
PDFO: A Cross-Platform Package for Powell’s Derivative-Free
Optimization Solvers

Tom M. Ragonneau∗† Zaikun Zhang∗‡

June 6, 2024

Abstract
The late Professor M. J. D. Powell devised five trust-region methods for derivative-

free optimization, namely COBYLA, UOBYQA, NEWUOA, BOBYQA, and LINCOA. He
carefully implemented them into publicly available solvers, renowned for their robustness and
efficiency. However, the solvers were implemented in Fortran 77 and hence may not be easily
accessible to some users. We introduce the PDFO package, which provides user-friendly
Python and MATLAB interfaces to Powell’s code. With PDFO, users of such languages
can call Powell’s Fortran solvers easily without dealing with the Fortran code. Moreover,
PDFO includes bug fixes and improvements, which are particularly important for handling
problems that suffer from ill-conditioning or failures of function evaluations. In addition
to the PDFO package, we provide an overview of Powell’s methods, sketching them from
a uniform perspective, summarizing their main features, and highlighting the similarities
and interconnections among them. We also present experiments on PDFO to demonstrate
its stability under noise, tolerance of failures in function evaluations, and potential to solve
certain hyperparameter optimization problems.

Keywords Derivative-free optimization · COBYLA · UOBYQA · NEWUOA · BOBYQA ·
LINCOA

Mathematics Subject Classification (2020) 65K05 · 90C30 · 90C56 · 90-04

1 Introduction

Most optimization algorithms rely on classical or generalized derivative information of the objective
and constraint functions. However, in many applications, such information is not available. This
is the case, for example, if the objective function does not have an explicit formulation but can
only be evaluated through complex simulations or experiments. Such problems motivate the
development of optimization algorithms that use only function values but not derivatives, also
known as derivative-free optimization (DFO) algorithms.

Powell devised five algorithms to tackle unconstrained and constrained problems without using
derivatives, namely COBYLA [50], UOBYQA [53], NEWUOA [56], BOBYQA [58], and LINCOA.
Not only did he propose these algorithms but he also implemented them into publicly available
solvers, paying great attention to the stability and complexity of their numerical linear algebra
computations. Renowned for their robustness and efficiency, these solvers are used in a wide

∗Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.
†Email: tom.ragonneau@polyu.edu.hk; ORCID: 0000-0003-2717-2876.
‡Email: zaikun.zhang@polyu.edu.hk; ORCID: 0000-0001-8934-8190.

1

ar
X

iv
:2

30
2.

13
24

6v
7 

 [
m

at
h.

O
C

] 
 4

 J
un

 2
02

4

mailto:tom.ragonneau@polyu.edu.hk
https://orcid.org/0000-0003-2717-2876
mailto:zaikun.zhang@polyu.edu.hk
https://orcid.org/0000-0001-8934-8190


2 T. M. Ragonneau, Z. Zhang

spectrum of applications, for instance, aeronautical engineering [25], astronomy [39], computer
vision [33], robotics [40], and statistics [5].

However, Powell implemented the solvers in Fortran 77, an old-fashioned language that damps
the enthusiasm of many users to exploit these solvers in their projects. There has been a continued
demand from both researchers and practitioners for the availability of Powell’s solvers in more
user-friendly languages such as Python and MATLAB.

Responding to such a demand, this paper presents a package named PDFO, an acronym
for “Powell’s Derivative-Free Optimization solvers.” PDFO interfaces Powell’s Fortran solvers
with other languages, enabling users of such languages to call Powell’s solvers without dealing
with the Fortran code. For each supported language, PDFO provides a simple function that
can invoke one of Powell’s solvers according to the user’s request (if any) or according to the
type of the problem to solve. The current release (Version 2.2.0) of PDFO supports Python
and MATLAB, with more languages to be covered in the future. The signature of the Python
function is consistent with the minimize function of the SciPy optimization library, and that of
the MATLAB function is consistent with the fmincon function of the MATLAB Optimization
Toolbox. PDFO is cross-platform, available on Linux, macOS, and Windows at

https://www.pdfo.net and https://github.com/pdfo/pdfo ,

with the DOI 10.5281/zenodo.3887568. It has been downloaded more than 120,000 times as
of June 2024, mirror downloads excluded. Moreover, it is one of the optimization engines in
GEMSEO [25],1 an industrial software package for multidisciplinary design optimization (MDO).

PDFO is not the first attempt to facilitate the usage of Powell’s solvers in languages other
than Fortran. Various efforts have been made in this direction. Py-BOBYQA [9, 10] provides a
Python implementation of BOBYQA (although it is not meant to b e a faithful re-implementation
of Powell’s version); NLopt includes multi-language interfaces for COBYLA, NEWUOA, and
BOBYQA;2 minqa wraps UOBYQA, NEWUOA, and BOBYQA in R;3 SciPy makes COBYLA
available in Python under its optimization library.4 However, PDFO has several features that
distinguish it from others.

1. Comprehensiveness. To the best of our knowledge, PDFO is the only package that provides
all of COBYLA, UOBYQA, NEWUOA, BOBYQA, and LINCOA with a uniform interface.

2. Solver selection. PDFO can automatically select a solver for a given problem. The selection
takes into account the performance of the solvers on the CUTEst [28] problem set.

3. Problem preprocessing. PDFO preprocesses the inputs to simplify the problem and reformu-
late it to meet the requirements of Powell’s solvers.

4. Code patching. PDFO patches several bugs in the Fortran code. Such bugs can lead to
serious problems such as infinite cycling or memory errors.

5. Fault tolerance. PDFO tolerates failures of function evaluations. In case of such failures,
PDFO will not exit but try to progress.

6. Additional options. PDFO includes options for the user to control the solvers in some
manners that are useful in practice. For example, the user can request PDFO to scale the
problem according to bound constraints on the variables before solving.

In addition to the PDFO package, this paper also provides an overview of Powell’s DFO
methods. We will not repeat Powell’s description of these methods but summarize them from a

1https://gemseo.readthedocs.io .
2https://github.com/stevengj/nlopt .
3https://cran.r-project.org/package=minqa .
4https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html .

https://www.pdfo.net
https://github.com/pdfo/pdfo
https://doi.org/10.5281/zenodo.3887568
https://gemseo.readthedocs.io
https://github.com/stevengj/nlopt
https://cran.r-project.org/package=minqa
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html


PDFO: Powell’s Derivative-Free Optimization solvers 3

uniform viewpoint, aiming at easing the understanding of Powell’s methods and paving the way
for further development based on them.

The analysis of Powell’s DFO methods is not within the scope of this paper. Under some
assumptions, adapted versions of Powell’s algorithms may be covered by existing theory for
trust-region DFO methods [18, Chapter 10]. However, it will still be interesting to pursue a
tailored theory for Powell’s algorithms.

The remaining part of this paper is organized as follows. Section 2 briefly reviews DFO
methods in order to provide the context of PDFO. We then present an overview of Powell’s DFO
methods in Section 3, including a sketch of the algorithms and a summary of their main features.
A detailed exposition of PDFO is given in Section 4, highlighting its solver selection, problem
preprocessing, bug fixes, and handling of function evaluation failures. Section 5 presents some
experiments on PDFO, demonstrating its stability under noise, tolerance of function evaluation
failures, and potential in hyperparameter optimization. We conclude the paper with some remarks
in Section 6.

2 A brief review of DFO methods

Consider a nonlinear optimization problem

min
x∈Ω

f(x), (2.1)

where f : Rn → R is the objective function and Ω ⊆ Rn represents the feasible region. As
summarized in [18], two strategies have been developed to tackle problem (2.1) without using
derivatives, which we will introduce in the following.

The first strategy, known as direct search,5 samples the objective function f and chooses iterates
by simple comparisons of function values, examples including the Nelder-Mead algorithm [44], the
MADS methods [2, 37], and BFO [46, 47]. See [35], [18, Chapters 7 and 8], [3, Part 3], and [36,
§ 2.1] for more discussions on this paradigm, and we refer to [29, 30] for recent developments of
randomized methods in this category.

The second strategy approximates the original problem (2.1) by relatively simple models and
locates the iterates according to these models. Algorithms applying this strategy are referred to
as model-based methods. They often make use of the models within a trust-region framework [17]
or a line-search framework [6]. Interpolation and regression are two common ways of establishing
the models [4, 7, 15, 16, 52, 65, 74]. Algorithms using finite-difference gradients can also be
regarded as model-based methods because such gradients essentially come from linear (for the
forward and backward differences) or quadratic (for the central difference) interpolation of the
function under consideration over rather special interpolation sets [62, § 1.4.3]. Most model-based
DFO methods employ linear or quadratic models, examples including Powell’s algorithms [50, 53,
56, 58] in PDFO, MNH [73], DFLS [76], DFO-TR [4], and DFO-LS [9, 32], but there are also
methods exploiting radial basis functions (RBFs), such as ORBIT [74], CONORBIT [65], and
BOOSTERS [45].

5In some early papers (e.g., [50, 51]) Powell and many other authors used “direct search” to mean what is
known as “derivative-free optimization” today. Powell rarely used the word “derivative-free optimization.” The
only exceptions known to us are his last paper [61] and his distinguished lecture titled “A parsimonious way of
constructing quadratic models from values of the objective function in derivative-free optimization” at the National
Center for Mathematics and Interdisciplinary Sciences, Beijing on November 4, 2011 [8].



4 T. M. Ragonneau, Z. Zhang

Hybrids between direct search and model-based approaches exist, for instance, Implicit
Filtering [34, Algorithm 4.7] and MADS with quadratic models [12]. Theories of global convergence
and convergence rate have been established for both direct search [22, 29, 35, 71, 72] and model-
based methods [13, 17, 26, 59]. Since the objective and constraint functions in DFO problems
are commonly expensive to evaluate, the worst-case complexity in terms of function evaluations
is a major theoretical aspect of DFO algorithms. Examples of such complexity analysis can be
found in [22, 26, 29, 72]. For more extensive discussions on DFO methods and theory, see the
monographs [3, 18], the survey papers [20, 36, 66], the recent thesis [62], and the references
therein.

3 Powell’s derivative-free algorithms

Powell published in 1964 his first DFO algorithm based on conjugate directions [48].6 His code
for this algorithm is contained in the HSL Mathematical Software Library as subroutine VA24.7
It is not included in PDFO because the code is not in the public domain, although open-source
implementations are available (see [14, Footnote 4]).

From the 1990s to the final years of his career, Powell developed five model-based DFO algo-
rithms to solve (2.1), namely COBYLA [50] (for nonlinearly constrained problems), UOBYQA [53]
(for unconstrained problems), NEWUOA [56] (for unconstrained problems), BOBYQA [58] (for
bound-constrained problems), and LINCOA (for linearly constrained problems). Moreover, Powell
implemented these algorithms into Fortran solvers and made the code publicly available. They
are the cornerstones of PDFO. This section provides an overview of these five algorithms, starting
with a sketch in Section 3.1 and then presenting more details afterward.

3.1 A sketch of the algorithms

Powell’s model-based DFO algorithms are trust-region methods. At iteration k, the algorithms
construct a linear (for COBYLA) or quadratic (for the other methods) model fk for the objective
function f according to the interpolation condition

fk(y) = f(y), y ∈ Yk, (3.1)

where Yk ⊆ Rn is a finite interpolation set updated along the iterations. COBYLA models the
constraints by linear interpolants on Yk as well. Instead of repeating Powell’s description of
these algorithms, we outline them in the sequel, emphasizing the trust-region subproblem, the
interpolation problem, and the management of the interpolation set.

6According to Google Scholar, this is Powell’s second published paper and also the second most cited work.
The earliest and most cited one is his paper on the DFP method [23] co-authored with Fletcher and published
in 1963. DFP is not a DFO algorithm but the first quasi-Newton method. The least-change property [21] of
quasi-Newton methods is a major motivation for Powell to investigate the least Frobenius norm updating [54] of
quadratic models in DFO, which is the backbone of NEWUOA, BOBYQA, and LINCOA.

7https://www.hsl.rl.ac.uk .

https://www.hsl.rl.ac.uk


PDFO: Powell’s Derivative-Free Optimization solvers 5

3.1.1 The trust-region subproblem

In all five algorithms, iteration k places the trust-region center xk at the “best” point where the
objective function and constraints have been evaluated so far. Such a point is selected according to
the objective function or a merit function that takes the constraints into account. After choosing
the trust-region center xk, with the trust-region model fk constructed according to (3.1), a trial
point xt

k is then obtained by solving approximately the trust-region subproblem

min
x∈Ωk

fk(x) s.t. ∥x − xk∥ ≤ ∆k, (3.2)

where ∆k is the trust-region radius, and ∥·∥ is the ℓ2-norm in Rn. In this subproblem, the
set Ωk ⊆ Rn is a local approximation of the feasible region Ω. COBYLA defines Ωk by linear
interpolants of the constraint functions over the set Yk, whereas the other four algorithms
take Ωk = Ω.

3.1.2 The interpolation problem

Fully determined interpolation. The interpolation condition (3.1) is essentially a linear system.
Given a base point yb ∈ Rn, which may depend on k, a linear model fk takes the form
of fk(x) = f(yb) + (x − yb)T∇fk(yb), and hence (3.1) is equivalent to

fk(yb) + (y − yb)T∇fk(yb) = f(y), y ∈ Yk, (3.3)

which is a linear system with respect to f(yb) ∈ R and ∇f(yb) ∈ Rn, the degrees of freedom
being n + 1. COBYLA builds linear models by the system (3.3), with Yk being an interpolation
set of n + 1 points updated along the iterations. Similarly, if fk is a quadratic model, then (3.1)
is equivalent to

fk(yb) + (y − yb)T∇fk(yb) + 1
2(y − yb)T∇2fk(yb)(y − yb) = f(y), y ∈ Yk, (3.4)

a linear system with unknowns fk(yb)∈R, ∇fk(yb)∈Rn, and ∇2fk(yb)∈Rn×n, the degrees of
freedom being (n + 1)(n + 2)/2 due to the symmetry of ∇2fk(yb). UOBYQA constructs quadratic
models by the system (3.4). To decide a quadratic model fk completely by this system alone,
UOBYQA requires that Yk contains (n + 1)(n + 2)/2 points, and f should have been evaluated at
all these points before the system can be formed. Even though most of these points will be reused
at the subsequent iterations so that the number of function evaluations needed per iteration is
tiny (see Section 3.1.3), we must perform (n + 1)(n + 2)/2 function evaluations during the very
first iteration. This is impracticable unless n is small, which motivates the underdetermined
quadratic interpolation.



6 T. M. Ragonneau, Z. Zhang

Underdetermined quadratic interpolation. In this case, models are established according to the
interpolation condition (3.1) with |Yk| being less than or equal to (n + 1)(n + 2)/2, the remaining
degrees of freedom being taken up by minimizing a certain functional Fk to promote the regularity
of the quadratic model. More specifically, this means building fk by solving

min
Q∈Qn

Fk(Q) s.t. Q(y) = f(y), y ∈ Yk, (3.5)

where Qn is the space of polynomials on Rn of degree at most 2. NEWUOA, BOBYQA, and
LINCOA construct quadratic models in this way, with

Fk(Q) =
∥∥∇2Q − ∇2fk−1

∥∥2
F, (3.6)

which is inspired by the least-change property of quasi-Newton updates [21], although other
functionals are possible (see, e.g., [4, 19, 60, 75, 78]). The first model f1 is obtained by
setting f0 = 0. Powell [60] referred to his approach as the symmetric Broyden update of
quadratic models (see also [77, § 3.6] and [62, § 2.4.2]). It can be regarded as a derivative-free
version of Powell’s symmetric Broyden (PSB) quasi-Newton update [49], which minimizes the
functional Fk among all quadratic polynomials that fulfill Q(xk) = f(xk), ∇Q(xk) = ∇f(xk),
and ∇Q(xk−1) = ∇f(xk−1) (see [21, Theorem 4.2]), with xk and xk−1 being the current and
the previous iterates, respectively. The interpolation problem (3.5)–(3.6) is a convex quadratic
programming problem with respect to the coefficients of the quadratic model.

Solving the interpolation problem. Powell’s algorithms do not solve the interpolation prob-
lems (3.3), (3.4), and (3.5)–(3.6) from scratch. COBYLA maintains the inverse of the coefficient
matrix for (3.3) and updates it along the iterations. Since each iteration of COBYLA alters the
interpolation set Yk by only one point (see Subsection 3.1.3), the coefficient matrix is modified
by a rank-1 update, and hence its inverse can be updated according to the Sherman-Morrison-
Woodbury formula [31]. UOBYQA does the same for (3.4), except that [53, § 4] describes the
update in terms of the Lagrange functions of the interpolation problem (3.4), the coefficients of
a Lagrange function corresponding precisely to a column of the inverse matrix. For the under-
determined quadratic interpolation (3.5)–(3.6), NEWUOA, BOBYQA, and LINCOA maintain
and update the inverse of the coefficient matrix for the KKT system of (3.5)–(3.6). The update
is also done by the Sherman-Morrison-Woodbury formula as detailed in [55, § 2]. In this case,
each iteration modifies the coefficient matrix and its inverse by rank-2 updates. In addition, the
columns of this inverse matrix readily provide the coefficients of Lagrange functions that make
the interpolation problem (3.5)–(3.6) easy to solve (see [54, § 3])

The base point. The choice of the base point yb is also worth mentioning. COBYLA sets yb to
the center xk of the current trust region. In contrast, the other four algorithms initiate yb to the
starting point provided by the user and keep it unchanged except for occasionally updating yb

to xk, without which the distance ∥yb − xk∥ may become unfavorably large for the numerical
solution of the interpolation problem. See [54, § 5] and [56, § 7] for more elaboration.



PDFO: Powell’s Derivative-Free Optimization solvers 7

3.1.3 The interpolation set

The strategy to update Yk is crucial. It should reuse points from previous iterations, at which
the objective and constraint functions have been evaluated. Meanwhile, it needs to maintain
the geometry of the interpolation set so that it is well poised, or equivalently, the interpolation
problem is well conditioned [18].

At a normal iteration, Powell’s methods compute a point xt
k ∈ Rn by solving the trust-region

subproblem (3.2), and update the interpolation set as

Yk+1 =
(
Yk ∪ {xt

k}
)

\ {yd
k}, (3.7)

where yd
k ∈ Yk is selected after obtaining xt

k, aiming to maintain the well-poisedness of Yk+1.
As mentioned, Powell’s methods update the inverse of the coefficient matrix for either the
interpolation system or the corresponding KKT system by the Sherman-Morrison-Woodbury
formula. To keep the interpolation problem well-conditioned, yd

k is chosen to enlarge the magnitude
of the denominator in this formula, which is also the ratio between the determinants of the old
and new coefficient matrices.8 In the fully determined interpolation, this denominator is ℓd

k(xt
k),

where ℓd
k is the Lagrange function associated with Yk corresponding to yd

k (see equations (10)–(13)
and § 2 of [52]). In the underdetermined case, the denominator is lower bounded by [ℓd

k(xt
k)]2 (see

equation (2.12), Lemma 1, and § 2 of [55], where the denominator is denoted by σ, and ℓd
k(xt

k)
by τ). However, Powell’s methods do not choose the point yd

k merely according to this denominator,
but also take into account its distance to the trust-region center, giving a higher priority to farther
points, as we can see in [53, Equation (56)] and [56, Equations (7.4)–(7.5)], for example.

An alternative update of the interpolation set takes place when the methods detect that fk

does not represent f well enough, attempting to improve the geometry of the interpolation set.
In this case, the methods first select a point yd

k ∈ Yk to drop from Yk, and then set

Yk+1 =
(
Yk \ {yd

k}
)

∪ {xg
k}, (3.8)

where xg
k ∈ Rn is chosen to improve the well-poisedness of Yk+1. In COBYLA, the choice of yd

k

and xg
k is guided by the fact that the interpolation set forms a simplex in Rn, trying to keep Yk+1

away from falling into an (n − 1)-dimensional subspace, as is detailed in [50, Equations (15)–(17)].
The other four methods select yd

k from Yk by maximizing its distance to the current trust-region
center xk, and then obtain xg

k by solving

max
x∈Ω

|ℓd
k(x)| s.t. ∥x − xk∥ ≤ ∆̃k (3.9)

for some ∆̃k ∈ (0, ∆k]. The motivation for this problem is again to enlarge the magnitude
of the aforementioned denominator in the Sherman-Morrison-Woodbury updating formula:
for UOBYQA, the denominator is ℓd

k(x), while for NEWUOA, BOBYQA, and LINCOA, the
denominator is lower bounded by [ℓd

k(x)]2. In addition, NEWUOA maximizes this denominator
directly if (3.9) fails to make its magnitude large enough, which rarely happens [56, § 6].

8Suppose that W is a square matrix and consider W̃ = W + UV T, where U and V are two matrices of the same
size and UV T has the same size as W . Then det(W̃ ) = det(W ) det(I + V TW −1U), and the Sherman-Morrison-
Woodbury formula is W̃ −1 = W −1 − W −1U(I + V TW −1U)−1V TW −1, assuming that both W and I + V TW −1U
are nonsingular. The number det(I + V TW −1U) is the only denominator involved in the numerical computation
of the formula.



8 T. M. Ragonneau, Z. Zhang

Given the two possible updates (3.7) and (3.8) of the interpolation set, it is clear that the
number of interpolation points remains constant. As mentioned earlier, this number is n + 1 in
COBYLA and (n + 1)(n + 2)/2 in UOBYQA. NEWUOA, BOBYQA, and LINCOA set it to an
integer in [n + 2, (n + 1)(n + 2)/2], with the default value being 2n + 1, which is proved optimal in
terms of the well-poisedness of the initial interpolation set chosen by Powell for NEWUOA [63].

3.2 COBYLA

Published in 1994, COBYLA was the first model-based DFO solver by Powell. The solver is named
after “Constrained Optimization BY Linear Approximations.” It aims to solve problem (2.1) with
the feasible region

Ω def= {x ∈ Rn : ci(x) ≥ 0, i = 1, . . . , m},

where ci : Rn → R denotes the ith constraint function for each i ∈ {1, . . . , m}. The same as the
objective function, all constraints are assumed to be accessible only through function values.

As mentioned before, iteration k of COBYLA models the objective and the constraint functions
with linear interpolants on the interpolation set Yk of n + 1 points. Once the linear models ck,i

of ci are built for i ∈ {1, . . . , m}, the trust-region subproblem (3.2) is formed with

Ωk
def= {x ∈ Rn : ck,i(x) ≥ 0, i = 1, . . . , m}. (3.10)

This subproblem may not be feasible, as the trust region and the region (3.10) may not intersect.
COBYLA handles the trust-region subproblem in two stages. In the first stage, it solves

min
x∈Rn

max
1≤i≤m

[ck,i(x)]− s.t. ∥x − xk∥ ≤ ∆k,

where [t]− = max{0, −t} for any t ∈ R. In doing so, the method attempts to reduce the ℓ∞-
violation of the linearized constraints within the trust region. If the first stage finds a point in
the interior of the trust region, then the second stage uses the resultant freedom in x to minimize
the linearized objective function fk within the trust region subject to no increase in any greatest
violation of the linearized constraints.

COBYLA assesses the quality of points and updates the trust-region radius according to
an ℓ∞-merit function and a reduction ratio based on it (see [50, Equations (5), (9), and (10)]). It
never increases the trust-region radius and reduces it if the geometry of Yk is acceptable but the
trust-region trial point xt

k is too close to xk or does not render a big enough reduction ratio [50,
Equation (11)].

3.3 UOBYQA

In 2002, Powell published UOBYQA [53], named after “Unconstrained Optimization BY Quadratic
Approximation.” It aims at solving the nonlinear optimization problem (2.1) in the unconstrained
case, i.e., when Ω = Rn.

At iteration k, UOBYQA constructs the model fk for the objective function f by the fully
determined quadratic interpolation on the interpolation set Yk containing (n + 1)(n + 2)/2
points. The trust-region subproblem (3.2) is solved with the Moré-Sorensen algorithm [41]. For
the geometry-improving subproblem (3.9), Powell developed an inexact algorithm that requires
only O(n2) operations. See [53, § 2] for more details.



PDFO: Powell’s Derivative-Free Optimization solvers 9

UOBYQA updates the trust-region radius ∆k in a noteworthy way. The update is typical for
trust-region methods, except that a lower bound ρk is imposed on ∆k. The value of ρk can be
regarded as an indicator for the current accuracy of the algorithm. Without imposing ∆k ≥ ρk,
the trust-region radius ∆k may be reduced to a value that is too small for the current accuracy,
making the interpolation points concentrate too much. The value of ρk is never increased and is
decreased when the UOBYQA decides that the work for the current value of ρk is finished. It
decides so if ∆k reaches its lower bound ρk, the current trust-region trial step does not perform
well, and the current interpolation set seems adequate for the current accuracy. See [53, § 3] for
more information on the updates of ∆k and ρk.

3.4 NEWUOA, BOBYQA, and LINCOA

Later on, based on the underdetermined quadratic interpolation introduced in Subsection 3.1.2,
Powell developed his last three DFO solvers, namely NEWUOA [56, 57], BOBYQA [58], and
LINCOA. BOBYQA and LINCOA are named respectively after “Bound Optimization BY
Quadratic Approximation” and “LINearly Constrained Optimization Algorithm,” but Powell [56,
57] did not specify the meaning of NEWUOA, which is likely an acronym for “NEW Unconstrained
Optimization Algorithm.” It is worth mentioning that Powell never published a paper to introduce
LINCOA, and [61] discusses only how to solve its trust-region subproblem.

NEWUOA, BOBYQA, and LINCOA aim at solving unconstrained, bound-constrained, and
linearly constrained problems, respectively. They all set Ωk in the trust-region subproblem (3.2)
to be Ω, corresponding to the whole space for NEWUOA, a box for BOBYQA, and a polyhedron
for LINCOA.

To solve the trust-region subproblem (3.2), NEWUOA employs the Steihaug-Toint truncated
conjugate gradient (TCG) algorithm [69, 70]; if the boundary of the trust region is reached, then
NEWUOA may make further changes to the trust-region step, each one obtained by searching in
the two-dimensional space spanned by the current step and the corresponding gradient of the
trust-region model [56, § 5]. BOBYQA solves (3.2) by an active-set variant of the TCG algorithm,
and it may also improve the TCG step by two-dimensional searches if it reaches the trust-region
boundary [58, § 3]. LINCOA uses another active-set variant of TCG to solve the trust-region
subproblem (3.2) with linear constraints [61, § 3 and § 5]. An accessible description of the TCG
algorithms employed by BOBYQA and LINCOA can be found in [62, §§ 6.2.1–6.2.2]. NEWUOA,
BOBYQA, and LINCOA manage the trust-region radius in a way similar to UOBYQA, imposing
a lower bound ρk on ∆k when updating ∆k.

When solving the geometry-improving subproblem (3.9), NEWUOA first takes
xk ± ∆̃k(yd

k − xk)/∥yd
k − xk∥, with the sign that provides the larger value of ℓd

k , and then
revises it by a procedure similar to the two-dimensional searches that improve the TCG step
for (3.2) (see [56, § 6]). BOBYQA computes two approximate solutions to (3.9) and chooses
the better one: the first one solves (3.9) with an additional constraint that x is located on the
straight lines through xk and another point in Yk, and the second is obtained by a Cauchy step
for (3.9) (see [58, § 3]). The geometry-improving step of LINCOA is more complex, as it is chosen
from three approximate solutions to (3.9):

1. the point that maximizes |ℓd
k | within the trust region on the lines through xk and another

point in Yk,
2. a point obtained by a gradient step that maximizes |ℓd

k | within the trust region, and



10 T. M. Ragonneau, Z. Zhang

3. a point obtained by a projected gradient step that maximizes |ℓd
k | within the trust region,

the projection being made onto the null space of the constraints that are considered active
at xk.

Note that the first two cases disregard the linear constraints (i.e. x ∈ Ωk = Ω), while the third
case considers only the active constraints. LINCOA first selects the point among the first two
alternatives for a larger value of |ℓd

k |; further, this point is replaced with the third alternative if
the latter nearly satisfies the linear constraints x ∈ Ω while rendering a value of |ℓd

k | that is not
too small compared with the above one.

BOBYQA respects the bound constraints x ∈ Ω when solving the trust-region subprob-
lem (3.2) and the geometry-improving subproblem (3.9), even though these problems are solved
approximately. It also chooses the initial interpolation set Y1 within the bounds. Therefore,
BOBYQA is a feasible method. In contrast, LINCOA may violate the linear constraints when
solving the geometry-improving subproblem and when setting up the initial interpolation set.
Consequently, LINCOA is an infeasible method, which requires f to be defined even when the
linear constraints are not satisfied.

4 The PDFO package

This section details the main features of PDFO, in particular the signature of the main function,
solver selection, problems preprocessing, bug fixes, and handling failures of function evaluations.
For more features of PDFO, we refer to its homepage at https://www.pdfo.net .

Before starting, we emphasize that PDFO does not re-implement Powell’s solvers but rather
enables Python and MATLAB to call Powell’s Fortran implementation. At a low level, it uses
F2PY9 to interface Python with Fortran, and MEX to interface MATLAB with Fortran, although
users never need such knowledge to employ PDFO.

4.1 Signature of the main function

The philosophy of PDFO is simple: providing a single function named pdfo to solve DFO problems
with or without constraints, calling Powell’s Fortran solvers in the backend. It takes for input an
optimization problem of the form

min
x∈Rn

f(x) (4.1a)

s.t. l ≤ x ≤ u, (4.1b)
AIx ≤ bI, AEx = bE, (4.1c)
cI(x) ≤ 0, cE(x) = 0, (4.1d)

where f a real-valued objective function, while cE and cI are vector-valued constraint functions.
The bound constraints are given by n-dimensional vectors l and u, which may take infinite values.
The linear constraints are formulated by real matrices AE and AI together with real vectors bE

and bI of proper sizes. We allow one or more of the constraints (4.1b)–(4.1d) to be absent. Being
a specialization of (2.1), problem (4.1) is broad enough to cover numerous applications of DFO.

In the Python version of PDFO, the signature of the pdfo function is compatible with the
minimize function available in the scipy.optimize module of SciPy. It can be invoked in exactly
the same way as minimize except that pdfo does not accept derivative arguments. The MATLAB

9https://numpy.org/doc/stable/f2py .

https://www.pdfo.net
https://numpy.org/doc/stable/f2py


PDFO: Powell’s Derivative-Free Optimization solvers 11

version of PDFO designs the pdfo function following the signature of the fmincon function
available in the Optimization Toolbox of MATLAB. In both Python and MATLAB, users can
check the detailed syntax of pdfo by the standard help command.

4.2 Automatic selection of the solver

When invoking the pdfo function, the user may specify which solver to call in the backend. In the
Python and MATLAB versions, this can be done by setting the argument method and the option
solver, respectively. These names are consistent with those used in scipy.optimize.minimize
and fmincon. However, if the user does not specify a solver or chooses a solver that is incapable
of solving the problem (e.g., UOBYQA cannot solve constrained problems), then pdfo selects the
solver as follows.

1. If the problem is unconstrained, then UOBYQA is selected when 2 ≤ n ≤ 8, and NEWUOA
is selected when n = 1 or n > 8.

2. If the problem is bound-constrained, then BOBYQA is selected.
3. If the problem is linearly constrained, then LINCOA is selected.
4. Otherwise, COBYLA is selected.

The problem type is detected automatically according to the input. In the unconstrained case,
we select UOBYQA for small problems because it is more efficient, and the number 8 is set
according to our experiments on the CUTEst [28] problems. Note that Powell’s implementation
of UOBYQA cannot handle univariate unconstrained problems, for which NEWUOA is chosen.

In addition to the pdfo function, PDFO provides functions named cobyla, uobyqa, newuoa,
bobyqa, and
textttlincoa, which invoke the corresponding solvers directly, but it is highly recommended to call
the solvers via the pdfo function.

4.3 Problem preprocessing

PDFO preprocesses the input of the user in order to fit the data structure expected by Powell’s
Fortran code.

For example, LINCOA needs a feasible starting point to work properly unless the problem is
infeasible. If the starting point is not feasible, then LINCOA would modify the right-hand sides
of the linear constraints to make it feasible and then solve the modified problem. Therefore, for
linearly constrained problems, PDFO attempts to project the user-provided starting point onto
the feasible region before passing the problem to the Fortran code so that a feasible problem will
not be modified by LINCOA.

Another noticeable preprocessing of the constraints made by PDFO is the treatment of the
linear equality constraints in (4.1c). As long as these constraints are consistent, we eliminate them
and reduce (4.1) to an (n − rank AE)-dimensional problem. This is done using a QR factorization
of AE. The main motivation for this reduction comes again from LINCOA, which accepts only
linear inequality constraints. An alternative approach is to write a linear equality constraint as
two inequalities, but our approach reduces the dimension of the problem, which is beneficial for
the efficiency of DFO solvers in general.



12 T. M. Ragonneau, Z. Zhang

4.4 Bug fixes in the Fortran source code

The current version of PDFO patches several bugs in the original Fortran source code, particularly
the following ones.

1. The solvers may encounter infinite loops. This happens when the exit conditions of a loop
can never be met because variables involved in these conditions become NaN due to floating
point exceptions. The user’s program will never end if this occurs.

2. The Fortran code may encounter memory errors due to uninitialized indices. This is because
some indices are initialized according to conditions that can never be met due to NaN,
similar to the previous case. The user’s program will crash if this occurs.

In our extensive tests based on the CUTEst problems, these bugs take effect from time to time
but not often. They are activated only when the problem is rather ill-conditioned or the inputs are
rather extreme. This has been observed, for instance, on the CUTEst problems DANWOODLS,
GAUSS1LS, and LAKES with some perturbation and randomization.

Even though these bugs are rarely observed in our tests, it is vital to patch them for two
reasons. First, their consequences are severe once they occur. Second, application problems
are often more irregular and savage than the testing problems we use, and hence the bugs may
be triggered more often than we expect. Nevertheless, PDFO allows the users to call Powell’s
original Fortran code without these patches by setting the option classical to true, which is
highly discouraged.

4.5 Handling failures of function evaluations

PDFO tolerates NaN values returned by function evaluations. Such a value can be used to
indicate failures of function evaluations, which are common in applications of DFO.

To cope with NaN values, PDFO applies a moderated extreme barrier. Suppose that f(x̃) is
evaluated to NaN at a certain x̃ ∈ Rn. PDFO takes the view that x̃ violates a hidden constraint [1,
38]. Hence it replaces NaN with a large but finite number HUGEFUN (e.g., 1030) before passing f(x̃)
to the Fortran solver, so that the solver can continue to progress while penalizing x̃. Indeed, since
Powell’s solvers construct trust-region models by interpolation, all points that are close to x̃ will
be penalized. Similar things are done when the constraint functions return NaN. A caveat is
that setting f(x̃) to HUGEFUN may lead to extreme values or even NaN in the coefficients of the
interpolation models, but Powell’s solvers turn out to be quite tolerant of such values.

The original extreme barrier approach [18, Equation (13.2)] sets HUGEFUN to ∞, which is
inappropriate for methods based on interpolation. In fact, we also moderate f(x̃) to HUGEFUN if
it is actually evaluated to ∞. Our approach is clearly naive, but it is better than terminating the
solver once the function evaluation fails. In our experiments, this simple approach significantly
improves the robustness of PDFO with respect to failures of function evaluation, as will be
demonstrated in Subsection 5.2. There do exist other more sophisticated approaches [1], which
will be explored in the future.



PDFO: Powell’s Derivative-Free Optimization solvers 13

5 Numerical results

This section presents numerical experiments on PDFO. Since Powell’s solvers are widely used as
benchmarks in DFO, extensive comparisons with standard DFO solvers are already available in
the literature [42, 66]. Instead of repeating such comparisons, the purpose of our experiments is
the following.

1. Demonstrate the fact the PDFO is capable of adapting to noise without fine-tuning according
to the noise, in contrast to methods based on finite differences. This is done in Subsection 5.1
by comparing PDFO with finite-difference CG and BFGS on unconstrained CUTEst
problems.

2. Verify the effectiveness of the moderated extreme barrier mentioned in Subsection 4.5 for
handling failures of function evaluations. This is done in Subsection 5.2 by testing PDFO
with and without the barrier on unconstrained CUTEst problems.

3. Illustrate the potential of PDFO in hyperparameter optimization problems from machine
learning, echoing the observations made in [27] about trust-region DFO methods for such
problems. This is done in Subsection 5.3 by comparing PDFO with two solvers from the
Python package hyperopt.10

Our experiments are carried out in double precision based on the Python version of PDFO 2.2.0.
The finite-difference CG and BFGS are provided by SciPy 1.11.3. The version of hyperopt
is 0.2.7. All these packages are tested with the latest stable version at the time of writing. We
conduct the test on a ThinkStation P620 with an AMD Ryzen Threadripper PRO 3975WX
CPU and 64 GB of memory, the operating system being Ubuntu 22.04, and the Python version
being 3.10.12.

5.1 Stability under noise

We first compare PDFO with finite-difference CG and BFGS on unconstrained problems with
multiplicative Gaussian noise. We take the view that multiplicative noise makes more sense if the
scale of the objective function changes widely, as is often the case in applications.

SciPy provides both CG and BFGS under the minimize function in the scipy.optimize
module. These methods rely on the gradient of the objective function. If we do not provide such
information, SciPy approximates it by finite differences, and we do the same in our experiments.
For PDFO, we specify NEWUOA as the solver, while setting all the other options to the default
ones. In particular, the initial trust-region radius is 1, the final trust-region radius is 10−6, and
the number of interpolation points is 2n + 1, where n is the dimension of the problem being solved.
We perform the comparison on 166 unconstrained problems with n ≤ 50 from the CUTEst [28]
problem set using PyCUTEst 1.5.1 [24]. For each testing problem, the starting point is set to the
one provided by CUTEst, and the maximal number of function evaluations is 500n.

Let σ ≥ 0 be the noise level to test. For a testing problem with the objective function f , we
define

f̃σ(x) = [1 + σR(x)]f(x), (5.1)

with R(x) ∼ N(0, 1) being independent and identically distributed when x varies. If σ = 0,
then f̃σ = f , corresponding to the noise-free case. In general, σ is the standard deviation of the

10https://hyperopt.github.io/hyperopt .

https://hyperopt.github.io/hyperopt


14 T. M. Ragonneau, Z. Zhang

noise. The function f̃σ is the one received by the optimization solvers. In particular, the CG and
BFGS methods of SciPy approximate the components of ∇f̃σ(x) by the finite difference

∂f̃σ

∂[x]i
(x) ≈ f̃σ(x + hei) − f̃σ(x)

h
,

where [x]i denotes the ith component of x, ei ∈ Rn is the ith standard coordinate vector, and h > 0
is the difference parameter

h = sgn([x]i) max{|[x]i|, 1}
√

u, (5.2)

where u ≈ 2.2 × 10−16 is the unit roundoff. When there is noise (σ > 0), we also test another
value of h, namely

h =
√

σ max
{∣∣f̃σ(x)

∣∣, 1
}

. (5.3)

This adaptive difference parameter is inspired by the optimal choice that depends on the second-
order information of f (see, e.g., [43] and [67, Equation (2.2)]). However, it relies on the knowledge
of the noise level σ. In contrast, PDFO does not require the knowledge of σ and as we will see,
provides better performance.

Given a noise level σ ≥ 0 and a convergence tolerance τ ∈ (0, 1), we will plot the performance
profiles [42] of the solvers on the testing problems. We run all the solvers on all the problems,
every objective function being evaluated by its contaminated version (5.1). For each solver, the
performance profile displays the proportion of problems solved with respect to the normalized
cost to solve the problem up to the convergence tolerance τ . For each problem, the cost to solve
the problem is the number of function evaluations needed to achieve

f(x0) − f(xk) ≥ (1 − τ)[f(x0) − f∗], (5.4)

and the normalized cost is this number divided by the minimum cost of this problem among
all solvers; we define the normalized cost as infinity if the solver fails to achieve (5.4) on this
problem. Here, x0 represents the starting point, and [42, § 2.1] suggests that the value f∗ should
be the least value of f obtained by all solvers. Note that the convergence test (5.4) uses the
values of f and not those of f̃σ. This means that we assess the solvers according to the true
objective function values, even though the objective function fed to the solvers is f̃σ, which is
contaminated unless σ = 0.

To make our results more reliable, when σ > 0, the final performance profile is obtained by
averaging the profiles obtained via the above procedure over ten independent runs. In addition,
the value f∗ in the convergence test (5.4) is set to the least value of f obtained by all solvers
during all these ten runs plus a run with σ = 0. Finally, for better scaling of the profiles, we plot
the binary logarithm of the normalized cost on the horizontal axis, instead of the normalized cost
itself.

Figure 1 shows the performance profiles of the solvers for the noise levels σ = 0, σ = 10−10,
and σ = 10−8. Two profiles are included for each noise level, with the convergence tolerance
being τ = 10−2 and τ = 10−4 respectively. In the legends, “CG” and “BFGS” denote the
finite-difference methods using (5.2), whereas “CG adaptive” and “BFGS adaptive” are their
counterparts with h given by (5.3). Note that the subfigures corresponding to σ = 0 do not
include “CG adaptive” and “BFGS adaptive” because these methods are designed to tackle noisy
problems.



PDFO: Powell’s Derivative-Free Optimization solvers 15

0 2 4 6
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS

(a) σ = 0, τ = 10−2

0 2 4 6 8 10
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS

(b) σ = 0, τ = 10−4

0 2 4 6
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
CG adaptive
BFGS adaptive

(c) σ = 10−10, τ = 10−2

0 2 4 6 8 10
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
CG adaptive
BFGS adaptive

(d) σ = 10−10, τ = 10−4

0 2 4 6 8
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
CG adaptive
BFGS adaptive

(e) σ = 10−8, τ = 10−2

0 2 4 6 8 10
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
CG adaptive
BFGS adaptive

(f) σ = 10−8, τ = 10−4

Figure 1: Performance profiles of PDFO, CG, and BFGS on unconstrained problems with the objective
functions evaluated by f̃σ in (5.1)



16 T. M. Ragonneau, Z. Zhang

In the noise-free case (σ = 0), PDFO is more efficient than finite-difference CG and BFGS,
although the distinction is less visible when τ is smaller, and BFGS can solve slightly more
problems than PDFO. When there is noise (σ > 0), the advantage of PDFO becomes significant.
The performances of CG and BFGS using (5.2) deteriorate considerably under noise, even though
the noise level is not high and the convergence tolerance is not demanding. As expected, the
adaptive difference parameter (5.3) improves the performance of CG and BFGS by a large margin,
but they are still inferior to PDFO. This shows the advantage of PDFO in noisy settings, even
when compared to methods that explicitly use the magnitude of the noise. For conciseness, we do
not include results with larger values of σ. We have conducted similar experiments with larger
values of σ. The results are similar to those shown in Figure 1, except that the advantage of
PDFO over CG and BFGS with (5.3) is even more visible, and the other two methods barely
solve any problem. For conciseness, we do not include these results.

It is not surprising that CG and BFGS perform unfavorably when using (5.2). As mentioned
in [43, 67, 68], the difference parameter should be adapted according to the noise level, as we do
in the adaptive versions. In contrast, PDFO does not need such adaptation when handling noisy
problems.

To summarize, the performance of finite-difference CG and BFGS is encouraging when there
is no noise, yet much more care is needed when the problems are noisy. In contrast, PDFO adapts
to noise automatically in our experiment, demonstrating good stability under noise without
requiring knowledge about the noise level. This is because Powell’s methods (NEWUOA in this
experiment) gradually adjust the geometry of the interpolation set during the iterations, making
progress until the interpolation points are too close to distinguish noise from true objective
function values. This is not specific to Powell’s methods but also applies to other algorithms that
sample the objective function on a set of points with adaptively controlled geometry, including
finite-difference methods with well-chosen difference parameters [67].

5.2 Robustness with respect to failures of function evaluations

We now test the robustness of the solvers when function evaluations fail from time to time. We
assume that the objective function returns NaN if the evaluation fails, which occurs randomly
with a certain probability. As mentioned in Section 4.5, PDFO uses a moderated extreme barrier
to handle such failures. To verify the effectiveness of this approach, we compare PDFO with
its variant that does not apply the barrier. To make the experiment more informative, we also
include the finite-difference CG and BFGS tested before, which do not handle evaluation failures
particularly. The solvers are set up in the same way as in the previous experiment, and we still
employ the 166 unconstrained CUTEst problems used previously.

Let p ∈ [0, 1] be the failure probability of function evaluations. For a testing problem with the
objective function f , we define

f̂p(x) =
{

f(x) if U(x) ≥ p,

NaN otherwise,
(5.5)

where U(x) follows the uniform distribution on [0, 1], being independent and identically distributed
when x varies. Note that f̂0 = f . In the experiment, the solvers can evaluate f only via f̂p. We
plot the performance profiles of the solvers in a way that is similar to the previous experiment.
The profiles are also averaged over ten independent runs. For each problem, the value f∗ in the
convergence test (5.4) is set to the least value of f obtained by all solvers during these ten runs
plus a run with p = 0.



PDFO: Powell’s Derivative-Free Optimization solvers 17

Figure 2 shows the performance profiles of the solvers with p = 0.01 and p = 0.05. Two profiles
are included for each p, with the convergence tolerance being τ = 10−2 and τ = 10−4 respectively.

0 2 4 6
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
PDFO (no barrier)

(a) p = 0.01, τ = 10−2

0 2 4 6 8 10
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
PDFO (no barrier)

(b) p = 0.01, τ = 10−4

0 2 4 6 8
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

p
ro

fil
es

PDFO
CG
BFGS
PDFO (no barrier)

(c) p = 0.05, τ = 10−2

0 2 4 6 8
log2(Performance ratio)

0.2

0.4

0.6

0.8

1.0
P

er
fo

rm
an

ce
p

ro
fil

es

PDFO
CG
BFGS
PDFO (no barrier)

(d) p = 0.05, τ = 10−4

Figure 2: Performance profiles of PDFO, CG, BFGS, and PDFO without barrier on unconstrained
problems with the objective functions evaluated by f̂p in (5.5)

The contrast is clear. Compared with finite-difference CG and BFGS, PDFO is more efficient
and solves significantly more problems given the same convergence tolerance. Moreover, comparing
PDFO and its no-barrier counterpart, we see that the moderated extreme barrier improves
evidently the robustness of PDFO with respect to failures of function evaluations, even though it
is a quite naive approach. When p = 0.05, the function evaluation fails roughly once every 20 times,
but PDFO can still solve almost 55% of the problems up to the convergence tolerance τ = 10−4

in the sense of (5.4), whereas all its competitors solve less than 25%. We speculate that the
moderated extreme barrier will also benefit other model-based DFO methods, including those
based on finite differences. It deserves further investigation in the future.



18 T. M. Ragonneau, Z. Zhang

5.3 An illustration of hyperparameter optimization with PDFO

We now consider a hyperparameter optimization problem from machine learning and illustrate
the potential of PDFO for such problems. We compare PDFO with Random Search (RS) and
Tree-Structured Parzen Estimator (TPE), two solvers from the Python package hyperopt for
hyperparameter optimization.

Our experiment is inspired by [27, § 5.3], which investigates the application of trust-region
DFO methods to hyperparameter optimization. Similar to [27, § 5.3], we tune the C-SVC model
detailed in [11, § 2.1] for binary classifications. This model relies on two hyperparameters: a
penalty parameter C ∈ (0, ∞) and a kernel parameter γ ∈ (0, ∞). As suggested by [11, § 9], we
tune C and γ for the performance of the C-SVC. We model this process as solving the problem

max P (C, γ) s.t. C > 0, γ > 0, (5.6)

where P (C, γ) measures the performance corresponding to parameters (C, γ). In our experiment,
we define P based on the AUC score [27, § 3], which lies in [0, 1] and measures the quality
of a classifier on a dataset, the higher the better. More precisely, P (C, γ) is set to a five-fold
cross-validation AUC score as follows. Split the training dataset S into five folds, and train the
C-SVC five times, each time on a union of four distinct folds. After each training, calculate the
AUC score of the resulting classifier on the fold not involved in the training, leading to five scores,
the average of which is P (C, γ).

Our experiment is based on binary classification problems from LIBSVM,11 where we adopt
three datasets detailed in Table 1. LIBSVM divides each dataset D into two disjoint subsets,
namely a training dataset S and a testing dataset T . The training in the evaluation of P is
done using the SVC class of the Python package scikit-learn.12 We solve (5.6) by PDFO, RS,
and TPE to obtain the tuned parameters (C̄, γ̄). As in [27, § 5.3], we modify the constraints
of (5.6) to C ∈ [10−6, 1] and γ ∈ [1, 103]. For better scaling of the problem, we perform the
maximization with respect to (log10 C, log10 γ) instead of (C, γ), the initial guess being chosen
randomly from [−6, 0] × [0, 3]. The solver of PDFO is BOBYQA, for which we set the maximal
number of function evaluations to 100. For RS and TPE, we try both 100 and 300 for the maximal
number of function evaluations, and they do not terminate until this number is reached.

Table 1: Datasets from LIBSVM

Dataset Number of features Size of S Size of T
splice 60 1,000 2,175
svmguide1 4 3,088 4,000
ijcnn1 22 49,990 91,701

To assess the quality of the tuned parameters (C̄, γ̄), we train our model on S with
(C, γ) = (C̄, γ̄), and calculate both the AUC score and accuracy of the resulting classifier
on T , the latter being the fraction of correctly classified data points. Note that T is not involved
in the tuning process. Table 2 presents the results for this experiment, where #P denotes the
number of evaluations of the function P and “Time” is the computing time for obtaining (C̄, γ̄).

In terms of the AUC score and accuracy, PDFO achieves a clearly better result than RS
and TPE on the “splice” dataset, and they all attain comparable results on the other datasets.

11https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets .
12https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html .

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


PDFO: Powell’s Derivative-Free Optimization solvers 19

Table 2: Hyperparameter tuning using PDFO, RS, and TPE

Dataset Solver AUC Score Accuracy #P Time (s)

splice

PDFO 0.927 0.737 33 6.56

RS 0.500 0.520 100 9.16
0.500 0.520 300 2.74 × 101

TPE 0.500 0.520 100 8.89
0.500 0.520 300 2.64 × 101

svmguide1

PDFO 0.995 0.966 51 3.45

RS 0.994 0.961 100 1.13 × 101

0.995 0.968 300 3.40 × 101

TPE 0.995 0.965 100 9.53
0.995 0.968 300 2.53 × 101

ijcnn1

PDFO 0.997 0.980 44 2.44 × 103

RS 0.997 0.982 100 3.94 × 103

0.997 0.976 300 1.14 × 104

TPE 0.998 0.979 100 3.39 × 103

0.998 0.979 300 8.36 × 103

However, PDFO always uses much fewer function evaluations, and hence, much less computing
time. The difference in the computing time is particularly visible on the “ijcnn1” dataset, as each
evaluation of P takes much time due to the large data size.

Note that our intention is not to manifest that PDFO outperforms existing approaches for
hyperparameter tuning in general, which is unlikely the case. Indeed, PDFO has limitations in
handling hyperparameter tuning problems, as many such problems contain discrete variables and
cannot be handled by PDFO directly. Our objective is rather to provide an example that shows
the possibility of applying Powell’s methods to hyperparameter optimization, which is not well
studied up to now. In doing so, we also hope to call for more investigation on DFO methods for
machine learning problems in general, as is suggested in [27].

6 Concluding remarks

We have presented the PDFO package, which aims at simplifying the use of Powell’s DFO solvers
by providing user-friendly interfaces. More information about the package can be found on
the homepage of the package at https://www.pdfo.net , including the detailed syntax of the
interfaces, extensive documentation of the options, and several examples to illustrate the usage.

In addition, we have provided an overview of Powell’s methods behind PDFO. The overview
does not intend to repeat Powell’s description of the methods, but rather to provide a summary
of the main features and structures of the methods, highlighting the intrinsic connections and
similarities among them. We hope that the overview will ease the understanding of Powell’s
methods, in the same way as the PDFO package eases the use of these methods.

Besides Powell’s solvers, PDFO also provides a unified interface for DFO solvers. Such an
interface can facilitate the development and comparison of different DFO solvers. The interface can

https://www.pdfo.net


20 T. M. Ragonneau, Z. Zhang

readily accommodate solvers other than those by Powell, for example, the COBYQA (Constrained
Optimization BY Quadratic Approximations) solver for general nonlinearly constrained DFO
problems (see [62, Chapters 5–7] and [64]).

Finally, we stress that PDFO does not implement Powell’s DFO solvers in Python or MAT-
LAB, but only interfaces Powell’s implementation with such languages. The implementation
of these solvers in Python, MATLAB, and other languages is a project in progress under the
name of PRIMA (Reference Implementation for Powell’s methods with Modernization and
Amelioration) [79].

Acknowledgments. This paper corresponds to Chapter 3 of the PhD thesis of Tom M.
Ragonneau [62], co-supervised by Zaikun Zhang and Professor Xiaojun Chen from The Hong
Kong Polytechnic University. Both authors are very grateful to Professor Chen for her support,
encouragement, and guidance during the PhD studies. Also, the authors would like to thank
Professor Ya-xiang Yuan for his everlasting encouragement and support. Finally, the authors
thank the editors and referees for their suggestions, which have substantially improved the software
and manuscript.

References

[1] Audet, C., Caporossi, G., and Jacquet, S. “Binary, unrelaxable and hidden constraints in blackbox
optimization.” Oper. Res. Lett. 48 (2020), pp. 467–471. doi: 10.1016/j.orl.2020.05.011.

[2] Audet, C. and Dennis Jr., J. E. “Mesh adaptive direct search algorithms for constrained optimiza-
tion.” SIAM J. Optim. 17 (2006), pp. 188–217. doi: 10.1137/040603371.

[3] Audet, C. and Hare, W. Derivative-Free and Blackbox Optimization. Springer Ser. Oper. Res.
Financ. Eng. Cham, Switzerland: Springer, 2017. doi: 10.1007/978-3-319-68913-5.

[4] Bandeira, A. S., Scheinberg, K., and Vicente, L. N. “Computation of sparse low degree interpolating
polynomials and their application to derivative-free optimization.” Math. Program. 134 (2012),
pp. 223–257. doi: 10.1007/s10107-012-0578-z.

[5] Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C. “Fitting linear mixed-effects models using
lme4.” J. Stat. Softw. 67 (2015), pp. 1–48. doi: 10.18637/jss.v067.i01.

[6] Berahas, A. S., Byrd, R. H., and Nocedal, J. “Derivative-free optimization of noisy functions via
quasi-Newton methods.” SIAM J. Optim. 29 (2019), pp. 965–993. doi: 10.1137/18M1177718.

[7] Billups, S. C., Larson, J., and Graf, P. “Derivative-free optimization of expensive functions with
computational error using weighted regression.” SIAM J. Optim. 23 (2013), pp. 27–53. doi: 10.
1137/100814688.

[8] Buhmann, M. D., Fletcher, R., Iserles, A., and Toint, P. “Michael J. D. Powell. 29 July 1936–19
April 2015.” Biogr. Mems Fell. R. Soc. 64 (2018), pp. 341–366. doi: 10.1098/rsbm.2017.0023.

[9] Cartis, C., Fiala, J., Marteau, B., and Roberts, L. “Improving the flexibility and robustness of
model-based derivative-free optimization solvers.” ACM Trans. Math. Software 45, 32 (3 2019),
pp. 1–41. doi: 10.1145/3338517.

[10] Cartis, C., Roberts, L., and Sheridan-Methven, O. “Escaping local minima with local derivative-
free methods: a numerical investigation.” Optimization 71 (2022), pp. 2343–2373. doi: 10.1080/
02331934.2021.1883015.

[11] Chang, C.-C. and Lin, C.-J. “LIBSVM: a library for support vector machines.” ACM Trans. Intell.
Syst. Technol. 2, 27 (2011), pp. 1–27. doi: 10.1145/1961189.1961199.

https://doi.org/10.1016/j.orl.2020.05.011
https://doi.org/10.1137/040603371
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/s10107-012-0578-z
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1137/18M1177718
https://doi.org/10.1137/100814688
https://doi.org/10.1137/100814688
https://doi.org/10.1098/rsbm.2017.0023
https://doi.org/10.1145/3338517
https://doi.org/10.1080/02331934.2021.1883015
https://doi.org/10.1080/02331934.2021.1883015
https://doi.org/10.1145/1961189.1961199


PDFO: Powell’s Derivative-Free Optimization solvers 21

[12] Conn, A. R. and Le Digabel, S. “Use of quadratic models with mesh-adaptive direct search
for constrained black box optimization.” Optim. Methods Softw. 28 (2013), pp. 139–158. doi:
10.1080/10556788.2011.623162.

[13] Conn, A. R., Scheinberg, K., and Toint, Ph. L. “On the convergence of derivative-free methods
for unconstrained optimization.” In: M. D. Buhmann and A. Iserles, eds. Approximation Theory
and Optimization: Tributes to M. J. D. Powell. Cambridge, UK: Cambridge University Press, 1997,
pp. 83–108.

[14] Conn, A. R., Scheinberg, K., and Toint, Ph. L. “Recent progress in unconstrained nonlinear opti-
mization without derivatives.” Math. Program. 79 (1997), pp. 397–414. doi: 10.1007/BF02614326.

[15] Conn, A. R., Scheinberg, K., and Vicente, L. N. “Geometry of interpolation sets in derivative free
optimization.” Math. Program. 111 (2008), pp. 141–172. doi: 10.1007/s10107-006-0073-5.

[16] Conn, A. R., Scheinberg, K., and Vicente, L. N. “Geometry of sample sets in derivative-free
optimization: polynomial regression and underdetermined interpolation.” IMA J. Numer. Anal. 28
(2008), pp. 721–748. doi: 10.1093/imanum/drn046.

[17] Conn, A. R., Scheinberg, K., and Vicente, L. N. “Global convergence of general derivative-free
trust-region algorithms to first- and second-order critical points.” SIAM J. Optim. 20 (2009),
pp. 387–415. doi: 10.1137/060673424.

[18] Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction to Derivative-Free Optimization.
MPS-SIAM Ser. Optim. Philadelphia, PA, USA: SIAM, 2009. doi: 10.1137/1.9780898718768.

[19] Conn, A. R. and Toint, Ph. L. “An algorithm using quadratic interpolation for unconstrained
derivative free optimization.” In: G. Di Pillo and F. Giannessi, eds. Nonlinear Optimization and
Applications. Boston, MA, USA: Springer, 1996, pp. 27–47. doi: 10.1007/978-1-4899-0289-4_3.

[20] Custódio, A. L., Scheinberg, K., and Vicente, L. N. “Methodologies and software for derivative-
free optimization.” In: T. Terlaky, M. F. Anjos, and S. Ahmed, eds. Advances and Trends in
Optimization with Engineering Applications. Philadelphia, PA, USA: SIAM, 2017, pp. 495–506. doi:
10.1137/1.9781611974683.ch37.

[21] Dennis Jr., J. E. and Schnabel, R. B. “Least change secant updates for quasi-Newton methods.”
SIAM Rev. 21 (1979), pp. 443–459. doi: 10.1137/1021091.

[22] Dodangeh, M. and Vicente, L. N. “Worst case complexity of direct search under convexity.” Math.
Program. 155 (2016), pp. 307–332. doi: 10.1007/s10107-014-0847-0.

[23] Fletcher, R. and Powell, M. J. D. “A rapidly convergent descent method for minimization.” Comput.
J. 6 (1963), pp. 163–168. doi: 10.1093/comjnl/6.2.163.

[24] Fowkes, J., Roberts, L., and Bűrmen, Á. “PyCUTEst: an open source Python package of optimization
test problems.” J. Open Source Softw. 7, 4377 (2022), pp. 1–2. doi: 10.21105/joss.04377.

[25] Gallard, F., Vanaret, C., Guénot, D., Gachelin, V., Lafage, R., Pauwels, B., Barjhoux, P.-J., and
Gazaix, A. “GEMS: a Python library for automation of multidisciplinary design optimization process
generation.” In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. Kissimmee, FL, USA: AIAA, 2018. doi: 10.2514/6.2018-0657.

[26] Garmanjani, R., Júdice, D., and Vicente, L. N. “Trust-region methods without using derivatives:
worst case complexity and the nonsmooth case.” SIAM J. Optim. 26 (2016), pp. 1987–2011. doi:
10.1137/151005683.

[27] Ghanbari, H. and Scheinberg, K. Black-box optimization in machine learning with trust region
based derivative free algorithm. Tech. rep. 17T-005. Bethlehem, PA, USA: COR@L, Department of
Industrial and Systems Engineering, Lehigh University, 2017.

https://doi.org/10.1080/10556788.2011.623162
https://doi.org/10.1007/BF02614326
https://doi.org/10.1007/s10107-006-0073-5
https://doi.org/10.1093/imanum/drn046
https://doi.org/10.1137/060673424
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1007/978-1-4899-0289-4_3
https://doi.org/10.1137/1.9781611974683.ch37
https://doi.org/10.1137/1021091
https://doi.org/10.1007/s10107-014-0847-0
https://doi.org/10.1093/comjnl/6.2.163
https://doi.org/10.21105/joss.04377
https://doi.org/10.2514/6.2018-0657
https://doi.org/10.1137/151005683


22 T. M. Ragonneau, Z. Zhang

[28] Gould, N. I. M., Orban, D., and Toint, Ph. L. “CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization.” Comput. Optim. Appl. 60 (2015),
pp. 545–557. doi: 10.1007/s10589-014-9687-3.

[29] Gratton, S., Royer, C. W., Vicente, L. N., and Zhang, Z. “Direct search based on probabilistic
descent.” SIAM J. Optim. 25 (2015), pp. 1515–1541. doi: 10.1137/140961602.

[30] Gratton, S., Royer, C. W., Vicente, L. N., and Zhang, Z. “Direct search based on probabilistic
feasible descent for bound and linearly constrained problems.” Comput. Optim. Appl. 72 (2019),
pp. 525–559. doi: 10.1007/s10589-019-00062-4.

[31] Hager, W. W. “Updating the inverse of a matrix.” SIAM Rev. 31 (1989), pp. 221–239. doi:
10.1137/1031049.

[32] Hough, M. and Roberts, L. “Model-based derivative-free methods for convex-constrained optimiza-
tion.” SIAM J. Optim. 32 (2022), pp. 2552–2579. doi: 10.1137/21M1460971.

[33] Izadinia, H., Shan, Q., and Seitz, S. M. “IM2CAD.” In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017, pp. 2422–2431. doi:
10.1109/CVPR.2017.260.

[34] Kelley, C. T. Implicit Filtering. Software Environ. Tools. Philadelphia, PA, USA: SIAM, 2011. doi:
10.1137/1.9781611971903.

[35] Kolda, T. G., Lewis, R. M., and Torczon, V. “Optimization by direct search: new perspectives
on some classical and modern methods.” SIAM Rev. 45 (2003), pp. 385–482. doi: 10.1137/
S003614450242889.

[36] Larson, J., Menickelly, M., and Wild, S. M. “Derivative-free optimization methods.” Acta Numer.
28 (2019), pp. 287–404. doi: 10.1017/S0962492919000060.

[37] Le Digabel, S. “Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm.” ACM
Trans. Math. Software 37, 44 (2011), pp. 1–15. doi: 10.1145/1916461.1916468.

[38] Le Digabel, S. and Wild, S. M. “A taxonomy of constraints in black-box simulation-based opti-
mization.” Optim. Eng. (2023). doi: 10.1007/s11081-023-09839-3.

[39] Mamon, G. A., Biviano, A., and Boué, G. “MAMPOSSt: modelling anisotropy and mass profiles
of observed spherical systems I. Gaussian 3D velocities.” Mon. Not. R. Astron. Soc. 429 (2013),
pp. 3079–3098. doi: 10.1093/mnras/sts565.

[40] Mombaur, K., Truong, A., and Laumond, J. P. “From human to humanoid locomotion—an inverse
optimal control approach.” Auton. Robot. 28 (2010), pp. 369–383. doi: 10.1007/s10514-009-9170-
7.

[41] Moré, J. J. and Sorensen, D. C. “Computing a trust region step.” SIAM J. Sci. Stat. Comp. 4
(1983), pp. 553–572. doi: 10.1137/0904038.

[42] Moré, J. J. and Wild, S. M. “Benchmarking derivative-free optimization algorithms.” SIAM J.
Optim. 20 (2009), pp. 172–191. doi: 10.1137/080724083.

[43] Moré, J. J. and Wild, S. M. “Estimating derivatives of noisy simulations.” ACM Trans. Math.
Software 38, 19 (2012), pp. 1–21. doi: 10.1145/2168773.2168777.

[44] Nelder, J. A. and Mead, R. “A simplex method for function minimization.” Comput. J. 7 (1965),
pp. 308–313. doi: 10.1093/comjnl/7.4.308.

[45] Oeuvray, R. and Bierlaire, M. “BOOSTERS: a derivative-free algorithm based on radial basis
functions.” Int. J. Model. Simul. 29 (2009), pp. 29–36. doi: 10.1080/02286203.2009.11442507.

https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1137/140961602
https://doi.org/10.1007/s10589-019-00062-4
https://doi.org/10.1137/1031049
https://doi.org/10.1137/21M1460971
https://doi.org/10.1109/CVPR.2017.260
https://doi.org/10.1137/1.9781611971903
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1017/S0962492919000060
https://doi.org/10.1145/1916461.1916468
https://doi.org/10.1007/s11081-023-09839-3
https://doi.org/10.1093/mnras/sts565
https://doi.org/10.1007/s10514-009-9170-7
https://doi.org/10.1007/s10514-009-9170-7
https://doi.org/10.1137/0904038
https://doi.org/10.1137/080724083
https://doi.org/10.1145/2168773.2168777
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1080/02286203.2009.11442507


PDFO: Powell’s Derivative-Free Optimization solvers 23

[46] Porcelli, M. and Toint, Ph. L. “BFO, a trainable derivative-free brute force optimizer for nonlin-
ear bound-constrained optimization and equilibrium computations with continuous and discrete
variables.” ACM Trans. Math. Software 44, 6 (2017), pp. 1–25. doi: 10.1145/3085592.

[47] Porcelli, M. and Toint, Ph. L. “Exploiting problem structure in derivative free optimization.” ACM
Trans. Math. Software 48, 6 (2022), pp. 1–25. doi: 10.1145/3474054.

[48] Powell, M. J. D. “An efficient method for finding the minimum of a function of several variables
without calculating derivatives.” Comput. J. 7 (1964), pp. 155–162. doi: 10.1093/comjnl/7.2.155.

[49] Powell, M. J. D. “A new algorithm for unconstrained optimization.” In: J. B. Rosen, O. L. Man-
gasarian, and K. Ritter, eds. Nonlinear Programming. Madison, WI, USA: Academic Press, 1970,
pp. 31–65. doi: 10.1016/B978-0-12-597050-1.50006-3.

[50] Powell, M. J. D. “A direct search optimization method that models the objective and constraint
functions by linear interpolation.” In: S. Gomez and J.-P. Hennart, eds. Advances in Optimization
and Numerical Analysis. Vol. 275. Math. Appl. Dordrecht, Netherlands: Springer, 1994, pp. 51–67.
doi: 10.1007/978-94-015-8330-5_4.

[51] Powell, M. J. D. “Direct search algorithms for optimization calculations.” Acta Numer. 7 (1998),
pp. 287–336. doi: 10.1017/S0962492900002841.

[52] Powell, M. J. D. “On the Lagrange functions of quadratic models that are defined by interpolation.”
Optim. Methods Softw. 16 (2001), pp. 289–309. doi: 10.1080/10556780108805839.

[53] Powell, M. J. D. “UOBYQA: unconstrained optimization by quadratic approximation.” Math.
Program. 92 (2002), pp. 555–582. doi: 10.1007/s101070100290.

[54] Powell, M. J. D. “Least Frobenius norm updating of quadratic models that satisfy interpolation
conditions.” Math. Program. 100 (2004), pp. 183–215. doi: 10.1007/s10107-003-0490-7.

[55] Powell, M. J. D. “On updating the inverse of a KKT matrix.” In: Y. Yuan, ed. Numerical Linear
Algebra and Optimization. Beijing, China: Science Press, 2004, pp. 56–78.

[56] Powell, M. J. D. “The NEWUOA software for unconstrained optimization without derivatives.” In:
G. Di Pillo and M. Roma, eds. Large-Scale Nonlinear Optimization. Vol. 83. Nonconvex Optim.
Appl. Boston, MA, USA: Springer, 2006, pp. 255–297. doi: 10.1007/0-387-30065-1_16.

[57] Powell, M. J. D. “Developments of NEWUOA for minimization without derivatives.” IMA J. Numer.
Anal. 28 (2008), pp. 649–664. doi: 10.1093/imanum/drm047.

[58] Powell, M. J. D. The BOBYQA algorithm for bound constrained optimization without deriva-
tives. Tech. rep. DAMTP 2009/NA06. Cambridge, UK: Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, 2009.

[59] Powell, M. J. D. “On the convergence of trust region algorithms for unconstrained minimization
without derivatives.” Comput. Optim. Appl. 53 (2012), pp. 527–555. doi: 10.1007/s10589-012-
9483-x.

[60] Powell, M. J. D. “Beyond symmetric Broyden for updating quadratic models in minimization
without derivatives.” Math. Program. 138 (2013), pp. 475–500. doi: 10.1007/s10107-011-0510-y.

[61] Powell, M. J. D. “On fast trust region methods for quadratic models with linear constraints.” Math.
Program. Comput. 7 (2015), pp. 237–267. doi: 10.1007/s12532-015-0084-4.

[62] Ragonneau, T. M. “Model-Based Derivative-Free Optimization Methods and Software.” PhD thesis.
Hong Kong, China: Department of Applied Mathematics, The Hong Kong Polytechnic University,
2022. url: https://theses.lib.polyu.edu.hk/handle/200/12294.

[63] Ragonneau, T. M. and Zhang, Z. “An optimal interpolation set for model-based derivative-free
optimization methods.” 2023. doi: 10.48550/arXiv.2302.09992. arXiv: 2302.09992 [math.OC].

https://doi.org/10.1145/3085592
https://doi.org/10.1145/3474054
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1016/B978-0-12-597050-1.50006-3
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1017/S0962492900002841
https://doi.org/10.1080/10556780108805839
https://doi.org/10.1007/s101070100290
https://doi.org/10.1007/s10107-003-0490-7
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1093/imanum/drm047
https://doi.org/10.1007/s10589-012-9483-x
https://doi.org/10.1007/s10589-012-9483-x
https://doi.org/10.1007/s10107-011-0510-y
https://doi.org/10.1007/s12532-015-0084-4
https://theses.lib.polyu.edu.hk/handle/200/12294
https://doi.org/10.48550/arXiv.2302.09992
https://arxiv.org/abs/2302.09992


24 T. M. Ragonneau, Z. Zhang

[64] Ragonneau, T. M. and Zhang, Z. COBYQA: Constrained Optimization BY Quadratic Approxima-
tions. 2024. url: https://www.cobyqa.com.

[65] Regis, R. G. and Wild, S. M. “CONORBIT: constrained optimization by radial basis function
interpolation in trust regions.” Optim. Methods Softw. 32 (2017), pp. 552–580. doi: 10.1080/
10556788.2016.1226305.

[66] Rios, L. M. and Sahinidis, N. V. “Derivative-free optimization: a review of algorithms and comparison
of software implementations.” J. Global Optim. 56 (2013), pp. 1247–1293. doi: 10.1007/s10898-
012-9951-y.

[67] Shi, H.-J. M., Xie, Y., Xuan, M. Q., and Nocedal, J. “Adaptive finite-difference interval estimation
for noisy derivative-free optimization.” SIAM J. Sci. Comput. 44 (2022), A2302–A2321. doi:
10.1137/21M1452470.

[68] Shi, H.-J. M., Xuan, M. Q., Oztoprak, F., and Nocedal, J. “On the numerical performance of
derivative-free optimization methods based on finite-difference approximations.” Optim. Methods
Softw. 38 (2023), pp. 289–311. doi: 10.1080/10556788.2022.2121832.

[69] Steihaug, T. “The conjugate gradient method and trust regions in large scale optimization.” IMA
J. Numer. Anal. 20 (1983), pp. 626–637. doi: 10.1137/0720042.

[70] Toint, Ph. L. “Towards an efficient sparsity exploiting Newton method for minimization.” In: I. S.
Duff, ed. Sparse Matrices and Their Uses. New York, NY, USA: Academic Press, 1981, pp. 57–88.

[71] Torczon, V. “On the convergence of pattern search algorithms.” SIAM J. Optim. 7 (1997), pp. 1–25.
doi: 10.1137/S1052623493250780.

[72] Vicente, L. N. “Worst case complexity of direct search.” EURO J. Comput. 1 (2013), pp. 143–153.
doi: 10.1007/s13675-012-0003-7.

[73] Wild, S. M. “MNH: a derivative-free optimization algorithm using minimal norm Hessians.” In:
The Tenth Copper Mountain Conference on Iterative Methods. 2008.

[74] Wild, S. M., Regis, R. G., and Shoemaker, C. A. “ORBIT: optimization by radial basis function
interpolation in trust-regions.” SIAM J. Sci. Comput. 30 (2008), pp. 3197–3219. doi: 10.1137/
070691814.

[75] Xie, P. and Yuan, Y. “Least H2 norm updating quadratic interpolation model function for derivative-
free trust-region algorithms.” 2023. doi: 10 . 48550 / arXiv . 2302 . 12017. arXiv: 2302 . 12017
[math.OC].

[76] Zhang, H., Conn, A. R., and Scheinberg, K. “A derivative-free algorithm for least-squares mini-
mization.” SIAM J. Optim. 20 (2010), pp. 3555–3576. doi: 10.1137/09075531X.

[77] Zhang, Z. “On Derivative-Free Optimization Methods (in Chinese).” PhD thesis. Beijing, China:
Chinese Academy of Sciences, 2012.

[78] Zhang, Z. “Sobolev seminorm of quadratic functions with applications to derivative-free optimiza-
tion.” Math. Program. 146 (2014), pp. 77–96. doi: 10.1007/s10107-013-0679-3.

[79] Zhang, Z. PRIMA: Reference Implementation for Powell’s methods with Modernization and Ame-
lioration. 2024. url: http://www.libprima.net.

https://www.cobyqa.com
https://doi.org/10.1080/10556788.2016.1226305
https://doi.org/10.1080/10556788.2016.1226305
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1137/21M1452470
https://doi.org/10.1080/10556788.2022.2121832
https://doi.org/10.1137/0720042
https://doi.org/10.1137/S1052623493250780
https://doi.org/10.1007/s13675-012-0003-7
https://doi.org/10.1137/070691814
https://doi.org/10.1137/070691814
https://doi.org/10.48550/arXiv.2302.12017
https://arxiv.org/abs/2302.12017
https://arxiv.org/abs/2302.12017
https://doi.org/10.1137/09075531X
https://doi.org/10.1007/s10107-013-0679-3
http://www.libprima.net

	Introduction
	A brief review of DFO methods
	Powell's derivative-free algorithms
	A sketch of the algorithms
	The trust-region subproblem
	The interpolation problem
	The interpolation set

	COBYLA
	UOBYQA
	NEWUOA, BOBYQA, and LINCOA

	The PDFO package
	Signature of the main function
	Automatic selection of the solver
	Problem preprocessing
	Bug fixes in the Fortran source code
	Handling failures of function evaluations

	Numerical results
	Stability under noise
	Robustness with respect to failures of function evaluations
	An illustration of hyperparameter optimization with PDFO

	Concluding remarks

