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In many optimization problems arising from scientific, engineering and arti-
ficial intelligence applications, objective and constraint functions are avail-
able only as the output of a black-box or simulation oracle that does not
provide derivative information. Such settings necessitate the use of methods
for derivative-free, or zeroth-order, optimization. We provide a review and
perspectives on developments in these methods, with an emphasis on high-
lighting recent developments and on unifying treatment of such problems in
the non-linear optimization and machine learning literature. We categorize
methods based on assumed properties of the black-box functions, as well as
features of the methods. We first overview the primary setting of deterministic
methods applied to unconstrained, non-convex optimization problems where
the objective function is defined by a deterministic black-box oracle. We then
discuss developments in randomized methods, methods that assume some ad-
ditional structure about the objective (including convexity, separability and
general non-smooth compositions), methods for problems where the output
of the black-box oracle is stochastic, and methods for handling different types
of constraints.
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1. Introduction

The growth in computing for scientific, engineering and social applications
has long been a driver of advances in methods for numerical optimization.
The development of derivative-free optimization methods – those methods
that do not require the availability of derivatives – has especially been driven
by the need to optimize increasingly complex and diverse problems. One of
the earliest calculations on MANIAC,1 an early computer based on the von
Neumann architecture, was the approximate solution of a six-dimensional
non-linear least-squares problem using a derivative-free coordinate search
(Fermi and Metropolis 1952). Today, derivative-free methods are used
routinely, for example by Google (Golovin et al. 2017), for the automation
and tuning needed in the artificial intelligence era.

In this paper we survey methods for derivative-free optimization and key
results for their analysis. Since the field – also referred to as black-box
optimization, gradient-free optimization, optimization without derivatives,
simulation-based optimization and zeroth-order optimization – is now far
too expansive for a single survey, we focus on methods for local optimiz-
ation of continuous-valued, single-objective problems. Although Section 8
illustrates further connections, here we mark the following notable omis-
sions.

• We focus on methods that seek a local minimizer. Despite users under-
standably desiring the best possible solution, the problem of global op-
timization raises innumerably more mathematical and computational
challenges than do the methods presented here. We instead point to
the survey by Neumaier (2004), which importantly addresses general

1 Mathematical Analyzer, Integrator, And Computer. Other lessons learned from this
application are discussed by Anderson (1986).
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Figure 1.1. Histogram of the references cited in the bibliography.

constraints, and to the textbook by Forrester, Sobester and Keane
(2008), which lays a foundation for global surrogate modelling.

• Multi-objective optimization and optimization in the presence of dis-
crete variables are similarly popular tasks among users. Such problems
possess fundamental challenges as well as differences from the methods
presented here.

• In focusing on methods, we cannot do justice to the application prob-
lems that have driven the development of derivative-free methods and
benefited from implementations of these methods. The recent text-
book by Audet and Hare (2017) contains a number of examples and
references to applications; Rios and Sahinidis (2013) and Auger et al.
(2009) both reference a diverse set of implementations. At the persist-
ent page

https://archive.org/services/purl/dfomethods

we intend to link all works that cite the entries in our bibliography
and those that cite this survey; we hope this will provide a coarse, but
dynamic, catalogue for the reader interested in potential uses of these
methods.

Given these limitations, we particularly note the intersection with the found-
ational books by Kelley (1999b) and Conn, Scheinberg and Vicente (2009b).
Our intent is to highlight recent developments in, and the evolution of,
derivative-free optimization methods. Figure 1.1 summarizes our bias; over
half of the references in this survey are from the past ten years.
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Many of the fundamental inspirations for the methods discussed in this
survey are detailed to a lesser extent. We note in particular the activity in
the United Kingdom in the 1960s (see e.g. the works by Rosenbrock 1960,
Powell 1964, Nelder and Mead 1965, Fletcher 1965 and Box 1966, and the
later exposition and expansion by Brent 1973) and the Soviet Union (as
evidenced by Rastrigin 1963, Matyas 1965, Karmanov 1974, Polyak 1987
and others). In addition to those mentioned later, we single out the work
of Powell (1975), Wright (1995), Davis (2005) and Leyffer (2015) for insight
into some of these early pioneers.

With our focus clear, we turn our attention to the deterministic optimiz-
ation problem

minimize
x

f(x)

subject to x ∈ Ω ⊆ Rn
(DET)

and the stochastic optimization problem

minimize
x

f(x) = Eξ[f̃(x; ξ)]

subject to x ∈ Ω.
(STOCH)

Although important exceptions are noted throughout this survey, the ma-
jority of the methods discussed assume that the objective function f in
(DET) and (STOCH) is differentiable. This assumption may cause readers
to pause (and some readers may never resume). The methods considered
here do not necessarily address non-smooth optimization; instead they ad-
dress problems where a (sub)gradient of the objective f or a constraint
function defining Ω is not available to the optimization method. Note that
similar naming confusion has existed in non-smooth optimization, as evid-
enced by the introduction of Lemarechal and Mifflin (1978):

This workshop was held under the name Nondifferentiable Optimization, but it has
been recognized that this is misleading, because it suggests ‘optimization without
derivatives’.

1.1. Alternatives to derivative-free optimization methods

Derivative-free optimization methods are sometimes employed for conveni-
ence rather than by necessity. Since the decision to use a derivative-free
method typically limits the performance – in terms of accuracy, expense
or problem size – relative to what one might expect from gradient-based
optimization methods, we first mention alternatives to using derivative-free
methods.

The design of derivative-free optimization methods is informed by the
alternatives of algorithmic and numerical differentiation. For the former,
the purpose seems clear: since the methods use only function values, they
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apply even in cases when one cannot produce a computer code for the
function’s derivative. Similarly, derivative-free optimization methods should
be designed in order to outperform (typically measured in terms of the
number of function evaluations) gradient-based optimization methods that
employ numerical differentiation.

1.1.1. Algorithmic differentiation
Algorithmic differentiation2 (AD) is a means of generating derivatives of
mathematical functions that are expressed in computer code (Griewank
2003, Griewank and Walther 2008). The forward mode of AD may be viewed
as performing differentiation of elementary mathematical operations in each
line of source code by means of the chain rule, while the reverse mode may
be seen as traversing the resulting computational graph in reverse order.

Algorithmic differentiation has the benefit of automatically exploiting
function structure, such as partial separability or other sparsity, and the
corresponding ability of producing a derivative code whose computational
cost is comparable to the cost of evaluating the function code itself.

AD has seen significant adoption and advances in the past decade (Forth
et al. 2012). Tools for algorithmic differentiation cover a growing set of
compiled and interpreted languages, with an evolving list summarized on
the community portal at

http://www.autodiff.org.

Progress has also been made on algorithmic differentiation of piecewise
smooth functions, such as those with breakpoints resulting from absolute
values or conditionals in a code; see, for example, Griewank, Walther,
Fiege and Bosse (2016). The machine learning renaissance has also fuelled
demand and interest in AD, driven in large part by the success of al-
gorithmic differentiation in backpropagation (Baydin, Pearlmutter, Radul
and Siskind 2018).

1.1.2. Numerical differentiation
Another alternative to derivative-free methods is to estimate the derivat-
ive of f by numerical differentiation and then to use the estimates in a
derivative-based method. This approach has the benefit that only zeroth-
order information (i.e. the function value) is needed; however, depending
on the derivative-based method used, the quality of the derivative estimate
may be a limiting factor. Here we remark that for the finite-precision (or
even fixed-precision) functions encountered in scientific applications, finite-
difference estimates of derivatives may be sufficient for many purposes; see
Section 2.3.1.

2 Algorithmic differentiation is sometimes referred to as automatic differentiation, but
we follow the preferred convention of Griewank (2003).
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When numerical derivative estimates are used, the optimization method
must tolerate inexactness in the derivatives. Such methods have been clas-
sically studied for both non-linear equations and unconstrained optimiza-
tion; see, for example, the works of Powell (1965), Brown and Dennis, Jr
(1971) and Mifflin (1975) and the references therein. Numerical derivatives
continue to be employed by recent methods (see e.g. the works of Cartis,
Gould and Toint 2012 and Berahas, Byrd and Nocedal 2019). Use in prac-
tice is typically determined by whether the limit on the derivative accuracy
and the expense in terms of function evaluations are acceptable.

1.2. Organization of the paper

This paper is organized principally by problem class: unconstrained do-
main (Sections 2 and 3), convex objective (Section 4), structured objective
(Section 5), stochastic optimization (Section 6) and constrained domain
(Section 7).

Section 2 presents deterministic methods for solving (DET) when Ω =
Rn. The section is split between direct-search methods and model-based
methods, although the lines between these are increasingly blurred; see, for
example, Conn and Le Digabel (2013), Custódio, Rocha and Vicente (2009),
Gramacy and Le Digabel (2015) and Gratton, Royer and Vicente (2016).
Direct-search methods are summarized in far greater detail by Kolda, Lewis
and Torczon (2003) and Kelley (1999b), and in the more recent survey by
Audet (2014). Model-based methods that employ trust regions are given
full treatment by Conn et al. (2009b), and those that employ stencils are
detailed by Kelley (2011).

In Section 3 we review randomized methods for solving (DET) when
Ω = Rn. These methods are often variants of the deterministic methods in
Section 2 but require additional notation to capture the resulting stochasti-
city; the analysis of these methods can also deviate significantly from their
deterministic counterparts.

In Section 4 we discuss derivative-free methods intended primarily for
convex optimization. We make this delineation because such methods have
distinct lines of analysis and can often solve considerably higher-dimensional
problems than can general methods for non-convex derivative-free optimiz-
ation.

In Section 5 we survey methods that address particular structure in the
objective f in (DET). Examples of such structure include non-linear least-
squares objectives, composite non-smooth objectives and partially separable
objectives.

In Section 6 we address derivative-free stochastic optimization, that is,
when methods have access only to a stochastic realization of a function
in pursuit of solving (STOCH). This topic is increasingly intertwined with
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simulation optimization and Monte Carlo-based optimization; for these
areas we refer to the surveys by Homem-de-Mello and Bayraksan (2014),
Fu, Glover and April (2005), Amaran, Sahinidis, Sharda and Bury (2015)
and Kim, Pasupathy and Henderson (2015).

Section 7 presents methods for deterministic optimization problems with
constraints (i.e. Ω ⊂ Rn). Although many of these methods rely on the
foundations laid in Sections 2 and 3, we highlight particular difficulties
associated with constrained derivative-free optimization.

In Section 8 we briefly highlight related problem areas (including global
and multi-objective derivative-free optimization), methods and other imple-
mentation considerations.

2. Deterministic methods for deterministic objectives

We now address deterministic methods for solving (DET). We discuss
direct-search methods in Section 2.1, model-based methods in Section 2.2
and other methods in Section 2.3. At a coarse level, direct-search methods
use comparisons of function values to directly determine candidate points,
whereas model-based methods use a surrogate of f to determine candidate
points. Naturally, some hybrid methods incorporate ideas from both model-
based and direct-search methods and may not be so easily categorized. An
early survey of direct-search and model-based methods is given in Powell
(1998a).

2.1. Direct-search methods

Although Hooke and Jeeves (1961) are credited with originating the term
‘direct search’, there is no agreed-upon definition of what constitutes a
direct-search method. We follow the convention of Wright (1995), wherein
a direct-search method is a method that uses only function values and ‘does
not “in its heart” develop an approximate gradient’.

We first discuss simplex methods, including the Nelder–Mead method –
perhaps the most widely used direct-search method. We follow this dis-
cussion with a presentation of directional direct-search methods; hybrid
direct-search methods are discussed in Section 2.3. (The global direct-search
method DIRECT is discussed in Section 8.3.)

2.1.1. Simplex methods
Simplex methods (not to be confused with Dantzig’s simplex method for
linear programming) move and manipulate a collection of n+ 1 affinely in-
dependent points (i.e. the vertices of a simplex in Rn) when solving (DET).
The method of Spendley, Hext and Himsworth (1962) involves either taking
the point in the simplex with the largest function value and reflecting it
through the hyperplane defined by the remaining n points or moving the
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Figure 2.1. Primary Nelder–Mead simplex operations: original simplex, reflection,
expansion, inner contraction, and shrink.

n worst points toward the best vertex of the simplex. In this manner, the
geometry of all simplices remains the same as that of the starting simplex.
(That is, all simplices are similar in the geometric sense.)

Nelder and Mead (1965) extend the possible simplex operations, as shown
in Figure 2.1, by allowing the ‘expansion’ and ‘contraction’ operations in
addition to the ‘reflection’ and ‘shrink’ operations of Spendley et al. (1962).
These operations enable the Nelder–Mead simplex method to distort the
simplex in order to account for possible curvature present in the objective
function.

Nelder and Mead (1965) propose stopping further function evaluations
when the standard error of the function values at the simplex vertices is
small. Others, Woods (1985) for example, propose stopping when the size
of the simplex’s longest side incident to the best simplex vertex is small.

Nelder–Mead is an incredibly popular method, in no small part due
to its inclusion in Numerical Recipes (Press, Teukolsky, Vetterling and
Flannery 2007), which has been cited over 125 000 times and no doubt
used many times more. The method (as implemented by Lagarias, Poonen
and Wright 2012) is also the algorithm underlying fminsearch in MAT-
LAB. Benchmarking studies highlight Nelder–Mead performance in practice
(Moré and Wild 2009, Rios and Sahinidis 2013).

The method’s popularity from its inception was not diminished by the lack
of theoretical results proving its ability to identify stationary points. Woods
(1985) presents a non-convex, two-dimensional function where Nelder–Mead
converges to a non-stationary point (where the function’s Hessian is singu-
lar). Furthermore, McKinnon (1998) presents a class of thrice-continuously
differentiable, strictly convex functions on R2 where the Nelder–Mead
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simplex fails to converge to the lone stationary point. The only operation
that Nelder–Mead performs on this relatively routine function is repeated
‘inner contraction’ of the initial simplex.

Researchers have continued to develop convergence results for modified or
limited versions of Nelder–Mead. Kelley (1999a) addresses Nelder–Mead’s
theoretical deficiencies by restarting the method when the objective decrease
on consecutive iterations is not larger than a multiple of the simplex gradient
norm. Such restarts do not ensure that Nelder–Mead will converge: Kelley
(1999a) shows an example of such behaviour. Price, Coope and Byatt (2002)
embed Nelder–Mead in a different (convergent) algorithm using positive
spanning sets. Nazareth and Tseng (2002) propose a clever, though perhaps
superfluous, variant that connects Nelder–Mead to golden-section search.

Lagarias, Reeds, Wright and Wright (1998) show that Nelder–Mead (with
appropriately chosen reflection and expansion coefficients) converges to the
global minimizer of strictly convex functions when n = 1. Gao and Han
(2012) show that the contraction and expansion steps of Nelder–Mead sat-
isfy a descent condition on uniformly convex functions. Lagarias, Poonen
and Wright (2012) show that a restricted version of the Nelder–Mead method
– one that does not allow an expansion step – can converge to minimizers of
any twice-continuously differentiable function with a positive-definite Hes-
sian and bounded level sets. (Note that the class of functions from McKin-
non (1998) have singular Hessians at only one point – their minimizers –
and not at the point to which the simplex vertices are converging.)

The simplex method of Rykov (1980) includes ideas from model-based
methods. Rykov varies the number of reflected vertices from iteration to
iteration, following one of three rules that depend on the function value at
the simplex centroid xc. Rykov considers both evaluating f at the centroid
and approximating f at the centroid using the values of f at the vertex. The
non-reflected vertices are also moved in parallel with the reflected subset of
vertices. In general, the number of reflected vertices is chosen so that xc
moves in a direction closest to −∇f(xc). This, along with a test of sufficient
decrease in f , ensures convergence of the modified simplex method to a min-
imizer of convex, continuously differentiable functions with bounded level
sets and Lipschitz-bounded gradients. (The sufficient-decrease condition is
also shown to be efficient for the classical Nelder–Mead algorithm.)

Tseng (1999) proposes a modified simplex method that keeps the bk best
simplex vertices on a given iteration k and uses them to reflect the remaining
vertices. Their method prescribes that ‘the rays emanating from the reflec-
ted vertices toward the bk best vertices should contain, in their convex hull,
the rays emanating from a weighted centroid of the bk best vertices toward
the to-be-reflected vertices’. Their method also includes a fortified descent
condition that is stronger than common sufficient-decrease conditions. If
f is continuously differentiable and bounded below and bk is fixed for all
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Algorithm 1: x+ = test descent(f,x,P )

1 Initialize x+ ← x
2 for pi ∈ P do
3 Evaluate f(pi)
4 if f(pi)− f(x) acceptable then
5 x+ ← pi
6 optional break

iterations, Tseng (1999) prove that every cluster point of the sequence of
candidate points generated by their method is a stationary point.

Bűrmen, Puhan and Tuma (2006) propose a convergent version of a sim-
plex method that does not require a sufficient descent condition to be satis-
fied. Instead, they ensure that evaluated points lie on a grid of points, and
they show that this grid will be refined as the method proceeds.

2.1.2. Directional direct-search methods

Broadly speaking, each iteration of a directional direct-search (DDS) method
generates a finite set of points near the current point xk; these poll points
are generated by taking xk and adding terms of the form αkd, where αk is
a positive step size and d is an element from a finite set of directions Dk.
Kolda et al. (2003) propose the term generating set search methods to en-
capsulate this class of methods.3 The objective function f is then evaluated
at all or some of the poll points, and xk+1 is selected to be some poll point
that produces a (sufficient) decrease in the objective and the step size is
possibly increased. If no poll point provides a sufficient decrease, xk+1 is
set to xk and the step size is decreased. In either case, the set of directions
Dk can (but need not) be modified to obtain Dk+1.

A general DDS method is provided in Algorithm 2, which includes a search
step where f is evaluated at any finite set of points Yk, including Yk = ∅.
The search step allows one to (potentially) improve the performance of Al-
gorithm 2. For example, points could be randomly sampled during the
search step from the domain in the hope of finding a better local minimum,
or a person running the algorithm may have problem-specific knowledge
that can generate candidate points given the observed history of evaluated
points and their function values. While the search step allows for this inser-
tion of such heuristics, rigorous convergence results are driven by the more
disciplined poll step. When testing for objective decrease in Algorithm 1,
one can stop evaluating points in P (line 6) as soon as the first point is

3 The term generating set arises from a need to generate a cone from the nearly active
constraint normals when Ω is defined by linear constraints.
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Algorithm 2: Directional direct-search method

1 Set parameters 0 < γdec < 1 ≤ γinc

2 Choose initial point x0 and step size α0 > 0
3 for k = 0, 1, 2, . . . do
4 Choose and order a finite set Yk ⊂ Rn // (search step)

5 x+
k ← test descent(f,xk,Yk)

6 if x+
k = xk then

7 Choose and order poll directions Dk ⊂ Rn // (poll step)

8 x+
k ← test descent(f,xk, {xk + αkdi : di ∈Dk})

9 if x+
k = xk then

10 αk+1 ← γincαk
11 else
12 αk+1 ← γdecαk

13 xk+1 ← x+
k

identified where there is (sufficient) decrease in f . In this case, the polling
(or search) step is considered opportunistic.

DDS methods are largely distinguished by how they generate the set of
poll directions Dk at line 7 of Algorithm 2. Perhaps the first approach
is coordinate search, in which the poll directions are defined as Dk =
{±ei : i = 1, 2, . . . , n}, where ei denotes the ith elementary basis vector
(i.e. column i of the identity matrix in n dimensions). The first known
description of coordinate search appears in the work of Fermi and Met-
ropolis (1952) where the smallest positive integer l is sought such that
f(xk + lαe1/2) > f(xk + (l − 1)αe1/2). If an increase in f is observed
at e1/2 then −e1/2 is considered. After such an integer l is identified for
the first coordinate direction, xk is updated to xk ± le1/2 and the second
coordinate direction is considered. If xk is unchanged after cycling through
all coordinate directions, then the method is repeated but with ±ei/2 re-
placed with ±ei/16, terminating when no improvement is observed for this
smaller α. In terms of Algorithm 2 the search set Yk = ∅ at line 4, and the
descent test at line 4 of Algorithm 1 merely tests for simple decrease, that
is, f(pi)−f(x) < 0. Other versions of acceptability in line 4 of Algorithm 1
are employed by methods discussed later.

Proofs that DDS methods converge first appeared in the works of Céa
(1971) and Yu (1979), although both require the sequence of step-size para-
meters to be non-increasing. Lewis, Torczon and Trosset (2000) attrib-
ute the first global convergence proof for coordinate search to Polak (1971,
p. 43). In turn, Polak cites the ‘method of local variation’ of Banichuk,
Petrov and Chernous’ko (1966); although Banichuk et al. (1966) do develop
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parts of a convergence proof, they state in Remark 1 that ‘the question of
the strict formulation of the general sufficient conditions for convergence of
the algorithm to a minimum remains open’.

Typical convergence results for DDS require that the set Dk is a positive
spanning set (PSS) for the domain Ω; that is, any point x ∈ Ω can be
written as

x =

|Dk|∑
i=1

λidi,

where di ∈Dk and λi ≥ 0 for all i. Some of the first discussions of proper-
ties of positive spanning sets were presented by Davis (1954) and McKinney
(1962), but recent treatments have also appeared in Regis (2016). In ad-
dition to requiring positive spanning sets during the poll step, earlier DDS
convergence results depended on f being continuously differentiable. When
f is non-smooth, no descent direction is guaranteed for these early DDS
methods, even when the step size is arbitrarily small. See, for example,
the modification of the Dennis–Woods (Dennis, Jr and Woods 1987) func-
tion by Kolda et al. (2003, Figure 6.2) and a discussion of why coordinate-
search methods (for example) will not move when started at a point of non-
differentiability; moreover, when started at differentiable points, coordinate-
search methods tend to converge to a point that is not (Clarke) stationary.

The pattern-search method of Torczon (1991) revived interest in direct-
search methods. The method therein contains ideas from both DDS and
simplex methods. Given a simplex defined by xk,y1, . . . ,yn (where xk is
the simplex vertex with smallest function value), the polling directions are
given by Dk = {yi − xk : i = 1, . . . , n}. If a decrease is observed at the
best poll point in xk + Dk, the simplex is set to either xk

⋃
xk + Dk or

some expansion thereof. If no improvement is found during the poll step,
the simplex is contracted. Torczon (1991) shows that if f is continuous on
the level set of x0 and this level set is compact, then a subsequence of {xk}
converges to a stationary point of f , a point where f is non-differentiable,
or a point where f is not continuously differentiable.

A generalization of pattern-search methods is the class of generalized
pattern-search (GPS) methods. Early GPS methods did not allow for a
search step; the search-poll paradigm was introduced by Audet (2004). GPS
methods are characterized by fixing a positive spanning set D and selecting
Dk ⊆ D during the poll step at line 7 on each iteration of Algorithm 2.
Torczon (1997) assumes that the test for decrease in line 4 in Algorithm 1 is
simple decrease, that is, that f(pi) < f(x). Early analysis of GPS methods
using simple decrease required the step size αk to remain rational (Audet
and Dennis, Jr 2002, Torczon 1997). Audet (2004) shows that such an as-
sumption is necessary by constructing small-dimensional examples where
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GPS methods do not converge if αk is irrational. Works below show that
if a sufficient (instead of simple) decrease is ensured, αk can take irrational
values.

A refinement of the analysis of GPS methods was made by Dolan, Lewis
and Torczon (2003), which shows that when ∇f is Lipschitz-continuous, the
step-size parameter αk scales linearly with ‖∇f(xk)‖. Therefore αk can be
considered a reliable measure of first-order stationarity and justifies the tra-
ditional approach of stopping a GPS method when αk is small. Second-order
convergence analyses of GPS methods have also been considered. Abramson
(2005) shows that, when applied to a twice-continuously differentiable f , a
GPS method that infinitely often has Dk include a fixed orthonormal basis
and its negative will have a limit point satisfying a ‘pseudo-second-order’
stationarity condition. Building off the use of curvature information in
Frimannslund and Steihaug (2007), Abramson, Frimannslund and Steihaug
(2013) show that a modification of the GPS framework that constructs
approximate Hessians of f will converge to points that are second-order
stationary provided that certain conditions on the Hessian approximation
hold (and a fixed orthonormal basis and its negative are in Dk infinitely
often).

In general, first-order convergence results (there exists a limit point x∗ of
{xk} generated by a GPS method such that ∇f(x∗) = 0) for GPS methods
can be demonstrated when f is continuously differentiable. For general
Lipschitz-continuous (but non-smooth) functions f , however, one can only
demonstrate that on a particular subsequence K, satisfying {xk}k∈K → x∗,
for each d that appears infinitely many times in {Dk}k∈K, it holds that
f ′(x∗;d) ≥ 0; that is, the directional derivative at x∗ in the direction d is
non-negative.

The flexibility of GPS methods inspired various extensions. Abramson,
Audet and Dennis, Jr (2004) consider adapting GPS to utilize derivative
information when it is available in order to reduce the number of points
evaluated during the poll step. Abramson, Audet, Dennis, Jr and Le Digabel
(2009b) and Frimannslund and Steihaug (2011) re-use previous function
evaluations in order to determine the next set of directions. Custódio and
Vicente (2007) consider re-using previous function evaluations to compute
simplex gradients; they show that the information obtained from simplex
gradients can be used to reorder the poll points P in Algorithm 1. A
similar use of simplex gradients in the non-smooth setting is considered by
Custódio, Dennis, Jr and Vicente (2008). Hough, Kolda and Torczon (2001)
discuss modifications to Algorithm 2 that allow for increased efficiency when
concurrent, asynchronous evaluations of f are possible; an implementation
of the method of Hough et al. (2001) is presented by Gray and Kolda (2006).

The early analysis of Torczon (1991, Section 7) of pattern-search methods
when f is non-smooth carries over to GPS methods as well; such methods
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may converge to a non-stationary point. This motivated a further gen-
eralization of GPS methods, mesh adaptive direct search (MADS) methods
(Audet and Dennis, Jr 2006, Abramson and Audet 2006). Inspired by Coope
and Price (2000), MADS methods augment GPS methods by incorporating
a mesh parametrized by a mesh parameter βmk > 0. In the kth iteration,
given the fixed PSS D and the mesh parameter βmk , the MADS mesh around
the current point xk is

Mk =
⋃
x∈Sk

{
x+ βmk

|D|∑
j=1

λjdj : dj ∈D, λj ∈ N
⋃
{0}

}
,

where Sk is the set of points at which f has been evaluated prior to the kth
iteration of the method.

MADS methods additionally define a frame

Fk = {xk + βmk d
f : df ∈Df

k},

where Df
k is a finite set of directions, each of which is expressible as

df =

|D|∑
j=1

λjdj ,

with each λj ∈ N
⋃
{0} and dj ∈ D. Additionally, MADS methods define

a frame parameter βfk and require that each df ∈ Df
k satisfies βmk ‖df‖ ≤

βfk max{‖d‖ : d ∈ D}. Observe that in each iteration, Fk ( Mk. Note
that the mesh is never explicitly constructed nor stored over the domain.
Rather, points are evaluated only at what would be nodes of some implicitly
defined mesh via the frame.

In the poll step of Algorithm 2, the set of poll directions Dk is chosen as
{y−xk : y ∈ Fk}. The role of the step-size parameter αk in Algorithm 2 is

completely replaced by the behaviour of βfk , β
m
k . If there is no improvement

at a candidate solution during the poll step, βmk is decreased, resulting in a

finer mesh; likewise βfk is decreased, resulting in a finer local mesh around

xk. MADS intentionally allows the parameters βmk and βfk to be decreased

at different rates; roughly speaking, by driving βmk to zero faster than βfk
is driven to zero, and by choosing the sequence {Df

k} to satisfy certain
conditions, the directions in Fk become asymptotically dense around limit

points of xk. That is, it is possible to decrease βmk , β
f
k at rates such that

poll directions will be arbitrarily close to any direction. This ensures that
the Clarke directional derivative is non-negative in all directions around any
limit point of the sequence of xk generated by MADS; that is,

f ′C(x∗;d) ≥ 0 for all directions d, (2.1)
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with an analogous result also holding for constrained problems, with (2.1)
reduced to all feasible directions d. (DDS methods for constrained op-
timization will be discussed in Section 7.) This powerful result highlights
the ability of directional direct-search methods to address non-differentiable
functions f .

MADS does not prescribe any one approach for adjusting βmk , β
f
k so that

the poll directions are dense, but Audet and Dennis, Jr (2006) demonstrate

an approach where randomized directions are completed to be a PSS and βfk
either is n

√
βmk or

√
βmk results in a asymptotically dense poll directions for

any convergent subsequence of {xk}. MADS does not require a sufficient-
decrease condition.

Recent advances to MADS-based algorithms have focused on reducing the
number of function evaluations required in practice by adaptively reducing
the number of poll points queried; see, for example, Audet, Ianni, Le Digabel
and Tribes (2014) and Alarie et al. (2018). Smoothing-based extensions to
noisy deterministic problems include Audet, Ihaddadene, Le Digabel and
Tribes (2018b). Vicente and Custódio (2012) show that MADS methods
converge to local minima even for a limited class of discontinuous functions
that satisfy some assumptions concerning the behaviour of the disconnected
regions of the epigraph at limit points.

Worst-case complexity analysis. Throughout this survey, when discussing
classes of methods, we will refer to their worst-case complexity (WCC). Gen-
erally speaking, WCC refers to an upper bound on the number of function
evaluations Nε required to attain an ε-accurate solution to a problem drawn
from a problem class. Correspondingly, the definition of ε-accurate varies
between different problem classes. For instance, and of particular immedi-
ate importance, if an objective function is assumed Lipschitz-continuously
differentiable (which we denote by f ∈ LC1), then an appropriate notion of
first-order ε-accuracy is

‖∇f(xk)‖ ≤ ε. (2.2)

That is, the WCC of a method applied to the class LC1 is characterized
by Nε, an upper bound on the number of function evaluations the method
requires before (2.2) is satisfied for any f ∈ LC1. Similarly, we can define a
notion of second-order ε-accuracy as

max{‖∇f(xk)‖,−λk} ≤ ε, (2.3)

where λk denotes the minimum eigenvalue of ∇2f(xk).
Note that WCCs can only be derived for methods for which convergence

results have been established. Indeed, in the problem class LC1, first-order
convergence results canonically have the form

lim
k→∞

‖∇f(xk)‖ = 0. (2.4)
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The convergence in (2.4) automatically implies the weaker lim-inf-type
result

lim inf
k→∞

‖∇f(xk)‖ = 0, (2.5)

from which it is clear that for any ε > 0, there must exist finite Nε so that
(2.2) holds. In fact, in many works, demonstrating a result of the form
(2.5) is a stepping stone to proving a result of the form (2.4). Likewise,
demonstrating a second-order WCC of the form (2.3) depends on showing

lim
k→∞

max{‖∇f(xk)‖,−λk} = 0, (2.6)

which guarantees the weaker lim-inf-type result

lim inf
k→∞

max{‖∇f(xk)‖,−λk} = 0. (2.7)

Proofs of convergence for DDS methods applied to functions f ∈ LC1

often rely on a (sub)sequence of positive spanning sets {Dk} satisfying

cm(Dk) = min
v∈Rn\{0}

max
d∈Dk

d>v

‖d‖‖v‖
≥ κ > 0, (2.8)

where cm(·) is the cosine measure of a set. Under Assumption (2.8), Vi-
cente (2013) obtains a WCC of type (2.2) for a method in the Algorithm 2
framework. In that work, it is assumed that Yk = ∅ at every search step.
Moreover, sufficient decrease is tested at line 4 of Algorithm 1; in partic-
ular, Vicente (2013) checks in this line whether f(pi) < f(x) − cα2

k for
some c > 0, where αk is the current step size in Algorithm 2. Under these
assumptions, Vicente (2013) demonstrates a WCC in O(ε−2). Throughout
this survey, we will refer to Table A.1 for more details concerning specific
WCCs. In general, though, we will often summarize WCCs in terms of their
ε-dependence, as this provides an asymptotic characterization of a method’s
complexity in terms of the accuracy to which one wishes to solve a problem.

When f ∈ LC2, work by Gratton et al. (2016) essentially augments the
DDS method analysed by Vicente (2013), but forms an approximate Hessian
via central differences from function evaluations obtained (for free) by using
a particular choice of Dk. Gratton et al. (2016) then demonstrate that this
augmentation of Algorithm 2 has a subsequence that converges to a second-
order stationary point. That is, they prove a convergence result of the form
(2.7) and demonstrate a WCC result of type (2.3) in O(ε−3) (see Table A.1).

We are unaware of WCC results for MADS methods; this situation may
be unsurprising since MADS methods are motivated by non-smooth prob-
lems, which depend on the generation of a countably infinite number of poll
directions. However, WCC results are not necessarily impossible to obtain
in structured non-smooth cases, which we discuss in Section 5. We will
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discuss a special case where smoothing functions of a non-smooth function
are assumed to be available in Section 5.3.2.

2.2. Model-based methods

In the context of derivative-free optimization, model-based methods are
methods whose updates are based primarily on the predictions of a model
that serves as a surrogate of the objective function or of a related merit func-
tion. We begin with basic properties and construction of popular models;
readers interested in algorithmic frameworks such as trust-region methods
and implicit filtering can proceed to Section 2.2.4. Throughout this section,
we assume that models are intended as a surrogate for the function f ; in
future sections, these models will be extended to capture functions arising,
for example, as constraints or separable components. The methods in this
section assume some smoothness in f and therefore operate with smooth
models; in Section 5, we examine model-based methods that exploit know-
ledge of non-smoothness.

2.2.1. Quality of smooth model approximation
A natural first indicator of the quality of a model used for optimization is
the degree to which the model locally approximates the function f and its
derivatives. To say anything about the quality of such approximation, one
must make an assumption about the smoothness of both the model and
function. For the moment, we leave this assumption implicit, but it will be
formalized in subsequent sections.

A function m : Rn → R is said to be a κ-fully linear model of f on
B(x; ∆) = {y : ‖x− y‖ ≤ ∆} if

|f(x+ s)−m(x+ s)| ≤ κef∆
2, for all s ∈ B(0; ∆), (2.9a)

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆, for all s ∈ B(0; ∆), (2.9b)

for κ = (κef , κeg). Similarly, for κ = (κef , κeg, κeH), m is said to be a κ-fully
quadratic model of f on B(x; ∆) if

|f(x+ s)−m(x+ s)| ≤ κef∆
3, for all s ∈ B(0; ∆), (2.10a)

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆2, for all s ∈ B(0; ∆), (2.10b)

‖∇2f(x+ s)−∇2m(x+ s)‖ ≤ κeH∆, for all s ∈ B(0; ∆). (2.10c)

Extensions to higher-degree approximations follow a similar form, but the
computational expense associated with achieving higher-order guarantees is
not a strategy pursued by derivative-free methods that we are aware of.

Models satisfying (2.9) or (2.10) are called Taylor-like models. To under-
stand why, consider the second-order Taylor model

m(x+ s) = f(x) +∇f(x)Ts+
1

2
sT∇2f(x)s. (2.11)
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This model is a κ-fully quadratic model of f , with

(κef , κeg, κeH) = (LH/6, LH/2, LH),

on any B(x; ∆), where f has a Lipschitz-continuous second derivative with
Lipschitz constant LH.

As illustrated in the next section, one also can guarantee that models that
do not employ derivative information satisfy these approximation bounds
in (2.9) or (2.10). This approximation quality is used by derivative-free
algorithms to ensure that a sufficient reduction predicted by the model m
yields an attainable reduction in the function f as ∆ becomes smaller.

2.2.2. Polynomial models

Polynomial models are the most commonly used models for derivative-free
local optimization. We let Pd,n denote the space of polynomials of n vari-

ables of degree d and φ : Rn → Rdim(Pd,n) define a basis for this space. For
example, quadratic models can be obtained by using the monomial basis

φ(x) = [1, x1, . . . , xn, x
2
1, . . . x

2
n, x1x2, . . . , xn−1xn]T, (2.12)

for which dim(P2,n) = (n + 1)(n + 2)/2; linear models can be obtained by
using the first dim(P1,n) = n + 1 components of (2.12); quadratic mod-
els with diagonal Hessians, which are considered by Powell (2003), can be
obtained by using the first 2n+ 1 components of (2.12).

Any polynomial model m ∈ Pd,n is defined by φ and coefficients a ∈
Rdim(Pd,n) through

m(x) =

dim(Pd,n)∑
i=1

aiφi(x). (2.13)

Given a set of p points Y = {y1, . . . ,yp}, a model that interpolates f on Y
is defined by the solution a to

Φ(Y )a =
[
φ(y1) · · · φ(yp)

]T
a =

f(y1)
...

f(yp)

. (2.14)

The existence, uniqueness and conditioning of a solution to (2.14) depend
on the location of the sample points Y through the matrix Φ(Y ). We note
that when n > 1, |Y | = dim(Pd,n) is insufficient for guaranteeing that Φ(Y )
is non-singular (Wendland 2005). Instead, additional conditions, effectively
on the geometry of the sample points Y , must be satisfied.

Simplex gradients and linear interpolation models. The geometry conditions
needed to uniquely define a linear model are relatively straightforward: the
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sample points Y must be affinely independent; that is, the columns of

Y−1 =
[
y2 − y1 · · · yn+1 − y1

]
(2.15)

must be linearly independent. Such sample points define what is referred
to as a simplex gradient g through g = [a2, . . . , an+1]T, when the monomial
basis φ is used in (2.14).

Simplex gradients can be viewed as a generalization of first-order finite-
difference estimates (e.g. the forward differences based on evaluations at the
points {y1,y1 + ∆e1, . . . ,y1 + ∆en}); their use in optimization algorithms
dates at least back to the work of Spendley et al. (1962) that inspired Nelder
and Mead (1965). Other example usage includes pattern search (Custódio
and Vicente 2007, Custódio et al. 2008) and noisy optimization (Kelley
1999b, Bortz and Kelley 1998); the study of simplex gradients continues
with recent works such as those of Regis (2015) and Coope and Tappenden
(2019).

Provided that (2.15) is non-singular, it is straightforward to show that
linear interpolation models are κ-fully linear model of f in a neighbourhood
of y1. In particular, if Y ⊂ B(y1; ∆) and f has an Lg-Lipschitz-continuous
first derivative on an open domain containing B(y1; ∆), then (2.9) holds on
B(y1; ∆) with

κeg = Lg(1 +
√
n∆‖Y −1

−1 ‖/2) and κef = Lg/2 + κeg. (2.16)

The expressions in (2.16) also provide a recipe for obtaining a model with
a potentially tighter error bound over B(y1; ∆): modify Y ⊂ B(y1; ∆) to
decrease ‖Y −1

−1 ‖. We note that when Y−1 contains orthonormal directions
scaled by ∆, one recovers κeg = Lg(1 +

√
n/2) and κef = Lg(3 +

√
n)/2,

which is the least value one can obtain from (2.16) given the restriction
that Y ⊂ B(y1; ∆). Hence, by performing LU or QR factorization with
pivoting, one can obtain directions (which are then scaled by ∆) in order
to improve the conditioning of Y −1

−1 and hence the approximation bound.
Such an approach is performed by Conn, Scheinberg and Vicente (2008a)
for linear models and by Wild and Shoemaker (2011) for fully linear radial
basis function models.

The geometric conditions on Y , induced by the approximation bounds
in (2.9) or (2.10), can be viewed as playing a similar role to the geometric
conditions (e.g. positive spanning) imposed onD in directional direct-search
methods. Naturally, the choice of basis function used for any model affects
the quantitative measure of that model’s quality.

Note that many practical methods employ interpolation sets contained
within a constant multiple of the trust-region radius (i.e. Y ⊂ B(y1; c1∆)
for a constant c1 ∈ [1,∞)).

Quadratic interpolation models. Quadratic interpolation models have been
used for derivative-free optimization for at least fifty years (Winfield 1969,
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Winfield 1973) and were employed by a series of methods that revitalized
interest in model-based methods; see, for example, Conn and Toint (1996),
Conn, Scheinberg and Toint (1997b), Conn, Scheinberg and Toint (1997a)
and Powell (1998b, 2002).

Of course, the quality of an interpolation model (quadratic or otherwise)
in a region of interest is determined by the position of the underlying points
being interpolated. For example, if a model m interpolates a function f
at points far away from a certain region of interest, the model value may
differ greatly from the value of f in that region. Λ-poisedness is a concept
to measure how well a set of points is dispersed through a region of interest,
and ultimately how well a model will estimate the function in that region.

The most commonly used metric for quantifying how well points are po-
sitioned in a region of interest is based on Lagrange polynomials. Given a
set of p points Y = {y1, . . . ,yp}, a basis of Lagrange polynomials satisfies

`j(yi) =

{
1 if i = j,

0 if i 6= j.
(2.17)

We now define Λ-poisedness. A set of points Y is said to be Λ-poised on a
setB if Y is linearly independent and the Lagrange polynomials {`1, . . . , `p}
associated with Y satisfy

Λ ≥ max
1≤i≤p

max
x∈B
|`i(x)|. (2.18)

(For an equivalent definition of Λ-poisedness, see Conn et al. (2009b, Defin-
ition 3.6).) Note that the definition of Λ-poisedness is independent of the
function being modelled. Also, the points Y need not necessarily be ele-
ments of the set B. Also, note that if a model is poised on a set B, it is
poised on any subset of B. One is usually interested in the least value of Λ
so that (2.18) holds.

Powell’s unconstrained optimization by quadratic approximation method
(UOBYQA) follows such an approach in maximizing the Lagrange polyno-
mials. In Powell (1998b), Powell (2001) and Powell (2002), significant care is
given to the linear algebra expense associated with this maximization and
the associated change of basis as the methods change their interpolation
sets. For example, in Powell (1998b), particular sparsity in the Hessian ap-
proximation is employed with the aim of capturing curvature while keeping
linear algebraic expenses low.

Maintaining, and the question of to what extent it is necessary to main-
tain, this geometry for quadratic models has been intensely studied; see, for
example, Fasano, Morales and Nocedal (2009), Marazzi and Nocedal (2002),
D’Ambrosio, Nannicini and Sartor (2017) and Scheinberg and Toint (2010).

Underdetermined quadratic interpolation models. A fact not to be over-
looked in the context of derivative-free optimization is that employing an
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interpolation set Y requires availability of the |Y | function values {f(yi) :
yi ∈ Y }. When the function f is computationally expensive to evaluate,
the (n+1)(n+2)/2 points required by fully quadratic models can be a bur-
den, potentially with little benefit, to obtain repeatedly in an optimization
algorithm.

Beginning with Powell (2003), Powell investigated quadratic models con-
structed from fewer than (n + 1)(n + 2)/2 points. The most successful of
these strategies was detailed in Powell (2004a) and Powell (2004b) and re-
solved the (n + 1)(n + 2)/2 − |Y | remaining degrees of freedom by solving
problems of the form

minimize
m∈P2,n

‖∇2m(x̌)−H‖2F

subject to m(yi) = f(yi), for all yi ∈ Y
(2.19)

to obtain a model m about a point of interest x̌. Solutions to (2.19) are
models with a Hessian closest in Frobenius norm to a specified H = HT

among all models that interpolate f on Y . A popular implementation of
this strategy is the NEWUOA solver (Powell 2006).

By using the basis

φ(x̌+ x) =
[
φfg(x̌+ x)T |φH(x̌+ x)T

]T
(2.20)

=

[
1, x1, . . . , xn

∣∣∣∣ 1

2
x2

1, . . . ,
1

2
x2
n,

1√
2
x1x2, . . . ,

1√
2
xn−1xn

]T

,

the problem (2.19) is equivalent to the problem

minimize
afg,aH

‖aH‖22 (2.21)

subject to aT
fgφfg(yi) + aT

HφH(yi) = f(yi)−
1

2
yT
i Hyi, for all yi ∈ Y .

Existence and uniqueness of solutions to (2.21) again depend on the posi-
tioning of the points in Y . Notably, a necessary condition for there to be a
unique minimizer of the seminorm is that at least n+ 1 of the points in Y
be affinely independent. Lagrange polynomials can be defined for this case;
Conn, Scheinberg and Vicente (2008b) establish conditions for Λ-poisedness
(and hence a fully linear, or better, approximation quality) of such models.

Powell (2004c, 2007, 2008) develops efficient solution methodologies for
(2.21) when H and m are constructed from interpolation sets that differ by
at most one point, and employ these updates in NEWUOA and subsequent
solvers. Wild (2008b) and Custódio et al. (2009) use H = 0 in order to
obtain tighter fully linear error bounds of models resulting from (2.21).
A strategy of using even fewer interpolation points (including those in a
proper subspace of Rn) is developed by Powell (2013) and Zhang (2014).
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(a) (b)

(c) (d)

Figure 2.2. (a) Minimum-norm-Hessian model through five points in B(xk; ∆k)
and its minimizer. (b) Absolute value of a sixth Lagrange polynomial for the five
points. (c) Minimum-norm-Hessian model through five points in B(xk+1; ∆k+1)
and its minimizer. (d) Absolute value of a sixth Lagrange polynomial for the five
points.

In Section 5.2, we summarize approaches that exploit knowledge of sparsity
of the derivatives of f in building quadratic models that interpolate fewer
than (n+ 1)(n+ 2)/2 points.

Figure 2.2 shows quadratic models in two dimensions that interpolate
(n+ 1)(n+ 2)/2− 1 = 5 points as well as the associated magnitude of the
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remaining Lagrange polynomial (note that this polynomial vanishes at the
five interpolated points).

Regression models. Just as one can establish approximation bounds and
geometry conditions when Y is linearly independent, the same can be done
for overdetermined regression models (Conn et al. 2008b, Conn et al. 2009b).
This can be accomplished by extending the definition of Lagrange polyno-
mials from (2.17) to the regression case. That is, given a basis φ : Rn →
Rdim(Pd,n) and points Y = {y1, . . . ,yp} ⊂ Rn with p > dim(Pd,n), the set
of polynomials satisfies

`j(yi)
l.s.
=

{
1 if i = j,

0 if i 6= j,
(2.22)

where
l.s.
= denotes the least-squares solution. The regression model can be

recovered finding the least-squares solution (now overdetermined) system
from (2.14), and the definition of Λ-poisedness (in the regression sense) is
equivalent to (2.18). Ultimately, given a linear regression model through a
set of Λ-poised points Y ⊂ B(y1; ∆), and if f has an Lg-Lipschitz-continuous
first derivative on an open domain containing B(y1; ∆), then (2.9) holds on
B(y1; ∆) with

κeg =
5

2

√
pLgΛ and κef =

1

2
Lg + κeg. (2.23)

Conn et al. (2008b) note the fact that the extension of Lagrange polynomials
does not apply to the 1-norm or infinity-norm case. Billups, Larson and Graf
(2013) show that the definition of Lagrange polynomials can be extended
to the weighted regression case. Verdério, Karas, Pedroso and Scheinberg
(2017) show that (2.9) can also be recovered for support vector regression
models.

Efficiently minimizing the model (regardless of type) over a trust region is
integral to the usefulness of such models within an optimization algorithm.
In fact, this necessity is a primary reason for the use of low-degree poly-
nomial models by the majority of derivative-free trust-region methods. For
quadratic models, the resulting subproblem remains one of the most dif-
ficult non-convex optimization problems solvable in polynomial time, as
illustrated by Moré and Sorensen (1983). As exemplified by Powell (1997),
the implementation of subproblem solvers is a key concern in methods seek-
ing to perform as few algebraic operations between function evaluations as
possible.

2.2.3. Radial basis function interpolation models

An additional way to model non-linearity with potentially less restrictive
geometric conditions is by using radial basis functions (RBFs). Such models
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take the form

m(x) =

|Y |∑
i=1

biψ(‖x− yi‖) + aTφ(x), (2.24)

where ψ : R+ → R is a conditionally positive-definite univariate function
and aTφ(x) represents a (typically low-order) polynomial as before; see, for
example, Buhmann (2000). Given a sample set Y , RBF model coefficients
(a, b) can be obtained by solving the augmented interpolation equations

ψ(‖y1 − y1‖) · · · ψ(‖y1 − y|Y |‖) φ(y1)T

...
...

...
ψ(‖y|Y | − y1‖) · · · ψ(‖y|Y | − y|Y |‖) φ(y|Y |)

T

φ(y1) · · · φ(y|Y |) 0


[
b
a

]
=


f(y1)

...
f(y|Y |)

0

.
(2.25)

That RBFs are conditionally positive-definite ensures that (2.25) is non-
singular provided that the degree d of the polynomial φ is sufficiently
large and that Y is poised for degree-d polynomial interpolation. For ex-
ample, cubic (ψ(r) = r3) RBFs require a linear polynomial; multiquadric
(ψ(r) = −(γ2 + r2)1/2) RBFs require a constant polynomial; and inverse
multiquadric (ψ(r) = (γ2 + r2)−1/2) and Gaussian (ψ(r) = exp(−γ−2r2))
RBFs do not require a polynomial. Consequently, RBFs have relatively
unrestrictive geometric requirements on the interpolation points Y while
allowing for modelling a wide range of non-linear behaviour.

This feature is typically exploited in global optimization (see e.g. Björk-
man and Holmström 2000, Gutmann 2001 and Regis and Shoemaker 2007),
whereby an RBF surrogate model is employed to globally approximate f .
However, works such as Oeuvray and Bierlaire (2009), Oeuvray (2005), Wild
(2008a) and Wild and Shoemaker (2013) establish and use local approx-
imation properties of these models. This approach is typically performed
by relying on a linear polynomial aTφ(x), which can be used to establish
that the RBF model in (2.24) can be a fully linear local approximation of
smooth f .

2.2.4. Trust-region methods
Having discussed issues of model construction, we are now ready to present
a general statement of a model-based trust-region method in Algorithm 3.

A distinguishing characteristic of derivative-free model-based trust-region
methods is how they manage Yk, the set of points used to construct the
model mk. Some methods ensure that Yk contains a scaled stencil of points
around xk; such an approach can be attractive since the objective at such
points can be evaluated in parallel. A fixed stencil can also ensure that
all models sufficiently approximate the objective. Other methods construct
Y by using previously evaluated points near xk, for example, those points
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Algorithm 3: Derivative-free model-based trust-region method

1 Set parameters ε > 0, 0 < γdec < 1 ≤ γinc, 0 < η0 ≤ η1 < 1, ∆max

2 Choose initial point x0, trust-region radius 0 < ∆0 ≤ ∆max, and set of
previously evaluated points Yk

3 for k = 0, 1, 2 . . . do
4 Select a subset of Yk (or augment Yk and evaluate f at new points)

for model building
5 Build a model mk using points in Yk and their function values
6 while ‖∇mk(xk)‖ < ε do
7 if mk is accurate on B(xk; ∆k) then
8 ∆k ← γdec∆k

9 else
10 By updating Yk, make mk accurate on B(xk; ∆k)

11 Generate a direction sk ∈ B(0; ∆k) so that xk + sk approximately
minimizes mk on B(xk; ∆k)

12 Evaluate f(xk + sk) and ρk ←
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)

13 if ρk < η1 and mk is inaccurate on B(xk; ∆k) then
14 Add model improving point(s) to Yk

15 if ρk ≥ η1 then
16 ∆k+1 ← min{γinc∆k,∆max}
17 else if mk is accurate on B(xk; ∆k) then
18 ∆k+1 ← γdec∆k

19 else
20 ∆k+1 ← ∆k

21 if ρk ≥ η0 then xk+1 ← xk + sk else xk+1 ← xk
22 Yk+1 ← Yk

within B(xk; c1∆k) for some constant c1 ∈ [1,∞). Depending on the set
of previously evaluated points, such methods may need to add points to
Yk that most improve the model quality. Determining which additional
points to add to Yk can be computationally expensive, but the method
should be willing to do so in the hope of needing fewer evaluations of the
objective function at new points in Yk. Most methods do not ensure that
models are valid on every iteration but rather make a single step toward
improving the model. Such an approach can ensure a high-quality model
in a finite number of improvement steps. (Exceptional methods that ensure
model quality before sk is calculated are the methods of Powell and manifold
sampling of Khan, Larson and Wild (2018).) The ORBIT method (Wild,
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Regis and Shoemaker 2008) places a limit on the size of Yk (e.g. in order
to limit the amount of linear algebra or to prevent overfitting). In the end,
such restrictions on Yk may determine whether mk is an interpolation or
regression model.

Derivative-free trust-region methods share many similarities with tradi-
tional trust-region methods, for example, the use of a ρ-test to determine
whether a step is taken or rejected. As in a traditional trust-region method,
the ρ-test measures the ratio of actual decrease observed in the objective
versus the decrease predicted by the model.

On the other hand, the management of the trust-region radius parameter
∆k in Algorithm 3 differs remarkably from traditional trust-region meth-
ods. Derivative-free variants require an additional test of model quality, the
failure of which results in shrinking ∆k. When derivatives are available,
Taylor’s theorem ensures model accuracy for small ∆k. In the derivative-
free case, such a condition must be explicitly checked in order to ensure
that ∆k does not go to zero merely because the model is poor, hence the
inclusion of tests of model quality. As a direct result of these considera-
tions, ∆k → 0 as Algorithm 3 converges; this is generally not the case in
traditional trust-region methods.

As in derivative-based trust-region methods, the solution to the trust-
region subproblem in line 11 of Algorithm 3 must satisfy a Cauchy decrease
condition. Given the model mk used in Algorithm 3, we define the optimal
step length in the direction −∇mk(xk) by

tCk = arg min
t≥0:xk−t∇mk(xk)∈B(xk;∆k)

mk(xk − t∇mk(xk)),

and the corresponding Cauchy step

sCk = −tCk∇mk(xk).

It is straightforward to show (see e.g. Conn, Scheinberg and Vicente 2009b,
Theorem 10.1) that

mk(xk)−mk(xk + sCk ) ≥ 1

2
‖∇mk(xk)‖min

{
‖∇mk(xk)‖
‖∇2mk(xk)‖

,∆k

}
. (2.26)

That is, (2.26) states that, provided that both ∆k ≈ ‖∇mk(xk)‖ and a
uniform bound exists on the norm of the model Hessian, the model decrease
attained by the Cauchy step sCk is of the order of ∆2

k. In order to prove
convergence, it is desirable to ensure that each step sk generated in line 11
of Algorithm 3 decreases the model mk by no less than sCk does, or at least
some fixed positive fraction of the decrease achieved by sCk . Because suc-
cessful iterations ensure that the actual decrease attained in an iteration is
at least a constant fraction of the model decrease, the sequence of decreases
of Algorithm 3 are square-summable, provided that ∆k → 0. (This is indeed
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the case for derivative-free trust-region methods.) Hence, in most theoret-
ical treatments of these methods, it is commonly stated as an assumption
that the subproblem solution sk obtained in line 11 of Algorithm 3 satisfies

mk(xk)−mk(xk + sk) ≥ κfcd(mk(xk)−mk(xk + sCk )), (2.27)

where κfcd ∈ (0, 1] is the fraction of the Cauchy decrease. In practice, when
mk is a quadratic model, subproblem solvers have been well studied and
often come with guarantees concerning the satisfaction of (2.27) (Conn,
Gould and Toint 2000). Wild et al. (2008, Figure 4.3) demonstrate the
satisfaction of an assumption like (2.27) when the model mk is a radial
basis function.

Under reasonable smoothness assumptions, most importantly f ∈ LC1,
algorithms in the Algorithm 3 framework have been shown to be first-order
convergent (i.e. (2.4)) and second-order convergent (i.e. (2.6)), with the
(arguably) most well-known proof given by Conn, Scheinberg and Vicente
(2009a). In more recent work, Garmanjani, Jùdice and Vicente (2016)
provide a WCC bound of the form (2.2) for Algorithm 3, recovering essen-
tially the same upper bound on the number of function evaluations required
by DDS methods found in Vicente (2013), that is, a WCC bound in O(ε−2)
(see Table A.1). When f ∈ LC2, Gratton, Royer and Vicente (2019a)
demonstrate a second-order WCC bound of the form (2.3) in O(ε−3); in
order to achieve this result, fully quadratic models mk are required. In Sec-
tion 3.3, a similar result is achieved by using randomized variants that do
not require a fully quadratic model in every iteration.

Early analysis of Powell’s UOBYQA method shows that, with minor modi-
fications, the algorithm can converge superlinearly in neighbourhoods of
strict convexity (Han and Liu 2004). A key distinction between Powell’s
methods and other model-based trust-region methods is the use of separ-
ate neighbourhoods for model quality and trust-region steps, with each of
these neighbourhoods changing dynamically. Convergence of such methods
is addressed by Powell (2010, 2012).

The literature on derivative-free trust-region methods is extensive. We
mention in passing several additional classes of trust-region methods that
have not fallen neatly into our discussion thus far. Wedge methods (Marazzi
and Nocedal 2002) explicitly enforce geometric properties (Λ-poisedness) of
the sample set between iterations by adding additional constraints to the
trust-region subproblem. Alexandrov, Dennis, Jr, Lewis and Torczon (1998)
consider a trust-region method utilizing a hierarchy of model approxima-
tions. In particular, if derivatives can be obtained but are expensive, then
the method of Alexandrov et al. (1998) uses a model that interpolates not
only zeroth-order information but also first-order (gradient) information.
For problems with deterministic noise, Elster and Neumaier (1995) propose
a method that projects the solutions of a trust-region subproblem onto a
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dynamically refined grid, encouraging better practical behaviour. Similarly,
for problems with deterministic noise, Maggiar, Wächter, Dolinskaya and
Staum (2018) propose a model-based trust-region method that implicitly
convolves the objective function with a Gaussian kernel, again yielding bet-
ter practical behaviour.

2.3. Hybrid methods and miscellanea

While the majority of work in derivative-free methods for deterministic
problems can be classified as direct-search or model-based methods, some
work defies this simple classification. In fact, several works (Conn and Le
Digabel 2013, Custódio et al. 2009, Dennis, Jr and Torczon 1997, Frim-
annslund and Steihaug 2011) propose methods that seem to hybridize these
two classes, existing somewhere in the intersection. For example, Custódio
and Vicente (2005) and Custódio et al. (2009) develop the SID-PSM method,
which extends Algorithm 2 so that the search step consists of minimizing an
approximate quadratic model of the objective (obtained either by minimum-
Frobenius norm interpolation or by regression) over a trust region. Here,
we highlight methods that do not neatly belong to the two aforementioned
classes of methods.

2.3.1. Finite differences
As noted in Section 1.1.2, many of the earliest derivative-free methods em-
ployed finite-difference-based estimates of derivatives. The most popular
first-order directional derivative estimates include the forward/reverse dif-
ference

δf(f ;x;d;h) =
f(x+ hd)− f(x)

h
(2.28)

and central difference

δc(f ;x;d;h) =
f(x+ hd)− f(x− hd)

2h
, (2.29)

where h 6= 0 is the difference parameter and the non-trivial d ∈ Rn defines
the direction. Several recent methods, including the methods described in
Sections 2.3.2, 2.3.3 and 3.1.2, use such estimates and employ difference
parameters or directions that dynamically change.

As an example of a potentially dynamic choice of difference parameter, we
consider the usual case of roundoff errors. We denote by f ′∞(x;d) the direc-
tional derivative at x of the infinite-precision (i.e. based on real arithmetic)
objective function f∞ in the unit direction d (i.e. ‖d‖ = 1). We then have
the following error for forward or reverse finite-difference estimates based
on the function f available through computation:

|δf(f ;x;d;h)− f ′∞(x;d)| ≤ 1

2
Lg(x)|h|+ 2

ε∞(x)

|h|
, (2.30)
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provided that |f ′′∞(·;d)| ≤ Lg(x) and |f∞(·) − f(·)| ≤ ε∞(x) on the in-
terval [x,x + hd]. In Gill, Murray and Wright (1981) and Gill, Mur-
ray, Saunders and Wright (1983), the recommended difference parameter
is h = 2

√
ε∞(x)/Lg(x), which yields the minimum value 2

√
ε∞(x)Lg(x) of

the upper bound in (2.30); when ε∞ is a bound on the roundoff error and
Lg is of order one, then the familiar h ∈ O(

√
ε∞) is obtained.

Similarly, if one models the error between f∞ and f as a stationary
stochastic process (through the ansatz denoted by fξ) with variance εf(x)2,
minimizing the upper bound on the mean-squared error,

Eξ[(δf(fξ;x;d;h)− f ′∞(x;d))2] ≤ 1

4
Lg(x)2h2 + 2

εf(x)2

h2
, (2.31)

yields the choice h = (
√

8εf(x)/Lg(x))1/2 with an associated root-mean-

squared error of (
√

2ε∞(x)Lg(x))1/2; see, for example, Moré and Wild
(2012, 2014). A rough procedure for computing εf is provided in Moré
and Wild (2011) and used in recent methods such as that of Berahas, Byrd
and Nocedal (2019).

In both cases (2.30) and (2.31), the first-order error is c
√
ε(x)Lg(x) (for

a constant c ≤ 2), which can be used to guide the decision on whether the
derivatives estimates are of sufficient accuracy.

2.3.2. Implicit filtering

Implicit filtering is a hybrid of a grid-search algorithm (evaluating all points
on a lattice) and a Newton-like local optimization method. The gradient
(and possible Hessian) estimates for local optimization are approximated
by the central differences {δc(f ;xk; ei; ∆k) : i = 1, . . . , n}. The difference
parameter ∆k decreases when implicit filtering encounters a stencil failure
at xk, that is,

f(xk) ≤ f(xk ±∆kei), (2.32)

where ei is the ith elementary basis vector. This is similar to direct-search
methods, but notice that implicit filtering is not polling opportunistically:
all polling points are evaluated on each iteration. The basic version of impli-
cit filtering from Kelley (2011) is outlined in Algorithm 4. Note that most
implementations of implicit filtering require a bound-constrained domain.

Considerable effort has been devoted to extensions of Algorithm 4 when
f is ‘noisy’. Gilmore and Kelley (1995) show that implicit filtering con-
verges to local minima of (DET) when the objective f is the sum of a
smooth function fs and a high-frequency, low-amplitude function fn, with
fn → 0 quickly in a neighbourhood of all minimizers of fs. Under similar
assumptions, Choi and Kelley (2000) show that Algorithm 4 converges su-
perlinearly if the step sizes ∆k are defined as a power of the norm of the
previous iteration’s gradient approximation.
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Algorithm 4: Implicit-filtering method

1 Set parameters feval max > 0, ∆min > 0, γdec ∈ (0, 1) and τ > 0
2 Choose initial point x0 and step size ∆0 ≥ ∆min

3 k ← 0; evaluate f(x0) and set fevals← 1
4 while fevals ≤ feval max and ∆k ≥ ∆min do
5 Evaluate f(xk ±∆kei) for i ∈ {1, . . . , n} and approximate ∇f(xk)

via {δc(f ;xk; ei; ∆k) : i = 1, . . . , n}
6 if equation (2.32) is satisfied or ‖∇f(xk)‖ ≤ τ∆k then
7 ∆k+1 ← γdec∆k

8 xk+1 ← xk
9 else

10 Update Hessian estimate Hk (or set Hk ← I)

11 sk ← −H−1
k ∇f(xk)

12 Perform a line search in the direction sk to generate xk+1

13 ∆k+1 ← ∆k

14 k ← k + 1

2.3.3. Adaptive regularized methods

Cartis, Gould and Toint (2012) perform an analysis of adaptive regular-
ized cubic (ARC) methods and propose a derivative-free method, ARC-DFO.
ARC-DFO is an extension of ARC whereby gradients are replaced with cent-
ral finite differences of the form (2.29), with the difference parameter mono-
tonically decreasing within a single iteration of the method. ARC-DFO is
an intrinsically model-based method akin to Algorithm 3, but the object-
ive within each subproblem regularizes third-order behaviour of the model.
Thus, like a trust-region method, ARC-DFO employs trial steps and model
gradients. During the main loop of ARC-DFO, if the difference parameter
exceeds a constant factor of the minimum of the trial step norm or the
model gradient norm, then the difference parameter is shrunk by a constant
factor, and the iteration restarts to obtain a new trial step. This mechan-
ism is structurally similar to a derivative-free trust-region method’s checks
on model quality. Cartis et al. (2012) show that ARC-DFO demonstrates a
WCC result of type (2.2) in O(ε−3/2), the same asymptotic result (in terms
of ε-dependence) that the authors demonstrate for derivative-based variants
of ARC methods. In terms of dependence on ε, this result is a strict im-
provement over the WCC results of the same type demonstrated for DDS
and trust-region methods, although this result is proved under the stronger
assumption that f ∈ LC2.

In a different approach, Hare and Lucet (2013) show convergence of a
derivative-free method that penalizes large steps via a proximal regularizer,
thereby removing the necessity for a trust region. Lazar and Jarre (2016)
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regularize their line-search with a term seeking to minimize a weighted
change of the model’s third derivatives.

2.3.4. Line-search-based methods

Several line-search-based methods for derivative-free optimization have been
developed. Grippo, Lampariello and Lucidi (1988) and De Leone, Gaudioso
and Grippo (1984) (two of the few papers appearing in the 1980s concern-
ing derivative-free optimization) both analyse conditions on the step sizes
used in a derivative-free line-search algorithm, and provide methods for con-
structing such steps. Lucidi and Sciandrone (2002b) present methods that
combine pattern-search and line-search approaches in a convergent frame-
work. The VXQR method of Neumaier, Fendl, Schilly and Leitner (2011)
performs a line search on a direction computed from a QR factorization
of previously evaluated points. Neumaier et al. (2011) apply VXQR to
problems with n = 1000, a large problem dimension among the methods
considered here.

Consideration has also been given to non-monotone line-search-based
derivative-free methods. Since gradients are not available in derivative-
free optimization, the search direction in a line-search method may not
be a descent direction. Non-monotone methods allow one to still employ
such directions in a globally convergent framework. Grippo and Scian-
drone (2007) extend line-search strategies based on coordinate search and
the method of Barzilai and Borwein (1988) to develop a globally conver-
gent non-monotone derivative-free method. Grippo and Rinaldi (2014) ex-
tend such non-monotone strategies to broader classes of algorithms that
employ simplex gradients, hence further unifying direct-search and model-
based methods. Another non-monotone line-search method is proposed by
Diniz-Ehrhardt, Mart́ınez and Raydan (2008), who encapsulate early ex-
amples of randomized DDS methods (Section 3.2).

2.3.5. Methods for non-smooth optimization

In Section 2.1.2, we discuss how MADS handles non-differentiable objective
functions by densely sampling directions on a mesh, thereby ensuring that
all Clarke directional derivatives are non-negative (i.e. (2.1)). Another early
analysis of a DDS method on a class of non-smooth objectives was performed
by Garćıa-Palomares and Rodŕıguez (2002).

Gradient sampling methods are a developing class of algorithms for gen-
eral non-smooth non-convex optimization; see the recent survey by Burke
et al. (2018). These methods attempt to estimate the ε-subdifferential at a
point x by evaluating a random sample of gradients in the neighbourhood
of x and constructing the convex hull of these gradients. In a derivative-free
setting, the approximation of these gradients is not as immediately obvious
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in the presence of non-smoothness, but there exist gradient-sampling meth-
ods that use finite-difference estimates with specific smoothing techniques
(Kiwiel 2010).

In another distinct line of research, Bagirov, Karasözen and Sezer (2007)
analyse a derivative-free variant of subgradient descent, where subgradi-
ents are approximated via so-called discrete gradients. In Section 5.3, we
will further discuss methods for minimizing composite non-smooth objective
functions of the form f = h ◦ F , where h is non-smooth but a closed-form
expression is known and F is assumed smooth. These methods are charac-
terized by their exploitation of the knowledge of h, making them less general
than the methods for non-smooth optimization discussed so far.

3. Randomized methods for deterministic objectives

We now summarize randomized methods for solving (DET). Such methods
often have promising theoretical properties, although some practitioners
may dislike the non-deterministic behaviour of these methods. We discuss
randomization within direct-search methods in Section 3.2 and within trust-
region methods in Section 3.3, but we first begin with a discussion of random
search as applied to deterministic objectives.

In any theoretical treatment of randomized methods, one must be careful
to distinguish between random variables and their realizations. For the
sake of terseness in this survey, we will intentionally conflate variables with
realizations and refer to respective papers for more careful statements of
theoretical results.

3.1. Random search

We highlight two randomized methods for minimizing a deterministic ob-
jective: pure random search and Nesterov random search.

3.1.1. Pure random search
Pure random search is a natural method to start with for randomized
derivative-free optimization. Pure random search is popular for multiple
reasons; in particular, it is easy to implement (with few or no user-defined
tolerances), and (if the points generated are independent of one another) it
exhibits perfect scaling in terms of evaluating f at many points simultan-
eously.

A pure random-search method is given in Algorithm 5, where points are
generated randomly from Ω. For example, if Ω = {x : c(x) ≤ 0, l ≤ x ≤
u}, line 3 of Algorithm 5 may involve drawing points uniformly at random
from [l,u] and checking whether they satisfy c(x) ≤ 0. If the procedure
for generating points in line 3 of Algorithm 5 is independent of the function
values observed, then the entire set of points used within pure random
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Algorithm 5: Pure random search

1 Choose initial point x̂ ∈ Ω, termination test, and point generation
scheme

2 while Termination test is not satisfied do
3 Generate x ∈ Ω
4 if f(x) < f(x̂) then
5 x̂← x

search can be generated beforehand: we intentionally omit the index k in
the statement of Algorithm 5.

Nevertheless, for the sake of analysis, it is useful to consider an ordering
of the sequence of random points generated by Algorithm 5. With such a
sequence {xk}, one can analyse the best points after N evaluations,

x̂N ∈ arg min
k=1,...,N

f(xk).

If f∗ is the global minimum value, then

P[f(x̂N ) ≤ f∗ + ε] = 1−
N∏
k=1

(1− P[xk ∈ Lf∗+ε(f)]),

where ε ≥ 0 and Lα(f) = {x : f(x) ≤ α}. Provided that the procedure
used to generate points at line 3 of Algorithm 5 satisfies

lim
N→∞

N∏
k=1

(1− P[xk ∈ Lf∗+ε(f)]) = 0

for all ε > 0, then f(x̂k) converges in probability to f∗. For example,
if each xk is drawn independently and uniformly over Ω, then one can
calculate the number of evaluations required to ensure that the x̂k returned
by Algorithm 5 satisfies x̂k ∈ Lf∗+ε with probability p ∈ (0, 1), that is,

N ≥ log(p)

log

(
1−

µ(Lf∗+ε
⋂

Ω)

µ(Ω)

) ,
provided µ(Lf(x∗)+ε ∩Ω) > 0 and Ω is measurable.

Random-search methods typically make few assumptions about f ; see
Zhigljavsky (1991) for further discussion about the convergence of pure ran-
dom search. Naturally, a method that assumes only that f is measurable
on Ω is likely to produce function values that converge more slowly to f∗
when applied to an f ∈ C0 than does a method that exploits the continuity
of f . Heuristic modifications of random search have sought to improve em-
pirical performance on certain classes of problems, while still maintaining
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random search’s global optimization property; see, for example, the work of
Zabinsky and Smith (1992) and Patel, Smith and Zabinsky (1989).

3.1.2. Nesterov random search
We refer to the method discussed in this section as Nesterov random search
because of the seminal article by Nesterov and Spokoiny (2017), but the
idea driving this method is much older. A similar method, for instance, is
discussed in Polyak (1987, Chapter 3.4).

The method of Nesterov random search is largely motivated by Gaus-
sian smoothing. In particular, given a covariance (i.e. symmetric positive-
definite) matrixB and a smoothing parameter µ > 0, consider the Gaussian
smoothed function

fµ(x) =

√
det(B)

(2π)n

∫
Rn

f(x+ µu) exp

(
−1

2
uTBu

)
du.

This smoothing has many desirable properties; for instance, if f is Lipschitz-
continuous with constant Lf , then fµ is Lipschitz-continuous with a constant
no worse than Lf for all µ > 0. Likewise, if f has Lipschitz-continuous
gradients with constant Lg, then fµ has Lipschitz-continuous gradients with
a constant no worse than Lg for all µ > 0. If f is convex, then fµ is convex.

One can show that

∇fµ(x) =
1

µ

√
det(B)

(2π)n

∫
Rn

(f(x+ µu)− f(x)) exp

(
−1

2
uTBu

)
Bu du.

In other words, ∇fµ(x), which can be understood as an approximation of
∇f(x) in the smooth case, can be computed via an expectation over u ∈ Rn
weighted by the finite difference f(x + µu) − f(x) and inversely weighted
by a radial distance from x. With this interpretation in mind, Nesterov and
Spokoiny (2017) propose a collection of random gradient-free oracles, where
one first generates a Gaussian random vector u ∈ N (0,B−1) and then uses
one of

gµ(x;u) = δf(f ;x;u;µ)Bu, or

ĝµ(x;u) = δc(f ;x;u;µ)Bu,
(3.1)

for a difference parameter µ > 0. Nesterov and Spokoiny also propose a
third oracle, g0(x;u) = f ′(x;u)Bu, intended for the optimization of non-
smooth functions; this oracle assumes the ability to compute directional
derivatives f ′(x;u). For this reason, Nesterov and Spokoiny refer to all
oracles as gradient-free instead of derivative-free. Given the scope of this
survey, we focus on the derivative-free oracles gµ and ĝµ displayed in (3.1).

With an oracle g chosen as either oracle in (3.1), Nesterov random-search
methods are straightforward to define, and we do so in Algorithm 6. In
Algorithm 6, proj(·; Ω) denotes projection onto a domain Ω.
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Algorithm 6: Nesterov random search

1 Choose initial point x0 ∈ Ω, sequence of step sizes {αk}∞k=0, oracle g
from (3.1), smoothing parameter µ > 0 and covariance matrix B

2 for k = 0, 1, 2, . . . do
3 x̂k ← arg minj∈{0,1,...,k} f(xj)

4 Generate uk ∈ N (0,B−1); compute g(xk;uk)

5 xk+1 ← proj(xk − αkB−1g(xk;uk),Ω)

A particularly striking result proved in Nesterov and Spokoiny (2017)
was perhaps the first WCC result for an algorithm (Algorithm 6) in the
case where f ∈ LC0 – that is, f may be both non-smooth and non-convex.
Because of the randomized nature of iteratively sampling from a Gaussian
distribution in Algorithm 6, complexity results are given as expectations.
That is, letting Uk = {u0,u1, . . . ,uk} denote the random variables associ-
ated with the first k iterations of Algorithm 6, complexity results are stated
in terms of expectations with respect to the filtration defined by these vari-
ables. A WCC is given as an upper bound on the number of f evaluations
needed to attain the approximate (ε > 0) optimality condition

EUk−1
[‖∇fµ̌(x̂k)‖] ≤ ε, (3.2)

where x̂k = arg minj=0,1,...,k−1 f(xj). By fixing a particular choice of µ̌
(dependent on ε, n and Lipschitz constants), Nesterov and Spokoiny (2017)
demonstrate that the number of f evaluations needed to attain (3.2) is
in O(ε−3); see Table A.1. For f ∈ LC1 (but still non-convex), Nesterov
and Spokoiny (2017) prove a WCC result of type (3.2) in O(ε−2) for the
same method. WCC results of Algorithm 6 under a variety of stronger
assumptions on the convexity and differentiability of f are also shown in
Table A.1 and discussed in Section 4. We further note that some randomized
methods of the form Algorithm 6 have also been developed for (STOCH),
which we discuss in Section 6.

We remark on an undesirable feature of the convergence analysis for vari-
ants of Algorithm 6: the analysis of these methods supposes that the se-
quence {αk} is chosen as a constant that depends on parameters, including
Lf , that may not be available to the method. Similar assumptions concern-
ing the preselection of {αk} also appear in the convex cases discussed in
Section 4, and we highlight these dependencies in Table A.1.

3.2. Randomized direct-search methods

Randomization has also been used in the DDS framework discussed in Sec-
tion 2.1 in the hope of more efficiently using evaluations of f . Polling every
point in a PSS requires at least n+ 1 function evaluations; if f is expensive
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to evaluate and n is relatively large, this can be wasteful. A deterministic
strategy for performing fewer evaluations on many iterations is opportunistic
polling. Work in randomized direct-search methods attempts to address,
formalize and analyse the situation where polling directions are randomly
sampled from some distribution in each iteration. The ultimate goal is to
replace the O(n) per-iteration function evaluation cost with an O(1) per-
iteration cost,4 while still guaranteeing some form of global convergence.

In Section 2.1, we mentioned MADS methods that consider the random
generation of polling directions in each iteration (in order to satisfy the
asymptotic density required of search directions for the minimization of non-
smooth, but Lipschitz-continuous, f). Examples include Audet and Dennis,
Jr (2006) and Van Dyke and Asaki (2013), which implement LTMADS and
QRMADS, respectively. While this direction of research is within the scope
of randomized methods, the purpose of randomization in MADS methods
is to overcome particular difficulties encountered when optimizing general
non-smooth objectives. This particular randomization does not fall within
the scope of this section, where randomization is intended to decrease a
method’s dependence on n. In the remainder of this section, we focus on a
body of work that seems to exist entirely for the unconstrained case where
f is assumed sufficiently smooth.

Gratton, Royer, Vicente and Zhang (2015) extend the direct-search frame-
work (Algorithm 2) by assuming that the set of polling directions Dk in-
cludes only a descent direction with probability p (as opposed to assuming
Dk always includes a descent direction, which comes for free when f ∈ LC1

provided Dk is, for example, a PSS). To formalize, given p ∈ (0, 1), a ran-
dom sequence of polling directions {Dk} is said to be p-probabilistically
κd-descent provided that, given a deterministic starting point x0,

P[cm([D0,−∇f(x0)]) ≥ κd] ≥ p, (3.3)

and for all k ≥ 1,

P[cm([Dk,−∇f(xk)]) ≥ κd |D0, . . . ,Dk−1] ≥ p, (3.4)

where cm(·) is the cosine measure in (2.8). A collection of polling direc-
tions Dk satisfying (3.3) and (3.4) can be obtained by drawing directions
uniformly on the unit ball.

As with the other methods in this section, xk in (3.4) is in fact a random
variable due to the random sequence {Dk} generated by the algorithm, and
hence it makes sense to view (3.4) as a probabilistic statement. In words,
(3.4) states that with probability at least p, the set of polling directions

4 We note that a O(1) cost can naturally be achieved by deterministic DDS methods
when derivatives are available (Abramson et al. 2004).
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used in iteration k has a positive cosine measure with the steepest descent
direction −∇f(xk), regardless of the past history of the algorithm. Gratton
et al. (2015) use Chernoff bounds in order to bound the worst-case complex-
ity with high probability. Roughly, they show that if f ∈ LC1, and if (3.3)
and (3.4) hold with p > 1/2 (this constant changing when γdec 6= 1/γinc),
then ‖∇f(xk)‖ ≤ ε holds within O(ε−2) function evaluations with a probab-
ility that increases exponentially to 1 as ε→ 0. The WCC result of Gratton
et al. (2015) demonstrates that as p → 1 (i.e. Dk almost always includes
a descent direction), the known WCC results for Algorithm 2 discussed in
Section 2.1.2 are recovered. A more precise statement of this WCC result
is included in Table A.1.

Bibi et al. (2019) propose a randomized direct-search method in which
the two poll directions in each iteration are Dk = {ei,−ei}, where ei is
the ith elementary basis vector. In the kth iteration, ei is selected from
{e1, . . . , en} with a probability proportional to the Lipschitz constant of
the ith partial derivative of f . Bibi et al. (2019) perform WCC analysis
of this method assuming a known upper bound on Lipschitz constants of
partial derivatives; this assumption leads to improved constant factors, but
they essentially prove an upper bound on the number of iterations needed
to attain E[‖∇f(xk)‖] ≤ ε in O(ε−2), where the expectation is with respect
to the random sequence of Dk. Bibi et al. (2019) prove additional WCC
results in cases where f is convex or c-strongly convex.

An early randomized DDS derivative-free method that only occasionally
employs a descent direction is developed by Diniz-Ehrhardt et al. (2008).
There, a non-monotone line-search strategy is used to accommodate search
directions along which descent may not be initially apparent. Belitz and
Bewley (2013) develop a randomized DDS method that employs surrogates
and an adaptive lattice.

3.3. Randomized trust-region methods

Whereas the theoretical convergence of a DDS method depends on the set
of polling directions satisfying some spanning property (e.g. a cosine meas-
ure bounded away from zero), the theoretical convergence of a trust-region
method (e.g. Algorithm 3) depends on the use of fully linear models. Ana-
logous to how randomized DDS methods relax the requirement of the use
of a positive spanning set in every iteration, (3.4), it is reasonable to ask
whether one can relax the requirement of being fully linear in every itera-
tion of a trust-region method. Practically speaking, in the unconstrained
case it may not be necessary to ensure that every model is built by using
a Λ-poised set of points (therefore ensuring that the model is fully linear)
on every iteration, since ensuring Λ-poised sets entails additional function
evaluations.
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Bandeira, Scheinberg and Vicente (2014) consider a sequence of ran-
dom models {mk} and a random sequence of trust-region centres and radii
{xk,∆k}. They say that the sequence of random models is p-probabilistically
κ-fully linear provided

P[mk is a κ-fully linear model of f on B(xk; ∆k) | Hk−1] ≥ p, (3.5)

where Hk−1 is the filtration of the random process prior to the current
iteration. That is, Hk−1 is the σ-algebra generated by the algorithm’s his-
tory. Under additional standard assumptions concerning Algorithm 3 (e.g.
γdec = 1/γinc), the authors show that if (3.5) holds with p > 1/2, then
limk→∞ ‖∇f(xk)‖ = 0 almost surely (i.e. with probability one). Gratton,
Royer, Vicente and Zhang (2018) build on this result; they demonstrate
that, up to constants, the same (with high probability) WCC bound that
was proved for DDS methods in Gratton et al. (2015) holds for the random-
ized trust-region method proposed by Bandeira et al. (2014). Higher-order
versions of (3.5) also exist; in Section 5.2 we discuss settings for which
Bandeira et al. (2014) obtain probabilistically κ-fully quadratic models by
interpolating f on a set of fewer than (n+ 1)(n+ 2)/2 points.

4. Methods for convex objectives

As is true of derivative-based optimization, convexity in the objective of
(DET) or (STOCH) can be exploited either when designing new methods
or when analysing existing methods. Currently, this split falls neatly into
two categories. The majority of work considering (DET) when f is convex
sharpens the WCCs for frameworks already discussed in this survey. On
the other hand, the influence of machine learning, particularly large-scale
empirical risk minimization, has led to entirely new derivative-free methods
for solving (STOCH) when f is convex.

4.1. Methods for deterministic convex optimization

We first turn our attention to the solution of (DET). In convex optimiz-
ation, one can prove WCC bounds on the difference between a method’s
estimate of the global minimum of f and the value of f at a global minim-
izer x∗ ∈ Ω (i.e. a point satisfying f(x∗) ≤ f(x) for all x ∈ Ω). This differs
from the local WCC bounds on the objective gradient, namely (2.4), that
are commonly shown when f is not assumed to be convex. For convex f ,
under appropriate additional assumptions, one typically demonstrates that
a method satisfies

lim
k→∞

f(xk)− f(x∗) = 0, (4.1)

where xk is the kth point of the method. Hence, an appropriate measure
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of ε-optimality when minimizing an unconstrained convex objective is the
satisfaction of

f(xk)− f(x∗) ≤ ε. (4.2)

For the DDS methods discussed in Section 2.1.2, Dodangeh and Vicente
(2016) and Dodangeh, Vicente and Zhang (2016) analyse the worst-case
complexity of Algorithm 2 when there is no search step and when f is smooth
and convex, and has a bounded level set. By imposing an appropriate upper
bound on the step sizes αk, and (for c > 0) using a test of the form

f(pi) ≤ f(xk)− cα2
k, (4.3)

in line 4 of Algorithm 2, Dodangeh and Vicente (2016) show that the worst-
case number of f evaluations to achieve (2.2) is in O(n2L2

gε
−1). Dodangeh

et al. (2016) show that this n2-dependence is optimal (in the sense that it
cannot be improved) within the class of deterministic methods that employ
positive spanning sets. Recall from Section 3.2 that randomized methods
allow one to reduce this dependence to be linear in n. Under additional
assumptions, which are satisfied, for example, when f is strongly convex,
Dodangeh and Vicente (2016) prove R-linear convergence of Algorithm 2,
yielding a WCC of type (4.2) with the dependence on ε reduced to log(ε−1).
We note that, in the convex setting, R-linear convergence had been previ-
ously established for a DDS method by Dolan et al. (2003). It is notable
that the method analysed in Dolan et al. (2003) requires only strict de-
crease, whereas, to the authors’ knowledge, the DDS methods for which
WCC results have been established all require sufficient decrease.

Konečný and Richtárik (2014) propose a DDS method that does not allow
for increases in the step size αk and analyse the method on strongly convex,
convex and non-convex objectives. Although Konečný and Richtárik (2014)
demonstrate WCC bounds with the same dependence on n and ε as do Do-
dangeh and Vicente (2016), they additionally assume that one has explicit
knowledge of a Lipschitz gradient constant Lg and can thus replace the test
(4.3) explicitly with

f(pi) ≤ f(xk)−
Lg

2
αk. (4.4)

Exploiting this additional knowledge of Lg, the WCC result in Konečný and
Richtárik (2014) exhibits a strictly better dependence on Lg than does the
WCC result in Dodangeh and Vicente (2016), with a WCC of type (4.2)
in O(n2Lgε

−1). Additionally assuming f is c-strongly convex, Konečný
and Richtárik (2014) provide a result showing a WCC of type (4.2) in
O(log(ε−1)).

In the non-convex case, Konečný and Richtárik (2014) recover the same
WCC of type (2.2) from Vicente (2013); see the discussion in Section 2.1.
Once again, however, the result by Konečný and Richtárik (2014) assumes
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knowledge of Lg and again recovers a strictly better dependence on Lg by
using the test (4.4) in line 4 of Algorithm 2.

Recalling the Nesterov random search methods discussed in Section 3.1.2,
we remark that Nesterov and Spokoiny (2017) explicitly give results for
deterministic, convex f . In particular, Nesterov and Spokoiny prove WCCs
of a specific type. Because of the randomized nature of Algorithm 6, WCCs
are given as expectations of the form

EUk−1
[f(x̂k)]− f(x∗) ≤ ε, (4.5)

where x̂k = arg minj∈{0,1,...,k−1} f(xj) and whereUk−1 = {u0,u1, . . . ,uk−1}
is the filtration of Gaussian samples. The form of ε-optimality represented
by (4.5) can be interpreted as a probabilistic variant of (4.2). The WCC
results of Nesterov and Spokoiny show that the worst-case number of f
evaluations to achieve (4.5) is in O(ε−1) when f ∈ LC1. Additionally as-
suming that f is c-strongly convex yields an improved result; the WCC of
type (4.5) is now in O(log(ε−1)). Moreover, by mimicking the method of
accelerated gradient descent (see e.g. Nesterov 2004, Chapter 2.2), Nesterov
and Spokoiny present a variant of Algorithm 6 with a WCC of type (4.5) in
O(ε−1/2). When f ∈ LC0, Nesterov and Spokoiny provide a WCC of type
(4.5) in O(ε−2), but this result assumes that Algorithm 6 uses an oracle
with access to exact directional derivatives of f . Thus, the method achieves
the O(ε−2) result when f ∈ LC0 is not a derivative-free method.

As remarked in Section 3, these convergence results depend on preselect-
ing a sequence of step sizes {αk} for Algorithm 6; in the convex case, the
necessary {αk} depends not only on the Lipschitz constants but also on a
bound Rx on the distance between the initial point and the global min-
imizer (i.e. ‖x0 − x∗‖ ≤ Rx). The aforementioned WCC results will hold
only if one chooses {αk} and µ (the difference parameter of the oracle used
in Algorithm 6) that scale with Lg and Rx appropriately. When addition-
ally assuming f is c-strongly convex, {αk} and µ also depend on c. Stich,
Müller and Gärtner (2013)5 extend the framework of Algorithm 6 with an
approximate line search that avoids the need for predetermined sequences
of step sizes.

In general, the existing WCC results for derivative-free methods match
the WCC results for their derivative-based counterparts in ε-dependence.
The WCC results for derivative-free methods tend to involve an additional
factor of n when compared with their derivative-based counterparts. This
observation mirrors a common intuition in derivative-free optimization: since
a number of f evaluations in O(n) can guarantee a suitable approximation

5 A careful reader may be caught off guard by the fact that Stich et al. (2013) was
published before Nesterov and Spokoiny (2017). This is not a typo; Stich et al. (2013)
build on the results from an early preprint of Nesterov and Spokoiny (2017).
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of the gradient, then for any class of gradient-based method for which we re-
place gradients with approximate gradients or model gradients, one should
expect to recover the WCC of that method, but with an extra factor of n.
WCC results such as those discussed thus far in this survey add credence to
this intuition. As we will see in Section 4.2, however, this optimistic trend
does not always hold: we will see problem classes for which derivative-free
methods are provably worse than their derivative-based counterparts by a
factor of ε−1.

Bauschke, Hare and Moursi (2014) offer an alternative approach to Al-
gorithm 6 for the solution of (DET) when f is assumed convex and, ad-
ditionally, lower-C2. (Such an assumption on f is obviously stronger than
plain convexity but contains, for example, functions that are defined as
the pointwise maximum over a collection of convex functions.) Bauschke
et al. (2014) show that linear interpolation through function values is suffi-
cient for obtaining approximate subgradients of convex, lower-C2 function;
these approximate subgradients are used in lieu of subgradients in a mirror-
descent algorithm (see e.g. Srebro, Sridharan and Tewari 2011) similar to
Algorithm 7 in Section 4.2.2. Bauschke et al. (2014) establish convergence
of their method in the sense of (4.1), and they demonstrate the performance
of their method when applied to pointwise maxima of collections of convex
quadratics.

4.2. Methods for convex stochastic optimization

We now turn our attention to the solution of the problem (STOCH) when
f̃(x; ξ) is assumed convex in x for each realization ξ. Up to this point in
the survey, we have typically assumed that (STOCH) is unconstrained, that
is, Ω = Rn. In this section, however, it will become more frequent that Ω
is a compact set.

In the machine learning community, zeroth-order information (i.e. eval-
uations of f̃ only) is frequently referred to as bandit feedback,6 due to the
concept of multi-armed bandits from reinforcement learning. Multi-armed
bandit problems are sequential allocation problems defined by a prescribed
set of actions. Robbins (1952) formulates a multi-armed bandit problem
as a gambler’s desire to minimize the total losses accumulated from pulling
discrete sequence (of length T ) of A <∞ slot machine arms. The gambler
does not have to decide the full length-T sequence up front. Rather, at time
k ≤ T , the losses associated with the first k−1 pulls are known to the gam-
bler when deciding which of the A arms to pull next. The gambler’s decision
of the kth arm to pull is represented by the scalar variable xk ∈ Ω. Given

6 A ‘one-armed bandit’ is an American colloquialism for a casino slot machine, the arm
of which must be pulled to reveal a player’s losses or rewards.

https://doi.org/10.1017/S0962492919000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000060


328 J. Larson, M. Menickelly and S. M. Wild

additional environmental variables outside the gambler’s control, ξk ∈ Ξ,
which represents the stochastic nature of the slot machine,7 the environ-
ment makes a decision ξ simultaneously with the gambler’s decision x. The
gambler’s loss is then f̃(x; ξ).

Within this multi-armed bandit setting, the typical metric of the gam-
bler’s performance is the cumulative regret. Provided that the expectation
Eξ[f̃(x; ξ)] = f(x) exists for each x ∈ {1, . . . , A}, then the gambler’s best
long-run strategy in terms of minimizing the expected total losses is to
constantly play x∗ ∈ arg minx∈{1,...,A} f(x). If, over the course of T pulls,
the gambler makes a sequence of decisions x1, . . . , xT and the environment
makes a sequence of decisions ξ1, . . . , ξT resulting in a sequence of realized
losses f̃(x1; ξ1), . . . , f̃(xT ; ξT ), then the cumulative regret rT associated with
the gambler’s sequence of decisions is the difference between the cumulative
loss incurred by the gambler’s strategy (x1, . . . , xT ) and the loss incurred
by the best possible long-run strategy (x∗, . . . , x∗). Analysis of methods for
bandit problems in this set-up is generally concerned with expected cumu-
lative regret

Eξ[rT (x1, . . . , xT )] = Eξ

[
T∑
k=1

f̃(xk; ξk)

]
− Tf(x∗), (4.6)

where the expectation is computed over ξ ∈ Ξ, since we assume here that
the sequence of ξk is independent and identically distributed.

This particular treatment of the bandit problem with a discrete space of
actions x ∈ {1, . . . , A} was the one considered by Robbins (1952) and has
been given extensive treatment (Auer, Cesa-Bianchi, Freund and Schapire
2003, Lai and Robbins 1985, Agrawal 1995, Auer, Cesa-Bianchi and Fischer
2002).

Extending multi-armed bandit methods to infinite-armed bandits makes
the connections to derivative-free optimization – particularly derivative-free
convex optimization – readily apparent. Auer (2002) extends the multi-
armed bandit problem to allow for a compact (as opposed to discrete) set
of actions for the gambler x ∈ Ω ⊂ Rn as well as a compact set of vectors
for the environment, ξ ∈ Ξ ⊂ Rn. The vectors ξ in this set-up define
linear functions; that is, if the gambler chooses xk in their kth pull, and the
environment chooses ξk ∈ Ξ, then the gambler incurs loss f̃(xk; ξk) = ξT

k xk.
In this linear regime, expected regret takes a form remarkably similar to

7 Depending on the problem set-up, the environment of a bandit problem may be either
stochastic or adversarial. Because this section is discussing stochastic convex optimiza-
tion, we will assume that losses are stochastic; that is, the ξk are i.i.d. and independent
of the gambler’s decisions xk. See Bubeck and Cesa-Bianchi (2012) for a survey of
bandit problems more general than those discussed in this survey.
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(4.6), that is,

Eξ[rT (x1, . . . ,xT )] = Eξ

[
T∑
k=1

f̃(xk; ξk)

]
−min
x∈Ω

Eξ

[
T∑
k=1

f̃(xk; ξk)

]

=

(
T∑
k=1

f(xk)

)
− Tf(x∗),

(4.7)

with x∗ ∈ arg minx∈Ω f(x). As in (4.6), (4.7) defines the expected regret
with respect to the best long-run strategy x ∈ Ω that the gambler could
have played for the T rounds (i.e. the strategy that would minimize the
expected cumulative losses).8

By using a bandit method known as Thompson sampling, one can show
(under appropriate additional assumptions) that if f̃(x; ξ) = ξTx, then
(4.7) can be bounded as

Eξ[rT (x1, . . . ,xT )] ∈ O(n
√
T log(T ))

(Russo and Van Roy 2016). Analysis of bounds on (4.7) in the linear case
raises an interesting question: to what extent can similar analysis be per-
formed for classes of functions f̃(x; ξ) that are non-linear in x?

In much of the bandit literature, the additional structure defining a class
of non-linear functions is convexity; here, by convexity, we mean that f̃(x; ξ)
is convex in x for each realization ξ ∈ Ξ.

Regret bounds on (4.7) automatically imply WCC results for stochastic
convex optimization. To see this, define an average point

x̄k =
1

k

k∑
t=1

xt.

Because of the convexity of f ,

f(x̄T )− f(x∗) ≤
1

T

T∑
k=1

f(xk)− f(x∗) =
Eξ[rT (x1, . . . ,xT )]

T
, (4.8)

where the inequality follows from an application of Jensen’s inequality. We
see in (4.8) that, given an upper bound of r̄(T ) on the expected regret
Eξ[rT ], we can automatically derive, provided r̄(T )/T ≤ ε, a WCC result
for stochastic convex optimization of the form

Eξ[f̃(x̄T ; ξ)− f̃(x∗; ξ)] = f(x̄T )− f(x∗) ≤ ε. (4.9)

8 We remark that many of the references we provide here may also refer to methods
minimizing (4.7) as methods of online optimization; one reference in particular (Bach
and Perchet 2016) even suggests a taxonomy identifying bandit learning as a restrictive
case of online optimization.
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Equation (4.9) corresponds to a stochastic version of a WCC result of type
(4.2) where Nε = T .

The converse implication, however, is not generally true: a small optim-
ization error does not imply a small regret. That is, WCC results of type
(4.9) do not generally imply bounds on expected regret (4.7). This is par-
ticularly highlighted by Shamir (2013), who considers a class of strongly
convex quadratic objectives f . For such objectives, Shamir (2013) estab-
lishes a strict gap between the upper bound on the optimization error (the
left-hand side of (4.9)) and the lower bound on the expected regret (4.7)
attainable by any method in the bandit setting. Such a gap, between expec-
ted regret and optimization error, has also been proved for bandit methods
applied to problems of logistic regression (Hazan, Koren and Levy 2014).

Results such as those of Shamir (2013), Jamieson, Nowak and Recht
(2012) and Hazan et al. (2014) have led researchers to consider methods
of derivative-free (stochastic) optimization within the paradigm of convex
bandit learning. In this survey, we group these methods into two categories
of assumptions on the type of bandit feedback (i.e. the observed realiza-
tions of f̃) available to the method: one-point bandit feedback or two-point
(multi-point) bandit feedback. Although many of the works we cite have
also analysed regret bounds for these methods, we focus on optimization
error.

4.2.1. One-point bandit feedback

In one-point bandit feedback, a method is assumed to have access to an
oracle f̃ that returns unbiased estimates of f . In particular, given two
points x1, x2 ∈ Ω, two separate calls to the oracle will return f̃(x1; ξ1) and
f̃(x2; ξ2); methods do not have control over the selection of the random
variables ξ1 and ξ2. Many one-point bandit methods do not fall neatly into
the frameworks discussed in this survey (Agarwal et al. 2011, Belloni, Liang,
Narayanan and Rakhlin 2015, Bubeck, Lee and Eldan 2017). See Table 4.1
for a summary of best known WCC results of type (4.9) for one-point bandit
feedback methods.

One example of a method using one-point bandit feedback, whose de-
velopment falls naturally into our discussion thus far, is given by Flaxman,
Kalai and McMahan (2005); they analyse a method resembling Algorithm 6,
but the gradient-free oracle is chosen as

gµ(x;u; ξ) =
f̃(x+ µu; ξ)

µ
u, (4.10)

where u is drawn uniformly from the unit n-dimensional sphere. That
is, given a realization ξ ∈ Ξ, a stochastic gradient estimator based on a
stochastic evaluation at the point x + µu is computed via (4.10). For this
method, and for general convex f , Flaxman et al. (2005) demonstrate a
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Table 4.1. Best known WCCs for Nε, the number of evaluations required to bound
(4.9), for one-point bandit feedback. Nε is given only in terms of n and ε. See text
for the definition of β-smooth; here β > 2. Method types include random search
(RS), mirror descent (MD) and ellipsoidal.

Assumption on f Nε Method type (citation)

convex, f ∈ LC0 n2ε−4 RS (Flaxman et al. 2005)

n13/2ε−2 ellipsoidal (Belloni et al. 2015)

c-strongly convex, f ∈ LC0 n2ε−3 RS (Flaxman et al. 2005)

convex, f ∈ LC1 nε−3 MD (Gasnikov et al. 2017)

n13/2ε−2 ellipsoidal (Belloni et al. 2015)

c-strongly convex, f ∈ LC1 n2ε−2 MD (Gasnikov et al. 2017)

convex, β-smooth n2ε−2β/(β−1) RS (Bach and Perchet 2016)

c-strongly convex, β-smooth n2ε−(β+1)/(β−1) RS (Bach and Perchet 2016)

WCC bound of type (4.9) in O(n2ε−4) for general convex f . For strongly
convex f , Flaxman et al. (2005) demonstrate a WCC bound of type (4.9) in
O(n2ε−3). Various extensions of these results are given in Saha and Tewari
(2011), Dekel, Eldan and Koren (2015) and Gasnikov et al. (2017). To
the best of our knowledge, the best known upper bound on the WCC for
smooth, strongly convex problems is in O(n2ε−2) and the best known upper
bound on the WCC for smooth, convex problems is in O(nε−3) (Gasnikov
et al. 2017).

For the solution of (STOCH) when Ω = Rn, Bach and Perchet (2016)
analyse a method resembling Algorithm 6 wherein the gradient-free oracle
is chosen as

gµ(x;u; ξ+, ξ−) =
f̃(x+ µu; ξ+)− f̃(x− µu; ξ−)

µ
u, (4.11)

where u is again drawn uniformly from the unit n-dimensional sphere. We
remark that ξ+, ξ− ∈ Ξ in (4.11) are different realizations; this distinc-
tion will become particularly relevant in Section 4.2.2. For the solution of
(STOCH) when Ω ( Rn, Bach and Perchet (2016) also consider a gradient-
free oracle like (4.10). Bach and Perchet (2016) are particularly interested
in how the smoothness of f can be exploited to improve complexity bounds
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in the one-point bandit feedback paradigm; they define a parameter β and
say that a function f is β-smooth provided f is almost everywhere (β − 1)-
times Lipschitz-continuously differentiable (a strictly weaker condition than
assuming f ∈ LCβ−1). When β = 2, Bach and Perchet (2016) recover sim-
ilar results to those seen in Table 4.1 for when f ∈ LC1. When β > 2,
however, in both the constrained and unconstrained case, Bach and Perchet
(2016) prove a WCC result of type (4.9) in O(n2ε2β/(1−β)) when f is convex
and β-smooth. Further assuming that f is c-strongly convex, Bach and Per-
chet (2016) prove a WCC result of type (4.9) in O(n2ε(β+1)/(1−β)/c) . Notice
that asymptotically, as β → ∞, this bound is in O(n2ε−1/c). This asymp-
totic result is particularly important because it attains the lower bound
on optimization error demonstrated by Shamir (2013) for strongly convex
∞-smooth (quadratic) f .

We also note that Bubeck et al. (2017) conjecture that a particular kernel
method can achieve a WCC of type (4.9) in O(n3ε−2) for general convex
functions. In light of well-known results in deterministic convex optimiza-
tion, the WCCs summarized in Table 4.1 may be surprising. In particular,
for any c-strongly convex function f ∈ LC1, the best known WCC results
are in O(ε−2). We place particular emphasis on this result because it illus-
trates a gap between derivative-free and derivative-based optimization that
is not just a factor of n. In this particular one-point bandit feedback setting,
there do not seem to exist methods that achieve the optimal9 O(ε−1) conver-
gence rate attainable by gradient-based methods for smooth strongly convex
stochastic optimization. Hu, Prashanth, György and Szepesvári (2016) par-
tially address this issue concerning one-point bandit feedback, which they
refer to as ‘uncontrolled noise’. These observations motivated the study of
two-point (multi-point) bandit feedback, which we will discuss in the next
section, Section 4.2.2.

We further remark that every WCC in Table 4.1 has a polynomial depend-
ence on the dimension n, raising natural questions about the applicability of
these methods in high-dimensional settings. Wang, Du, Balakrishnan and
Singh (2018) consider a mirror descent method employing a special gradient-
free oracle computed via a compressed sensing technique. They prove a
WCC of type (4.9) in O(log(d)3/2n2

zε
−3), under additional assumptions on

derivative sparsity, most importantly, that for all x ∈ Ω, ‖∇f(x)‖0 ≤ nz for
some nz. Thus, provided nz � n, the polynomial dependence on n becomes
a logarithmic dependence on n, at the expense of a WCC with a strictly
worse dependence on ε than ε−2. In Section 5.2, we discuss methods that
similarly exploit known sparsity of objective function derivatives.

9 Optimal here is meant in a minimax information-theoretic sense (Agarwal, Wainwright,
Bartlett and Ravikumar 2009).
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In an extension of Algorithm 6, Chen (2015, Chapter 3) dynamically
updates the difference parameter by exploiting knowledge of the changing
variance of ξ.

4.2.2. Two-point (multi-point) bandit feedback

We now focus on the stochastic paradigm of two-point (or multi-point)
bandit feedback. In this setting of bandit feedback, we do not encounter
the same gaps in WCC results between derivative-free and derivative-based
optimization that exist for one-point bandit feedback.

The majority of methods analysed in the two-point bandit feedback set-
ting are essentially random-search methods of the form Algorithm 6. The
gradient-free oracles from (3.1) in the two-point setting takes one of the two
forms

gµk(x;u; ξ) = δf(f̃(·, ξ);x;u;µk)Bu, or

ĝµk(x;u; ξ) = δc(f̃(·, ξ);x;u;µk)Bu.
(4.12)

The key observation in (4.12) is that ξ denotes a single realization used in
the computation of both function values in the definitions of the oracles (see
(2.28) and (2.29)). This assumption of ‘controllable realizations’ separates
two-point bandit feedback from the more pessimistic one-point bandit feed-
back. This property of being able to recall a single realization ξ for two (or
more) evaluations of f̃ is precisely why this setting of bandit feedback is
called ‘two-point’ (or ‘multi-point’). This property will also be exploited in
Section 6.1.

The early work of Agarwal, Dekel and Xiao (2010) directly addresses
the discussed gap in WCC results and demonstrates that a random-search
method resembling Algorithm 6, but applied in the two-point (or multi-
point) setting as opposed to the one-point setting, attains a WCC of type
(4.9) in O(ε−1); this is a complexity result matching the optimal rate (in
terms of ε-dependence) shown by Agarwal et al. (2009). See Table 4.2 for
a summary of best known WCC results of type (4.9) for two-point bandit
feedback methods.

Nesterov and Spokoiny (2017) provide a WCC result for Algorithm 6 using
the stochastic gradient-free oracles (4.12), but strictly better WCCs have
since been established. We also note that, in contrast with the gradient-free
oracles of (3.1) in Section 3.1.2, the difference parameter µ is written as
µk in (4.12), indicating that a selection for µk must be made in the kth
iteration. In the works that we discuss here, µk in (4.12) is either chosen
as a constant sufficiently small or else µk → 0 at a rate typically of the
order of 1/k. We also remark that many of the results discussed in this
section trivially hold for deterministic convex problems, and can be seen as
an extension of results concerning methods of the form of Algorithm 6.
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Algorithm 7: Mirror-descent method with two-point gradient
estimate

1 Choose initial point x0, sequence of step sizes {αk}, sequence of
difference parameters {µk}, and distribution of ξ

2 for k = 1, 2, . . . , T − 1 do
3 Sample uk uniformly from the unit sphere B(0; 1)
4 Sample a realization ξk
5 gk ← gµk(xk;uk; ξk) using an oracle from (4.12)

6 xk+1 ← arg miny∈Ω g
T
k y + 1

αk
Dψ(y,xk)

Provided f ∈ LC0, the best known WCCs of type (4.9) (with variations in
constants) can be found in Duchi, Jordan, Wainwright and Wibisono (2015),
Gasnikov et al. (2017) and Shamir (2017). These works consider variants of
mirror-descent methods with approximate gradients given by estimators of
the form (4.12); see Algorithm 7 for a description of a basic mirror-descent
method. Algorithm 7 depends on the concept of a Bregman divergence Dψ,
used in line 6 of Algorithm 7 to define a proximal-point subproblem. The
Bregman divergence is defined by a function ψ : Ω→ R, which is assumed
to be 1-strongly convex with respect to the norm ‖·‖p. To summarize many
findings in this area (Duchi et al. 2015, Gasnikov et al. 2017, Shamir 2017),
if ‖ · ‖q is the dual norm to ‖ · ‖p (i.e. p−1 + q−1 = 1) where p ∈ {1, 2} and
Rp denotes the radius of the feasible set in the ‖ · ‖p-norm, then a bound

on WCC of type (4.9) in O(n2/qR2
pε
−2) can be established for a method like

Algorithm 7 in the two-point feedback setting where f ∈ LC0. These WCCs
for methods like Algorithm 7 are responsible for the popularity of mirror-
descent methods in machine learning. For many machine learning problems,
solutions are typically sparse, and so, in some sense, R1 ≤ R2. Thus, using
a function ψ that is 1-strongly convex with respect to the ‖ · ‖1-norm (e.g.
simply letting ψ = ‖ · ‖1) may be preferable to p = 2, in both theory and
practice.

Duchi et al. (2015) also provide an information-theoretic lower bound on
convergence rates for any method in the (non-strongly) convex, f ∈ LC0,
two-point feedback setting. This bound matches the best known WCCs up
to constants, demonstrating that these results are tight. This lower bound
is still of the order of ε−2, matching the result of Agarwal et al. (2009) in
ε-dependence in the case where f ∈ LC0. It is also remarkable that this
result is only a factor of

√
n worse than the bounds provided by Agarwal

et al. (2009) for the derivative-based case, as opposed to the factor of n that
one may expect.

Additionally assuming f(x) is strongly convex (but still assuming f ∈
LC0), Agarwal et al. (2010) prove, for a method like Algorithm 6, a WCC
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Table 4.2. Best known WCCs of type (4.9) for two-point bandit feedback. Nε is given only in terms of n and ε. See text for
the definition of p, q. Rp denotes the size of the feasible set in the ‖ · ‖p-norm. If f is cp-strongly convex, then f is strongly
convex with respect to the ‖ · ‖p-norm with constant cp. σ is the standard deviation on the gradient estimator gµ(x;u; ξ) (i.e.
Eξ[‖gµ(x;u; ξ)−∇f(x)‖2] ≤ σ2). The Lipschitz constant of the gradient Lg is defined by the ‖·‖2-norm. ? denotes the additional
assumption that Eξ[‖gµ(x;u; ξ)‖] <∞. Method types include random search (RS), mirror descent (MD) and accelerated mirror
descent (AMD).

Assumption on f Nε Method type (citation)

convex n2/qRpε
−2 MD (Duchi et al. 2015, Gasnikov et al. 2017, Shamir 2017)

cp-strongly convex n2/qc−1
p ε−1 MD (Gasnikov et al. 2017)

convex, smooth max

{
nLgR2

ε
,
nσ2

ε2

}
RS (Ghadimi and Lan 2013)

max

{
n2/qLgR

2
p

ε
,
n2/qσ2R2

p

ε2

}
MD (Dvurechensky, Gasnikov and Gorbunov 2018)

max

{
n1/2+1/q

√
LgR

2
p

ε
,
n2/qσ2R2

p

ε2

}
AMD (Dvurechensky et al. 2018)

convex, smooth, ? n2/qRpε
−2 MD (Duchi et al. 2015)

cp-strongly conv., smooth, ? n2/qc−1
p ε−1 MD (Gasnikov et al. 2017)

https://doi.org/10.1017/S0962492919000060 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0962492919000060


336 J. Larson, M. Menickelly and S. M. Wild

in O(n2ε−1). Using a method like Algorithm 7, Gasnikov et al. (2017)
improve the dependence on n in this WCC to O(n2/qc−1

p ε−1), provided f is
cp-strongly convex with respect to ‖ · ‖p.

We now address the case where f is convex and f ∈ LC1. Given an
assumption that ‖gµ(x;u; ξ)‖ is uniformly bounded, Agarwal et al. (2010)
demonstrate a WCC of type (4.9) in O(n2ε−1). Dropping this somewhat
restrictive assumption on the gradient-free oracle and assuming instead that
the oracle used in a method like Algorithm 6 has bounded variance (i.e. the
oracle satisfies Eξ[‖gµ(x;u; ξ)−∇f(x)‖2] ≤ σ2), Ghadimi and Lan (2013)
prove a WCC of a type similar to (4.9) (we avoid a discussion of randomized
stopping) in O(max{nLg‖x0 − x∗‖ε−1, nσ2Lg‖x0 − x∗‖ε−2}). We mention
that Nesterov and Spokoiny (2017) hinted at a similar WCC result, but
with a strictly worse dependence on n, and different assumptions on ξ.

5. Methods for structured objectives

The methods discussed in Sections 2 and 3 assume relatively little about the
structure of the objective function f beyond some differentiability required
for analysis. Section 4 considered the case where f is convex, which resulted,
for example, in improved worst-case complexity results. In this section, we
consider a variety of assumptions about additional known structure in f
(including non-linear least squares, sparse, composite and minimax-based
functional forms) and methods designed to exploit this additional structure.
Although problems in this section could be solved by the general-purpose
methods discussed in Sections 2 and 3, practical gains should be expected
by exploiting the additional structure.

5.1. Non-linear least squares

A frequently encountered objective in many applications of computational
science, engineering and industry is

f(x) =
1

2
‖F (x)‖22 =

1

2

p∑
i=1

Fi(x)2. (5.1)

For example, data-fitting problems are commonly cast as (5.1); given data
yi collected at design sites θi, one may need to estimate the parameters x
of a non-linear model or simulation output that best fit the data. In this
scenario, Fi is represented by Fi(x) = wi(Si(θ;x)− yi), which is a weighted
residual between the simulation output Si and target data yi. In this way,
objectives of the form (5.1) (and their correlated residual generalizations)
encapsulate both the solution of non-linear equations and statistical estim-
ation problems.
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The methods of Zhang, Conn and Scheinberg (2010), Zhang and Conn
(2012) and Wild (2017) use the techniques of Section 2.2 to construct models
of the individual Fi (thereby obtaining a model of the Jacobian∇F ) in (5.1).
These models are then used to generate search directions in a trust-region
framework resembling the Levenberg–Marquardt method (Levenberg 1944,
Marquardt 1963, Moré 1978). The analysis by Zhang et al. (2010) and Zhang
and Conn (2012) demonstrates – under certain assumptions, such as f(x∗) =
0 at an optimal solution x∗ (i.e. that the associated data-fitting problem has
zero residual) – that the resulting methods achieve the same local quadratic
convergence rate does as the Levenberg–Marquardt method. POUNDERS
is a trust-region-based method for minimizing objectives of the form (5.1)
that uses a full Newton approach for each residual Fi (Wild 2017, Dener
et al. 2018). Another model-based method (implemented in DFO-LS (Cartis,
Fiala, Marteau and Roberts 2018)) for minimizing functions of the form
(5.1) – more closely resembling a Gauss–Newton method – is analysed by
Cartis and Roberts (2017). Their method is shown to converge to stationary
points of (5.1) even when f(x∗) > 0, at the expense of slightly weaker
theoretical guarantees on the convergence rate.

Kelley (2003) proposes a hybridization of a Gauss–Newton method with
implicit filtering (Algorithm 4 from Section 2.3.2) that estimates the Jac-
obian of F by building linear models of each component Fi using cent-
ral differences (2.29) with an algorithmically updated difference parameter.
This hybrid method is shown to demonstrate superlinear convergence for
zero-residual (i.e. f(x∗) = 0) problems.

Earlier methods also used the vector F in order to more efficiently address
objectives of the form (5.1). Spendley (1969) develops a simplex-based
algorithm that employs quadratic approximations obtained by interpolating
the vector F on the current simplex. Peckham (1970) proposes an iterative
process that refines models of each component of F using between n+1 and
n+3+n/3 points. Ralston and Jennrich (1978) also develop derivative-free
Gauss–Newton methods and highlight their performance relative to methods
that do not exploit the structure in (5.1). Brown and Dennis, Jr (1971)
consider a variant of the Levenberg–Marquardt method that approximates
gradients using appropriately selected difference parameters.

Li and Fukushima (2000) analyse the convergence of a derivative-free
line-search method when assuming that the square of the Jacobian (i.e.
∇F (x)T∇F (x)) of (5.1) is positive-definite everywhere. Grippo and Scian-
drone (2007) and La Cruz, Mart́ınez and Raydan (2006) augment a non-
monotone line-search method to incorporate information about F in the
case where p = n in (5.1). Li and Li (2011) develop a line-search method
that exploits a monotonicity property assumed about F . La Cruz (2014)
and Morini, Porcelli and Toint (2018) address (5.1) in the case where simple
convex constraints are present.
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5.2. Sparse objective derivatives

In some applications, it is known that

∇2f(x)ij = ∇2f(x)ji = 0 for all (i, j) ∈ S, (5.2)

for all x ∈ Ω, where the index set S defines the sparsity pattern of the
Hessian. Similarly, one can consider partially separable objectives of the
form

f(x) =

p∑
i=1

Fi(x) =

p∑
i=1

Fi({xj}j∈Si), (5.3)

where each Fi depends only on some subset of indices Si ⊂ {1, 2, . . . , n}.
The extreme cases of (5.3) are totally separable functions, where p = n
and Si = {i} for i ∈ {1, . . . , n}. In this special case, (DET) reduces to the
minimization of n univariate functions.

Given the knowledge encoded in (5.2) and (5.3), derivative-free optimiza-
tion methods need not consider interactions between certain components of
x because they are known to be exactly zero. In the context of the model-
based methods of Section 2.2, particularly when using quadratic models,
using this knowledge amounts to dropping monomials in φ(x) in (2.12) cor-
responding to the non-interacting (i, j) pairs from (5.2). Intuitively, such
an action reduces the degrees of freedom in (2.14) when building models,
necessitating fewer function evaluations in the right-hand side of (2.14).

Colson and Toint (2005) propose a trust-region method for functions of
the form (5.3) that builds and maintains separate fully linear models for
the individual Fi in an effort to use fewer objective function evaluations.
Similarly, Colson and Toint (2001) propose a method for the case when
∇2f has a band or block structure that exploits knowledge when building
models of the objective; the work of Colson and Toint (2002) extends this
work to general sparse objective Hessians. Bagirov and Ugon (2006) develop
an algorithm that exploits the fact that efficient discrete gradient estimates
can be obtained for f having the form (5.3).

In the context of pattern-search methods (discussed in Section 2.1.2),
Price and Toint (2006) exploit knowledge of f having the form (5.3) to
choose a particular stencil of search directions when forming a positive span-
ning set. In particular, the stencil is chosen as {e1, . . . , en, en+1, . . . , en+p},
where {e1, . . . , en} are the elementary basis vectors and

en+i =
∑
j∈Si

−ej ,

for i ∈ {1, . . . , p}. Frimannslund and Steihaug (2010) also develop a DDS
method for (5.3), with the search directions determined based on a smoothed
quadratic formed from previously evaluated points.
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Bandeira, Scheinberg and Vicente (2012) also assume that ∇2f(x) is
sparse but do not assume knowledge of the sparsity structure (i.e. S in
(5.2) is not known). They develop a quadratic model-based trust-region
method where the models are selected by a minimum 1-norm solution to an
underdetermined interpolation system (2.14). Under certain assumptions
on f , if nz is the number of non-zeros in the (unknown) sparsity pattern
for ∇2f , Bandeira et al. (2012) prove that Y in (2.14) must contain only
O((nz + n) log(nz + n) log(n)) (as opposed to O(n2)) randomly generated
points in order to ensure that the constructed interpolation models are fully
quadratic models of f with high probability. This work motivated the ana-
lysis of randomized trust-region methods discussed in Section 3.3 because
the random underdetermined interpolation models of Bandeira et al. (2012)
satisfy the assumptions made in Bandeira et al. (2014).

In Section 4.2.1, we noted the work of Wang et al. (2018), who used
assumptions of gradient and Hessian sparsity (in particular, ‖∇f(x)‖0 ≤ nz)
to improve the reduce the dependence on n in a WCC of type (4.9) from
polynomial to logarithmic. Note that, similar to Bandeira et al. (2012), this
is an assumption on knowing a universal bound (i.e. for all x ∈ Ω) on the
cardinality ‖∇f(x)‖0 rather than the actual non-zero components. Under a
similar sparsity assumption, Balasubramanian and Ghadimi (2018) consider
the two-point bandit feedback setting discussed in Section 4.2.2 and show
that a truncated10 version of the method proposed in Ghadimi and Lan
(2013) has a WCC of type (4.9) in O(nz log(n)2/ε2). Like the result of
Wang et al. (2018), this WCC result also exhibits a logarithmic dependence
on n, provided nz � n. As we will discuss in Section 6.4, Ghadimi and
Lan (2013) analyse a method resembling Algorithm 6 to be applied to non-
convex f in (STOCH). Balasubramanian and Ghadimi (2018) prove that
the unaltered method of Ghadimi and Lan (2013) applied to problems in
this sparse setting achieves a WCC of type

E[‖∇f(xk)‖] ≤ ε, (5.4)

in O(n2
z log(n)2ε−4); this WCC result once again eliminates a polynomial

dependence on n that would otherwise exist in a non-sparse setting. This
WCC result, however, maintains the same ε-dependence as the method of
Ghadimi and Lan (2013) in the non-sparse setting; in this sense, the method
of Ghadimi and Lan (2013) is ‘automatically’ tuned for the sparse setting.

5.3. Composite non-smooth optimization

Sometimes, the objective f in (DET) is known to be non-smooth. Often, one
has knowledge about the form of non-smoothness present in the objective,

10 That is, all but the nz largest values in xk+1 are set to 0 in line 5 of Algorithm 6.
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and we discuss methods that exploit specific forms of non-smoothness in
this section. For methods that do not access any structural information
when optimizing non-smooth functions f , see Sections 2.1.2 and 2.3.

We define composite non-smooth functions as those of the form

f(x) = h(F (x)), (5.5)

where h : Rp → R is a non-smooth function (in contrast to smooth h
such as the sum of squares in (5.1)), and F : Rn → Rp is continuously
differentiable. In some of the works we cite, the definition of a composite
non-smooth objective may include an additional smooth function g so that
the objective function has the form f(x) + g(x), but we omit a discussion
of this for the sake of focusing on the non-smooth aspect in (5.5).

5.3.1. Convex h

When h in (5.5) is convex (note that f may still be non-convex due to non-
convexity in F ), one thrust of research extends the techniques in derivative-
based composite non-smooth optimization; see the works of Yuan (1985)
and Fletcher (1987, Chapter 14). For example, Yuan (1985) use derivatives
to construct convex first-order approximations of f near x,

`(x+ s) = h(F (x) +∇F (x)s), (5.6)

where ∇F denotes the Jacobian of F ; see Hare (2017) for properties of
such approximations in the derivative-free setting. By replacing ∇F in
(5.6) with the matrix M(xk) containing the gradients of a fully linear ap-
proximation to F at xk, Grapiglia, Yuan and Yuan (2016) and Garmanjani
et al. (2016) independently analyse a model-based trust-region method sim-
ilar to Algorithm 3 from Section 2.2.4 that uses the non-smooth trust-region
subproblem

minimize
s:‖s‖≤∆k

`(xk + s) = h(F (xk) +M(xk)s). (5.7)

Note that only F is assumed to be a black-box; these methods exploit the
fact that h is convex with a known form in order to appropriately solve
(5.6). Both Grapiglia et al. (2016) and Garmanjani et al. (2016) use the
stationarity measure of Yuan (1985) in their analysis,

Ψ(x) = `(x)− min
‖s‖≤1

`(x+ s), (5.8)

for which it is known that Ψ(x∗) = 0 if and only if x∗ is a critical point of
f in the sense that `(x∗) ≤ `(x∗+ s) for all s ∈ Rn. Worst-case complexity
results that bound the effort required to attain ‖Ψ(xk)‖ ≤ ε are included in
Table A.1.
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Methods using the local approximation (5.6) require convexity of h in
order for Ψ in (5.8) to be interpreted as a stationarity measure. From a
practical perspective, the form of h directly affects the difficulty of solv-
ing the trust-region subproblem. Grapiglia et al. (2016) demonstrate this
approach on a collection of problems of the form

f(x) = max
i=1,...,p

Fi(x), (5.9)

where each Fi is assumed smooth. Garmanjani et al. (2016) test their
method on a collection of problems of the form

f(x) = ‖F (x)‖1 =

p∑
i=1

|Fi(x)|. (5.10)

For objectives of the form (5.9) or (5.10), the associated trust-region sub-
problems (5.7) can be cast as linear programs when the∞-norm defines the
trust region. (An early example of such an approach appears in Madsen
(1975), where linear approximations to each Fi in (5.9) are constructed.)
Although more general convex h could fit into this framework, one must be
wary of the difficulty of the resulting subproblems.

Direct-search methods have also been adapted for composite non-smooth
functions of specific forms. In these variants, knowledge of h in (5.5) informs
the selection of search directions in a manner similar to that described in
Section 5.2. Ma and Zhang (2009) and Bogani, Gasparo and Papini (2009)
consider the cases of f of the form (5.9) and (5.10), respectively.

Objectives of the form (5.9) are also addressed by Hare, Planiden and
Sagastizábal (2019), who develop an algorithm that decomposes such prob-
lems into orthogonal subspaces associated with directions of non-smoothness
and directions of smoothness. The resulting derivative-free V U -algorithm
employs model-based estimates of gradients to form and update this decom-
position (Hare 2014). Liuzzi, Lucidi and Sciandrone (2006) address finite
minimax problems by converting the original problem into a smooth prob-
lem using an exponential penalty function. Their DDS method adjusts the
penalty parameter via a rule that depends on the current step size in order
to guarantee convergence to a Clarke stationary point.

Approximate gradient-sampling methods are developed and analysed by
Hare and Macklem (2013) and Hare and Nutini (2013) for the finite mini-
max problem (5.9). These methods effectively exploit the subdifferential
structure of h(y) = maxi=1,...,p yi and employ derivative-free approximations
of each ∇Fi(x). Larson, Menickelly and Wild (2016) propose a variant
of gradient sampling, called manifold sampling, for objectives of the form
(5.10). Unlike (approximate) gradient sampling, manifold sampling does
not depend on a random sample of points to estimate the ε-subdifferential.
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Algorithm 8: Smoothing method

1 Set initial smoothing parameter µ1 > 0, terminal smoothing parameter
µ∗ < µ1, and decrease parameter γ ∈ (0, 1)

2 Choose initial point x0 and smooth optimization method M
3 k ← 1
4 while µk < µ∗ do
5 Apply M to fµk , supplying xk−1 as an initial point to M, until a

termination criterion is satisfied and xk is returned
6 µk+1 ← γµk
7 k ← k + 1

5.3.2. Non-convex h

When h is non-convex, minimization of (5.5) is considerably more challen-
ging than when h is convex. Few methods exist that exploit the structure
of non-convex h. One of the many challenges is that the model in (5.6) may
no longer be an underestimator of h. Khan et al. (2018) propose a mani-
fold sampling method for piecewise linear h; in contrast to the previously
discussed methods, this method does not require that h be convex. Other
methods applicable for non-convex h employ smoothing functions.

As mentioned in Section 2.1.2, the worst-case complexity of DDS methods
applied to non-smooth (Lipschitz-continuous) objective functions is difficult
to analyse. The reason that DDS methods generate an asymptotically dense
set of polling directions is to ensure that no descent directions exist. An
exception to this generality, however, is functions for which an appropriate
smoothing function exists. Given a locally Lipschitz-continuous f , we say
that fµ : Rn → R is a smoothing function for f provided that for any
µ ∈ (0,∞), fµ is continuously differentiable and that

lim
z→x,µ→0+

fµ(z) = f(x),

for all x ∈ Rn.
Thus, if a smoothing function fµ exists for f , it is natural to iteratively

apply a method for smooth unconstrained optimization to obtain approxim-
ate solutions xk to minx fµk(x) while decreasing µk. We roughly prescribe
such a smoothing method in Algorithm 8.

Garmanjani and Vicente (2012) consider the DDS framework analysed
by Vicente (2013) as the method M in Algorithm 8. They terminate M
when the step-size parameter α of Algorithm 2 is sufficiently small, where
the notion of sufficiently small scales with µk in Algorithm 8. Garmanjani
and Vicente (2012) prove a first-order stationarity result of the form

lim inf
k→∞

‖∇fµk(xk)‖ = 0. (5.11)
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Under certain assumptions (for instance, that h satisfies some regularity
conditions at F (x∗)) this first-order stationarity result is equivalent to 0 ∈
∂f(x∗); that is, x∗ is Clarke stationary.

Garmanjani and Vicente (2012) consider the decrease to be sufficient in
line 4 of Algorithm 1 if f(pi) < f(x)− c1α

3/2 for some c1 > 0. If, further-
more, M terminates in each iteration of Algorithm 8 when α < c2µ

2
k for

some c2 > 0, then an upper bound on the number of function evaluations
needed to obtain

‖∇fµ∗(xk)‖ ≤ ε, (5.12)

for ε ∈ (0, 1) and µ∗ ∈ O(n−1/2ε), is in O(ε−3); see Table A.1. We note that
while the sequence of smoothing parameters µk induces a type of limiting
behaviour of the gradients (as seen in (5.12)) returned by the method M
used in Algorithm 8, this still does not necessarily recover elements of the
Clarke subdifferential of f . The smoothing functions fµk must satisfy an
additional gradient consistency property in order for Algorithm 8 to produce
a sequence of points xk converging to Clarke stationary points (Rockafellar
and Wets 2009, Theorem 9.67).

Garmanjani et al. (2016) consider the use of a model-based trust-region
method M in Algorithm 8. The authors demonstrate the first-order con-
vergence result (5.11); they also prove the same WCC as is proved by Gar-
manjani and Vicente (2012).

5.4. Bilevel and general minimax problems

Bilevel optimization addresses problems where a lower-level objective is
embedded within an upper-level problem. Bilevel problems take the form

minimize
x∈Ω

fu(x,xl)

subject to xl ∈ arg min
z∈Ωl

{f l(x, z)},
(5.13)

where fu : Ω ⊆ Rn → R and f l : Ωl ⊆ Rnl → R. Conn and Vicente
(2012) propose a model-based trust-region method for solving (5.14) in the
absence of derivative information. They show how to obtain approximations
of the upper-level objective by solving the lower-level problem to sufficient
accuracy. Mersha and Dempe (2011) and Zhang and Lin (2014) develop
DDS-based algorithms for (5.13) under particular assumptions (e.g. strict
convexity of the lower-level problem).

A special case of (5.13) is when f l = −fu, which results in the minimax
problem (DET), where the objective is given by a maximization:

f(x) = max
xl∈Ωl

f l(x,xl). (5.14)
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In contrast to the finite minimax problem (5.9), the objective in (5.14)
involves a potentially infinite set Ωl.

Bertsimas, Nohadani and Teo (2010) and Bertsimas and Nohadani (2010)
consider (5.14) when exact gradients of f l may not be available. The authors
assume that approximate gradients of f l are available and propose methods
with convergence analysis restricted to functions f in (5.14) that are convex
in x. Ciccazzo et al. (2015) and Latorre, Habal, Graeb and Lucidi (2019)
develop derivative-free methods that employ approximate solutions of the
inner problem in (5.14). Menickelly and Wild (2019) also consider (5.14) and
develop a derivative-free method of outer approximations for more general
f . Their analysis shows that the resulting limit points are Clarke stationary
for f .

6. Methods for stochastic optimization

We now turn our attention to methods for solving the stochastic optim-
ization problem (STOCH). In Section 4.2, we considered the case where
f(x) = Eξ[f̃(x; ξ)] is convex. In this section, we lift the assumption of

convexity to consider a more general class of stochastic functions f̃ .
In general, the analysis of methods for stochastic optimization requires

assumptions on the random variable ξ. In this section, we use the conven-
tion that ξ ∼ Ξ denotes that the random variable ξ is from a distribution
Ξ and that ξ ∈ Ξ refers to a random variable in the support of this dis-
tribution. Frequently, realizations ξ ∼ Ξ are assumed to be independent
and identically distributed (i.i.d.). Throughout this section, we assume that
Eξ[f̃(x; ξ)] exists for each x ∈ Ω and f(x) = Eξ[f̃(x; ξ)]; that is, the ob-
jective of (STOCH) is well-defined. Another common assumption in the
stochastic optimization literature is that some bound on the variance of
f̃(x; ξ) is assumed, that is,

Eξ[(f̃(x; ξ)− f(x))2] < σ2 <∞ for all x ∈ Ω. (6.1)

If, for a given x, ∇xf̃(x; ξ) exists for each ξ ∈ Ξ, then under certain regu-
larity conditions it follows that ∇f(x) = Eξ[∇xf̃(x; ξ)]; one such regularity
condition is that

f̃(·; ξ) is Lf̃(·;ξ)-Lipschitz-continuous and Eξ
[
Lf̃(·;ξ)

]
<∞.

We note that when first-order information is available, the assumption (6.1)
is often replaced by an assumption on the variance of the expected gradi-
ent norm; see e.g. Bottou, Curtis and Nocedal (2018, Assumption 4.3). In
this setting, a key class of methods for (STOCH) are stochastic approxim-
ation (SA) methods; see the paper proposing SA methods by Robbins and
Monro (1951) and a survey of modern SA methods (often also referred to
as ‘stochastic gradient’ methods when first-order information is available)
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by Bottou et al. (2018). Here we focus on situations where no objective
derivative information is available; that is, stochastic gradient methods are
not directly applicable. That said, some of the work we discuss attempts to
approximate stochastic gradients, which are then used in an SA framework.
As discussed in Section 1, we will not address global optimization methods,
such as Bayesian optimization.11

Section 6.1 discusses stochastic approximation methods, and Section 6.2
presents direct-search methods for stochastic optimization. In Section 6.3
we highlight modifications to derivative-free model-based methods to ad-
dress (STOCH), and in Section 6.4 we discuss bandit methods for (non-
convex) stochastic optimization.

6.1. Stochastic and sample-average approximation

One of the first analysed approaches for solving (STOCH) is the method
of Kiefer and Wolfowitz (1952), inspired by the SA method of Robbins
and Monro (1951). We state the basic Kiefer–Wolfowitz framework in Al-
gorithm 9. Since Kiefer and Wolfowitz (1952) consider only univariate prob-
lems, Algorithm 9 is in fact the multivariate extension first of Blum (1954b).
In Algorithm 9, ∇f(xk) is approximated by observing realizations of f̃ using
central differences. That is, ∇f(xk) is approximated by

gK(xk;µk; ξk) =


f̃(xk + µke1; ξ+

1 )− f̃(xk − µke1; ξ−1 )

2µk
...

f̃(xk + µken; ξ+
n )− f̃(xk − µken; ξ−n )

2µk

, (6.2)

where µk > 0 is a difference parameter, ei is the ith elementary basis vector,
and 2n realizations ξ ∼ Ξ are employed. The next point xk+1 is then set
to be xk − αkg

K(xk;µk; ξk), where αk > 0 is a step-size parameter. As
in Section 3, we note that xk+1 is a random variable that depends on the
filtration generated by the method before xk+1 is realized; this will be the
case throughout this section. In the SA literature, the sequences {αk} and
{µk} are often referred to as gain sequences.

Because evaluation of the function f requires computing an expecta-
tion (and in contrast to the primarily monotone algorithms in Section 2),
stochastic optimization methods generally do not monotonically decrease f .
This is exemplified by Algorithm 9, which updates xk+1 without considering
the value of f̃(xk+1; ξ) for any realization of ξ.

11 We recommend Shahriari et al. (2016) and Frazier (2018) to readers interested in recent
surveys of Bayesian optimization.
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Algorithm 9: Kiefer–Wolfowitz method

1 Choose initial point x0, sequence of step sizes {αk} and sequence of
difference parameters {µk}

2 for k = 0, 1, 2, . . . do
3 Generate ξk = (ξ+

1 , ξ
−
1 , . . . , ξ

+
n , ξ

−
n )

4 Compute gradient estimate gK
k (xk;µk; ξk) via (6.2)

5 xk+1 ← xk − αkgK
k (xk;µk; ξk)

Historically, Algorithm 9 has been analysed by a community more con-
cerned with stochastic processes than with optimization. Hence, conver-
gence results differ from those commonly found in the optimization literat-
ure. For example, many results in the SA literature consider a continuation
of the dynamics of Algorithm 9 applied to the deterministic f as an ordin-
ary differential equation (ODE) in terms of x(t) : R → Rn. That is, they
consider

dx

dt
= −∇f(x), x = x(t).

and define the set of fixed points of the ODE, S = {x : ∇f(x) = 0}. Many
convergence results then demonstrate that the continuation x(t) satisfies
x(t) → S with probability one as the continuous iteration counter t → ∞;
see Kushner and Yin (2003) for a complete treatment of such ODE results.

In order to prove that the sequence of points xk generated by Algorithm 9
converges almost surely (i.e. with probability one), conditions must be
placed on the objective function, step sizes and difference parameters. In
the SA literature there is no single consistent set of conditions, but there
are nearly always conditions on the sequence of step sizes {αk} requiring
αk → 0 and

∑
k αk =∞. Intuitively, this divergence condition ensures that

any point in the domain Ω can be reached, independent of the history of
iterations. As one example of convergence conditions, Bhatnagar, Prasad
and Prashanth (2013) prove almost sure convergence of Algorithm 9 under
the following assumptions (simplified for presentation).

(1) The sequences of step sizes and difference parameters satisfy αk > 0,
µk > 0, αk → 0, µk → 0,

∑
k αk =∞ and

∑
k α

2
kµ
−2
k <∞.

(2) The realizations ξ ∼ Ξ are i.i.d. and the distribution Ξ has a finite
second moment.

(3) The function f is in LC1.

(4) supk{‖xk‖} <∞ with probability one.

Similar assumptions on algorithms of the form Algorithm 9 appear through-
out the SA literature (Blum 1954a, Derman 1956, Sacks 1958, Fabian 1971,
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Kushner and Huang 1979, Ruppert 1991, Spall 2005). Convergence of Al-
gorithm 9 under similar assumptions to those above, but with the modifica-
tion that µk is fixed in every iteration to a sufficiently small constant (that
scales inversely with Lg), is additionally demonstrated by Bhatnagar et al.
(2013).

In terms of WCCs, the convergence rates that have been historically de-
rived for Algorithm 9 are also non-standard for optimization. In particular,
results concerning convergence rates are typically shown as a convergence
in distribution (Durrett 2010, Chapter 3.2): given a fixed x∗ ∈ S,

1

kγ
(xk − x∗)→ N (0,B), (6.3)

where γ > 0 and B is a covariance matrix, the entries of which depend
on algorithmic parameters and ∇2f(x∗) (provided it exists). With few
assumptions on ξ, it has been shown that (6.3) holds with γ = 1/3 (Spall
1992, L’Ecuyer and Yin 1998). Observe that these convergence rates are
distinct from WCC results like those in (2.2).

Later, the use of common random numbers (CRNs) was considered. In
contrast to (6.2), which employs a realization ξk = (ξ+

1 , ξ
−
1 , . . . , ξ

+
n , ξ

−
n ), a

gradient estimator in the CRN regime uses a single realization ξk and has
the form

gK(xk;µk; ξk) =


δc(f̃(·; ξk);xk; e1;µk)

...

δc(f̃(·; ξk);xk; en;µk)

, (6.4)

where δc(·) is defined in (2.29)
The difference between (6.2) and (6.4) is analogous to the difference

between one-point and two-point bandit feedback in the context of ban-
dit problems (see Section 4.2). In the CRN regime, we can recall a single
realization ξk to compute a finite-difference approximation in each coordin-
ate direction. By using (6.4) as the gradient estimator in Algorithm 9, the
rate (6.3) holds with γ = 1/2 (L’Ecuyer and Yin 1998, Kleinman, Spall and
Naiman 1999). Thus, as in the analysis of bandit methods, the use of CRNs
allows for strictly better convergence rate results.

Dai (2016a, 2016b) studies the complexity of Algorithm 9, as well as a
method that uses the estimator (6.2) in Algorithm 7, under varying as-
sumptions on Ξ. Dai considers a gradient estimate of the form (6.4) with
δf(f̃(·; ξk);xk; ei;µk) replacing each central difference; recall the definition
of δf(·) in (2.28). Dai demonstrates that the best rate of the form (6.3)
achievable by Algorithm 9 with forward differences has γ = 1/3, even when
common random numbers are used. However, a rate of the form (6.3) with
γ = 1/2 can be achieved using forward differences in Algorithm 7; Dai
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(2016a, 2016b) draws parallels between this result and the WCC of Duchi
et al. (2015), discussed in Section 4.2.2.

We remark that the gradient estimate (6.2) used in Algorithm 9 requires
2n evaluations of f̃ per iteration. Although replacing δc(f̃(·; ξk);xk; ei;µk)
with δf(f̃(·; ξk);xk; ei;µk) could reduce this cost to n + 1 evaluations of f̃
per iteration, it is still desirable to reduce this per-iteration cost from O(n)
to O(1) evaluations. The SPSA method of Spall (1992) achieves this goal
by using the gradient estimator

gS(xk;µk; ξk;uk) = δc(f̃(·, ξk);xk;uk;µk)


1

[uk]1
...
1

[uk]n

, (6.5)

where uk ∈ Rn is randomly generated from some distribution in each iter-
ation.

The construction of (6.5) requires evaluations of f̃(·; ξk) at exactly two
points. Algorithm 9 is then modified by replacing the gradient estimator
gK
k (xk;µk; ξk) with gS

k(xk;µk; ξk;uk). Informally, the conditions on the
distribution governing uk originally proposed by Spall (1992) cause each
entry of uk to be bounded away from 0 with high probability (intuitively,
to avoid taking huge steps). A simple example distribution satisfying these
properties is to let each entry of uk independently follow a Bernoulli dis-
tribution with support {1,−1}, both events occurring with probability 1/2.
Under appropriate assumptions resembling those for Algorithm 9, the se-
quence {xk} generated by SPSA can be shown to converge in the same
sense as Algorithm 9. Convergence rates of the form (6.3) matching those
obtained for Algorithm 9 have also been established (Gerencsér 1997, Klein-
man et al. 1999).

The performance of SA methods is highly sensitive to the chosen sequence
of step sizes {αk} (Hutchison and Spall 2013). This mirrors the situation in
gradient-based SA methods where the tuning of algorithmic parameters is an
active area of research (Diaz, Fokoue-Nkoutche, Nannicini and Samulowitz
2017, Ilievski, Akhtar, Feng and Shoemaker 2017, Balaprakash et al. 2018).

The SA methods above consider only a single evaluation of the stochastic
function f̃ at any point. Other methods more accurately estimate f(xk) by
querying f̃(xk; ξ) for multiple, different realizations (‘samples’) of ξ. These
methods belong to the framework of sample average approximation, wherein
the original problem (STOCH) is replaced with a (sequence of) deterministic
sample-path problem(s):

minimize
x∈Ω

1

p

p∑
i=1

f̃(x; ξi). (6.6)
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Retrospective approximation methods (Chen and Schmeiser 2001) vary the
number of samples, p, in a predetermined sequence {p0, p1, . . .}; the accur-
acy to which each instance of (6.6) subproblem is solved can also vary as
a sample average approximation method progresses. Naturally, the per-
formance of such a method depends critically on the sequence of sample
sizes and accuracies used at each iteration; Pasupathy (2010) character-
izes a class of sequences of predetermined sample sizes and accuracies for
which derivative-free retrospective approximation methods can be shown to
converge for smooth objectives.

Other approaches dynamically adjust the number of samples p from itera-
tion to the next. For example, the method of Pasupathy, Glynn, Ghosh and
Hashemi (2018) adjusts the number of samples pk to balance the contribu-
tions from deterministic and stochastic errors in iteration k. The stochastic
error at xk is then ∣∣∣∣f(xk)−

1

pk

pk∑
i=1

f̃(xk; ξk,i)

∣∣∣∣.
The deterministic error is the difference between the objective f and a spe-
cified approximation; for example, the deterministic error at xk−αk∇f(xk)
using a first-order Taylor approximation is

|f(xk − αk∇f(xk))− (f(xk)− αk‖∇f(xk)‖2)|.

Pasupathy et al. (2018) establish convergence rates for a variant of Al-
gorithm 9 drawing independent samples {ξk,1, . . . , ξk,pk} in each iteration.

6.2. Direct-search methods for stochastic optimization

Unsurprisingly, researchers have modified methods for deterministic object-
ives in order to produce methods appropriate for stochastic optimization.
For example, in the paper inspiring Nelder and Mead (1965), Spendley
et al. (1962) propose re-evaluating the point corresponding to the best sim-
plex vertex if it hasn’t changed in n+ 1 iterations, saying that if the vertex
is best ‘only by reason of errors of observation, it is unlikely that the re-
peat observation will [be the best observed point], and the point will be
eliminated in due course’. Barton and Ivey, Jr (1996) propose modifica-
tions to the Nelder–Mead method in order to avoid premature termination
due to repeated shrinking. To alleviate this problem, they suggest reducing
the amount the simplex is shrunk, re-evaluating the best point after each
shrink operation, and re-evaluating each reflected point before performing
a contraction. Chang (2012) proposes a Nelder–Mead variant that samples
candidate points and all other points in the simplex an increasing number
of times; this method ultimately ensures that stochasticity in the function
evaluations will not affect the correct ranking of simplex vertices.
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Sriver, Chrissis and Abramson (2009) augment a GPS method with a
ranking and selection procedure and dynamically determine the number
of samples performed for each polling point. The ranking and selection
procedure allows the method to also address cases where x contains discrete
variables. For the case of additive unbiased, Gaussian noise (i.e. f̃(x; ξ) =
f(x) + σξ with ξ from a standard normal distribution and σ > 0 finite),
they prove that the resulting method converges almost surely to a stationary
point of f . For problems involving more general distributions, Kim and
Zhang (2010) consider a DDS method that employs the sample mean

1

pk

pk∑
i=1

f̃(x; ξk,i), (6.7)

with a dynamically increasing sample size pk. They establish a consistency
result and appeal to the convergence properties of DDS methods. Sank-
aran, Audet and Marsden (2010) propose a surrogate-assisted method for
stochastic optimization inspired by stochastic collocation techniques (see
e.g. Gunzburger, Webster and Zhang 2014). Convergence for the method
is established by appealing to the GPS and MADS mechanisms underlying
the method.

Chen and Kelley (2016) consider an implicit-filtering method in which
values of f are observable only through the sample average (6.7). Chen
and Kelley (2016) demonstrate that the sequence of points generated by
the method converges (i.e. {∇f(xk)} admits a subsequence that converges
to zero) with probability one if the sample size pk increases to infinity.
Algorithmically, pk is adjusted to scale with the square of the inverse of the
stencil step size (∆k in Algorithm 4).

Chen, Kelley, Xu and Zhang (2018b) consider the bound-constrained min-
imization of a composite non-smooth function of the form (5.5), where h
is Lipschitz-continuous (but non-smooth) and F is continuously differenti-
able. However, they assume that values of F are observable only through
sample averages and that a smoothing function hµ of h (as discussed in
Section 5.3.2) is available. They show that with probability one, the se-
quence of points from a smoothed implicit-filtering method converges to a
first-order stationary point, where the stationarity measure is appropriate
for non-smooth optimization.

6.3. Model-based methods for stochastic optimization

Analysis of the model-based trust-region methods in Section 2.2 generally
depends on the construction of fully linear models of a deterministic function
f ; see (2.9). In particular, methods of the form of Algorithm 3 typically
require that a model mk satisfy

|f(xk + s)−mk(xk + s)| ≤ κef∆
2
k for all s ∈ B(0; ∆k).
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A natural model-based trust-region approach to stochastic optimization is
to build a model mk of the function f by fitting the model to observed values
of the stochastic function f̃ . Intuitively, if such models satisfy (2.9), then an
extension of the analysis described in Section 2.2.4 should also apply to the
minimization of f in (STOCH). The methods described here formalize the
approximation properties of such models (which are stochastic because of
their dependence on ξ) and employ the models in a trust-region framework.
For example, by employing an estimator f̄p of f at each interpolation point
x used in model construction, we can replace each function value f(x) with
f̄p(x) in the interpolation system (2.14). One example of such an estimator
f̄p is the sample average (6.7).

Early work in applying derivative-free trust-region methods for stochastic
optimization includes that of Deng and Ferris (2006), which modifies the
UOBYQA method of Powell (2002). The kth iteration of the method of Deng
and Ferris (2006) uses Bayesian techniques to dynamically update a budget
of pk new f̃ evaluations. This budget is then apportioned among the current
set of interpolation points y ∈ Y in order to reduce the variance in each
value of f̄pk(y), with the authors using the sample mean for the estimator
f̄pk . Deng and Ferris (2009) show that, given assumptions on the sequence
of evaluated ξ (i.e. the sample path), every limit point x∗ produced by this
method is stationary with probability 1.

Another method in this vein, STRONG, was proposed by Chang, Hong
and Wan (2013) and combines response surface methodology (Box and
Draper 1987) with a trust-region mechanism. In the analysis of STRONG,
it is assumed that model gradients ∇mk(xk) almost surely equal the true
gradients ∇f(xk) as k →∞, which is algorithmically encouraged by mono-
tonically increasing the sample size pk in an inner loop. QNSTOP by
Castle (2012) presents a similar approach using response surface models
in a trust-region framework, but its convergence analysis and assumptions
mirror those of stochastic approximation methods.

Both Larson and Billups (2016) and Chen, Menickelly and Scheinberg
(2018a) build on the idea of probabilistically fully linear models in (3.5),
which essentially says that the condition (2.9) needs to hold on a given iter-
ation only with some probability (Bandeira et al. 2014). In contrast to the
usage of such models in randomized methods for deterministic objectives
(the subject of Section 3.3), in stochastic optimization the filtration in (3.5)
also includes the realizations of the stochastic evaluations of f̃ . This prob-
abilistic notion of uniform local model quality is powerful. For example, al-
though the connection is not made by Regier, Jordan and McAuliffe (2017),
this notion of model quality implies probabilistic descent properties such as
those required by Regier et al. (2017). This implication is an example of a
setting in which stochastic gradient estimators can be replaced by gradients
of probabilistically fully linear models.
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One way to satisfy (3.5) is to build a regression model using randomly
sampled points. For example, Menickelly (2017, Theorem 4.2.6) shows that
evaluating f̃ on a sufficiently large set of points uniformly sampled from
B(xk; ∆k) can be used to construct a probabilistically fully linear regression
model.

Larson and Billups (2016) prove convergence of a probabilistic variant of
Algorithm 3 in the sense that, for any ε > 0,

lim
k→∞

P[‖∇f(xk)‖ > ε] = 0.

Under similar assumptions, Chen et al. (2018a) prove almost sure conver-
gence to a stationary point, that is,

lim
k→∞

‖∇f(xk)‖ = 0 with probability one. (6.8)

Blanchet, Cartis, Menickelly and Scheinberg (2019) provide a WCC result
for the variant of Algorithm 3 presented by Chen et al. (2018a). Blanchet
et al. (2019) extend the analysis of Cartis and Scheinberg (2018) to study
the stopping time of the stochastic process generated by the method of Chen
et al. (2018a). In contrast to previous WCC results discussed in this survey,
which bound the number of function evaluations Nε needed to attain some
form of expected ε-optimality (e.g. (3.2) or (5.4)), Blanchet et al. (2019)
prove that the expected number of iterations, E[Tε], needed to achieve (2.2)
is in O(ε−2). Paquette and Scheinberg (2018) apply similar analysis to a
derivative-free stochastic line-search method, where they demonstrate that
for non-convex f , E[Tε] ∈ O(ε−2), while for convex and strongly convex f ,
E[Tε] ∈ O(ε−1) and E[Tε] ∈ O(log(ε−1)), respectively. Since the number of
function evaluations per iteration of the derivative-free methods of Blanchet
et al. (2019) and Paquette and Scheinberg (2018) is highly variable across
iterations, the total work (in terms of function evaluations) is not readily
apparent from such WCC results.

Larson and Billups (2016) and Chen et al. (2018a) demonstrate that
sampling f̃ on B(xk; ∆k) of the order of ∆−4

k times will ensure that (2.9)
holds (i.e. one can obtain a fully linear model) with high probability. Sha-
shaani, Hunter and Pasupathy (2016) and Shashaani, Hashemi and Pasu-
pathy (2018) take a related but distinct approach. As opposed to requiring
that models be probabilistically fully linear, their derivative-free trust-region
method performs adaptive Monte Carlo sampling both at current points xk
and interpolation points; the number of samples pk is chosen to balance a
measure of statistical error with the optimality gap at xk. Shashaani et al.
(2018) prove that their method achieves almost sure convergence of the form
(6.8).

A model-based trust-region method for constrained stochastic optimiz-
ation, SNOWPAC, is developed by Augustin and Marzouk (2017). Their
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method addresses the stochasticity by employing Gaussian process-based
models of robustness measures such as expectation and conditional value
at risk. The approach used is an extension of the constrained deterministic
method NOWPAC of Augustin and Marzouk (2014), which we discuss in
Section 7.

6.4. Bandit feedback methods

While much of the literature on bandit methods for stochastic optimization
focuses on convex objectives f (as discussed in Section 4.2), here we discuss
treatment of non-convex objectives f . We recall our notation and discussion
from Section 4.2, in particular the notion of regret minimization shown
in (4.7).

In the absence of convexity, regret bounds do not translate into bounds on
optimization error as easily as in (4.8). Some works address the case where
each f̃(·; ξk) in (4.7) is Lipschitz-continuous and employ a partitioning of the
feasible region Ω (Kleinberg, Slivkins and Upfal 2008, Bubeck, Stoltz and
Yu 2011b, Bubeck, Munos, Stoltz and Szepesvári 2011a, Valko, Carpentier
and Munos 2013, Zhang, Yang, Jin and Zhou 2015). These methods employ
global optimization strategies that we do not discuss further here.

In another line of work, Ghadimi and Lan (2013) consider the applica-
tion of an algorithm like Algorithm 6 with the choice of gradient estimator
gµ(x;u; ξ) from (4.12). Under an assumption of bounded variance of the
estimator (i.e. Eξ[‖gµ(x;u; ξ)−∇f(x)‖2] ≤ σ2), Ghadimi and Lan (2013)
prove a WCC result similar to the one they obtained in the convex case; see
Section 4.2.2. They show that an upper bound on the (randomized) number
of iterations needed to attain

E[‖∇f(xk)‖2] ≤ ε (6.9)

is in O(max{nLgRxε−1, nLgRxσ
2ε−2}). Notice that the stationarity condi-

tion given in (6.9) involves a square on the gradient norm, making it distinct
from a result like (3.2) or (5.4). Thus, assuming σ2 is sufficiently large, the
result of Ghadimi and Lan (2013) translates to a WCC of type (5.4) in
O(n2ε−4).

Balasubramanian and Ghadimi (2018, 2019) propose a method that uses
two-point bandit feedback (i.e. a gradient estimator from (4.12)) within a
derivative-free conditional gradient method (Ghadimi 2019). The gradient
estimator is used to define a linear model, which is minimized over Ω to
produce a trial step. If Ω is bounded, they show a WCC of type (5.4) that
again grows like ε−4.

By replacing gradients with estimators of the form (4.12) in the stochastic
variance-reduced gradient framework of machine learning (Reddi et al. 2016),
Liu et al. (2018) prove a WCC of type (6.9) in O(nε−1 +b−1), where b is the
size of a minibatch drawn with replacement in each iteration. Gu, Huo and
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Huang (2016) prove a similar WCC result in an asynchronous parallel com-
puting environment for a distinct method using minibatches for variance
reduction.

7. Methods for constrained optimization

In this section, we discuss derivative-free methods for problems where the
feasible region Ω is a proper subset of Rn. In the derivative-free setting, such
constrained optimization problems can take many forms since an additional
distinction is associated with the derivative-free nature of objective and con-
straint functions. For example, and in contrast to the preceding sections,
a derivative-free constrained optimization problem may involve an object-
ive function f for which a gradient is made available to the optimization
method. The problem is still derivative-free if there is a constraint function
defining the feasible region Ω for which a (sub)gradient is not available to
the optimization method.

As is common in many application domains where derivative-free methods
are applied, the feasible region Ω may also involve discrete choices. In
particular, these choices can include categorical variables that are either
ordinal (e.g. letter grades in {A, B, C, D, F}) or non-ordinal (e.g. compiler
type in {flang, gfortran, ifort}). Although ordinal categorical variables can
be mapped to a subset of the reals, the same cannot be done for non-
ordinal variables. Therefore, we generalize the formulations of (DET) and
(STOCH) to the problem

minimize
x,y

f(x,y)

subject to x ∈ Ω ⊂ Rn

y ∈ N,

(CON)

where y represents a vector of non-ordinal variables and N is a finite set
of feasible values. Here we assume that discrete-valued ordinal variables
are included in x. Furthermore, most of the methods we discuss do not
explicitly treat non-ordinal variables y; hence, except where indicated, we
will drop the use of y.

Similar to Section 5, here we distinguish methods based on the assump-
tions made about the problem structure. We organize these assumptions
based on the black-box optimization constraint taxonomy of Le Digabel and
Wild (2015), which characterizes the type of constraint functions that oc-
cur in a particular specification of a derivative-free optimization problem.
When constraints are explicitly stated (i.e. ‘known’ to the method), this
taxonomy takes the form of the tree in Figure 7.1.

The first distinction in Figure 7.1 is whether a constraint is algebraically
available to the optimization method or whether it depends on a black-box
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Known constraints (K)

A or S?

Algebraic (A)

R or U?

Relaxable (R)

Q or N?

Quant.

(Q)

KARQ

Non-quant.

(N)

KARN

Unrelaxable (U)

Q or N?

Quant.

(Q)

KAUQ

Non-quant.

(N)

KAUN

Black-box simulation-based (S)

R or U?

Relaxable (R)

Q or N?

Quant.

(Q)

KSRQ

Non-quant.

(N)

KSRN

Unrelaxable (U)

Q or N?

Quant.

(Q)

KSUQ

Non-quant.

(N)

KSUN

Figure 7.1. Tree-based taxonomy of known (i.e. non-hidden) constraints from Le
Digabel and Wild (2015).

simulation. In the context of derivative-free optimization, we will assume
that it is these latter constraint functions for which a (sub)gradient is not
made available to the optimization method. Algebraic constraints are those
for which a functional form or simple projection operator is provided to the
optimization method. Section 7.1 discusses methods that exclusively handle
algebraic constraints. Examples of such algebraic constraints have been
discussed earlier in this paper (e.g. Sections 3.1 and 4), wherein it is assumed
that satisfaction of the constraints (e.g. through a simple projection) is
trivial relative to evaluation of the objective. This imbalance between the
ease of the constraint and objective functions is also the subject of recent
WCC analysis (Cartis, Gould and Toint 2018).

Section 7.2 discusses methods that target situations where one or more
constraints do not have available derivatives.

The next distinction in Figure 7.1 is whether a constraint can be relaxed
or whether the constraint must be satisfied in order to obtain meaningful
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information for the objective f and/or other constraint functions. Unre-
laxable constraints are a relatively common occurrence in derivative-free
optimization. In contrast to classic optimization, constraints are some-
times introduced solely to prevent errors in the evaluation of, for example,
a simulation-based objective function. Methods for addressing relaxable al-
gebraic constraints are discussed in Section 7.1.1, and unrelaxable algebraic
constraints are the focus of Section 7.1.2.

Hidden constraints are not represented in Figure 7.1. Hidden constraints
are constraints that are not explicitly stated in a problem specification. Vi-
olating these constraints is detected only when attempting to evaluate the
objective or constraint functions; for example, a simulation may fail to re-
turn output, thus leaving one of these functions undefined. Some derivative-
free methods directly account for the possibility that such failures may be
present despite not being explicitly stated. Hidden constraints have been
addressed in works including those of Avriel and Wilde (1967), Choi and
Kelley (2000), Choi et al. (2000), Carter et al. (2001), Conn, Scheinberg
and Toint (2001), Huyer and Neumaier (2008), Lee, Gramacy, Linkletter
and Gray (2011), Chen and Kelley (2016), Porcelli and Toint (2017) and
Müller and Day (2019).

7.1. Algebraic constraints

When all constraints are algebraically available, we can characterize the
ordinal feasible region by a collection of inequality constraints:

Ω = {x ∈ Rn : ci(x) ≤ 0, for all i ∈ I}, (7.1)

where each ci : Rn → R ∪ {∞} and the set I is finite for all of the methods
discussed. Problems with semi-infinite constraints can be addressed by us-
ing structured approaches as in Section 5.4. In this setting, we define the
constraint function c : Rn → (R∪{∞})|I|, where the ith entry of the vector
c(x) is given by ci(x). Equality constraints can be represented in (7.1) by
including both ci(x) and −ci(x); however, this practice should be avoided
since it can hamper both theoretical and empirical performance.

7.1.1. Relaxable algebraic constraints

Relaxable algebraic constraints are the constraints that are typically treated
in derivative-based non-linear optimization. We will organize our discussion
into three primary types of methods: penalty approaches, filter approaches,
and approaches with subproblems that employ models of the constraint
functions.

Penalty approaches. Given constraints defined by (7.1), it is natural in the
setting of relaxable constraints to quantify the violation of the ith constraint
via the value of max{0, ci(x)}. In fact, given a penalty parameter ρ > 0,
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a common approach in relaxable constrained optimization is to replace the
minimization of f(x) with the minimization of a merit function such as

f(x) +
ρ

2

∑
i∈I

max{0, ci(x)}. (7.2)

The merit function in (7.2) is typically called an exact penalty function,
because for a sufficiently large (but finite) value of ρ > 0, every local min-
imum x∗ of (CON) is also a local minimum of the merit function in (7.2).
We note that each summand max{0, ci(x)} is generally non-smooth; the
summand is still convex provided ci(x) is convex. Through the mapping

F (x) =

[
f(x)
c(x)

]
,

functions of the form (7.2) can be seen as cases of the composite non-smooth
function (5.5) and are hence amenable to the methods discussed in Sec-
tion 5.3. In contrast to this non-smooth approach, a more popular merit
function historically has been the quadratic penalty function,

f(x) + ρ
∑
i∈I

max{0, ci(x)}2. (7.3)

However, the merit function in (7.3) lacks the same exactness guarantees
that come with (7.2); even as ρ grows arbitrarily large, local minima of
(CON) need not correspond in any way with minima of (7.3).

Another popular means of maintaining the smoothness (and convexity,
when applicable) of (7.3) but regaining the exactness of (7.2) is to consider
Lagrangian-based merit functions. Associating multipliers λi with each of
the constraints in (7.1), the Lagrangian of (CON) is

L(x;λ) = f(x) +
∑
i∈I

λi ci(x). (7.4)

Combining (7.4) with (7.3) yields the augmented Lagrangian merit function

LA(x;λ; ρ) = f(x) +
∑
i∈I

λi ci(x) +
ρ

2

∑
i∈I

max{0, ci(x)}2 (7.5)

with the desired properties; that is, for non-negative λ and ρ, LA(x;λ; ρ)
is smooth (convex) provided that c is.

In all varieties of these methods, which we broadly refer to as penalty
approaches, the parameter ρ is dynamically updated between iterations.
Methods typically increase ρ in order to promote feasibility; penalty meth-
ods tend to approach solutions from outside of Ω and hence typically assume
that the penalized constraints are relaxable. For a review of general penalty
approaches, see Fletcher (1987, Chapter 12).
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Lewis and Torczon (2002) adapt the augmented Lagrangian approach of
Conn, Gould and Toint (1991) in one of the first proofs that DDS methods
can be globally convergent for non-linear optimization. They utilize pat-
tern search (see the discussion in Section 2.1.2) to approximately minimize
the augmented Lagrangian function (7.5) in each iteration of their method.
That is, each iteration of their method solves a subproblem

minimize
x

{LA(x;λ; ρ) : l ≤ x ≤ u}. (7.6)

Lewis and Torczon (2002) prove global convergence of their method to first-
order Karush–Kuhn–Tucker (KKT) points. We note that the algebraic
availability of bound constraints is explicitly used in (7.6). Other con-
straints could be algebraic or simulation-based because the method used
to approximately solve (7.6) does not require availability of the derivative
∇xLA(x;λ; ρ). The approach of Lewis and Torczon (2002) is expanded by
Lewis and Torczon (2010), who demonstrate the benefits of treating linear
constraints (including bound constraints) outside of the augmented Lag-
rangian merit function. That is, they consider subproblems of the form

minimize
x

{LA(x;λ; ρ) : Ax ≤ b}. (7.7)

Bueno, Friedlander, Mart́ınez and Sobral (2013) propose an inexact res-
toration method for problems (CON) where Ω is given by equality con-
straints. The inexact restoration method alternates between improving feas-
ibility (measured through the constraint violation ‖c(x)‖2 in this equality-
constrained case) and then approximately minimizing a ‖ · ‖2-based exact
penalty function before dynamically adjusting the penalty parameter ρ. Be-
cause of the separation of the feasibility and optimality phases of the inexact
restoration method, the feasibility phase requires no evaluations of f . This
feasibility phase is easier when constraint functions are available algebraic-
ally because (sub)derivative-based methods can be employed. Bueno et al.
(2013) prove global convergence to first-order KKT points of this method
under appropriate assumptions.

Amaioua, Audet, Conn and Le Digabel (2018) study the performance of
a search step in MADS when solving (CON). One of their approaches uses
the exact penalty (7.2), a second approach uses the augmented Lagrangian
(7.5) and a third combines these two.

Audet, Le Digabel and Peyrega (2015) show that the convergence prop-
erties of MADS extend to problems with linear equality constraints. They
explicitly address these algebraic constraints by reformulating the original
problem into a new problem without equality constraints (and possibly fewer
variables); other constraints are treated as will be discussed in Section 7.2.

Filter approaches. Whereas a penalty approach combines an objective func-
tion f and a measure of constraint violation into a single merit function
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to be minimized approximately, a filter method can be understood as a
biobjective method minimizing the objective and the constraint violation
simultaneously. For this general discussion, we will refer to the measure of
constraint violation as h(x). For example, in (7.2),

h(x) =
∑
i∈I

max{0, ci(x)}.

From the perspective of biobjective optimization, a filter can be understood
as a subset of non-dominated points in the (f, h) space. A two-dimensional
point (f(xl), h(xl)) is non-dominated, in the finite set of points {xj : j ∈ J}
evaluated by a method, provided there is no j ∈ J \ {l} with

f(xj) ≤ f(xl) and h(xj) ≤ h(xl).

Unlike biobjective optimization, however, filter methods adaptively vary the
subset of non-dominated points considered in order to identify feasible points
(i.e. points where h vanishes). Different filter methods employ different
mechanisms for managing the filter and generating new points.

Brekelmans, Driessen, Hamers and den Hertog (2005) employ a filter
for handling relaxable algebraic constraints. Their model-based method
attempts to have model-improving points satisfy the constraints. Ferreira,
Karas, Sachine and Sobral (2017) extend the inexact-restoration method
of Bueno et al. (2013) by replacing the penalty formulation with a filter
mechanism and again prove global convergence to first-order KKT points.

Approaches with subproblems using modelled constraints. Another means of
constraint handling is to construct local models mci of each constraint ci in
(7.1). Given a local model mf of the objective function f , such methods
generally employ a sequence of subproblems of the form

minimize
s

{mf (s) : ci(x+ s) ≤ 0, for all i ∈ I}. (7.8)

As an example approach, sequential quadratic programming (SQP) meth-
ods are popular derivative-based methods that employ a quadratic model of
the objective function and linear models of the constraint functions. Several
derivative-free approaches of this form exist, which we detail in this section.
We mention that many of these approaches will generally impose an addi-
tional trust-region constraint (i.e. ‖s‖ ≤ ∆) on (7.8). As in Section 2.2.4,
this trust-region constraint often has the additional role of monitoring the
quality of the model mf . Furthermore, such a trust-region constraint en-
sures that whenever s = 0 is feasible for (7.8), the feasible region of (7.8)
is compact.

Conn, Scheinberg and Toint (1998) consider an adaptation of a model-
based trust-region method to constrained problems with differentiable alge-
braic constraints treated via the trust-region subproblem (7.8). They target
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problems where they deem the algebraic constraints to be ‘easy’, meaning
that the resulting trust-region subproblem is not too difficult to solve. This
method is implemented in the solver DFO (Conn et al. 2001).

The CONDOR method of Vanden Berghen (2004) and Vanden Berghen
and Bersini (2005) extends the unconstrained UOBYQA method of Pow-
ell (2002) to address algebraic constraints. The trust-region subproblem
considered takes the form

minimize
x

{mf (x) : ci(s) ≤ 0, for all i ∈ I ′;Ax ≤ b; ‖s‖ ≤ ∆}, (7.9)

where mf is a quadratic model and I ′ ⊆ I captures the non-linear con-
straints in (7.1). In solving (7.9), the linear constraints are enforced expli-
citly and the non-linear constraints are addressed via an SQP approach. As
will be discussed in Section 7.1.2, this corresponds to the linear constraints
being treated as unrelaxable.

The LINCOA model-based method of Powell (2015) addresses linear in-
equality constraints. The LINCOA trust-region subproblem, which can be
seen as (7.9) with I ′ = ∅, enforces the linear constraints via an active set
approach. The active set decreases the degrees of freedom in the variables
by restricting x to an affine subspace. Numerically efficient conjugate gradi-
ent and Krylov methods are proposed for working in the resulting subspace.
Although considerable care is taken to have most points satisfy the linear
constraints Ax ≤ b, these constraints are ultimately treated as relaxable,
since the method does not enforce these constraints when attempting to
improve the quality of the model mf .

Conejo et al. (2013) propose a trust-region algorithm when Ω is closed and
convex. They assume that it is easy to compute the projection onto Ω, which
facilitates enforcement of the constraints via the trust-region subproblem
(7.8). This approach is extended to include more general forms of Ω by
Conejo, Karas and Pedroso (2015). As with LINCOA, although subproblem
solutions are feasible, the constraints are treated as relaxable since they may
be violated in the course of improving the model mf .

Mart́ınez and Sobral (2012) propose a feasibility restoration method in-
tended for problems with inequality constraints where the feasible region is
‘thin’: for example, if Ω is defined by both ci(x) ≤ 0 and −ci(x) ≤ 0 for
some i. Each iteration contains two steps: one that seeks to minimize the
objective and one that seeks to decrease infeasibility using many evaluation
of the constraint functions (without evaluating the objective). Similar to the
progressive-barrier method discussed in Section 7.2, the method by Mart́ınez
and Sobral (2012) dynamically updates a tolerable level of infeasibility.

7.1.2. Unrelaxable algebraic constraints
We now address the case when all of the constraints are available algebraic-
ally but an unrelaxable constraint also exists. In this setting, such unrelax-
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able constraints are typically necessary to ensure meaningful output of a
black-box objective function. Consequently, methods must always maintain
feasibility (or at least establish feasibility and then maintain it) with respect
to the unrelaxable constraints.

An early example of a method for unrelaxable constraints is the ‘complex’
method of Box (1965). This extension of the simplex method of Spendley
et al. (1962) treats unrelaxable bound constraints by modifying the simplex
operations to project into the interior of any potentially violated bound con-
straint. May (1974, 1979) extends the unconstrained derivative-free method
of Mifflin (1975) to address unrelaxable linear constraints. The method of
May (1979) uses finite-difference estimates, but care is taken to ensure that
the perturbed points never violate the constraints.

As seen in Section 7.1.1, several approaches treat non-linear algebraic
constraints via a merit function and enforce unrelaxable linear constraints
via a constrained subproblem. These include the works of Lewis and Tor-
czon (2002) for bound constraints in (7.6), Lewis and Torczon (2010) for
inequality constraints in (7.7), and Vanden Berghen (2004) for inequality
constraints in (7.9). Another merit function relevant for unrelaxable con-
straints is the extended-value merit function

h(x) = f(x) +∞ δΩC (x), (7.10)

where δΩC is the indicator function of ΩC . Such an extreme-barrier ap-
proach (see e.g. the discussion by Lewis and Torczon 1999) is particularly
relevant for simulation-based constraints. Hence, with the exception of ex-
plicit treatment of unrelaxable algebraic constraints, we postpone significant
discussion of extreme-barrier methods until Section 7.2.

DDS methods for unrelaxable algebraic constraints. Within DDS methods,
an intuitive approach to handling unrelaxable constraints is to limit poll
directions Dk so that xk + dk is feasible with respect to the unrelaxable
constraints. Lewis and Torczon (1999) and Lucidi and Sciandrone (2002a),
respectively, develop pattern-search and coordinate-search methods for un-
relaxable bound-constrained problems. By modifying the polling directions
Lewis and Torczon (2000) show that pattern-search methods are also con-
vergent in the presence of unrelaxable linear constraints. Chandramouli
and Narayanan (2019) address unrelaxable bound constraints within a DDS
method that employs a model-based method in the search step in addi-
tion to a bound-constrained line-search step. Kolda, Lewis and Torczon
(2006) develop and analyse a new condition, related to the tangent cone
of nearby active constraints, on the sets of directions used within a gener-
ating set search method when solving linearly constrained problems. The
condition ensures that evaluated points are guaranteed to satisfy the linear

https://doi.org/10.1017/S0962492919000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000060


362 J. Larson, M. Menickelly and S. M. Wild

constraints. Lucidi, Sciandrone and Tseng (2002) propose feasible descent
methods that sample the objective over a finite set of search directions.
Each iteration considers a set of ε-active constraints (i.e. those constraints
for which ci(xk) ≥ −ε) for general algebraic inequality constraints. Poll
steps are projected in order to ensure they are feasible with respect to these
ε-active constraints. The analysis of Lucidi et al. (2002) extends that of
Lewis and Torczon (2000) and establishes convergence to a first-order KKT
point under standard assumptions.

As introduced in Section 7.1.1, Audet et al. (2015) reformulate optimiza-
tion problems with unrelaxable linear equality constraints in the context of
MADS.

Gratton, Royer, Vicente and Zhang (2019b) extend the randomized DDS
method of Gratton et al. (2015) to linearly constrained problems; candidate
points are accepted only if they are feasible. Gratton et al. (2019b) establish
probabilistic convergence and complexity results using a stationary measure
appropriate for linearly constrained problems.

Model-based methods for unrelaxable algebraic constraints. Model-based
methods are more challenging to design in the presence of unrelaxable con-
straints because enforcing guarantees of model quality such as those in (2.9)
can be difficult. For a fixed value of κ in (2.9), it may be impossible to
obtain a κ-fully linear model using only feasible points. As an example,
consider two linear constraints for which the angle between the constraints
is too small to allow for κ-fully linear model construction; avoiding inter-
polation points drawn from such thin regions motivated development of the
wedge-based method of Marazzi and Nocedal (2002) from Section 2.2.4.

Powell (2009) proposes BOBYQA, a model-based trust-region method for
bound-constrained optimization without derivatives that extends the un-
constrained method NEWUOA in Powell (2006). BOBYQA ensures that
all points at which f is evaluated satisfy the bound constraints. Arouxét,
Echebest and Pilotta (2011) modify BOBYQA to use an active-set strategy
in solving the bound-constrained trust-region subproblems; an ‖ · ‖∞-trust
region is employed so that these subproblems correspond to minimization
of a quadratic over a compact, bound-constrained domain. Wild (2008a,
Section 6.3) develops an RBF-model-based method for unrelaxable bound
constraints by enforcing the bounds during both model improvement and
‖ · ‖∞-trust-region subproblems. Gumma, Hashim and Ali (2014) extend
the NEWUOA method to address linearly constrained problems. The linear
constraints are enforced both when solving the trust-region subproblem and
when seeking to improve the geometry of the interpolation points. Gratton,
Toint and Tröltzsch (2011) propose a model-based method for unrelaxable
bound-constrained optimization, which restricts the construction of fully
linear models to subspaces defined by nearly active constraints. Working in
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such a reduced space means that the machinery for unconstrained models
in Section 2.2.4 again applies.

Methods for problems with unrelaxable discrete constraints. Constraints that
certain variables take discrete values are often unrelaxable in derivative-free
optimization. For example, a black-box simulation may be unable to as-
sign meaningful output when input variables take non-integer values. That
such integer constraints are unrelaxable presents challenges distinct from
those typically arising in mixed-integer non-linear optimization (Belotti
et al. 2013).

Naturally, researchers have modified derivative-free methods for continu-
ous optimization to address integer constraints. Audet and Dennis, Jr
(2000) and Abramson, Audet, Chrissis and Walston (2009a), respectively,
propose integer-constrained pattern-search and MADS methods to ensure
that evaluated points respect integer constraints. Abramson, Audet and
Dennis, Jr (2007) develop a pattern-search method that employs a filter that
handles general inequality constraints and ensures that integer-constrained
variables are always integer.

Porcelli and Toint (2017) propose the ‘brute-force optimizer’ BFO, a DDS
method for mixed-variable problems (including those with ordinal categor-
ical variables) that aligns the poll points to respect the discrete constraints.
A recursive call of the method reduces the number of discrete variables by
fixing a subset of these variables.

Liuzzi, Lucidi and Rinaldi (2011) solve mixed-integer bound-constrained
problems by using both a local discrete search (to address integer variables)
and a line search (for continuous variables). This approach is extended
by Liuzzi, Lucidi and Rinaldi (2015) to also address mixed-integer prob-
lems with general constraints using the SQP approach from Liuzzi, Lucidi
and Sciandrone (2010). Liuzzi, Lucidi and Rinaldi (2018) solve constrained
integer optimization problems by performing non-monotone line searches
along feasible primitive directions D in a neighbourhood of the current
point xk. Feasible primitive directions are those d ∈ Zn ∩ Ω satisfying
GCD(d1, . . . ,d|D|) = 1, that is, directions in a bounded neighbourhood
that are not integer multiples of one another.

The method by Rashid, Ambani and Cetinkaya (2012) for mixed-integer
problems builds multiquadric RBF models. Candidate points are produced
by using gradient-based mixed-integer optimization techniques; the authors’
relaxation-based approach employs a ‘proxy model’ that coincides with func-
tion values from points satisfying the unrelaxable integer constraints. The
methods of Müller, Shoemaker and Piché (2013a, 2013b) and Müller (2016)
similarly employ a global RBF model over the integer lattice, with vari-
ous strategies for generating trial points based on this model. Newby and
Ali (2015) build on BOBYQA to address bound-constrained mixed-integer
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problems. They outline an approach for building interpolation models of ob-
jectives using only points that are feasible. Their trust-region subproblems
consist of minimizing a quadratic objective subject to bound and integer
constraints.

Many of the discussed methods have been shown to converge to points
that are mesh-isolated local solutions; see Newby and Ali (2015) for dis-
cussion of such ‘local minimizers’. When an objective is convex, one can
do better. Larson, Leyffer, Palkar and Wild (2019) propose a method for
certifying a global minimum of a convex objective f subject to unrelax-
able integer constraints. They form a piecewise linear underestimator by
interpolating f through subsets of n + 1 affinely independent points. The
resulting underestimator is then used to generate new candidate points until
global optimality has been certified.

7.2. Simulation-based constraints

As opposed to the preceding section, methods in this section are not limited
to constraints that have closed-form solutions but also address constraints
that depend on the output from some calculated function. Many methods
address such simulation-based constraints by using approaches similar to
those used for algebraic constraints.

Filter approaches. Filter methods for simulation-based constraints, as with
algebraic constraints, seek to simultaneously decrease the objective and
constraint violation. For example, Audet and Dennis, Jr (2004) develop
a pattern-search method for general constrained optimization that accepts
steps that improve either the objective or some measure of violation of
simulation-based constraints. Their hybrid approach applies an extreme
barrier to points that violate linear or bound constraints. Audet (2004)
provides examples where the method by Audet and Dennis, Jr (2004) does
not converge to stationary points.

Pourmohamad (2016) models objective and constraint functions using
Gaussian process models in a filter-based method. Because these models are
stochastic, point acceptability is determined by criteria such as probability
of filter acceptability or expected area of dominated region (in the filter
space).

Echebest, Schuverdt and Vignau (2015) develop a derivative-free method
in the inexact feasibility restoration filter method framework of Gonzaga,
Karas and Vanti (2004). Echebest et al. (2015) employ fully linear models
of the objective and constraint functions and show that the resulting limit
points are first-order KKT points.

Penalty approaches. The original MADS method (Audet and Dennis, Jr
2006) converts constrained problems to unconstrained problems by using
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the extreme-barrier approach mentioned above; that is, the merit function
(7.10) effectively assigns a value of infinity to points that violate any con-
straint. A similar approach to general constraints is used by the ‘complex’
method of Box (1965); the simplex (complex) is updated to maintain the
feasibility of the vertices of the simplex. As a consequence of its gener-
ality, the extreme-barrier approach is applicable for algebraic constraints,
simulation-based constraints and even hidden constraints. Furthermore, be-
cause (7.10) is independent of the degree of both constraint satisfaction and
constraint violation, the extreme barrier is able to address non-quantifiable
constraints.

In contrast, the progressive-barrier method by Audet and Dennis, Jr
(2009) employs a quadratic constraint penalty similar to (7.3) for relaxable
simulation-based constraints {ci : i ∈ Ir} and an extreme-barrier penalty for
unrelaxable simulation-based constraints {ci : i ∈ Iu}. Their progressive-
barrier method maintains a non-increasing threshold value εk that quan-
tifies the allowable relaxable constraint violation in each iteration. Their
approach effectively uses the merit function

hk(x) =

{
f(x) if x ∈ Ωu and

∑
i∈Ir max{0, ci(x)}2 < εk,

∞ otherwise,
(7.11)

where Ωu = {x : ci(x) ≤ 0, ∀i ∈ Iu} denotes the feasible domain with
respect to the unrelaxable constraints. The progressive-barrier method
maintains a set of feasible and infeasible incumbent points and seeks to
decrease the threshold εk to 0 based on the value of (7.11) at infeasible
incumbent points. Trial steps are accepted as incumbents based on criteria
resembling, but distinct from, those used by filter methods. Convergence
to Clarke stationary points is obtained for particular sequences of the in-
cumbent points. The NOMAD (Le Digabel 2011) implementation of MADS
allows users to choose to address inequality constraints handled via extreme-
barrier, progressive-barrier or filter approaches.

Also within the DDS framework, Gratton and Vicente (2014) use an
extreme-barrier approach to handle unrelaxable constraints and an exact
penalty function to handle the relaxable constraints. That is, step accept-
ability is based on satisfaction of the unrelaxable constraints as well as suf-
ficient decrease in the merit function (7.2), with the set I containing only
those constraints that are relaxable. As the algorithm progresses, relaxable
constraints are transferred to the set of constraints treated by the extreme
barrier; this approach is similar to that underlying the progressive-barrier
approach.

Liuzzi and Lucidi (2009) and Liuzzi et al. (2010) consider line-search
methods that apply a penalty to simulation-based constraints; Liuzzi and
Lucidi (2009) employ an exact penalty function (a smoothed version of
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‖ · ‖∞), whereas Liuzzi et al. (2010) employ a sequence of quadratic pen-
alty functions of the form (7.3). Fasano, Liuzzi, Lucidi and Rinaldi (2014)
propose a similar line-search approach to address constraint and objective
functions that are not differentiable.

Primarily concerned with equality constraints, Sampaio and Toint (2015,
2016) propose a derivative-free variant of trust-funnel methods, a class of
methods proposed by Gould and Toint (2010) that avoid the use of both
merit functions and filters.

Diniz-Ehrhardt, Mart́ınez and Pedroso (2011) propose a method that
models objective and constraint functions in an augmented Lagrangian
framework. Similarly, Picheny, Gramacy, Wild and Le Digabel (2016) use
an augmented Lagrangian framework, wherein the merit function in (7.5)
uses Gaussian process models of the objective and constraint functions in
place of the actual objective and constraint functions.

Approaches with subproblems using modelled constraints. In early work,
Glass and Cooper (1965) develop a coordinate-search method that also uses
linear models of the objective and constraint functions. On each iteration,
after the coordinate directions are polled, the models are used in a lin-
ear program to generate new points; points are accepted only if they are
feasible. Extending this idea, Powell (1994) develops the constrained op-
timization by linear approximation (COBYLA) method, which builds linear
interpolation models of the objective and constraint functions on a com-
mon set of n + 1 affinely independent points. Care is taken to maintain
the non-degeneracy of this simplex. The method can handle both inequal-
ity and equality constraints, with candidate points obtained from a linearly
constrained subproblem and then accepted based on a merit function of the
form (7.2).

Bűrmen, Olenšek and Tuma (2015) propose a variant of MADS with a
specialized model-based search step

minimize
x

{mf (x) : Ax ≤ b}, (7.12)

where mf is a strongly convex quadratic model of f and (A, b) are determ-
ined from linear regression models of the constraint functions. Both the
search and poll steps are accepted only if they are feasible; this corresponds
to the method effectively treating the constraints with an extreme-barrier
approach.

Gramacy and Le Digabel (2015) extend the MADS framework by using
treed Gaussian processes to model both the objective and simulation-based
constraint functions. The resulting models are used both within the search
step and to order the poll points (within an opportunistic polling paradigm)
using a filter-based approach.
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A number of methods work with restrictions of the domain Ω in order
to promote feasibility (typically with respect to the simulation-based con-
straints) of the generated points. Such strategies are often motivated by a
desire to avoid the situation where feasibility is established only asymptot-
ically. An example of such a restricted domain is the set

Ωres(ε) = {x ∈ Rn : ci(x) ≤ 0 ∀i ∈ Ia, mci(x) + εi(x) ≤ 0 ∀i ∈ Is}, (7.13)

where algebraic constraints (corresponding to i ∈ Ia) are explicitly enforced
and a parameter (or function of x) ε controls the degree of restriction for
the modelled simulation-based constraints (corresponding to i ∈ Is).

The methods of Regis (2013) utilize interpolating radial basis function
surrogates of the objective and constraint functions. Acceptance of infeas-
ible points is allowed and is followed by a constraint restoration phase that
minimizes a quadratic penalty based on the modelled constraint violation.
When the current point is feasible, a subproblem is solved with a feasible set
defined by (7.13) in addition to a constraint that lower-bounds the distance
between the trial point and the current point. Each parameter εi is adjusted
based on the feasibility of constraint i ∈ Is in recent iterations.

Augustin and Marzouk (2014) develop a trust-region method employ-
ing fully linear models of both constraint and objective functions. They
introduce a path augmentation scheme intended to locally convexify the
simulation-based constraints. Their trust-region subproblem at the cur-
rent point xk minimizes the model of the objective function subject to a
trust-region constraint and the restricted feasible set (7.13), where εi(x) =
ε0‖x − xk‖2/(1+p) and where ε0 > 0 and p ∈ (0, 1) are fixed constants.
Augustin and Marzouk (2014) establish convergence of their method from
feasible starting points; that is, they show a first-order criticality measure
asymptotically tends to 0. Augustin and Marzouk (2014) produce a code,
NOWPAC, that employs minimum-Frobenius norm quadratic models of both
the objective and constraint functions. This work is extended by Augustin
and Marzouk (2017) to the stochastic optimization problem (STOCH).

Whereas Augustin and Marzouk (2014) consider a local convexification
of inequality constraints through the addition of a convex function to the
constraint models, Regis and Wild (2017) consider a similar model-based
approach but define an envelope around models of nearly active constraints.
In particular, at the current point xk, the restricted feasible set (7.13) uses
the parameter

εi(x) =

{
0 if ci(xk) > −ξi,
ξi if ci(xk) ≤ −ξi,

where {ξi : i ∈ Is} is fixed. This form of ε ensures that trust-region sub-
problems remain non-empty and avoids applying a restriction when the
algorithm is sufficiently close to the level set {x : ci(x) = 0}.
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Tröltzsch (2016) considers an SQP method in the style of Omojokun
(1989), which applies a two-step process that first seeks to improve a meas-
ure of constraint violation and then solves a subproblem restricted to the
null space of modelled constraint gradients. Tröltzsch (2016) uses linear
models of the constraint functions and quadratic models of the objective
function, with these models replacing c and f in the augmented Lagrangian
merit function in (7.5). Step acceptance uses a merit function (an exact
penalty function).

Müller and Woodbury (2017) develop a method for addressing computa-
tionally inexpensive objectives while satisfying computationally expensive
constraints. Their two-phase method first seeks feasibility by solving a
multi-objective optimization problem (a problem class that is the subject
of Section 8.4) in which the constraint violations are minimized simultan-
eously; the second phase seeks to reduce the objective subject to constraints
derived from cubic RBF models of the constraint functions.

Bajaj, Iyer and Hasan (2018) propose a two-phase method. In the feasib-
ility phase, a trust-region method is applied to a quadratic penalty function
that employs models of the simulation-based constraints. The trust-region
subproblem at iteration k takes the form

minimize
x

{∑
i∈Is

max{0,mci(x)}2 : ci(x) ≤ 0 ∀i ∈ Ia, x ∈ B(xk; ∆k)

}
(7.14)

and thus explicitly enforces the algebraic constraints (i ∈ Ia) and penalizes
violation of the modelled simulation-based constraints (i ∈ Is). In the op-
timality phase, a trust-region method is applied to a model of the objective
function, and the modelled constraint violation is bounded by that achieved
in the feasibility phase; that is, the trust-region subproblem is

minimize
x

mf (x)

subject to ci(x) ≤ 0 for all i ∈ Ia
mci(x) ≤ ci(xpen) for all i ∈ Is
x ∈ B(xk; ∆k),

where xpen is the point returned from the feasibility phase.
Hare and Lewis (2005) present an approach for approximating the nor-

mal and tangent cones; their approach is quite general and applies to the
case when the domain is defined by non-quantifiable black-box constraints.
Davis and Hare (2013) consider a simplex-gradient-based approach for ap-
proximating normal cones when the black-box constraints are quantifiable.
Naturally, such approximate cones could be used to determine if a method’s
candidate solution approximately satisfies a stationarity condition.
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8. Other extensions and practical considerations

We conclude with a cursory look at extensions of the methods presented,
especially highlighting active areas of development.

8.1. Methods allowing for concurrent function evaluations

A number of the methods presented in this survey readily allow for the
concurrent evaluation of the objective function at multiple points x ∈ Rn.
Performing function evaluations concurrently through the use of parallel
computing resources should decrease the wall-clock time required by a given
method. Depending on the method, there is a natural limit to the amount
of concurrency that can be utilized efficiently. Below we summarize such
methods and their limits for concurrency.

The simplex methods discussed in Section 2.1 benefit from performing
n concurrent evaluations of the objective when a shrink operation is per-
formed. Also, the points corresponding to the expansion and reflection
operations could be evaluated in parallel. Non-opportunistic directional
direct-search methods are especially amenable to parallelization (Dennis,
Jr and Torczon 1991) because the |Dk| poll directions can be evaluated
concurrently.

Model-based methods from Section 2.2 can use concurrent evaluations
during model building when, for example, evaluating up to dim(Pd,n) ad-
ditional points for use in (2.14). In another example, CONDOR (Vanden
Berghen and Bersini 2005, Vanden Berghen 2004) utilizes concurrent eval-
uations of the objective to replace points far away from the current trust-
region centre by maximizing the associated Lagrange polynomial. The thesis
by Olsson (2014) considers three ways of using concurrent resources within a
model-based algorithm: using multiple starting points, evaluating different
models in order to better predict a point’s value, and generating multiple
points with each model (e.g. solving with the trust-region subproblem with
different radii). A similar approach of generating multiple trial points con-
currently is employed in the parallel direct-search, trust-region method of
Hough and Meza (2002).

Finite-difference-based approaches (e.g. Section 2.3) allow for n concur-
rent evaluations with forward differences (2.28) or 2n concurrent evalu-
ations with central differences (2.29). Implicit filtering also performs such
a central-difference calculation that can utilize 2n concurrent evaluations
(line 5 of Algorithm 4). Line-search methods can evaluate multiple points
concurrently during their line-search procedure. The methods of Garćıa-
Palomares and Rodŕıguez (2002) and Garćıa-Palomares, Garćıa-Urrea and
Rodŕıguez-Hernández (2013) also consider using parallel resources to con-
currently evaluate points in a neighbourhood of interest.
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When using a set of independently generated points, pure random search
exhibits perfect scaling as the level of available concurrency increases. Other-
wise, the randomized methods for deterministic objectives from Section 3
can utilize concurrent evaluations in a manner similar to that of their de-
terministic counterparts. Nesterov random search can use n or 2n concur-
rent objective evaluations when computing an approximate gradient in (3.1).
Randomized DDS methods can concurrently evaluate |Dk| poll points, and
randomized trust-region methods can concurrently evaluate points needed
for building and improving models.

In addition to the above approaches for using parallel resources, meth-
ods from Section 5 for structured problems can use concurrent evaluations
to calculate parts of the objective. For example, methods for optimizing
separable objectives such as (5.1) or (5.3) can evaluate the p component
functions Fi concurrently.

The various gradient approximations used by methods in Section 6 are
amenable to parallelization in the same manner as previously discussed,
but with the additional possibility of also evaluating at multiple ξ values.
SA methods can use 2n concurrent evaluations of f̃ in calculating (6.2)
or (6.4) and SPSA can use two concurrent evaluations when calculating
(6.5). Methods employing the sample mean estimator (6.7) can utilize pk
evaluations concurrently.

8.2. Multistart methods

A natural approach for addressing non-convex objectives for which it is not
known whether multiple local minima exist is to start a local optimization
method from different points in the domain in the hope of identifying dif-
ferent local minima. Such multistart approaches also allow for the use of
methods that are specialized for optimizing problems with known structure.

Multistart methods allow for the use of concurrent objective evaluations
if two or more local optimization runs are being performed at the same
time. Multistart methods also allow one to utilize additional computational
resources; this ability is especially useful when an objective evaluation does
not become faster with additional resources or when the local optimization
method is inherently sequential.

Boender, Rinnooy Kan, Timmer and Stougie (1982) derive confidence
intervals on the objective value of a global minimizer when starting a local
optimization method at uniformly drawn points. Their analysis gives rise
to the multilevel single linkage (MLSL) method (Rinnooy Kan and Timmer
1987a, Rinnooy Kan and Timmer 1987b). Iteration k of the method draws
N points uniformly over the domain and starts a local optimization method
from sampled points that do not have any other point within a specific
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distance, depending on k and N , with a smaller objective value. With this
rule, and under assumptions on the distance between minimizers in Ω and
properties of the local optimization method used, MLSL is shown to almost
surely identify all local minima while starting the local optimization method
from only finitely many points. Larson and Wild (2016, 2018) generalize
MLSL by showing similar theoretical results when starting-point selection
utilizes points both from the random sampling and from those generated by
local optimization runs.

If a meaningful variance exists in the objective evaluation times, batched
evaluation of points may result in an inefficient use of computational re-
sources. Such concerns have motivated the development of a number of
methods including the HOPSPACK framework (Plantenga 2009), which sup-
ports the sharing of information between different local optimization meth-
ods. Shoemaker and Regis (2003) also use information from multiple op-
timization methods to determine points at which to evaluate the objective
function. Similarly, the SNOBFIT method by Huyer and Neumaier (2008)
uses concurrent objective evaluations while combining local searches in a
global framework. The software focuses on robustness in addressing many
practical concerns including soft constraints, hidden constraints, and a prob-
lem domain that is modified by the user as the method progresses.

Instead of coordinating concurrent instances of a pattern-search method,
Audet, Dennis, Jr and Le Digabel (2008a) propose an implementation of
MADS that decomposes the domain into subspaces to be optimized over in
parallel. Alarie et al. (2018) study different approaches for selecting sub-
sets of variables to define subproblems in such an approach. Custódio and
Madeira (2015) maintain concurrent instances of a pattern-search method,
and merge those instances that become sufficiently close. Taddy, Lee,
Gray and Griffin (2009) use a global treed-Gaussian process to guide a
local pattern-search method to encourage the identification of better local
minima.

8.3. Other global optimization methods

Guarantees of global optimality for general continuous functions rely on
candidate points being generated densely in the domain (Törn and Žilinskas
1989, Theorem 1.3); such candidate points can be generated in either a
deterministic or randomized fashion. When f is Lipschitz-continuous on Ω
and the Lipschitz constant Lf is available to the optimization method, one
need not generate points densely in the domain. In particular, if x̂ is an
approximate minimizer of f and x is a point satisfying f(x) > f(x̂), no
global minimizer can lie in – and therefore no point needs to be sampled
from – B(x; (f(x)− f(x̂))/Lf). Naturally, the benefit of exploiting this fact
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requires accurate knowledge of the Lipschitz constant. One can empirically
observe a lower bound on Lf , but obtaining useful upper bounds on Lf

may not be possible. Methods that exploit this Lipschitz knowledge may
suffer a considerable performance decrease when overestimating Lf (Hansen,
Jaumard and Lu 1991).

Motivated by situations where the Lipschitz constant of f is unavail-
able, Jones, Perttunen and Stuckman (1993) develop the DIRECT (DIvid-
ing RECTangles) method. DIRECT partitions a bound-constrained Ω into
2n+1 hyper-rectangles (hence the method’s name) with an evaluated point
at the centre of each. Each hyper-rectangle is scored via a combination of
the length of its longest side and the function value at its centre. This scor-
ing favours hyper-rectangles exhibiting both long sides and small function
values; the best-scoring hyper-rectangles are further divided. (As such, DIR-
ECT’s performance can be significantly affected by adding a constant value
to the objective (Finkel and Kelley 2006).) DIRECT generates centres that
are dense in Ω and will therefore identify the global minimizers of f over Ω,
even when f is non-smooth (Jones et al. 1993, Finkel and Kelley 2004, Finkel
and Kelley 2009). Several versions of DIRECT that perform concurrent
function evaluations take significant care to ensure the sequence of points
generated is the same as that produced by DIRECT (He, Verstak, Sosonkina
and Watson 2009a, He, Verstak, Watson and Sosonkina 2007, He, Verstak,
Watson and Sosonkina 2009b, He, Watson and Sosonkina 2009c). Similar
hyper-rectangle partitioning strategies are used by the methods of Munos
(2011). The multilevel coordinate-search (MCS) method by Huyer and Neu-
maier (1999) is inspired by DIRECT in many ways. MCS maintains a par-
titioning of the domain and subdivides hyper-rectangles based on their size
and value. MCS uses the function values at boundary points, rather than
the centre points, to determine the value of a hyper-rectangle; such bound-
ary points can be shared by more than one hyper-rectangle. Huyer and
Neumaier (2008) show that a version of MCS needs to consider only finitely
many hyper-rectangles before identifying a global minimizer.

Many randomized approaches for generating points densely in a domain Ω
have been developed. These include Bayesian optimization methods and re-
lated variants (Mockus 1989, Jones, Schonlau and Welch 1998, Frazier 2018),
some of which have established complexity rates (Bull 2011). Such random-
ized samplings of Ω can be used to produce a global surrogate; similar to
other model-based methods, this global model can be minimized to produce
points where the objective should be evaluated. Although minimizing such
a global surrogate may be difficult, such a subproblem may be easier than
the original problem, which typically entails a computationally expensive
objective function for which derivatives are unavailable. Vu, D’Ambrosio,
Hamadi and Liberti (2016) provide a recent survey of such surrogate-based
methods for global optimization.
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8.4. Methods for multi-objective optimization

Multi-objective optimization problems are typically stated as

minimize
x

F (x)

subject to x ∈ Ω ⊂ Rn,
(MOO)

where p > 1 objective functions fi : Rn → R for i = 1, . . . , p define the
vector-valued mapping F via F (x) = [f1(x), . . . , fp(x)]. Given potentially
conflicting objectives f1, . . . , fp, the problem (MOO) is well-defined only
when given an ordering on the vector of objective values F (x). Given
distinct points x1,x2 ∈ Rn, x1 Pareto dominates x2 provided

fi(x1) ≤ fi(x2) for all i = 1, . . . , p and fj(x1) < fj(x2) for some j.

The set of all feasible points that are not Pareto-dominated by any other
feasible point is referred to as the Pareto(-optimal) set of (MOO). An
in-depth treatment of such problems is provided by Ehrgott (2005).

Ideally, a method designed for the solution of (MOO) should return an
approximation of the Pareto set. If at least one objective f1, . . . , fp is non-
convex, however, approximating the Pareto set can be challenging. Con-
sequently, methods for multi-objective optimization typically pursue Pareto
stationarity, which is a form of local optimality characterized by a first-order
stationarity condition. If Ω = Rn, a point x∗ is a Pareto stationary point
of F provided that for each d ∈ Rn, there exists j ∈ {1, . . . , p} such that
f ′j(x∗;d) ≥ 0. This notion of stationarity is an extension of the one given
for single-objective optimization in (2.1).

Typical methods for (MOO) return a collection of points that are not
known to be Pareto-dominated and thus serve as an approximation to the set
of Pareto points. From a theoretical point of view, most methods endeavour
only to demonstrate that all accumulation points are Pareto stationary, and
rarely prove the existence of more than one such point. From a practical
point of view, comparing the approximate Pareto sets returned by a method
for multi-objective optimization is not straightforward. For discussions of
some comparators used in multi-objective optimization, see Knowles and
Corne (2002) and Audet et al. (2018a).

Various derivative-free methods discussed in this survey have been exten-
ded to address (MOO). The method of Audet, Savard and Zghal (2008b)
solves biobjective optimization problems by iteratively combining the two
objectives into a single objective (for instance, by considering a weighted
sum of the two objectives); MADS is then applied to this single-objective
problem. Audet, Savard and Zghal (2010) extend the method of Audet et al.
(2008b) to multi-objective problems with more than two objectives. Audet
et al. (2008b, 2010) demonstrate that all refining points of the sequence of
candidate points produced by these methods are Pareto stationary.
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Custódio, Madeira, Vaz and Vicente (2011) propose direct-multisearch
methods, a multi-objective analogue of direct-search methods. Like direct-
search methods, direct-multisearch methods involve both a search step and
a poll step. Direct-multisearch methods maintain a list of non-dominated
points; at the start of an iteration, one non-dominated point must be se-
lected to serve as the centre for a poll step. Custódio et al. (2011) demon-
strate that at any accumulation point x∗ of the maintained sequence of non-
dominated points from a direct-multisearch method, it holds that for any
direction d that appears in a poll step infinitely often, f ′j(x∗,d) ≥ 0 for at
least one j. In other words, accumulation points of the method are Pareto
stationary when restricted to these directions d. Custódio and Madeira
(2016) incorporate these direct-multisearch methods within a multistart
framework in an effort to find multiple Pareto stationary points and thus
to better approximate the Pareto set.

For stochastic biobjective problems, Kim and Ryu (2011) employ sample
average approximation to estimate F (x)= Eξ[F̃ (x; ξ)] and propose a model-
based trust-region method. Ryu and Kim (2014) adapt the approach of
Kim and Ryu (2011) to the deterministic biobjective setting. At the start
of each iteration, these methods construct fully linear models of both ob-
jectives around a (currently) non-dominated point. These methods solve
three trust-region subproblems – one for each of the two objectives, and a
third that weights the two objectives as in Audet et al. (2008b) – and ac-
cept all non-dominated trial points. If both objectives are in LC1, Ryu and
Kim (2014) prove that one of the three objectives satisfies a lim-inf conver-
gence result of the form (2.5), implying the existence of a Pareto-stationary
accumulation point.

Liuzzi, Lucidi and Rinaldi (2016) propose a method for constrained multi-
objective non-smooth optimization that separately handles each objective
and constraint via an exact penalty (see (7.2)) in order to determine whether
a point is non-dominated. Given the non-sequential nature of how non-
dominated points are selected, Liuzzi et al. (2016) identify and link the
subsequences implied by a lim-inf convergence result. They show that limit
points of these linked sequences are Pareto stationary provided the search
directions used in each linked sequence are asymptotically dense in the unit
sphere.

Cocchi, Liuzzi, Papini and Sciandrone (2018) extend implicit filtering to
the multi-objective case. They approximate each objective gradient sep-
arately using implicit-filtering techniques; they combine these approximate
gradients in a disciplined way to generate search directions. Cocchi et al.
(2018) demonstrate that their method generates at least one accumulation
point and that every such accumulation point is Pareto stationary.
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8.5. Methods for multifidelity optimization

Multifidelity optimization concerns the minimization of a high-fidelity ob-
jective function f = f0 in situations where a lower-fidelity version fε (for
ε > 0) also exists. Evaluations of the lower-fidelity function fε are less
computationally expensive than are evaluations of f0; hence, a goal in mul-
tifidelity optimization is to exploit the existence of the lower-fidelity fε in
order to perform as few evaluations of f0 as possible. An example of such a
setting occurs when there exist multiple grid resolutions defining discretiza-
tions for the numerical solution of partial differential equations that defines
f0 and fε.

Polak and Wetter (2006) develop a pattern-search method that exploits
the existence of multiple levels of fidelity. The method begins at the coarsest
available level and then monotonically refines the level of fidelity (i.e. de-
creases ε) after a sufficient number of consecutive unsuccessful iterations
occur.

A method that both decreases ε and increases ε (akin to the V- and W-
cycles of multigrid methods (Xu and Zikatanov 2017)), is the multilevel
method of Frandi and Papini (2013). The method follows the MG/Opt
framework of Nash (2000) and instantiates runs of a coordinate-search
method at specified fidelity and solution accuracy levels. Another multigrid-
inspired method is developed by Liu, Zeng and Yang (2015), wherein a hier-
archy of DIRECT runs are performed at varying fidelity and budget levels.

Model-based methods have also been extended to the multifidelity setting.
For example, March and Willcox (2012) employ a fully linear RBF model
to interpolate the error between two different fidelity levels. Their method
then employs this model within a trust-region framework, but uses f0 to
determine whether to accept a given step.

Another model-based approach for multifidelity optimization is co-kriging;
see, for example, Xiong, Qian and Wu (2013) and Le Gratiet and Cannamela
(2015). In such approaches, a statistical surrogate (typically a Gaussian pro-
cess model) is constructed for each fidelity level with the aim of modelling
the relationships among the fidelity levels in areas of the domain relevant
to optimization.

Derivative-free methods for multifidelity, multi-objective and concurrent/
parallel optimization remain an especially open avenue of future research.
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Appendix: Collection of WCC results

Table A.1 contains select WCC bounds for methods appearing in the liter-
ature. Given ε > 0, all WCC bounds in this appendix are given in terms
of Nε, an upper bound on the number of function evaluations of a method
to guarantee that the specified condition is met. We present results in this
form because function evaluation complexity of derivative-free methods is
often of greater interest than is iteration complexity. We present Nε in terms
of four parameters:

• the accuracy ε;

• the dimension n;

• the Lipschitz constant of the function Lf , the Lipschitz constant of the
function gradient Lg or the Lipschitz constant of the function Hessian
LH (provided these constants are well-defined); and

• a measure of how far the starting point x0 is from a stationary point
x∗. In this appendix, this measure is either f(x0)− f(x∗),

Rlevel = sup
x∈Rn

{‖x− x∗‖ : f(x) ≤ f(x0)} (8.1)

or

Rx ≥ ‖x0 − x∗‖. (8.2)

We present additional constants in Nε when particularly informative.
Naturally, each method in Table A.1 has additional algorithmic paramet-

ers that influence algorithmic behaviour. We have omitted the dependence
of each method’s WCC on the selection of algorithmic parameters to allow
for an easier comparison of methods.

We recall that, with the exception of the methods from Nesterov and
Spokoiny (2017) and Konečný and Richtárik (2014), the methods referenced
in Table A.1 do not require knowledge of the value of the relevant Lipschitz
constants.
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Table A.1. Known WCC bounds on the number of function evaluations needed to achieve a given stationarity measure.

Rate type Method type (citation)notes Nε

f ∈ LC1

‖∇f(xk)‖ ≤ ε DDS (Konečný and Richtárik 2014)
n2Lg(f(x0)− f(x∗))

ε2

TR (Garmanjani et al. 2016)
n2L2

g(f(x0)− f(x∗))

ε2

ARC-DFO (Cartis et al. 2012)A n2 max{LH, Lg}3/2(f(x0)− f(x∗))

ε3/2

EUk−1
[‖∇f(x̂k)‖] ≤ ε RS (Nesterov and Spokoiny 2017)B nLg(f(x0)− f(x∗))

ε2

‖∇f(xk)‖ ≤ ε w.p. 1− p1 DDS (Gratton et al. 2015)C
mnL2

g(f(x0)− f(x∗))

ε2

‖∇f(xk)‖ ≤ ε w.p. 1− p2 TR (Gratton et al. 2018)C,D mmax{κef , κeg}2(f(x0)− f(x∗))

ε2

f ∈ LC2

max{‖∇f(xk)‖,−λk} ≤ ε DDS (Gratton et al. 2016)
n5 max{LH, Lg}3(f(x0)− f(x∗))

ε3

TR (Gratton et al. 2019a)
n5 max{L3

H, L
2
g}(f(x0)− f(x∗))

ε3

max{‖∇f(xk)‖,−λk} ≤ ε w.p. 1− p3 TR (Gratton et al. 2018)C,D mmax{κeg, κeH}3(f(x0)− f(x∗))

ε3
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Table A.1 continued.

Rate type Method type (citation)notes Nε

f ∈ LC1, f is λ-strongly convex

f(xk)− f(x∗) ≤ ε DDS (Konečný and Richtárik 2014)
n2Lg

λ
log

(
1

ε

)
EUk−1

[f(x̂k)]− f(x∗) ≤ ε RS (Nesterov and Spokoiny 2017)B nLg

λ
log

(
LgRx

2

ε

)
f ∈ LC1, f is convex

f(xk)− f(x∗) ≤ ε DDS (Konečný and Richtárik 2014)E n2LgRlevel

ε

EUk−1
[f(x̂k)]− f(x∗) ≤ ε RS (Nesterov and Spokoiny 2017)B nLgRx

2

ε

f ∈ LC0, f is convex

EUk−1
[f(x̂k)]− f(x∗) ≤ ε RS (Nesterov and Spokoiny 2017)B n2L2

fRx
2

ε2

f ∈ LC0

EUk−1
[‖∇fµ̄(x̂k)‖] ≤ ε, µ̄ =

ε

Lf
√
n

RS (Nesterov and Spokoiny 2017)B n3L5
f (f(x0)− f(x∗))

ε3
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Table A.1 continued.

Rate type Method type (citation)notes Nε

f = h ◦ F , convex h ∈ LC0, F ∈ LC1

Ψ(xk) ≤ ε TR (Garmanjani et al. 2016)F pn2Lg(F )2Lf(h)2(f(x0)− f(x∗))

ε2

A smoothed fµ(x) for f

‖∇fµk
(xk)‖ ≤ ε where µk ∈ O

(
ε√
n

)
DDS (Garmanjani and Vicente 2012)G n5/2 [− log(ε) + log(n)] (f(x0)− f(x∗))

ε3

TR (Garmanjani et al. 2016)G n5/2 [| log(ε)|+ log(n)] (f(x0)− f(x∗))

ε3

A We omit an additional | log(ε)| dependence.

B x̂k = arg minj=1,...,k f(xj).

C m is the number of function evaluations performed in each iteration, independent of n.

D Gratton et al. (2018) prove results for an arbitrary model-building scheme that assumes the ability to yield p-probabilistically κQ-fully quadratic

models (where κQ = (κef , κeg, κeH)) when f ∈ LC2 and p-probabilistically κL-fully linear models (where κL = (κef , κeg)) when f ∈ LC1. The
construction of probabilistically fully quadratic models or probabilistically fully linear models when m� (n+1)(n+2)/2 remains an open question.
Note that when p = 1, it is known that by using m ∈ O(n2) points, one can guarantee κQ-fully quadratic models with κef , κeg, κeH ∈ O(nLH)
(Conn et al. 2008a, Theorem 3). In this case, the result of Gratton et al. (2018) yields a rate weaker than that obtained by Gratton et al.
(2016) by a factor of Lg. Similarly, when p = 1, it is known that by using m ∈ O(n) points, one can guarantee κL-fully linear models with

κef , κeg ∈ O(n1/2Lg) (Conn et al. 2008a, Theorem 2). In this case, the result of Gratton et al. (2018) yields a rate comparable to that obtained
by Garmanjani et al. (2016).

E Vicente (2013) derives the same bound but with L2
g instead of Lg; however, the method of Vicente (2013) does not require the value Lg.

F Lg(F ) is the Lipschitz constant of the Jacobian J(F ), Lf(h) is the Lipschitz constant of h, and p is the dimension of the domain of h. A bound
for a similar method with an additional | log(ε)| dependence appears in Grapiglia et al. (2016).

G Lipschitz constants do not appear because they are ‘cancelled’ by choosing the rate at which smoothing parameter µk → 0.
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In Table A.1, we employ the constants

p1 = exp

(
−
nL2

g

ε2
(f(x0)− f(x∗))

)
,

p2 = exp

(
−max{κef , κeg}2

ε2
(f(x0)− f(x∗))

)
,

p3 = exp

(
−max{κeg, κeH}3

ε3
(f(x0)− f(x∗))

)
.
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A. L. Custódio, J. E. Dennis, Jr and L. N. Vicente (2008), ‘Using simplex gradients
of nonsmooth functions in direct search methods’, IMA J. Numer. Anal. 28,
770–784.
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J. J. Moré and S. M. Wild (2009), ‘Benchmarking derivative-free optimization
algorithms’, SIAM J. Optim. 20, 172–191.
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