ally mate or migrate across demes. Because the computationstaking place
in different demes are generally independent—particularly when the demes
are non-overlapping, in which case they are sometimes called “islands”—one
can often run them on independent processors and reap benefits both of paral-
lelism and of the diversity maintenance supported by geographical distribution
(Maruyama et al., 1993, Nowostawski and Poll, 1999, Andre and Koza, 1996).

Demes have been demonstrated, in certain cases, to improve problem solving
performance (see e.g. (Collins and Jefferson, 1991, Fernandez et al., 2003)). A
wide range of connectivity patterns and migration regimes has been discussed in
the literature, and there are initial results linking specific connectivity patterns
to expected performance on specific problems (Bryden et al.,2005).

In this chapter we present a form of geography that is considerably sim-
pler than those generally used in genetic programming. Ourtrivial geography
model is a 1-dimensional “overlapping neighborhoods” model that implements
a concept of geography similar to that used in many artificiallife simulations
(Ray, 1991, Ofria and Wilke, 2004, Axelrod et al., 2004). It is also similar
in many respects to the “local selection” genetic algorithmof Collins and Jef-
ferson (1991); although their work is often cited as inspiration for the use of
isolated demes with migration, the individuals in their model were actually
distributed across 1-dimensional or 2-dimensional grids,with one individual
per grid location, and selection and mating were performed in local areas of
the grid. For example, short random walks through the grid were used to pair
mates. A more recent genetic programming model, known as “cellular” or “dif-
fusion” genetic programming, locates individuals on a 2-dimensional grid and
allows interactions only between immediate neighbors (Pettey, 1997, Folino
et al., 1999, Folino et al., 2003). Several other models involving related notions
of locality have been used in other genetic programming work, often in the con-
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text of additional innovations (e.g. co-evolution or autoconstructive evolution)
(D’haeseleer and Bluming, 1994, Spector, 2001).

Trivial geography requires no explicit representation of demes, connectivity
patterns, or migration rates. It requires only minimal changes to a standard
genetic programming system and a single new parameter. The question we
set out to investigate was whether such a minimal form of geography could
make much of a difference with respect to problem-solving performance, and
if so what that difference might be. Our data show that trivial geography does
indeed appear to make a substantial positive difference, improving problem-
solving performance.

In the next section we describe our concept of trivial geography and its sim-
ple implementation. This is followed by two sections demonstrating the utility
of trivial geography, first on a suite of ten symbolic regression problems and
then on a difficult problem in quantum computing. We follow these demonstra-
tions with a general discussion and a recommendation that trivial geography be
incorporated into genetic programming systems more broadly.

2. Trivial Geography

In our trivial geography scheme the population is viewed as having a 1-
dimensional spatial structure—actually a circle, as we consider the first and
last locations to be adjacent. The production of an individual for locationi

is permitted to involve only parents fromi’s local neighborhood, where the
neighborhood is defined as all individuals within distanceR (the neighborhood
radius) ofi. Aside from this restriction no changes are made to the genetic
programming system.

This scheme can be applied to most standard genetic programming sys-
tems with very little effort. Since most systems store theirpopulations in 1-
dimensional data structures (arrays or lists) anyway, all that is required is that
one restrict the selection of parents relative to the index of a child.

To avoid conflation of geography and genetic operators we assume that ge-
netic operators are chosen independently of location. Presumably the opera-
tors are chosen randomly, with biases incorporated into therandom choice to
achieve desired operator ratios. This is indeed a common implementation strat-
egy (used, for example, in ECJ1), although in some implementations (e.g. that
described in (Koza, 1992)) a particular genetic operator isapplied to produce
the first segment of the population, another operator is applied to produce the
next segment, and so on. Under such an implementation operators would be re-
stricted to certain geographic areas and one can imagine that strange dynamics

1http://cs.gmu.edu/~eclab/projects/ecj/
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Table 1-1. Symbolic regression problems used for tests of trivial geography.

# Problem

1 y = 8x3 + 3x2 + x
2 y = 7x3

− 3x2 + 17x
3 y = 5x3 + 12x2

− 3x
4 y = x3 + x2 + x
5 y = x3

− 2x2
− x

6 y = 8x5 + 3x3 + x2 + 6
7 y = 7x4

− 6x3 + 3x2 + 17x − 3
8 y = 5x6

− 2x5
− 5x3 + 3x2 + 5

9 y = x4 + x3 + x2 + x − 8
10 y = x6

− 2x4 + x2
− 2

would result; one would probably want to convert first to location-independent
operator selection, which is itself usually a simple modification.

While trivial geography can be used with various selection schemes it is
particularly simple to describe in terms of tournament selection. In this context
it can be implemented simply by changing the function that chooses a random
individual to participate in a tournament. Whereas the standard scheme chooses
each such individual randomly from the entire population, in trivial geography
we choose each such individual from the neighborhood of the location for
which we are creating a new individual. In particular we choose only from
individuals with indices in the range(i−R, i + R), wherei is the index of the
location for which we are creating an individual,R is aradiusparameter, and
we “wrap around” from the bottom to the top of the range and vice versa.2 The
modification to restrict the range of choices is indeed oftentrivial, involving
only one or a few lines of code.

3. Trivial Geography Applied to Symbolic Regression

We tested trivial geography on the ten arbitrarily chosen symbolic regres-
sion problems listed in Table 1-1. We used the PushGP geneticprogramming
system, which evolves programs in the Push language (Spector, 2001, Spector
and Robinson, 2002, Spector et al., 2005).3 Push is a multi-type, stack-based
programming language that supports the evolution of novel control structures
through explicit code and control manipulation, but none ofthese novel fea-

2In some programming languages this “wrapping around” can beaccomplished with a single call to the
modulus function.
3http://hampshire.edu/lspector/push.html
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Table 1-2. Parameters for symbolic regression tests of trivial geography. The instruction set is
limited to simple integer manipulation and integer stack manipulation. TheINPUT instruction
pushes the current input (x) value onto the integer stack.

Problems Symbolic regression problems listed in Table 1-1.
Input (x) values 0–9

Fitness Sum of absolute values of errors for all inputs.
Runs per problem 115 with trivial geography, 115 without trivial geography.

Radius (R) 10
Population size 2000
Crossover rate 40%
Mutation rate 40%, fair mutation (Crawford-Marks and Spector, 2002)

Duplication rate 20%
Tournament size 7

Maximum generations 200
Initial program size limit 100
Child program size limit 100
Program evaluation limit 100

Ephemeral random constants integer(−10, 10)
Instructions INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./,

INTEGER.POP, INTEGER.DUP, INTEGER.SWAP,

INTEGER.SHOVE, INTEGER.YANK,

INTEGER.YANKDUP, INPUT

tures were used in the present study. For the experiments reported here we used
only a minimal integer-oriented instruction set, so that PushGP was acting here
much like any standard genetic programming system.4 We have no reason to
believe that the remaining differences between PushGP and other genetic pro-
gramming systems contributed to our results in any significant way. The full
set of parameters used for our runs is presented in Table 1-2.

We examined the results in two ways, looking both at the “computational ef-
fort” required to find a solution (Koza, 1994) and the mean best fitness across all
runs on a particular problem. Computational effort was computed as described
by Koza (pp. 99–103), first calculatingP (M, i), the cumulative probability of
success by generationi using a population of sizeM (this is just the total num-
ber of runs that succeeded on or before theith generation, divided by the total
number of runs conducted).I(M, i, z), the number of individuals that must be
processed to produce a solution by generationi with probability greater thanz
(by convention,z =99%) is then calculated as:

4We used the version of PushGP distributed with the Breve simulation environment (Klein, 2002). Breve is
available fromhttp://www.spiderland.org/breve.
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Table 1-3. Successes/runs and computational efforts for the symbolicregression problems with
and without trivial geography.

# Successes/runs without Effort without Successes/runs with Effort with
trivial geography trivial geography trivial geography trivial geography

1 67/115 600, 000 113/115 316, 000
2 24/115 3, 024, 000 64/115 2, 176, 000
3 8/114 12, 566, 000 50/115 3, 160, 000
4 115/115 36, 000 115/115 30, 000
5 106/115 132, 000 115/115 66, 000
6 17/115 5, 928, 000 76/113 1, 840, 000
7 2/114 54, 810, 000 6/114 38, 406, 000
8 0/113 ∞ 1/113 144, 282, 000
9 73/113 848, 000 113/113 276, 000
10 101/113 280, 000 113/113 164, 000

I(M, i, z) = M ∗ (i + 1) ∗

⌈

log(1 − z)

log(1 − P (M, i))

⌉

The minimum ofI(M, i, z) over all values ofi is defined to be the “compu-
tational effort” required to solve the problem.

The computational efforts calculated from our2, 283 runs (115 runs for
each of the2 conditions for each of the10 problems, with17 runs lost to
miscellaneous system problems) are shown in Table 1-3. Lower efforts are,
of course, better, so this data demonstrates that trivial geography provides a
considerable benefit on all of the symbolic regression problems.

Because the problems vary widely in difficulty we also show, in Figure 1-1,
a graph of these results normalized independently for each problem, with the
effort for the standard configuration (without trivial geography) set to100; the
values for the runs with trivial geography therefore indicate the computational
effort as a percentage of that in the standard configuration.From this graph it
is clear that the benefits provided by trivial geography are indeed substantial.

The mean best fitness values from our runs are shown in Table 1-4. Lower
fitness values are better, so this data also demonstrates that trivial geography
provides a considerable benefit for all of the symbolic regression problems.
We also show, in Figure 1-2, a graph of these results normalized for each
problem, with the mean best fitness for the standard configuration (without
trivial geography) set to100; the values for the runs with trivial geography
therefore indicate the mean best fitness as a percentage of that in the standard
configuration. For problems #5, #9 and #10 trivial geographyachieved a 100%
solution rate (best fitness = 0 for all runs). Problem #4 was exceptionally
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Figure 1-1. Computational efforts calculated for the symbolic regression problems with and
without trivial geography. This plot is normalized independently for each problem, with the
values for runs in the standard configuration (without trivial geography) shown as 100%. Problem
#8 is anomalous because no solutions were found without trivial geography, producing an infinite
computational effort.

easy, leading to 100% solution rates in both configurations;both are therefore
plotted as 100%. From the mean best fitness values it is also clear that the
benefits provided by trivial geography are indeed substantial.

For the mean best fitness values we conducted T tests to assessthe statisti-
cal significance of the differences between the configurations with and without
trivial geography. Aside from problem #4 (the problem on which both con-
figurations achieved 100% solution rates) all differences are significant with p
< 0.01.

4. Trivial Geography Applied to a Quantum Computing
Problem

Quantum information technology is expected to provide revolutionary ben-
efits for computing, but quantum computers are counter-intuitive and difficult
to program. Genetic programming can be used to automatically develop quan-
tum computing algorithms, and the resulting algorithms maybe useful both
for solving practical problems and for answering open questions in the the-
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Table 1-4. Mean best fitness values (for which lower values are better) for the symbolic regres-
sion problems with and without trivial geography.

# Mean best fitness without Mean best fitness with
trivial geography trivial geography

1 52.50 0.65
2 98.67 19.13
3 148.77 48.39
4 0 0
5 5.51 0
6 7, 149.94 63.19
7 957.43 332.48
8 27, 475.48 16, 859.71
9 22.41 0
10 1.81 0

ory of quantum computing. A detailed discussion of the application of genetic
programming to quantum computing problems can be found in (Spector, 2004).

The problem we set out to solve, like many quantum computation problems,
involves determining how a “black box” computational gate called anoracle
transforms the qubits to which it is applied.5 In particular, we were interested
in determining whether a given 2-input, 1-output Boolean oracle flips its output
qubit under the conditions illustrated in Figure 1-3. That is, we are asked to
determine if the cases for which the oracle flips its output qubit satisfy the
logical formula(I00 ∨ I01) ∧ (I10 ∨ I11), whereIab indicates whether or not
the output is flipped for the input(a, b).

This problem, which is called the “AND/OR” oracle problem, has been the
subject of several of our previous investigations (Spectoret al., 1999, Barnum
et al., 2000, Spector, 2004). We previously used genetic programming to find
quantum algorithms that perform better than any possible classical algorithm
(that is, they have lower probability of error) when restricted to a single oracle
call. In our more recent work we have been investigating the two-oracle-call
version of this problem. The lowest error probability obtainable by a prob-
abilistic classical algorithm on the two-oracle-call version of this problem is
1

6
= 0.1666..., but in our recent work we have found, using genetic program-

ming, quantum algorithms with an error probability of less than0.11 (Spector
and Klein, 2005b).

5A qubit is the quantum analog of a classical “bit”; see (Spector, 2004) for a detailed description of qubits
and the ways in which they are manipulated by quantum gates.
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Figure 1-2. Mean best fitness values (for which lower values are better) for the symbolic re-
gression problems with and without trivial geography. Thisplot is normalized independently for
each problem, with the values for runs in the standard configuration (without trivial geography)
shown as 100%. For problems #5, #9 and #10 trivial geography achieved a 100% solution rate
(fitness = 0 for all runs). For problem #4 both configurations achieved a 100% solution rate.

Figure 1-3. An “AND/OR” tree describing the property of interest in the AND/OR oracle
problem (see text).
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Our new results on the two-oracle-call AND/OR problem used trivial ge-
ography, and our anecdotal evidence led us to believe that trivial geography
played an important role in our success. But this work also involved inten-
sive runs with expensive fitness tests and large populationsdistributed across
a 23-CPU computer cluster. It was not practical to replicateruns of this scale
the hundreds of times that would be necessary to fully assessthe contribution
of trivial geography, so we opted instead to conduct many smaller-scale runs
which, while they would not solve the problem of beating the classical error
probability, would still produce significant improvementsin fitness.

We conducted 92 runs with and 92 runs without trivial geography, using the
parameters shown in Table 1-5 and, again, the version of the PushGP genetic
programming system that is distributed with the Breve simulation environment.
Fitness was assessed using the QGAME quantum computer simulator, a version
of which is also distributed with Breve.6

Computational effort is meaningful and finite only in the context of a success
criterion that is reached in at least some runs. But the difficulty of this problem,
relative to the resources we employed, prevented us from finding any solutions
that beat the classical error probability. Since there is noother obvious choice
for a success criterion we report here only a comparison of mean best fitness
values.

The mean best fitness for the runs without trivial geography was0.51, while
the mean best fitness for the runs with trivial geography was better, at0.32. A T
test shows this difference to be statistically significant with p < 0.005. Again,
we see a substantial improvement in problem-solving performance provided by
trivial geography.

5. Discussion

We have presented a simple modification to the standard genetic program-
ming technique that appears, from the tests we have run to date, to provide
substantial benefits to problem-solving performance on both artificial and real-
world problems. The modification incorporates notions of geographical distri-
bution that have a long history in evolutionary biology and many precedents
in genetic programming and other forms of evolutionary computation. Our
modification, however, is arguably simpler to implement than any of its prede-
cessors; in many cases it can be implemented in one or a handful of lines of
code. We were surprised to find that this “trivial” form of geography nonethe-
less provides real benefits, and although we cannot make general claims about

6QGAME documentation and code is available fromhttp://hampshire.edu/lspector/qgame.html.
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Table 1-5. Parameters for quantum computing tests of trivial geography. For this problem a
developmental approach was used in which certain instructions add quantum gates to a developing
“embryo”; see (Spector, 2004) for details.

Problem AND/OR oracle problem (Spector, 2004), with two calls
to the oracle permitted.

Embryo Three-qubit quantum circuit with a final
measurement on one qubit (index2 of (0–2)).

Fitness cases All possible two-input, one-output Boolean
oracles, specifically (I00I01I10I11 : answer):
0000:0, 0001:0, 0010:0, 0011:0,
0100:0, 0101:1, 0110:1, 0111:1,
1000:0, 1001:1, 1010:1, 1011:1,
1100:0, 1101:1, 1110:1, 1111:1

Fitness function Misses + MaxError whereMisses is the number
of cases for which the probability of error is greater
than 0.48 andMaxError is the maximum probability
of error of any case.

Runs 92 with trivial geography, 92 without trivial geography.
Radius (R) 15

Population size 2500
Crossover rate 40%
Mutation rate 40%, fair mutation (Crawford-Marks and Spector, 2002)

Duplication rate 20%
Tournament size 7

Maximum generations 500
Initial program size limit 100
Child program size limit 250
Program evaluation limit 250

Ephemeral random constants integer(−10, 10), float(−10.0, 10.0)
Instructions FLOAT.%, FLOAT.*, FLOAT.+, FLOAT.-, FLOAT./,

FLOAT.DUP, FLOAT.POP, FLOAT.SWAP,

FLOAT.FROMINTEGER, LIMITED-ORACLE, HADAMARD,

U-THETA, MEASURE, SRN, CNOT, U2, CPHASE, SWAP,

END

its utility7 we recommend that trivial geography be adopted more widely in
genetic programming systems.

For researchers and practitioners using genetic programming systems that al-
ready involve geographical distribution (e.g. in isolateddemes with migration)
an obvious practical question, not addressed here, is that of how trivial geogra-
phy compares to their presumably more complex techniques. One might also be
interested in the effects of combining several forms of geography, for example

7Such claims would require analysis and discussion of the results in the context of the No Free Lunch theorem
(Wolpert and Macready, 1997, Droste et al., 1999).
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by using an island model in which trivial geography is used within each island.
Although comparisons of these techniques are simple to makein principle, one
would have to conduct large numbers of tests using each of many geographical
schemes to make definitive recommendations. Our contentionhere is not that
trivial geography necessarily outperforms other forms of geography, but only
that it appears to provide benefits over non-geographical models in many cases
for nearly no cost.

The mechanism by which trivial geography improves problem-solving per-
formance is presumably a form of diversity maintenance. An obvious follow-
up study would apply diversity measures to runs like those conducted here
and investigate the relations between problems, performance, and diversity.
Many diversity measures for genetic programming have been developed, as
have methodologies for correlating various diversity measures and aspects of
system performance (Burke et al., 2004).

The values ofR, the neighborhood radius, that we used in the experiments
reported here (10 and15) were chosen somewhat arbitrarily. We conducted
preliminary runs with several values ofR and many appeared to perform well;
we chose the values that we did because they appeared to give good results, but
we did not investigate other values ofR systematically. Our suspicion is that
trivial geography will often provide benefits with a range ofR values and that
the choice ofR is not critical; another obvious follow-up study would testthis
suspicion.

6. Summary

An extremely simple modification to the genetic programmingalgorithm,
incorporating “trivial geography,” appears to improve problem-solving perfor-
mance for nearly no cost. This modification has many precedents in genetic
programming and evolutionary computation, but it is surprising that so simple
a form of the idea can have such substantial effects. We recommend that trivial
geography be adopted more broadly in genetic programming.
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