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A CONSENSUS-BASED GLOBAL OPTIMIZATION METHOD FOR

HIGH DIMENSIONAL MACHINE LEARNING PROBLEMS

José A. Carrillo1, Shi Jin2,*, Lei Li2 and Yuhua Zhu3

Abstract. We improve recently introduced consensus-based optimization method, proposed in [R.
Pinnau, C. Totzeck, O. Tse, S. Martin, Math. Models Methods Appl. Sci. 27 (2017) 183–204], which
is a gradient-free optimization method for general non-convex functions. We first replace the isotropic
geometric Brownian motion by the component-wise one, thus removing the dimensionality dependence
of the drift rate, making the method more competitive for high dimensional optimization problems.
Secondly, we utilize the random mini-batch ideas to reduce the computational cost of calculating the
weighted average which the individual particles tend to relax toward. For its mean-field limit – a
nonlinear Fokker-Planck equation – we prove, in both time continuous and semi-discrete settings, that
the convergence of the method, which is exponential in time, is guaranteed with parameter constraints
independent of the dimensionality. We also conduct numerical tests to high dimensional problems to
check the success rate of the method.

Mathematics Subject Classification. 60H35, 70F10.

Received October 12, 2019. Accepted July 15, 2020.

1. Introduction

Our main goal in this work is developing gradient-free optimization methods to the following classical
unconstrained optimization problem

x∗ = argmin
x∈Rd

L(x) , (1.1)

in high dimensions, where the target function, not necessarily convex, is assumed to be a continuous function
defined on Rd achieving a unique global minimum. Target functions defined on subsets of Rd can be extended to
the whole space recasting the corresponding optimization problem in the form (1.1). Moreover, we can assume
without loss of generality that the target function is positive, i.e., L(x∗) > 0, by lifting L by a suitable constant.
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Important examples of target functions stem from machine learning and artificial intelligence applications.
Typical neural training networks lead to optimization for functions of the following form

L(x) =
1

n

n∑
i=1

`(f(x, x̂i), ŷi) =:
1

n

n∑
i=1

`i(x), (1.2)

where x is the set of parameters defining the model, (x̂i, ŷi)
n
i=1 constitute the training data set, the function

f(x, x̂) defines the neural network that one wants to learn, and the function `(f, y) is the loss function measuring
the distance between the prediction f(x, x̂i) and the observations ŷi.

For such optimization problems, gradient-based methods have been dominating. Nevertheless, in general,
most gradient-based methods have problems dealing with functions that have large noise or non-differentiable
functions. They are also not designed to handle multi-modal problems or discrete and mixed discrete-continuous
design variables [2]. More specifically in machine learning problems, it has been proved that as the deep neural
network gets deeper, the gradient tends to explode or vanish [5, 21]. Besides, it will be easily influenced by the
geometry of the landscape [38].

On the other hand, there are also gradient-free methods such as Nelder-Mead (NM) method [41], genetic
algorithm (GA) [23], simulated annealing (SA) [34], particle swarm optimization (PSO) [18, 32], etc.. The
NM method is a direct search method based on function comparison; GA is inspired by genetic evolution
and are commonly used to generate high-quality solutions to optimization; SA is a probabilistic technique for
approximating the global optimum, which is often used in discrete search space; PSO is used to model the
flocking behavior of birds, and also found to be a good optimization method.

One of such gradient-free methods is the concensus-based optimization (CBO) method, established in [11,
42, 45]. This is a method based on an interacting particle system, along the line of consensus based models
[3, 6, 12, 13, 15, 20, 35, 40, 44]. This particle system consists of N -particles, labeled as Xj , j = 1, . . . , N , that
tend to relax toward their weighted average, and in the meantime also undergo fluctuation with a multiplicative
noise:

dXj = −λ(Xj − x̄∗)Hε(L(Xj)− L(x̄∗)) dt+ σ|Xj − x̄∗|dW j , (1.3)

where x̄∗ is the weighted average of the positions of the particles according to

x̄∗ =
1∑N

j=1 e
−βL(Xj)

N∑
j=1

Xje−βL(Xj). (1.4)

The function Hε is a regularization of the Heaviside function introduced by the authors with the objective that
the particles will drift only if at their positions the cost value is higher than the average of all particles. Later the
authors in [11] considered this model without the Heaviside cutoff for the convenience of analysis. The diffusion
given in (1.3) is associated with |Xj − x̄∗| and this yields convergence conditions and methods depending on
the dimension d, see ([11], Thm. 4.1). The motivation for this type of diffusion is that one wants to explore the
landscape of the cost function L(x) if one is far from consensus, but when consensus forms one wants the noise
to decrease, and eventually to disappear, in order to stabilize the results towards the target x∗. This decrease
of the temperature is a common feature with simulated annealing [24, 26, 37].

Here, e−βL(x) is the Gibbs distribution corresponding to L(x). The motivation for this choice comes from
statistical mechanics: the cost function L(x) corresponds to a potential in which particles move by steepest
descent modulated by Brownian noise with β being the inverse of the temperature leading to this invariant
measure. In this way, the smaller the value of the temperature is, the larger the weight of the normalized Gibbs
measure for the agents is on the minimum value of the cost function L(x). The quantitative formulation of this
intuition is given by the Laplace principle [4, 17, 39], a classical asymptotic method for integrals, recalled here



A CONSENSUS-BASED GLOBAL OPTIMIZATION METHOD 3

for reader’s sake: for any probability measure ρ ∈ P(Rd) compactly supported with x∗ ∈ supp(ρ), then

lim
β→∞

(
− 1

β
log

(∫
Rd
e−βL(x)dρ(x)

))
= L(x∗) > 0. (1.5)

Therefore, if L attains its minimum at a single point x∗ ∈ supp(ρ), then the suitably normalized measure
e−βL(x)ρ assigns most of its mass to a small region around x∗ and hence we expect it approximates a Dirac
distribution δx̄∗ for large β � 1. Consequently, the first moment of the normalized measure e−βL(x)ρ, and thus,
the discrete counterpart average x̄∗, should provide a good estimate of the point at which the global minimum is
attained, x∗ = argminL. Furthermore, the convergence rate toward the global minimum is exponential in time.
However, to guarantee the convergence of this method, the drift rate λ depends on the dimension parameter d,
which makes the particles move away from its global equilibrium more easily for high dimension problems in
which d� 1, such as those raising from machine or deep learning problems.

In this paper, we improve the above CBO algorithms in two ways. First, we replace the isotropic Brownian
motion term σ|Xj− x̄∗|dW j , which is added equally in all dimensions, by its component-wise counterpart. For its
mean-field limit equation, in both time continuous and a time semi-discrete settings, we prove that this removes
the d-dependence constraint on λ. Secondly, we utilize the random mini-batch ideas, an essential ingredient in
stochastic gradient descent (SGD) method [8, 9, 43], and also introduced recently in [31] for interacting particle
systems, that reduces the computational cost in calculating x̄∗ from O(N) to O(1), or O(nN) to O(1) in the
case of (1.2), and thus it reduces the overall computation cost of CBO. The noise introduced by the random
selection of the mini-batches also adds extra stochasticity which makes the particles more likely to escape the
local equilibrium, thus enhances the success rate of the algorithm toward the global minimum, even by one
order of magnitude in some cases as shown in Section 4.2.

We point out that more recently, in [19] the consensus of particles, and convergence toward the global
minimum under dimension-independent conditions on parameters and initial data, are established for the particle
system (2.2), without using the mean-field limit.

The paper is organized as follows. We present our algorithm and its continuous model in Section 2. We prove
in Section 3 that in the continuous and a semi-discrete in time settings the mean-field limit of the algorithm
will converge to the global minimum exponentially fast, with a constraint on λ that is independent of d. We
give several numerical experiments in Section 4 to verify the performance and efficiency of the algorithm.

2. A new consensus based optimization method

Our first new observation over the CBO model (1.3) is that if one uses the component-wise geometric Brownian
motion, which we shall clarify soon, the dimension dependence in the convergence estimates ([11], Thm. 4.1)
can be dramatically reduced. To illustrate these ideas, let us fix x̄∗ = a to be a constant vector and consider
solely the effect of the diffusion term. Let us consider a shifted second moment for (1.3) in the case of H ≡ 1 to
obtain

d

dt
E|X − a|2 = −2λE|X − a|2 + σ2

d∑
i=1

E|X − a|2 = (−2λ+ σ2d)E|X − a|2.

Clearly, if the particles are to form consensus, one needs 2λ > dσ2. Now consider the SDE with component-wise
geometric Brownian motion

dX = −λ(X − a) dt+ σ

d∑
k=1

(X − a)kdWk~ek, (2.1)
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where (X − a)k means the kth component of X − a, {Wk}dk=1 are independent standard Brownian motions, and
~ek is the unit vector along the kth dimension. For the interacting particle system (2.1), one easily finds that

d

dt
E|X − a|2 = −2λE|X − a|2 + σ2

d∑
i=1

E(X − a)2
i = (−2λ+ σ2)E|X − a|2.

We only need 2λ > σ2 for the particles to concentrate. The restriction between λ and σ is dimension d insensitive
for the particles to concentrate (or form a consensus as the terminology in [42]).

Based on this observation, we now propose a modification to the CBO model in (1.3) together with an efficient
algorithm for its computation by the random batch approach championed in [31]. We tweak the CBO method
introduced in [11, 42] by considering the following model with diffusion corresponding to a component-wise
geometric Brownian motion

dXj = −λ(Xj − x̄∗) dt+ σ

d∑
k=1

(Xj − x̄∗)kdW j
k~ek ,

x̄∗ =
1∑N

j=1 e
−βL(Xj)

N∑
j=1

Xje−βL(Xj).

(2.2)

Here x̄∗ is the same as (1.4).
Compared to (1.3), this new model has a simpler and cleaner form, where we omit the Heaviside function as

in [11] and use the component-wise geometric Brownian motion to replace their noise. From the viewpoint of
opinion models in social sciences, the interacting particle system (2.2) may be thought as the society drifting
according to some common sense opinion or command stemming from the individual parties. Let us remark
that x̄∗ can be chosen to be updated only at some discrete time points in practice without changing the spirit
of the modeling.

As already commented, the usage of the diffusion according to component-wise geometric Brownian motion
is largely due to its scalability in high dimension space. In fact, the assumptions and the results later in
Theorem 3.2 for the particles to converge are all independent of the dimensionality d of the particle X. The
model (1.3) on one hand requires σ2 to be small or large λ which reduces the exploration ability at the initial
stage. Moreover, it will also put more severe constraint on the parameters, especially on the second moments of
the initial condition ofX0. Besides, the use of the diffusivity in (2.2) allows the particles to explore each dimension
with different rate, and possibly easier to find the optimizer. To summarize, we expect the optimization method
(2.2) to be efficient for optimization problems where the dimensionality of the parameter is very high, such as
those in deep learning compare to (1.3).

The computational cost of a straightforward numerical scheme to approximate the new continuous CBO
method (2.2) is too high if we do (1.4) in every time step, especially for big data problems in the form of (1.2).
Hence, our second novel approach is to apply the random batch method [31] to the interacting particle system
(2.2), which leads to efficient random algorithms. See also [8, 9, 43] for the relevant mini-batch ideas used for
SGD. These random algorithms can also be viewed as new models, which seem to be closer to opinion models
in social sciences.

The random mini-batch strategy developed in [31] will be extended to two levels for the typical cost functions
arising in machine learning such as (1.2). First, we calculate the empirical expectation L̂j = L̂(Xj) from a
random subset of the training data set instead of the accurate Lj as the objective value for the ensemble of
particles Xj ; second, we apply the mini-batch approach and update the reference x̄∗ by a random subset of the
particle ensemble instead of all particles. These two modifications allow us to do high dimensional optimization
more efficiently. The mini-batch is done without replacement, that is, we do a random permutation and then
select the mini-batch in order. Let us finally remark that this random choice of subsets of interacting particles
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is very similar to Monte Carlo approaches to compute large averages, and it has been used to produce efficient
algorithms for mean-field (kinetic) swarming models in [1, 14].

We introduce below the random algorithm to solve in practice our new CBO model (2.2) and (1.4).

Algorithm 2.1. Generate {Xj
0 ∈ Rd}Nj=1 according to the same distribution ρ0. Set the remainder set R0 to

be empty. For k = 0, 1, 2, . . . ,, do the following:

Step 1. Concatenate Rk and a random permutation Pk of the indices {1, 2, · · · , N} to form a list Ik = [Rk,Pk].

Pick q = bN+|Rk|
M c sets of size M � N from the list Ik in order to get batches Bk1 , B

k
2 , . . . , , B

k
q and set the

remaining indices to be Rk+1. Here, |Rk| means the number of elements in Rk.

Step 2. For each Bkθ (θ = 1, . . . , q), do the following

(1) Calculate the function values (or approximated values) of L at the location of the particles in Bkθ by
Lj := L(Xj), ∀j ∈ Bkθ . If L(x) is in the form (1.2) with n� 1, one then applies the random mini-batch
idea again: generate a random index subset Akθ ⊂ {1, . . . , n} with |Akθ | = m, and approximate Lj for all
j ∈ Bkθ by

L̂j := L̂kθ(Xj) =
1

m

∑
i∈Akθ

`i(X
j), ∀j ∈ Bkθ ,

where L̂kθ(x) := 1
m

∑
i∈Akθ

`i(x) is an unbiased approximation to L(x) = 1
n

∑n
i=1 `i(x) defined in (1.2).

(2) Update x̄∗k,θ according to the following weighted average,

x̄∗k,θ =
1∑

j∈Bkθ
µj

∑
j∈Bkθ

Xjµj , with µj = e−βL
j

or e−βL̂
j

. (2.3)

(3) Update Xj for j ∈ Jk,θ as follows,

Xj ← Xj − λγk,θ(Xj − x̄∗k,θ) + σk,θ
√
γk,θ

d∑
i=1

~ei
(
Xj − x̄∗k,θ

)
i
zji , zji ∼ N (0, 1), (2.4)

where γk,θ is the learning rate chosen suitably and there are two options for Jk,θ:

partial updates: Jk,θ = Bkθ ,

full updates: Jk,θ = {1, . . . , N}.

Step 3. Check the Stopping criterion:

1

d
‖∆x̄∗‖22 ≤ ε,

where ‖·‖2 is the Euclidean norm and ∆x∗ is the difference between two most recent x̄∗k,θ. If this is not satisfied,
repeat Steps 1–2.

Note again that
(
Xj − x̄∗k,θ

)
i

represents for the ith component of the vector in (2.4). λ is the drift rate, γk,θ

is the learning rate, σk,θ is the noise rate and zi is a random variable following the standard normal distribution.
Note that we add

√
γk,θ on purpose to be consistent with the time-continuous model (2.2). These parameters

can be different from step to step in practice, as often used in machine learning and optimization. In practice,
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one often chooses γk,θ in a decreasing fashion satisfying
∑
k γk,θ =∞. In our experiments, we fix γk,θ ≡ γ to be

constant. In general, it needs to be chosen to satisfy a numerical stability condition. One stability result is given
in [19]. Besides, decreasing σk,θ slowly corresponds to the famous simulated annealing algorithm in optimization
[24, 26, 37].

Remark 2.2. The estimated value L̂ of the objective function is especially efficient for problems of the form
(1.2). Usually, to train a good model, one requires a large number of data, that is, n� 1. The computational
cost would be high if one calculate L(x) at each step for all particles. If we calculate L̂ based on a small subset of
the data, the computational cost will be largely saved. Besides, we will show later in the numerical experiments
that using L̂ can not only save computational cost, but also make the algorithm converge to the optimizer
faster, due to stochasticity introduced by randomly selecting the mini-batches. This is an established concept
for algorithms such as the SGD [8, 9].

Remark 2.3. An alternative way to update x̄∗ is to let it equal to argmin L̂j , that is,

x̄∗k = argmin
Xj∈Bkθ

L̂(Xj). (2.5)

We will show that it numerically performs as good as the penalized average. We will leave the theoretical proof
of this case for future study.

Remark 2.4. For updating Xj :

– There are two ways to introduce extra noises into the algorithm. One way is to let particles do geometric
Brownian motion as in (2.4), another way is let particles do a Brownian motion only when Xj stops
moving forward. The reason why the second method also works is because we already introduced noise
by using the estimated L̂j and (2.3) using the randomly generated sets Bk, so the noise term in (2.4) is
sometimes not necessary. We will show later in the numerical experiments that if we do not have the last
term in (2.4) and just add a Brownian motion when Xj stops moving forward, the performance is still
good.

– In some optimization problem, since the landscape of the objective function is too complicated (for exam-
ple, the MNIST data in Section 4.3), it cannot converge to the global minimizer at stoppting time.
Therefore, when x̄∗ stops updating, we record L̂(x̄∗) at that step, and make all particles do an independent
Brownian motion, i.e. for ∀j,

Xj ← Xj + σk,θ
√
γ

d∑
i=1

~eiz
j
i , zji ∼ N (0, 1),

then repeat the algorithm. We terminate the procedure if the recorded L̂(x̄∗) is not decreasing any more.

3. Analysis of the mean-field limit models

The analysis of the computational model in Section 2 is quite challenging: analyzing the N -particle system,
showing the existence of singular invariant measures quantifying the convergence towards them would be a
fantastic breakthrough. In this section, we will consider the formal mean-field limit models (N → ∞) of the
interacting particle system (2.2), which makes the analysis possible even if working with high dimensional PDEs,
as already shown in [11]. We remark that the rigorous proof of the mean-field limit is another open problem
for these interacting particle systems due to the difficulty of managing the multiplicative noise term in (2.2).
Depending on how we treat the time variable, one can write a time-continuous model and a semi-continuous
mean-field models, as discussed below.
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3.1. Time continuous model

Formally, taking N → ∞ in the model (2.2) with full batch (or alternatively, γ → 0 and N → ∞ in
Algorithm 2.1 with full batch), the mean field limit of the model is formally given by the following stochastic
differential equation for X = X(t):

dX = −λ(X − x̄∗)dt+ σ

d∑
i=1

~ei(X − x̄∗)idWi, (3.1)

where

x̄∗ =
E(Xe−βL(X))

E(e−βL(X))
. (3.2)

We refer to [13] and [7, 10, 22, 28, 29] for formal and rigorous discussions respectively of the results about
mean-field models. The law ρ(·, t) of the process X(t) in the high dimensional space Rd solving the nonlinear
stochastic differential equation (3.1)-(3.2) follows the nonlinear Fokker-Planck equation

∂tρ = λ∇ · ((x− x̄∗)ρ) +
1

2
σ2

d∑
i=1

∂ii((x− x̄∗)2
i ρ),

where

x̄∗ =

∫
Rd xe

−βL(x)ρ(x, t) dx∫
Rd e

−βL(x)ρ(x, t) dx
.

We will prove that the stochastic process X(t) will approach some point x̃, which is an approximation of
argminL(x). Our proof needs the following assumptions:

Assumption 3.1. We assume that Lm := inf L > 0, without loss of generality, and that the cost function L
satisfies cL := max(‖maxi |∂iiL|‖∞, ‖r(∇2L)‖∞) <∞.

Here, ∇2L represents the Hessian of L, and r(∇2L) is the spectral radius while ∂iiL is the diagonal element
of ∇2L. Our assumption means that these two quantities should be of the same order. One sufficient condition
is that all second derivatives of L are bounded. Let us also define the following averaged quantities:

V (t) := E|X − EX|2 and ML(t) := Ee−βL(X). (3.3)

Here, V is the variance of the process X, while ML(t) is the total weight in the optimization. The following
result gives the convergence of the continuous mean field model (3.1), whose proof is deferred to Appendix A
following the blueprint in [11].

Theorem 3.2. If β, λ, σ and the initial distribution are chosen such that

µ := 2λ− σ2 − 2σ2 e
−βLm

ML(0)
> 0,

ν :=
2V (0)

µM2
L(0)

βe−2βLmcL(2λ+ σ2) ≤ 3

4
,

(3.4)
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then V (t)→ 0 exponentially fast and there exists x̃ such that x̄∗(t)→ x̃, EX → x̃ exponentially fast. Moreover,
it holds that

L(x̃) ≤ − 1

β
logML(0)− 1

2β
log (1− ν)

≤ Lm + r(β) +
log 2

β
,

where

r(β) := − 1

β
logML(0)− Lm → 0, β →∞.

In the above result, we have used (3.4) and the Laplace principle (1.5) so that r(β)→ 0, β →∞. How well
L(x̃) approximates Lm depends on how well − 1

β logML(0) approximates Lm. When β is sufficiently large and
L has a unique global minimizer, together with some reasonable assumptions put on L and the probability
density, one acually has [25, 27, 36]

r(β) ≤ d

2

log(β/(2π))

β
+
CL
β
, β � 1, (3.5)

where CL does not depend on d. The convergence rate in Theorem 3.2 does not depend on d but in the error
term (3.5), there is linear d dependence. For moderately high dimensional case, for example, in Section 4.2 when
d = 20 and β = O(102), one gets reasonably small error estimate. In theory, of course for any d, one can choose
β sufficiently large so that the error is still small. However, when β is too large, exp(−βL) is near zero, and one
loses lots of significant digits. On the other hand, when β � d� 1, the average (1.4) or (2.3) becomes

x̄∗ = argmin
Xj

L(Xj),

which works similarly well as commented in Section 4.3, though one cannot prove a theorem. In summary, our
method can be feasible in high dimensional problems.

Besides the largeness of β, how big r(β) is also depends on the initial support of the law of X0. If the
probability that X0 is near the minimizer is small, the approximation quality is poor. This means for the
algorithm to work well, the particles should explore the surrounding area well so that there is some probability
that the neighborhood of the minimizer can be visited.

The assumptions (3.4) basically require λ, β to be large or σ, V (0) to be small enough. Notice that the set
of the parameters is not empty as one can control the initial variance V (0). The assumption is restrictive in
the above theorem, however this has to be understood as a proof of concept where other possible approaches
may lead to improvements. In the first equation of (3.4), ML(0) is also some quantity of the order e−βLm , so
it essentially means λ & σ2, which ensures that the variance of X decays to zero. In fact, in the geometric
Brownian motion, one needs 2λ > σ2 to guarantee the variance of X to vanish as shown in Section 2. Under
such assumption, all particles will converge with exponential rate to a point which is within O(1/β) of the
global minimum. Moreover, recall e−2βLm/M2

L(0) ≥ 1. Hence, in the original CBO interacting particle system
and their mean-field counterpart in [11], a large d dependence in µ is sensitive for λ. This means that our model
is more feasible and adapted for high dimensional optimization problems.

3.2. The semi-discrete model

Let us consider the CBO method (2.2) where x̄∗ is updated at only a number of discrete time points.
Alternatively, in Algorithm 2.1, we let γ fixed, take N → ∞ and use the time continuous SDE to replace the
discrete scheme at one iteration.
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Define

tk := kγ. (3.6)

Then, one has the following semi-discrete model in the time-continuous setting, where a particle evolves according
to the component geometric Brownian motion on interval Ik := [tk−1, tk), and the references x̄∗ is only updated
on some discrete time points as

dX = −λ(X − x̄∗k) dt+ σ

d∑
i=1

(X − x̄∗k)idWi~ei , t ∈ Ik , (3.7)

where

x̄∗k =

∫
Rd x exp(−βL(x)) ρ(x, tk−1) dx∫
Rd exp(−βL(x)) ρ(x, tk−1) dx

.

Similarly, ρ(·, tk) means the law of X at time tk. We again consider the mean and variance of the model
m(t) = EX and V (t) = E|X − EX|2. For this semi-discrete model, we have the following results, whose proof
is given in Appendix B:

Proposition 3.3. If the average sequence {x̄∗k} is bounded and

2λ > σ2, (3.8)

then the total weight defined in (3.3) is bounded below

M∗L := inf
k
ML(tk) > 0.

Moreover, if step size γ also satisfies that

e(−2λ+σ2)γ +
e−βLm

M∗L
(e(−2λ+σ2)γ − e−2λγ) < 1, (3.9)

then m(tk)→ m̄ and V (tk)→ 0. Consequently, x̄∗k → m̄ and the law of X converges weakly to δ(x− m̄) (i.e. in
the dual of Cb(Rd), the space of bounded continuous functions equipped with the supremum norm).

Remark 3.4. Compared with Theorem 3.2, the choice of the parameters is much less restrictive. We only need
(3.8) so that the variance can diminish to zero. However, we have assumed {x̄∗k} to be bounded and condition
(3.9).

Remark 3.5. In actual numerical experiments, the condition on σ, λ is much loose than the theoretical
condition.

To remove the assumption that x̄∗k is bounded, one needs to estimate how |x̄∗k| relies on the initial bounds of
|x̄∗0| so that the estimate can close up. For this discrete case, we have

d

dt
Ee−βL(X) = βλE(e−βL(X)∇L(X) · (X − x̄∗k))

+
1

2
σ2E

[
e−βL(X)

(
β2
∑
i

∂iL(X)2(X − x̄∗k)2
i − β

∑
i

(X − x̄∗k)2
i ∂iiL(X)

)]
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The issue is that the first term is hard to control now. A possibility to overcome this difficulty is to study
the fully discretized scheme, with the noise terms discretized using the Euler-Maruyama scheme. This will be
explored elsewhere.

4. Numerical performance

We assume λ = 1 in all the numerical examples in Sections 4.1, 4.2 and 4.3.
Let us first comment on some practical implementation aspects of the Algorithm 2.1. The operator splitting

to update all particles can be used in order to avoid overshooting. One can choose to implement the algorithm
as

ˆ
Xj
k = x̄∗k + (Xj

k − x̄
∗
k)e−λγ ,

Xj
k+1 =

ˆ
Xj
k + σ

√
γ

d∑
i=1

~ei

(
ˆ
Xj
k − x̄

∗
k

)
i
zji ,

where the first equation is the exact solution of the SDE dXj = −λ(Xj − x∗)dt, from t = kγ to t = k(γ + 1).

By overshooting, we mean
ˆ
Xj
k oscillates around x̄∗k. This could bring instability as in the case of forward Euler

in solving some stiff problems.
An alternative way to implement this step is to freeze x̄∗k in a time-step interval, then the geometric Brownian

motion can be solved exactly by

Xj
k+1 = x∗k +

d∑
i=1

~ei(X
j
k − x̄

∗
k)i exp

((
−λ− 1

2
σ2

)
γ + σ

√
γ zji

)
(4.1)

In practical simulations, this is comparable with the above splitting approach in most cases.
Concerning the parameters in our CBO model (2.2), one can observe that by increasing β and decreasing

σ as iterations accumulate, the accuracy and convergence speed of the results will be improved. The cooling
strategy can be chosen to be similar to the annealing approach [24, 26, 37]. The intuition is that one decreases
the temperature so that the system will cool down to the global minimum. Another practical strategy is to use
larger σ at early stages of the simulations for better exploration of the cost landscape, while use smaller σ at
later stages. For example, a possible strategy is to take

σk = σ0/ log(k + 1)

Decreasing σ corresponds to decreasing the noise level. As it has been seen in the semi-discrete model (3.7), we
need 2λ > σ2 for the particles to concentrate. Hence, this strategy allows us to use large σ >

√
2λ in the early

stage to explore the surrounding area well.
We now show the performance of Algorithm 2.1 for our CBO model (2.2) in three model cases: an optimization

of a test function with large oscillations and wide local minima in one dimension, a neural network for the MNIST
data set and an optimization of a test function with many local minima in high dimension.

4.1. Comparison with stochastic gradient descent (SGD) method

We first show an example where SGD can hardly find the global minimum, however, our method can easily
find it. It has already been observed and proved that the geometry of the objective function will affect the
performance of SGD method [16, 30, 33]. One of the reasons is that the expected exiting time for SGD to escape
from a local minimum is exponentially proportional to the inverse of Hessian at the minimum, height of the
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Figure 1. Objective function (4.2) with n = 104.

basin and batch size. We construct the following optimization problem:

`(x, x̂i) = esin(2x2) +
1

10

(
x− x̂i −

π

2

)2

, x̂i ∼ Normal(0, 0.1)

L(x) =
1

n

n∑
i=1

`(x, x̂i)
(4.2)

The objective function L(x) is plotted in Figure 1 for n = 104. It is easy to see that the global minimum is
x∗ = π/2.

SGD updates the parameter xk in the following way,

xk+1 = xk −
1

m

∑
i∈bk

∇x`(xk, x̂i),

where bk is an index set randomly drawn from {1, . . . , n}. We can see there are many local minima with different
shapes. Especially, the height of all the basins are large, some of the local minimum is much flatter than the
global minimum, in which case SGD tends to be trapped in those local minima. However, the geometry of the
objective function has little influence on our method. We show the success rate of both methods in Figure 2
with the same initialization and variables n,m, γ. We consider one simulation is successful if, |x̄∗k − x∗| < 0.25
for our CBO or |xk − x∗| < 0.25 for SGD, which means that our approximated minimizers is in one-half width
of the global minimizer. For both methods, we run 100 simulations and each simulation we run 104 steps. In
addition, we initialize Xj

0 from uniform distribution in [−3, 3], and set

γ = 0.01, n = 104, m = 20.

Besides, for our method, we set

N = 100, M = 20, σ = 5, β = 30,

and use the partial updates. For each simulation, the algorithm stops either when the stopping criterion in
Step 3 of Algorithm 2.1 is satisfied with ε = 10−3, or it finishes 104 steps.
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Figure 2. The table shows the success rate of SGD and Algorithm 2.1.

Figure 3. The Rastrigin function (4.3) with d = 1, B = C = 0.

From the table we can see that our method performs significantly better than SGD, the computational time
for our method is a little longer than SGD though. Notice here M = 20, that means, there are only 20 particles
interacting with each other in each step, which is also computationally efficient.

4.2. The Rastrigin function in d = 20

In this section, we compare our method with the one introduced in [42]. The goal is to find the global
minimum of the Rastrigin function, which reads

L(x) =
1

d

d∑
i=1

[
(xi −B)

2 − 10 cos (2π(xi −B)) + 10
]

+ C, (4.3)

with B = argmin L(x) and C = minL(x).
Figure 3 shows the shape of the Rastrigin function L(x) when x ∈ R1, B = C = 0 in (4.3). This illustration

reveals that the local minima of this function are very close to the global minimum, so it is not easy for
optimization algorithms to discern the location of the global minimum. The numerical experiments of [42]
indicate that their method performs well in finding the global minimum of the one-dimensional and twenty-
dimensional Ackley functions. However, compared to the Ackley function, the local minima of the Rastrigin
function are much closer to the global minimum, so it is harder to find its global minimum. The performance
of their method for d = 20 is not good enough for the same set of parameters, as shown in ([42], Tab. 2). The
success rate in their numerical experiments for N = 50, 100, 200 is from 34% to 64%.

In our numerical experiments, we set C = 0 and B = 0, 1, 2. We initialize all the particles uniformly on the
interval [−3, 3]. For the cases B = 1, 2, the minimizer is not at the center of the initialization, which increases
the difficulty of converging towards it. Besides we use partial updates in Step 3 and set γ = 0.01 and β = 30. For
each simulation, we run 104 steps. Our results are shown in Figure 4. We display the success rate and averaged
distance to the global minimum for 100 simulations. Notice that in ([42], Tab. 2), vf (T ) corresponds to x̄∗k in
our paper if readers are interested in comparing performances. Here we consider one simulation is successful if



A CONSENSUS-BASED GLOBAL OPTIMIZATION METHOD 13

Figure 4. This table shows the success rate and the error of our algorithm towards the global
minimum for different Rastrigin functions with parameters leading to the global minimum being
given by the constant vectors specified in each row. We also show the computational savings.

the final x̄∗k is close to the global minimum x∗ in the sense that,

|(x̄∗k)i − (x∗)i| < 0.25, for all i,

which means our result is in one-half width of the global minimizer and 0.25 is in order to keep consistency with
[42]. Figure 4 shows that our method is not only more efficient, but also performs better in terms of finding
the global minimizer. Notice that although condition (3.8) is violated, as we mentioned in Remark 3.5, the
algorithm approaches the global minimum. Also we notice that the success rate becomes worse when N = 200.
This is possibly due to random fluctuation, but in general, larger N gives better results but computationally
more expensive.

4.3. Experiments on MNIST data sets

In this section, we will run an optimization problem from machine learning, in order to show that our method
also works for high dimensionality. The MNIST data is a set of pictures with grayscale numbers from 0 to 9.
The input data x̂ is a vector of dimension 728, which records the Grayscale of each pixel. The output data
ŷ ∈ {~ek}10

k=1, where ~ek is a vector of dimension 10 with only the kth element 1 and ~ek represents that it is a
picture of number k− 1. We use the Neural Network without hidden layers to model this classification problem,
the function defining the neural network is given by

f(x, x̂) = a(ReLu(θx̂+B)), x = (θ,B),

is a function depending on the parameter x and mapping x̂ ∈ R728 to R10. Here θ ∈ R10×728, B ∈ R10. ReLu(x) =
x1x≥0 = ((xi)+)i∈{1,...,728} is an activation function with (r)+ being the positive part of the number r, while
a(x) is another activation function called softmax, which reads

a(x) =
exj∑
j e
xj
.
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So that the jth component of f represents the probability of x̂ being the image associated to number j − 1. The
objective function to be minimized is the cross entropy loss,

L(x) =
1

n

n∑
i=1

`(f(x, x̂i), ŷi), `(f, y) = −
10∑
k=1

ŷk log(fk), (4.4)

where the observations belong to the subset ŷ ∈ {~ek}10
k=1.

In the setup of deep learning, one uses deep neural network to construct the model. As the neural network
gets deeper or wider, the dimension d of parameter x becomes very large, d� n� 1, which results in potentially
many local minima. So the goal here is not only finding the global minimum, but also the good global minimum. It
is common practice to quantify the quality of the minimum by the test accuracy. We take the largest component
as the prediction of our model at x̂, that is,

g(x∗, x̂) = ~ej , where j = argmax
i

f(x∗, x̂)i

and f(x∗, x̂)i means the ith component. We further define the test accuracy by

accuracytest(x
∗) =

1

p

p∑
i=1

1{g(x∗,x̂test
i )=ŷtesti }, (4.5)

where p is the size of the test set, number of data in the test set.
Let us first discuss how different elements in the algorithm influence the convergence rate. For all experiments,

we use exactly the same initialization, which is drawn from standard normal distribution. Besides, we use the
full updates in Step 3 and set the following values as reference case for our simulations,

N = 100, M = 10, n = 104, m = 50, γ = 0.1, σ =
√

0.1, λ = 1. (4.6)

Here N is the number of total particles, M is the batch size used to update x̄∗; n is the number of total training
data, m is the batch size used to calculate the estimated objective function L̂j ; γ, σ, λ are the learning rate,
the noise rate and drift rate respectively. As mentioned in Remark 2.4, we allow all the particles to do an
independent Brownian motion with variance σ when x̄∗ stops updating and then the algorithm repeats until
stabilization.

In both Figures 5–7, the x-axis represents for the number of epoch. Here one epoch is equal to n/m steps,
which means we go through the whole training data set: 200 steps for m = 50 and 1 step for m = n. The y-axis
represents the test accuracy as defined in (4.5) over p = 104 data sets. The test data set elements (xtesti , ytesti )10000

i=1

are all different from the training data set elements we used in the objective function (4.4).
In Figure 5 we compare the performance over the neural network of the reference solution with the parameters

in (4.6) with respect to other set of parameters. The main general observations inferred are:

– Using estimated value L̂j is better than using the exact value Lj . The small batch m = 50 not only saves
99.5% of the computational cost when calculating Lj , the increase rate of the accuracy is even better than
the full batch.

– Using more particles in the interaction, larger M , to compute the average x̄∗ increases the overall perfor-
mance as expected. However, we have to point out that the case where M = 10 save 40% of computing
time compared to the case M = 100.

– Our method with 100 particles and 10 interacting particles at each step already gives good accuracy. We
will show later in Figure 7 that as the number of particles goes to 103, the accuracy will be comparable
to SGD. However, compared to the performance of N = 100 and N = 500, the accuracy improved slowly
as the number of particles becomes larger.
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Figure 5. Comparison of the performance between the reference solution with parameter in
(4.6) and first set of data with different parameters as explained in the inlet.

Figure 6. Comparison of the performance between our new CBO algorithm and its variants.

– Larger β corresponds to faster convergence rate. As β becomes larger, it achieves better accuracy faster.
However, β cannot be too large, otherwise µj , defined as in (2.3), is smaller than the minimal threshold
positive value for the computer, which makes x̄∗ infinity.

In Figure 6 we compare our results with parameters (4.6) with the simulations using the variations of the
new CBO model (2.2) discussed in Section 2. We use the variant of the CBO model without the noise term and
the variant of the CBO model using the minimal value of the cost (2.5) over the agents rather than the average
x̄∗. We deduce the following general observations:

– A similar behavior in the performance with or without the last term in (2.4) is obtained. Since there is
already stochasticity involved when calculating L̂j and selecting random subsets of particles, it is usually
not necessary to add extra noise when updating the positions of particles for these machine learning
problems. However, for other optimization problems like the numerical experiment in Section 4.2, the
geometric Brownian noise seems necessary to avoid clogging in local minima.

– Using argmin L̂(Xj) to update x∗k has also a similar performance.
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Figure 7. Comparison of our new CBO algorithm and SGD.

In Figure 7, we compare our results with stochastic gradient descent method. We use the same data set and
neural network structure. We set the learning rate equal to 0.1, which is the same as γ in our new method.
To make a fair comparison, we run 1000 simulations of SGD with different initializations follow from standard
normal distributions, which is also the same initialization as the proposed method. We plot the best one among
all SGD simulations. We can see that our method with 1000 particles, which have the same computational cost,
is slightly better than the best SGD over 1000 simulations. Besides, if we use N = 104, the test accuracy could
be improved to around 90%. Therefore, our method can potentially get comparable accuracy with SGD in some
settings.

As a concluding remark, we have shown in our numerical examples that, two alternative numerical methods,
one where only random batch is involved without the diffusion term, one where x̄∗k is directly equal to the
argmin of the particles’ value, performs as well as our method. However, the theoretical proof will be left for
future study.

5. Conclusion

We improve the gradient-free optimization method upon [42], to make it effective for high dimensional
optimization problems. We show in Theorem 3.2 and Proposition 3.3 that because of the component-wise
geometric Brownian motion, the mean field limit of the method always converges to its good approximation of
the global minimum with all the parameters independent of dimensionality. We show in Section 4.3 that for
the MNIST data with two layers Neural Network, which is a 7290-dimensional optimization problem, only with
100 particles, it can already achieve 82% accuracy. In another example 4.2, our method has a significant higher
success rate in finding the global minimum of the Rastrigin function compared to the practical implementation
of the original method introduced in [42].

There are still lots of open problems in this direction, among them:

– Theoretical study for the method. Our theorems have not involved the random batch on particles and
random batch on the data set. How the random batch method will affect the process of finding the global
minimum will be the object of future studies.

– Stability condition for the method and criteria of choosing the optimal variables, such as, M,N, β, σ, γ
remain to be understood.

Appendix A. Proof of Theorem 3.2

To prove this theorem, we need some preparation.
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Lemma A.1. V (t) and M(t) satisfy the following:

d

dt
V (t) ≤ −

(
2λ− σ2 − σ2 e

−βLm

ML(t)

)
V (t), (A.1a)

d

dt
M2
L(t) ≥ −2βcL(2λ+ σ2)e−2βLmV (t). (A.1b)

Proof. By Itô’s calculus, it holds that

d|X − EX|2 = 2(X − EX) · dX − 2(X − EX) · dEX + σ2
∑
i

(X − x̄∗)2
idt.

Hence, one can deduce that

d

dt
V (t) = −2λE

[
(X − EX) · (X − x̄∗)

]
+ σ2E|X − x̄∗|2

= −2λV (t) + σ2E|X − x̄∗|2.

Here, we used the fact E(X − EX) · (EX − x̄∗) = 0. Moreover, we get E|X − x̄∗|2 = V (t) + |EX − x̄∗|2. By
Jensen’s inequality, for any a ∈ Rd,

|a− x̄∗|2 ≤ EX1∼X |a−X1|2e−βL(X1)

ML
, (A.2)

where X1 ∼ X means X1 has the same distribution as X. Therefore,

E|X − x̄∗|2 ≤ V (t) + e−βLm
V (t)

ML(t)
, (A.3)

and (A.1a) follows. We remark that if L a constant, the right hand side of (A.3) is 2V (t). However, in this case,
x̄∗ = EX and the upper bound should be V (t) instead of 2V (t). The reason is that Jensen’s inequality (A.2) is
lost for this case.

Analogously, by Itô’s calculus, one can infer that

dEe−βL(X) = − βEe−βL(X)∇L(X) · dX

+
1

2
σ2
∑
i

E
[
e−βL(X)(X − x̄∗)2

i (β
2(∂iL)2 − β∂iiL(X))

]
dt =: (I1 + I2)dt.

By definition and Assumption 3.1, one obtains

I1 = βλEe−βL(X)(∇L(X)−∇L(x̄∗)) · (X − x̄∗) ≥ −βλe−βLmcLE|X − x̄∗|2

where Ee−βL(X)∇L(x̄∗) · (X − x̄∗) = 0 is used. For I2, one has

I2 ≥
1

2
σ2(−βcL)e−βLmE|X − x̄∗|2.
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Hence, we conclude that

dML

dt
≥ −βcLe−βLm

(
λ+

1

2
σ2

)
E|X − x̄∗|2. (A.4)

Using the same estimate as in (A.2), one finds

E|X − x̄∗|2 ≤ V (t) +
e−βLm

ML(t)
V (t) ≤ 2

e−βLm

ML(t)
V (t). (A.5)

Inserting (A.5) into the differential inequality (A.4), the desired estimate follows.

Proof of Theorem 3.2. Define

T := sup

{
t : ML(s) ≥ 1

2
ML(0), for all s ∈ [0, t]

}
.

Clearly, T > 0. Assume that T <∞. Then, for t ∈ [0, T ], by the assumption on µ in (3.4), one can deduce that

2λ− σ2 − σ2 e
−βLm

ML(t)
≥ 2λ− σ2 − 2σ2 e

−βLm

ML(0)
= µ > 0.

Consequently, one has

dV

dt
≤ −µV (t).

and thus

V (t) ≤ V (0) exp(−µt).

Hence, by the assumption on ν in (3.4),

M2
L(t) ≥M2

L(0)− 2βcL(2λ+ σ2)e−2βLmV (0)

∫ t

0

e−µs ds

> M2
L(0)− 2V (0)βcL(2λ+ σ2)e−2βLm

µ
≥ 1

4
M2
L(0).

This means that there exists δ > 0 such that M2
L(t) ≥ 1

4M
2
L(0) in [T, T + δ) as well. This then contradicts with

the definition of T . Hence, T =∞. Consequently,

V (t) ≤ V (0) exp(−µt) (A.6)

holds and

ML(t) >
1

2
ML(0) (A.7)
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for all t > 0. Using again Jensen’s inequality (A.2) and (A.6)-(A.7), we infer that

|EX − x̄∗|2 ≤ EX1∼X |X1 − x̄∗|2e−βL(X1)

ML(t)
≤ e−βLm V (t)

ML(t)
≤ C exp(−µt).

Moreover, one has

| d
dt

EX| ≤ λE|X − x̄∗| ≤ λ
√
E|X − x̄∗|2 ≤ λ

√
V (t) + |EX − x̄∗|2 ≤ C exp(−µt/2).

Since the right-hand side is integrable on time, it follows that EX → x̃ for some x̃ and x̄∗ → x̃, with exponential
rate. Since EX → x̃ and V (t)→ 0, ML(t)→ e−βL(x̃). Hence, we deduce that

e−2βL(x̃) > M2
L(0)(1− ν).

Therefore, we conclude that

L(x̃) < − 1

β
logML(0)− 1

2β
log(1− ν).

By the assumption on ν in (3.4), one thus has

L(x̃) < − 1

β
logML(0) +

log 2

β
.

By the Laplace principle (1.5), r(β) = − 1
β logML(0)− Lm → 0. See more details in [11].

Appendix B. Proof of Proposition 3.3

Proof. Since x̄∗k is constant during the time interval, we find that the mean value m(t) satisfies

d

dt
(m(t)− x̄∗k) = −λ(m(t)− x̄∗k)

Therefore, we get m(tk)− x̄∗k = (m(tk−1)− x̄∗k)e−λγ . Hence, one obtains m(tk) = m(tk−1)e−λγ + x̄∗k(1− e−λγ).
Consequently, it holds that

m(tk) = m0e
−λkγ +

k−1∑
`=0

(1− e−λγ)x̄∗`e
−(k−`)λγ .

If x̄∗` is bounded, this summation converges, and the sum is controlled by C supk ‖x̄∗k‖ with C independent of
γ. By Itô’s calculus, the second moment satisfies

d

dt
E|X − x̄∗k|2 = (−2λ+ σ2)E|X − x̄∗k|2.

Since the variance is given by

V (tk) = E|X − x̄∗k|2 − |m(tk)− x̄∗k|2,
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we have

V (tk) = V (tk−1)e(−2λ+σ2)γ + (e(−2λ+σ2)γ − e−2λγ)|m(tk−1)− x̄∗k|2.

If {x̄∗k} is bounded, then m(tk) is bounded as has been shown. Consequently, V (tk) is bounded uniformly. It
then follows that there exists a compact set K such that

sup
k

∫
Rd\K

dρ(x, tk) < 1/2.

Hence, we obtain that

M∗L ≥
1

2
inf
x∈K

e−βL(x) > 0.

Using (A.2), we have

|m(tk−1)− x̄∗k|2 ≤
e−βLm

ML
V (tk−1) ≤ e−βLm

M∗L
V (tk−1).

If γ satisfies condition (3.9), then one sees easily that V (tk)→ 0 and |m(tk−1)− x∗k| → 0. Hence, it is clear that

m̄ := lim
k→∞

m(tk)

exists.
Using Chebyshev’s inequality, it is easy to see that for any ε > 0, there exists R > 0 such that

sup
t≥0

E1X∈Rd\B(0,R) ≤ ε.

For any test function ϕ ∈ Cb, we find R > |m̄|, φ ∈ C2
b (Rd) such that ‖φ‖Cb ≤ 2‖ϕ‖Cb , and that

sup
x∈B(0,R)

|φ− ϕ| ≤ ε,

and

sup
t≥0

E1X∈Rd\B(0,R) ≤
ε

‖ϕ‖Cb
.

Then, we deduce that

|Eϕ(X)− ϕ(m̄)| ≤ |Eφ(X)− ϕ(m̄)|+ E|φ(X)− ϕ(X)| → |φ(m̄)− ϕ(m̄)|+ E|φ(X)− ϕ(X)| ≤ 2ε.

Consequently, we have

Ee−βL(X) → Ee−βL(m̄) > 0.

Hence, we conclude that

inf
t>0

Ee−βL(X) > 0.
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Finally, using similar estimates as in the time continuous case, we obtain that

|x̄∗k −m(tk)|2 → 0,

consistent with the fact that x̄∗k is bounded. This finishes the proof.
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Engineering. Birkhäuser Boston, Inc., Boston, MA (2010) 297–336.

[14] J.A. Carrillo, L. Pareschi and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty.
Commun. Comput. Phys. 25 (2018) 508–531.

[15] F. Cucker and S. Smale, On the mathematics of emergence. Jpn. J. Math. 2 (2007) 197–227.

[16] X. Dai and Y. Zhu, Towards theoretical understanding of large batch training in stochastic gradient descent. Preprint
arXiv:1812.00542 (2018).

[17] A. Dembo and O. Zeitouni, Vol. 38 of Large deviations techniques and applications. Springer Science & Business Media (2009).

[18] R. Eberhart and J. Kennedy, Particle swarm optimization. In Proc. of IEEE International Conference on Neural Networks 4
(1995) 1942–1948.

[19] S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm. Preprint
arXiv:1910.08239 (2019).

[20] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic Related Models 1 (2008)
415–435.

[21] B. Hanin, Which neural net architectures give rise to exploding and vanishing gradients? In Adv. Neural Inf. Process. Syst.
(2018) 582–591.

[22] M. Hauray and P.-E. Jabin, N -particles approximation of the Vlasov equations with singular potential. Arch. Ratl. Mech.
Anal. 183 (2007) 489–524.

[23] J.H. Holland, Genetic algorithms. Sci. Am. 267 (1992) 66–73.
[24] R.A. Holley, S. Kusuoka and D.W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated

annealing. J. Funct. Anal. 83 (1989) 333–347.
[25] L.C. Hsu, A theorem on the asymptotic behavior of a multiple integral. Duke Math. J. 15 (1948) 623–6323.

https://arxiv.org/abs/1812.00542
https://arxiv.org/abs/1910.08239


22 J.A. CARRILLO ET AL.

[26] C.-R. Hwang and S.-J. Sheu, Large-time behavior of perturbed diffusion Markov processes with applications to the second
eigenvalue problem for Fokker-Planck operators and simulated annealing. Acta Appl. Math. 19 (1990) 253–295.

[27] T. Inglot and P. Majerski, Simple upper and lower bounds for the multivariate Laplace approximation. J. Approx. Theory
186 (2014) 1–11.

[28] P.-E. Jabin, A review of the mean field limits for Vlasov equations. Kinetic Related Models 7 (2014) 661–711.

[29] P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with W−1,∞ kernels. Invent.
Math. 214 (2018) 523–591.

[30] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio and A. Storkey, Three factors influencing minima in
SGD. Preprint arXiv:1711.04623 (2017).

[31] S. Jin, L. Li and J.-G. Liu, Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400 (2020)
108877.

[32] J. Kennedy, Swarm intelligence, handbook of nature-inspired and innovative computing. Springer (2006) 187–219.

[33] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy and P.T.P. Tang, On large-batch training for deep learning:
generalization gap and sharp minima. In International Conference on Learning Representations (2017).

[34] S. Kirkpatrick, C. Daniel Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.
[35] T. Kolokolnikov, J.A. Carrillo, A. Bertozzi, R. Fetecau and M. Lewis, Emergent behaviour in multi-particle systems with

non-local interactions [Editorial]. J. Phys. D 260 (2013) 1–4.
[36] J.P. McClure and R. Wong, Error bounds for multidimensional Laplace approximation. J. Approx. Theory 37 (1983) 372–390.

[37] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated annealing: theory and applications. D. Reidel Publishing Co., Dordrecht
(1987) 37.

[38] S. Liu, D. Papailiopoulos and D. Achlioptas, Bad global minima exist and SGD can reach them. Preprint arXiv:1906.02613
(2019).

[39] P.D. Miller, Applied asymptotic analysis. American Mathematical Society (2006).

[40] S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus. SIAM Rev. 56 (2014) 577–621.
[41] J.A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1965) 308–313.

[42] R. Pinnau, C. Totzeck, O. Tse and S. Martin, A consensus-based model for global optimization and its mean-field limit. Math.
Models Methods Appl. Sci. 27 (2017) 183–204.

[43] H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. (1951) 400–407.

[44] G. Toscani, Kinetic models of opinion formation. Commun. Math. Sci. 4 (2006) 481–496.
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