
43

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, 
Alfred O. Hero III, and Pramod K. Varshney

NONCONVEX OPTIMIZATION FOR SIGNAL 
PROCESSING AND MACHINE LEARNING

IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   |1053-5888/20©2020IEEE

Z eroth-order (ZO) optimization is a subset of gradient-free 
optimization that emerges in many signal processing and 
machine learning (ML) applications. It is used for solving 

optimization problems similarly to gradient-based methods. 
However, it does not require the gradient, using only function 
evaluations. Specifically, ZO optimization iteratively performs 
three major steps: gradient estimation, descent direction com-
putation, and the solution update. In this article, we provide a 
comprehensive review of ZO optimization, with an emphasis 
on showing the underlying intuition, optimization principles, 
and recent advances in convergence analysis. Moreover, we 
demonstrate promising applications of ZO optimization, such 
as evaluating robustness and generating explanations from 
black-box deep learning (DL) models and efficient online sen-
sor management.

Introduction
Many signal processing, ML, and DL applications involve 
tackling complex optimization problems that are difficult to 
solve analytically. Often, the objective function itself may not 
be in an analytical closed form, permitting function evalua-
tions but not gradient assessments. Optimization correspond-
ing to these types of problems falls into the category of ZO 
optimization with respect to black-box models, where explicit 
expressions of the gradients are difficult to compute or infea-
sible to obtain. ZO optimization methods are gradient-free 
counterparts of first-order (FO) optimization methods. They 
approximate the full gradients or stochastic gradients through 
function value-based gradient estimates. Interest in ZO opti-
mization has grown rapidly during the years since the concept 
of gradient estimation by finite difference approximations was 
proposed during the 1950s and 1980s [1], [2].

It is worth noting that derivative-free methods for black-box 
optimization had been studied by the optimization community 
long before they had an impact on signal processing and ML/
DL. Traditional derivative-free optimization (DFO) methods 
can be classified into two categories: direct search-based meth-
ods (DSMs) and model-based methods (MBMs) [3]–[6]. DSMs 
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include the Nelder–Mead simplex method [7], coordinate 
search method [8], and pattern search method [9], to name a 
few. MBMs contain model-based descent methods [10] and 
trust region methods [11]. Evolutionary optimization is another 
class of generic population-based metaheuristic DFO algo-
rithms that includes particle swarm optimization methods [12] 
and genetic algorithms [13]. Some Bayesian optimization (BO) 
methods [14] tackle black-box optimization problems by mod-
eling the objective function as a Gaussian process (GP) that 
is learned from the history of function evaluations. However, 
learning an accurate GP model is computationally intensive.

Conventional DFO methods have two main shortcomings. 
First, they are often difficult to scale to large-size problems. 
For example, the off-the-shelf DFO solver COBYLA [15] only 
supports problems with a maximum of 216 variables (SciPy 
Python library [16]), which is smaller than the size of a single 
ImageNet image [17]. Second, DFO methods lack a conver-
gence rate analysis, and they may require a significant amount 
of effort to be customized to particular applications. ZO opti-
mization has three main advantages over DFO: 1) the ease of 
implementation, with only a small modification of commonly 
used gradient-based algorithms; 2) computationally efficient 
approximations to derivatives when they are difficult to com-
pute; and 3) comparable convergence rates to FO algorithms 
[18]–[21]. An illustrative example of ZO optimization versus 
FO optimization is shown in Figure 1.

ZO optimization has attracted increasing attention due to 
its success in solving emerging signal processing and ML/DL 
problems. First, ZO optimization serves as a powerful and prac-
tical tool for evaluating the adversarial robustness of ML/DL 
systems [22]. We note that the research in adversarial robustness 
has received increased attention during recent years. ZO-based 
methods for exploring the vulnerability of DL to black-box 
adversarial attacks are able to reveal the most susceptible fea-
tures. Such ZO methods can be as effective as state-of-the-art 
white-box attacks, despite having access only to the inputs and 
outputs of the targeted deep neural networks (DNNs) [23], 
[24]. Moreover, ZO optimization can generate explanations 

and provide interpretations of prediction results in a gradient-
free and model-agnostic manner [25]. Furthermore, ZO opti-
mization can also be used to solve automated ML (AutoML) 
problems, e.g., automated backpropagation in DL, where the 
gradients with respect to ML pipeline configuration parameters 
are intractable [26]. ZO optimization is also applicable to ML 
applications where the full gradient must be kept private [27]. 
In addition, ZO optimization provides computationally efficient 
alternatives for second-order optimization, such as robust train-
ing by curvature regularization [28], metalearning [29], transfer 
learning [30], and online network management [27]. 

Gradient estimation via ZO oracle
In this section, we provide an overview of gradient estima-
tion techniques for optimization with a black-box objective 
function. The resulting gradient estimate forms the basis for 
constructing the descent direction used in ZO optimization al-
gorithms. We categorize the ZO gradient estimates into two 
types, one-point and multipoint estimates, based on the num-
ber of queried function evaluations. As the number of function 
evaluations increases, a more accurate gradient estimate is ex-
pected but at the cost of increased query complexity.

One-point estimate
We start by the principles of randomized gradient estimation 
in the context of one-point estimation. Let ( )f x  be a continu-
ously differentiable objective function on a d-dimension vari-
able .x Rd!  The one-point gradient estimate of f has the ge-
neric form

	 ( ):
( )

( ) ,f
d

fx x u ud
n

z
n= +t � (1)

where ~pu  is a random direction vector drawn from a certain 
distribution p, which is typically chosen as either the standard 
multivariate normal distribution ( , )0 IN  [19] or the multivari-
ate uniform distribution ( ( , ))0 1U S  on a unit sphere centered 
at zero with a radius of one [20] and where 02n  is a pertur-
bation radius (also called a smoothing parameter) and ( )dz  
denotes a certain dimension-dependent factor related to the 
choice of the distribution p. If ( , ),p 0 IN=  then ( ) ;d 1z =  if 

( ( , )),p 0 1U S=  then ( ) .d dz =

The rationale behind (1) is that it is an unbiased estimate 
of the gradient of the smoothed version of f across a random 
perturbation ~pu l with smoothing parameter ,n

	 ( ) : [ ( )],f fx x uE ~pu n= +n l � (2)

where pl is specified as ( , )0 IN  if ( , )p 0 IN=  in (1) or the 
multivariate uniform distribution on a unit ball ( ( , ))0 1U B  if 

( ( , ))p 0 1U S=  in (1). The unbiasedness of (1) with respect to 
( )f xd n  is assured by [19], [31]

	 ( ) ( ) .f fx xE ~pu d d= n
t6 @ � (3)

The meaning of (3) can be elucidated by considering the scalar case 
.d 1=  Given ( ( , )),p 0 1U S=  applying the fundamental theo-

rem of calculus to (2) yields ( ) / ( )/f x d dx f x u du1 2d = + =n
n

n

-
#  
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(a) FO Descent (b) ZO Descent

FIGURE 1. (a) FO optimization versus (b) ZO optimization. Here, the former 
solves the optimization problem ( )xmin fx  with the white-box objective 
function f, and the latter solves the problem when f is a black-box func-
tion. Typically, ZO optimization has a slower convergence speed than FO 
optimization.
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/ ( ) ( ) ,f x f x1 2n n n+ - -6 @  which is equal to ( )f xE ~u p dt6 @ 
from (1). Although the one-point estimate (1) is unbiased with 
respect to the gradient of the smoothed function ( ),f xd n  it is a 
biased approximation of the true gradient ( ) .f xd  Furthermore, 
the one-point estimate is not commonly used in practice since it 
suffers from a high variance, defined as ( ) ( ) ,f fx xE 2

2
d d- n
t8 B  

which slows convergence [20].

Multipoint ZO estimate
A natural extension of (1) is the directional derivative approxi-
mation (two-point estimate) [19], [21]

	 ( ) :
( )

( ) ( ) ,f
d

f fx x u x ud
n

z
n= + -t 6 @ � (4)

which satisfies the unbiasedness condition (3) for any u  such 
that [ ] .u 0E ~pu =  The mean squared approximation error of 
the gradient estimate (4) with respect to the true gradient ( )f xd  
obeys [31], [32]

( ) ( ) ( ) ( )
( )

,f f O d f O
d

d d
x x xE 2 2

2 3 2

d d d< < < <
z

n n
- = +

+
22

t e o6 @ 	(5)

where we adopt the big-O notation to highlight the dominant 
factors d and n  affecting the gradient estimation error. It is 
worth noting that the (coordinate-wise) two-point ZO estimate 
for finding the optimum of a regression function was initially 
proposed during the 1950s [1]. This gradient estimation tech-
nique was further studied during the 1980s in the context of 
simultaneous perturbation stochastic approximation [2], [33].

The approximation error (5) of the two-point estimate in (4) 
provides several insights. First, the gradient estimate gets better 
as the smoothing parameter n becomes smaller. However, in a 
practical system, if n is too small, then the function difference 
could be dominated by system noise, and it may fail to represent 
the differential [32], [34]. Thus, careful selection of the smoothing 
parameter n is important for the convergence of ZO optimiza-
tion methods. Second, different from the FO stochastic gradient 
estimate, the ZO gradient estimate yields a dimension-dependent 
variance that increases as ( ) ( ) .O d f x 2d< <2  Thus, the variance 
cannot be reduced, even if .0"n  As a result, some recent work 
has focused on the design of variance-reduced gradient estimates.

Minibatch sampling is the most commonly used approach to 
reduce the variance of ZO gradient estimates [21], [27]. Instead 
of using a single random direction, the average of b indepen-
dent, identically distributed samples { }ui i

b
1=  drawn from p are 

used for gradient estimation, leading to the multipoint estimate

	 ( ) :
( )

[( ( ) ( )) ],f
d

f fx x u x u
i

b

i i
1

d
n

z
n= + -

=

t / � (6)

with the approximation error [31]

	 ( )
( ) ( )
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d f O
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d

O
d
d

x 2
2 3 2

d< <
z

n

z

n
+ +2` e ej o o � (7)

In (7), the first two terms correspond to the reduced variance 
of the two-point estimate ( ) ( )f fx xE 2d d< <- n 2

t6 @ due to the 

drawing of b random direction vectors. And the third term, 
independent of b, corresponds to the approximation error due 
to the gradient of the smoothed function ( ) ( ) .f fx x 2d d< <- n 2

When the number of function evaluations reaches the prob-
lem dimension d in (6), then instead of using randomized 
directions { } ,ui i

d
1=  one can employ the deterministic coordi-

nate-wise gradient estimate / ( ( ) ( ))( / ) ,f f1 x e x ei i i
d

1n n+ -= 6 @  
which yields a lower approximation error that is on the order of 

( )O d 2n  [1], [31], [34]. Here e Ri
d!  denotes the ith elementary 

basis vector, with one at the ith coordinate and zeros elsewhere. 
In practice, the multipoint gradient estimate (6) is usually im
plemented with .b d2 # #  The previously introduced multi-
point estimates are computed by using forward differences of 
function values. An alternative is the central difference vari-
ant that uses ( ( ) ( )),f fx u x un n+ - -  where u  can be either 
randomized or deterministic [1], [2]. These central difference 
estimates have similar approximation errors to the forward dif-
ference estimates [31], [34], [35].

ZO optimization algorithms
In this section, we present a unified algorithmic framework 
covering many commonly used ZO optimization methods. We 
provide a thorough overview of existing algorithms in differ-
ent problem settings and delve into the factors that influence 
their convergence.

The generic form of the ZO algorithm
Let us consider a stochastic optimization problem

	  ( ) : [ ( ; )],min f fx xE
x

p=
!

p
|

� (8)

where x Rd!  are optimization variables, X  is a closed convex 
set, f is a possibly nonconvex objective function, and p  is a 
certain random variable that captures stochastic data samples 
or noise. If p  obeys a uniform distribution across n empirical 
samples { } ,i i

n
1p =  then problem (8) reduces to a finite-sum for-

mulation with the objective function /( ) ( / ) ( ) .f fn1 ;x xi i
n

1 p= =  
And if ,RX d=  then problem (8) simplifies to the uncon-
strained optimization problem.

Most ZO optimization methods mimic their FO counter-
parts and involve three steps, shown in Algorithm 1: gradient 
estimation (A1), descent direction computation (A2), and point 
updating (A3). Without a loss of generality, we specify (A1) as a 
variant of (6) built on a minibatch of empirical samples { } ,j j tp !X

	 ({ ( ; )} , ) ( ; ),f f1x xgt t j j
t

t j
t jt

t

d
; ;

p pz a
X

= =!
!

X
X

t t/ � (9)

where ( ; )f xt jd pt  is given by (6) as the gradient of the function 
( ; ),f $ p  and t; ;X  denotes the cardinality of the set of minibatch 

samples at iteration t. Next, we elaborate on the descent direc-
tion computation and the point-updating step used in many 
ZO algorithms.

ZO algorithms for unconstrained optimization
We consider the ZO stochastic gradient descent (ZO–SGD) 
method [18], ZO sign-based SGD (ZO-signSGD) [36], ZO 
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stochastic variance reduced gradient (ZO-SVRG) method 
[32], [37]–[39], and ZO Hessian-based (ZO-Hess) algo-
rithm [40], [41]. These algorithms employ the same point-up-
dating rule (A3)

.x x mt t t t1 h= --

However, they adopt different strategies to form the descent 
direction mt  in (A2).

■■ ZO-SGD [18]: The descent direction mt  is set as the cur-
rent gradient estimate .m gt t= t  Note that the ZO-SGD 
becomes the ZO stochastic coordinate descent (ZO-SCD) 
method [34] as the coordinate-wise gradient estimate is 
used. Moreover, if the full batch of stochastic samples is 
used, then the ZO-SGD becomes the ZO-GD [19].

■■ ZO-signSGD [36]: The descent direction mt  is given by 
the sign of the current gradient estimate ( ),signm gt t= t  
where ( )sign $  denotes the element-wise sign operation. 
Using the sign operation scales down the (coordinate-wise) 
estimation errors [36], [42].

■■ ZO-SVRG [32], [37]–[39]: The descent direction mt  is 
formed by combining gtt  with a control variate of the 
reduced variance, [ ],m g c cEt t t t= - + pt  where ct  denotes 
a control variate, which is commonly given by a gradient 
estimate evaluated at xt 1-  of the entire data set of n empir-
ical samples.

■■ ZO-Hess [40]: The descent direction mt  incorporates the 
approximate Hessian Ht

t  [40], ,m H g/
t t t

1 2= -t t  where Ht
t  is 

constructed either by the second-order Gaussian Stein’s 
identity [41] or the diagonalization-based Hessian approxi-
mation [40]. The former approach was used in [41] to 
develop the ZO stochastic cubic regularized Newton 
(ZO-SCRN) method.

ZO algorithms for constrained optimization
We next present the ZO projected SGD (ZO-PSGD) [43], ZO 
stochastic mirror descent (ZO-SMD) [21], ZO stochastic 
conditional gradient (ZO-SCG) algorithm [41], [44], and ZO 

adaptive momentum method (ZO-AdaMM) [45] for con-
strained optimization. The aforementioned algorithms, with 
the exception of the ZO-AdaMM, specify the descent direc-
tion (A2) as the current gradient estimate .m gt t= t  Their 
key difference lies in how they implement the point-updating 
step (A3).

■■ ZO-PSGD [43]: By letting XP  be the Euclidean distance-
based projection operation, the point-updating step (A3) is 
given by ( ) .argminx x x mt t t t1

2
x X < <h= - -! - 2

■■ ZO-SMD [21]: Upon defining a Bregman divergence ( , )D x yh  
with respect to a strongly convex and differentiable func-
tion h, ( , ) ( ) ( ) ( ) ( ),D h h hx y x y x y yh

Td= - - -  the point-
updating step (A3) is given by xt = argmin m xt

T
x X +!

( / ) ( , ).D1 x xt h th  For example, if ( ) ( / ) ,h 1 2x x 2< <= 2  then 
( , ) ( / ) ,D 1 2x y x yh

2< <= - 2  and (argminx x xt t 1x X <= -! -  
) ,mt t

2<h- 2  which reduces to the ZO-PSGD.
■■ ZO-SCG [41], [44]: The point-updating step (A3) calls for 

a linear minimization oracle [41], ,argminz m xt t
T

x X= !  
and forms a feasible point update through the linear 
combination ( ) .1x x zt t t t t1h h= - +-  Similar algorithms, 
known as the ZO Frank–Wolfe, were also developed in 
[46] and [47].

■■ ZO-AdaMM [45]: Different from the ZO-PSGD, ZO-SMD, 
and ZO-SCG, the ZO-AdaMM adopts a momentum-type 
descent direction (rather than the current estimate ),gtt  an 
adaptive learning rate (rather than the constant rate ),th  
and a projection operation under Mahalanobis distance 
(rather than Euclidean distance). The ZO-AdaMM can 
strike a balance between the convergence speed and the 
accuracy. However, it requires tuning extra algorithmic 
hyperparameters in addition to the learning rate and smooth-
ing parameters [45], [48].

ZO optimization in complex settings
Here, we review ZO algorithms for composite optimization, 
minimum–maximum (min–max) optimization, distributed op-
timization, and structured high-dimensional optimization.

ZO composite optimization
Consider the following problem with a smooth-plus-nonsmooth 
composite objective function:

	 ( ) ( ),f gminimize x x
x Rd

+
!

� (10)

where f is a black-box smooth function (possibly nonconvex) 
and g is a white-box nonsmooth regularization function. The 
form of problem (10) arises in many sparsity-promoted ap-
plications, e.g., adversarial attack generation [49] and online 
sensor management [27]. The ZO proximal SGD (ZO-ProxS-
GD) algorithm [43] and ZO (stochastic) alternating direction 
method of multipliers (ZO-ADMM) [27], [50], [51] were de-
veloped to solve (10). We remark that (8) can also be cast as 
(10) by introducing the indicator function of the constraint 
x X!  in the objective of (8) by letting ( )g 0x =  if x X!  and 
3  if .x X"

Algorithm 1. Generic form of ZO optimization.

Initialize ,x X0 !  gradient estimation operation ( ),$z  descent direction 
updating operation ( ),$}  number of iterations T, and learning rate 

0t2h  at iteration t,
for , , ,t T1 2 f=  do
  1) Gradient estimation:

	 ({ ( ; )} ),g xft t j j
t

tpz= !Xt � (A1)

  where tX  denotes a set of minibatch stochastic samples used at 
iteration t,
  2) Descent direction computation:

	 ({ } ),m gt i i
t

1}= =t � (A2)

  3) Point updating:

	 , , ,x x mt t t t1X hP= -^ h � (A3)

 � where XP  denotes a point-updating operation subject to the constraint 
.x X!

end for

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 18,2024 at 23:22:45 UTC from IEEE Xplore.  Restrictions apply. 



47IEEE SIGNAL PROCESSING MAGAZINE   |   September 2020   |

ZO min–max optimization
By min–max, we mean that the problem is a composition of 
inner maximization and outer minimization of the objec-
tive function

	 ( , ),minmax f x y
x y YX! !

� (11)

where x Rdx!  and y Rdy!  are optimization variables (for the 
ease of notation, let ),d d dx y= =  f is a black-box objective 
function, and X  and Y  are compact convex sets. One motivat-
ing application behind problem (11) is the design of a black-box 
poisoning attack [52], where the attacker deliberately influ-
ences the training data (by injecting poisoned samples) to ma-
nipulate the results of a black-box predictive model. To solve 
the problem posed in (11), the work in [52] and [53] presented 
efficient ZO min–max algorithms for stochastic and determin-
istic bilevel optimization with nonconvex outer minimization 
across x  and strongly concave inner maximization across .y  
The authors proved the convergence rate to be sublinear when 
gradient estimation is integrated with alternating (projected) 
SG descent/ascent methods.

ZO distributed optimization
Consider the minimization of a network cost given by the sum 
of local objective functions { }fi  at multiple agents

	
( )

, ( ).

f

j i

minimize

subject to

x

x x N
{ }

i
i

N

i

i j

1x Xi

6 !=

!
=

/
�

(12)

Here, ( )iN  denotes the set of neighbors of agent/node i, and 
the underlying network/graph is connected; namely, there ex-
ists a path between every pair of distinct nodes. Some recent 
works have started to tackle the distributed optimization prob-
lem (12) with black-box objectives. In [54], a distributed Kief-
er–Wolfowitz-type ZO algorithm was proposed, along with 
convergence analysis, for the case that the objective functions 
{ }fi  are strongly convex. In [55] and [56], the ZO distributed 
(sub)gradient algorithm and the ZO distributed mirror descent 
algorithm were developed for nonsmooth convex optimization. 
In [57] and [58], the convergence of consensus-based distrib-
uted ZO algorithms was established for nonconvex (uncon-
strained) optimization.

Structured high-dimensional optimization
Compared to FO algorithms, ZO algorithms typically suffer 
from a slowdown (proportional to the problem size d) in conver-
gence. Thus, some recent works attempt to mitigate this limi-
tation when solving high-dimensional (large d) problems. The 
work in [59] explored the functional sparsity structure, under 
which the objective function f depends on only a subset of d 
coordinates. This assumption also implies the gradient sparsity, 
which enabled the development of a least-absolute-shrinkage-
and-selection-operator-based algorithm for gradient estimation 
and eventually yielded a polylogarithmic dependence on d when 
f is convex. And the work in [41] established the convergence rate 

of the ZO-SGD, which depends on d only polylogarithmically 
under the assumption of gradient sparsity. In addition, the work 
in [60] proposed a direct search-based algorithm that yields 
the convergence rate that is polylogarithmically dependent on 
dimensionality for any monotone transform of a smooth and 
strongly convex objective with a low-dimensional structure. 
That is, the objective function ( )f x  is supported on a low-di-
mensional manifold .X  Another work, [61], studied the problem 
of ZO optimization on Riemannian manifolds and proposed 
algorithms that depend only on the intrinsic dimension of the 
manifold by using ZO Riemannian gradient estimates.

Convergence rates
We first elaborate on the criteria used to analyze the conver-
gence rate of ZO algorithms under different problem settings.
1)	 Convex optimization: The convergence error is measured by 

the optimality gap of function values ( ) ( )f fx xE T - )6 @ for a 
convex objective f, where xT  denotes the updated point at 
the final iteration T, x)  denotes the optimal solution, and the 
expectation is taken across the full probability space, e.g., 
random gradient approximation and stochastic sampling.

2)	 Online convex optimization: The cumulative regret [62] is 
typically used in place of the optimality gap, namely, 
/ /( ) ( )minf fx xE t t t t

T
t

T
1 1x-= =6 @ for an online convex cost 

function ft, e.g., ( ) ( ; )f ft t$ $ p=  in (8).
3)	 Unconstrained nonconvex optimization: The convergence 

is evaluated by the FO stationary condition in terms of 
the squared gradient norm / ( )( / )T f1 xEt

T
t

2
1 d< <= 26 @ for the 

nonconvex objective f. Since FO stationary points could 
be saddle points of a nonconvex optimization problem, the 
second-order stationary condition is also used to ensure the 
local optimality of an FO stationary point (namely, escap-
ing saddle points) [41], [63]. The work in [41] and [63] 
focused on stochastic optimization and deterministic opti-
mization, respectively.

4)	 Constrained nonconvex optimization: The criterion for 
convergence is commonly determined by detecting a suffi-
ciently small squared norm of the gradient mapping [43], 
[64], ( , ( ), ) : ( ) ,( / )P f f1x x x x xt t t t t t t tXX d dh h hP= - -^ h6 @  
where the notation follows (A3). Here, ( , ( ), )P fx xt t tX d h  
can naturally be interpreted as the projected gradient, 
which offers a feasible update from the previous point .xt  
The Frank–Wolfe duality gap is another commonly used 
convergence criterion [41], [44], [46], [47]; it is given by 

, ( ) .max fx x xt tx X dG H- -!  It is always nonnegative and 
becomes zero if and only if x Xt !  is a stationary point.
More generally, given a convergence measure ( ),M $  x is 

called an -e optimal solution if ( ) .xM # e  The convergence 
error is typically expressed as a function of the number of itera-
tions T, relating the convergence rate to the iteration complexity. 
Since the convergence analysis of existing ZO algorithms var-
ies under different problem domains and algorithmic parameter 
settings, we compare in Table 1, from five perspectives, the con-
vergence performance of ZO algorithms covered in this section: 
the problem structure, type of gradient estimates, smoothing 
parameter, convergence error, and function query complexity.
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Application: Adversarial example generation
In this section, we present the application of ZO optimization 
to the generation of prediction-evasive adversarial examples 
to fool DL models. Adversarial examples, also known as eva-
sion attacks, are inputs corrupted with imperceptible adver-
sarial perturbations (to be designed) toward misclassification 
(namely, predictions that are different from the true image 
labels) [22], [65]. Most studies on adversarial vulnerability 
of DL have been restricted to the white-box setting, where 
the adversary has complete access to, and knowledge of, 
the target system (e.g., DNNs) [22], [65]. However, it is of-
ten the case that the internal states/configurations and the 
operating mechanism of DL systems are not revealed to the 
practitioners [e.g., the Google Cloud Vision application pro-
gramming interface (API)]. This gives rise to the problem of 
black-box adversarial attacks [23], [24], [66]–[69], where the 
only mode of interaction of the adversary with the system is 
via the submission of inputs and receiving the corresponding 
predicted outputs.

More formally, let z denote a legitimate example and 
:z z x= +l  denote an adversarial example, with the adversarial 

perturbation .x  Given the learned ML/DL model ,i  the prob-
lem of adversarial example generation can be cast as an opti-
mization problem of the following generic form [49], [65]:
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where ( ; )f z il  denotes the (black-box) attack loss function for 
fooling the model i  using the perturbed input zl (see [23] for 
a specific formulation); ( )g x  is a regularization function that 
penalizes the sparsity or the structure of the adversarial per-
turbations, e.g., group sparsity in [70]; 0$m  is a regulariza-
tion parameter; the ,3  norm enforces similarity between zl 
and ;z  and the input space of ML/DL systems is normalized 
to [ , ] .0 1 d  If ,0!m  then (13) is in the form of composite op-
timization, and the ZO-ADMM is a well-suited optimizer. If 

,0m =  a solution to problem (13) is known as a black-box ,3  

Table 1. The comparison of different ZO algorithms in problem setting, gradient estimation, smoothing parameter, convergence error,  
and the function query complexity.

Method
Problem 
Structure Gradient Estimation Smoothing Parameter μ

Convergence Error  
(T Iterations)

Query Complexity  
(T Iterations)

ZO-GD [19] NC, UnCons Two-point GauGE* O
dT
1c m O T

dc m | |O TD^ h+

ZO-SGD [18] NC, UnCons Two-point GauGE O
d T

1c m O
T
de o O T^ h

ZO-SCD [34] NC, UnCons Two-point CooGE*
( )

O
T dT
1 1

/1 4+e o O
T
de o O T^ h

ZO-signSGD [36] NC, UnCons b-point UniGE* O
dT
1c m O

T
d

b
d 4

+e o O bT^ h

ZO-SVRG [32] NC, UnCons b-point UniGE O
dT
1c m O T

d
b
1+c m | |O s bsm T smD =+^ h

ZO-Hess [40] SC, UnCons b-point GauGE O d
1c m O e /bT d-^ h O bT^ h

ZO-ProxSGD/ZO-PSGD [43] NC, Cons b-point GauGE O
dT
1c m O bT

d
b
d2

+c m O bT^ h

ZO-SMD [21] C, Cons Two-point GauGE O dt
1c m O

T
de o O(T )

ZO-SCG [41] NC, Cons b-point GauGE
O

d T
1
3e o O

T b
d T1 +e o O bT^ h

ZO-AdaMM [45] NC, Cons b-point GauGE O
dT
1c m O T

d
b
d+c m O b T2^ h

ZO-ADMM [27] C, Composite b-point UniGE O
d t

1
.1 5c m O

bT
de o O bT^ h

ZO-min–max [52] NC, Cons b-point UniGE O
d T

1c m O T b
d1 +c m O b T2^ h

Dist-ZO [58] NC, UnCons 2-point UniGE
dt
1

O
T
de o O T^ h

ZO-SCRN [41] NC, UnCons b-point UniGE
d T

1
/ /5 2 1 3 O

T
b O dT1

/
/

4 3
4 3=c ^m h O bT^ h

Dist: distributed; NC: nonconvex; C: convex; SC: strongly convex; UnCons: unconstrained; Cons: constrained; Composite: composite optimization.
*GauGE and UniGE represent the gradient estimates using random direction vectors drawn from the Gaussian distribution ( , )0 IN  and the uniform distribution ( ( , )),0 1U S  
respectively. CooGE represents the coordinate-wise partial derivative estimate.
+Here,  D  denotes the entire data set.
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attack [24], which can be obtained using ZO methods for con-
strained optimization.

In Table 2, we present black-box ,3  attacks with respect 
to five ImageNet images against the Inception v3 model [71]. 
The adversarially perturbed images are obtained from four ZO 
methods, including the ZO-PSGD, ZO-SMD, ZO-AdaMM, 
and ZO-natural evolutionary strategy (NES) (a projected ver-
sion of the ZO-signSGD that is used in practice [24]). We dem-
onstrate the attack performance of different ZO algorithms in 
terms of the 2,  norm of the generated perturbations and the 
number of queries needed to achieve a first successful black-
box attack. As we can see, the ZO-PSGD typically has the fast-
est speed of converging to a valid adversarial example, while 
the ZO-AdaMM has the best convergence accuracy in terms 
of the smallest distortion required to fool the neural network.

Application: Online sensor management
ZO optimization is also advantageous when it is difficult to 
compute the FO gradient of an objective function. Online sensor 
management provides an example of such a scenario [27], [72]. 

The sensor selection for parameter estimation is a fundamental 
problem in smart grids, communication systems, and wireless 
sensor networks [73]. The goal is to seek the optimal tradeoff 
between sensor activations and the estimation accuracy through 
a time period.

We consider the cumulative loss for online sensor selection [27]
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where x Rd!  is the optimization variable, d is the number 
of sensors, a R,i t

n!  is the observation coefficient of sen-
sor i at time t, and m0  is the number of selected sensors. 
The objective function of (14) can be interpreted as the log 
determinant of the error covariance matrix associated with 
the maximum likelihood estimator for parameter estimation 
[74]. The constraint 0 x 1# #  is a relaxed convex hull of the 
Boolean constraint { , } ,0 1x m!  which encodes whether or 
not a sensor is selected.

Table 2. The comparison of various ZO methods for generating untargeted adversarial attacks against the Inception v3 model across five 
ImageNet images.

True Label Brambling Cannon Pug Dog Fly Armadillo Balloon
Perturbed image (ZO-PSGD)

Prediction label Goldfinch Plow Bucket Longicorn Croquet ball Parachute
2,  distortion 35.2137 87.7304 72.3397 111.068 172.719 35.9330

Number of queries 7,640 150 130 50 210 5,830
Perturbed image (ZO-SMD)

Prediction label Goldfinch Plow Bucket Cicada Croquet ball Parachute
2,  distortion 8.9708 26.0126 20.9504 30.0968 45.097 10.9023

Number of queries 29,980 350 260 140 570 15,830
Perturbed image (ZO-AdaMM)

Prediction label Goldfinch Plow Bucket Cicada Croquet ball Parachute
2,  distortion 8.0502 5.7359 4.5753 4.4456 6.3149 7.7405

Number of queries 53,300 1,710 790 540 2,780 32,900
Perturbed image (ZO-NES)

Prediction label Goldfinch Plow Bucket Cicada Croquet ball Parachute
2,  distortion 54.9956 34.5852 28.7035 28.9158 40.1483 51.7116

Number of queries 22,110 1,080 830 430 2,280 15,340

Row 1 shows true labels of given images. Rows 2–4 display results obtained using the ZO-SMD, which include perturbed images, corresponding prediction labels, the 2,  norm of 
the perturbations, and the number of queries when achieving the first successful black-box attack. A similar explanation holds for the other rows, except that different ZO methods 
are used.
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Conventional methods, such as projected gradient (FO) and 
interior-point (second-order) algorithms, can be used to solve 
problem (14). However, both methods involve the calculation 
of inverses of large matrices that are necessary to evaluate 
the gradient of the cost function. The matrix inversion step is 
usually a bottleneck while acquiring the gradient information 
in high dimensions, and it is particularly problematic in the 
online optimization setting. Since (14) involves mixed equality 
and inequality constraints, it has been shown [27] that the ZO-
ADMM is an effective ZO optimization method for circum-
venting the computational bottleneck.

In Figure 2, we compare the performance of the ZO-
ADMM and that of the FO-ADMM [75] for sensor selection. 
In Figure 2(a), we demonstrate the primal–dual residuals in the 
ADMM against the number of iterations. As we can see, 
the ZO-ADMM has a slower convergence rate than the FO-
ADMM, and it approaches the accuracy of the FO-ADMM 
as the number of iterations increases. In Figure 2(b), we 
show the mean square error (MSE) of the parameter esti-
mation using a different number of selected sensors m0  
in (14). As we can see, the ZO-ADMM yields almost the 
same MSE as the FO-ADMM in the context of parameter 
estimation using m0  activated sensors, determined by the 
hard thresholding of continuous sensor selection schemes, 
i.e., solutions of problem (14) obtained from the ZO-ADMM 
and the FO-ADMM.

Other recent applications
In this section, we discuss some other recent applications of 
ZO optimization in signal processing and ML.

Model-agnostic constrastive explanations
Explaining the decision-making process of a complex ML 
model is crucial to many ML-assisted, high-stakes applica-
tions, such as job hiring, financial loan applications, and ju-
dicial sentences. When generating local explanations for the 
prediction of an ML model on a specific data sample, one com-
mon practice is to leverage the information of its input gradient 
for sensitivity analysis of the model prediction. For ML models 
that do not have explicit functions for computing input gradi-
ents, such as access-limited APIs and rule-based systems, ZO 
optimization enables the generation of local explanations using 
model queries without the knowledge of the gradient informa-
tion. Moreover, even when the input gradient can be obtained 
via ML platforms, such as TensorFlow and PyTorch, the gradi-
ent computation is platform specific. In this case, ZO optimi-
zation has the advantage of alleviating platform dependency 
when developing multiplatform explanation methods, as it only 
depends on model inference results.

Here, we apply ZO optimization to generating contrastive 
explanations [76] for two ML applications: handwritten digit 
classification and loan approval. Contrastive explanations 
consist of two components derived from a given data sample 
for explaining the model prediction, i.e., a pertinent positive 
(PP) that is minimally and sufficiently present to keep the 
same prediction of the original input sample, and a pertinent 
negative (PN) that is minimally and necessarily absent to alter 
the model prediction. The process of finding the PP and the 
PN is formulated as a sparsity-driven and data-perturbation-
based optimization problem guided by the model prediction 
outcomes [25], which can be solved by ZO optimization meth-
ods. Figure  3 shows the contrastive explanations generated 
from black-box neural network models by the ZO-GD using 
the objective functions in [25]. For handwritten digit classifica-
tion, the PP identifies a subset of pixels such that their presence 
is minimally sufficient for model prediction. Moreover, the PN 
identifies a subset of pixels such that their absence is mini-
mally necessary for altering model prediction. The PP and the 
PN together constitute a contrastive explanation for interpret-
ing model prediction. Similarly, for the credit loan approval 
task trained on the Fair, Isaac, and Company Explainable ML 
Challenge data set [91] based on a neural network model, the 
PN generated for an applicant (Alice) can be used to explain 
how the model would alter the recommendation from “denial” 
to “approval” based on Alice’s loan application profile (please 
refer to https://aix360.mybluemix.net for more details).

Policy search in reinforcement learning
Reinforcement learning aims to determine, given a state, which 
action to take (or policy to make) to maximize a reward. One 
of the most popular policy search approaches is the model-free 
policy search, where an agent learns parameterized policies 
from sampled trajectories without needing to learn the model of 
the underlying dynamics. Model-free policy search updates the 
parameters such that trajectories with higher rewards are more 
likely to be obtained when following the updated policy [77]. 
Traditional policy search methods, such as REINFORCE [78], 
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FIGURE 2. The comparison between the ZO-ADMM and the FO-ADMM for 
solving the sensor selection problem (14). (a) ADMM primal–dual residu-
als versus the number of iterations. (b) The MSE of activated sensors for 
parameter estimation versus the total number of selected sensors.
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rely on randomized exploration in the action space to compute 
an estimated direction of improvement. These methods (referred 
to as policy gradient methods) then leverage the FO information 
of the policy (or Jacobian) to update its parameters to maximize 
the reward. Note that the chance of finding a sequence of actions 
resulting in high total reward decreases as the horizon length 
increases, and thus policy gradient methods often exhibit a high 
variance and result in a large sample complexity [79].

To alleviate these problems, ZO policy search methods, 
which directly optimize across the policy parameter space, 
have emerged as an alternative to the policy gradient. More 
specifically, ZO policy search methods seek to directly opti-
mize the total reward in the space of the parameters by 
employing finite-difference methods to compute estimates of 
the gradient with respect to the policy parameters [77], [80]–
[83]. These methods are fully ZO; i.e., they do not exploit FO 
information of the policy, reward, and dynamics. Interesting-
ly, it has been observed that although policy gradient methods 
leverage more information, ZO policy search methods often 
perform better empirically. In particular, the work in [82] 
characterized the convergence rate of ZO policy optimization 
when applied to linear-quadratic systems. And the work in 
[83] theoretically showed that the complexity of exploration 
in the action space (using policy gradients) depends on both 
the dimensionality of the action space and the horizon length, 
while the complexity of exploration in the parameter space 
(using ZO methods) depends only on the dimensionality of 
the parameter space.

AutoML
The success of ML relies heavily on selecting the right pipeline 
algorithms for the problem at hand and on setting the hyper-
parameters. AutoML automates the process of model selection 
and hyperparameter optimization. It offers the advantages of 
producing simpler solutions, a faster creation of those solutions, 
and models that often outperform hand-designed ML models. 
One could view AutoML as the process of optimization of an 
unknown black-box function. Recently, several BO approaches 
have been proposed for AutoML [26], [84]. BO works by build-
ing a probabilistic surrogate via a GP for the objective function 
and then using an acquisition function defined from this sur-
rogate to decide where to sample. However, BO suffers from 
a computational bottleneck: an internal FO solver is required 
to determine the parameters of the GP model by maximizing 
the log marginal likelihood of the current function evaluations 
at each iteration of the BO. The FO solver is slow due to the 
difficulty of computing the gradient of the log-likelihood func-
tion with respect to the parameters of the GP. To circumvent 
this difficulty, the ZO optimization algorithm can be used to 
determine the hyperparameters and thus to accelerate the BO 
in AutoML [26]. In the context of metalearning, ZO optimiza-
tion has also been leveraged to obviate the need for determin-
ing computationally intensive high-order derivatives during 
metatraining [29]. Finally, we note that ZO optimization can 
be integrated with learning to optimize, which models the op-
timizer through a trainable DNN-based metalearner [85], [86].

Open questions and discussions
Although there has been a great deal of progress on the de-
sign, theoretical analysis, and applications of ZO optimization, 
many questions and challenges still remain.

ZO optimization with nonsmooth objectives
There exists a gap between the theoretical analysis of ZO opti-
mizers and practical ML/DL applications with nonsmooth ob-
jectives, where the former usually requires the smoothness of 
the objective function. There are two possible means of relax-
ing the smoothness assumption. First, the randomized smooth-
ing technique ensures that the convolution of two functions is at 
least as smooth as the smoothest of the two original functions. 
Thus, fn  is smooth, even if f is nonsmooth, in (2). This moti-
vates the technique of double randomization that approximates 
a subgradient of a nonsmooth objective function [21], where an 
extra randomized perturbation is introduced to prevent draw-
ing points from nonsmooth regions of f. The downside of dou-
ble randomization is the increase of function query complexity. 
Second, a model-based trust region method can be leveraged to 
approximate the subgradient/gradient using linear or quadratic 
interpolation [6], [31]. This leads to the general approach of 
gradient estimation without imposing extra assumptions on the 
objective function. However, it increases the computation cost 
due to the need to solve nested regression problems.

ZO optimization with black-box constraints
The current work on ZO optimization is restricted to black-box 
objective functions with white-box constraints. In the presence 

Digit Classification

Credit Loan Approval

Instance PP PN

‘3’

‘7’

Alice’s loan application would be approved if
consolidated risk markers change from 65 to 72 and
average age of accounts in months changes from 52 to 68 and
months since most recent credit inquiry not within the last seven days
changes from two to three.
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FIGURE 3. Constrastive explanations generated by ZO optimization 
methods. (a) For handwritten digit classification, the red-digit class on 
the corner of an input sample shows the model prediction of the instance. 
The pixels highlighted in cyan are the PP supporting the original predic-
tion. The pixels highlighted by the purple color are the PN that will alter 
the model prediction when added to the original instance. (b) For the 
credit loan application, the PN of an applicant (Alice) is used to explain 
the necessary modifications on a subset of the original features to change 
the model prediction from “denial” to “approval.”
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of black-box constraints, the introduction of barrier functions 
(instead of constraints) [87] in the objective could be a poten-
tial solution. One could also employ the method of multipliers 
to reformulate black-box constraints as regularization func-
tions in the objective function [26].

ZO optimization for privacy-preserving  
distributed learning
To protect the sensitive information of data in the context of 
distributed learning, it is common to add “noise” (randomness) 
into gradients of individual cost functions of agents, a process 
that is known as the message-perturbing privacy strategy [88]. 
The level of privacy is often evaluated by differential privacy 
(DP). A high degree of DP prevents an adversary from gaining 
meaningful personal information related to any individuals. 
Similarly, ZO optimization also conceals the gradient infor-
mation and enables the use of noisy gradient estimates that are 
constructed from function values. Thus, one interesting ques-
tion is, Can ZO optimization be designed with privacy guaran-
tees? In a more general sense, it would be worthwhile to exam-
ine what roles ZO optimization plays in the privacy-preserving 
and Byzantine-tolerant federated-learning setting.

ZO optimization and automatic differentiation
Automatic differentiation (AD) provides a way for efficiently 
and accurately evaluating derivatives of numeric functions, 
which are expressed as computer programs [89]. The backprop-
agation algorithm used for training neural networks can be re-
garded as a specialized instance of AD under the reverse mode. 
AD decomposes the derivative of the complex function into 
subderivatives of constituent operations through the chain rule. 
When a subderivative is infeasible or difficult to compute, ZO 
gradient estimation techniques could be integrated with AD. In 
particular, when the high-order derivatives (beyond-gradient) 
are required, e.g., model-agnostic metalearning [90], ZO opti-
mization could help to overcome the derivative bottleneck.

ZO optimization for discrete variables
Many ML and signal processing tasks involve handling dis-
crete variables, such as texts, graphs, sets, and categorical data. 
In addition to the technique of relaxation to continuous values, 
it is worthwhile to explore and design ZO algorithms that di-
rectly operate in discrete domains.

Tight convergence rates of ZO methods
Although the optimal rate for ZO unconstrained convex opti-
mization was studied in [21], there remain many open questions 
about seeking the optimal rates, or associated tight lower bounds, 
for general cases of ZO constrained nonconvex optimization.

Conclusions
In this survey article, we discussed variants of ZO gradient 
estimators and focused on their statistical modeling as this 
leads to general ZO algorithms. We also provided an exten-
sive comparison of ZO algorithms and discussed their iteration 
and function query complexities. Furthermore, we presented 

numerous emerging applications of ZO optimization in signal 
processing and ML. Finally, we highlighted some unsolved re-
search challenges in ZO optimization research and presented 
some promising future research directions.
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