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Abstract

We consider two different variational models of transport networks: the so-
called branched transport problem and the urban planning problem. Based on a
novel relation toMumford–Shah image inpainting and techniques developed in that
field, we show for a two-dimensional situation that both highly non-convex network
optimization tasks can be transformed into a convex variational problem,whichmay
be very useful from analytical and numerical perspectives. As applications of the
convex formulation, we use it to perform numerical simulations (to our knowledge
this is the first numerical treatment of urban planning), and we prove a lower bound
for the network cost that matches a known upper bound (in terms of how the cost
scales in the model parameters) which helps better understand optimal networks
and their minimal costs.

1. Introduction

The optimization of transport networks, in particular the so-called urban plan-
ning [13] or the branched transport problem [6], is a nontrivial task. The corre-
sponding cost functionals are highly non-convex, and their minimizers, the optimal
networks, often exhibit a complicated, strongly ramified structure.

1.1. Convexification, Numerical Optimization, and Energy Scaling Laws

A better understanding of this can either be achieved by numerical or by ana-
lytical means.

Via numerical optimization one may, for instance, identify and explore the
optimal network structures for different parameters or geometric settings. This
then provides an intuition of the model behaviour. While for urban planning we
are not aware of any numerical treatment, optimal networks in branched transport
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have already been computed using a phase field approximation [37]. However, due
to the complicated energy landscape it is highly nontrivial not to get stuck in local
minima, and in general there is no guarantee to achieve the global optimum (which
is known to exist).

A classical alternative, analytical way to achieve a better understanding of the
networkmodels is byprovinghow theoptimal cost scales in the problemparameters.
To this end one typically restricts things to a specific, simple situation and constructs
a cost efficient network for that situation. If one can prove that, up to a constant
factor, no network can attain a lower cost, then this provides information about the
minimum achievable cost and the structure of near-optimal networks. In particular
it can be learned how the minimum cost scales in the problem parameters.

Such energy scaling laws have already successfully been used to explain a
number of complicated patterns seen in physical experiments such as martensite–
austenite transformations [8,18,29–31], micromagnetics [22], intermediate states
in type-I superconductors [19,23], membrane folding and blistering [9,10], or epi-
taxial growth [28]. They were also employed to find the optimal fine-scale structure
of composite elastic materials [32,33] as well as of branched transport and urban
planning networks [17].

In this article we perform both numerical optimization as well as energy scaling
analysis. In particular, we compute optimal urban planning networks numerically
for the first time, and we redo the energy scaling analysis of branched transport
and urban planning networks. To these ends we follow a novel approach which is
interesting on its own. For a two-dimensional situation we show that the problem
can actually be convexified. This is achieved by exploiting a novel relation to image
inpainting and techniques developed in that field.

We believe that the convex formulation is in many situations tight, that is,
equivalent to the original network optimization, however, we only prove that it
represents a lower bound. Exploring when it is also an upper bound will be more
complicated and certainly requires quite technical constructions (similar to those
involved in the regularity analysis of the Mumford–Shah functional; we refer to
Remark 3.2.3 and the final discussion in Sect. 4). We will only briefly discuss the
associated analytical problems and instead showcase numerical results that support
the tightness of the convexification except for a few special cases.

Convex formulations have the great advantage that the local behaviour of the
cost or energy provides global information of the full energy landscape, which can
be used in many ways (for instance numerically to find the global energy minimizer
or analytically to find lower energy bounds by convex duality). As applications we
perform numerical network optimization, and we reprove the tight lower bound
on the minimum achievable network cost, which is the essential ingredient of the
energy scaling law.

1.2. Branched Transport and Urban Planning

Branched transport has been introduced in different formulations by Mad-
dalena et al. [36] and by Xia [42] and then studied by various authors; a com-
prehensive treatment is found in the monograph [6], while regularity issues are
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considered in [14,35,41], and [15]. It has been used to describe hierarchically
branched networks such as the blood vessel system or the water supply network
in plants. The efficiency of a network is judged by a functional, which measures
the cost associated with the transport of mass from a given source distribution to a
sink distribution. This functional has the feature that the transport cost per transport
distance is not proportional to the transported mass, but increases sublinearly in the
mass. In other words, the more mass is transported together, the lower is cost per
single particle, which models an increase in transport efficiency. This feature leads
to ramified networks, since it becomes more efficient to first collect all the mass
via a hierarchically branched network and then transport it all together in bulk.
The strength of this effect and thus the degree of ramification is governed by a
model parameter ε > 0. For small ε, the effect is only weak, which leads to highly
complicated structures with many pipes becoming optimal.

The urban planning model was introduced in [4] and is motivated by public
transport networks. Here, the given source represents the distribution of homes in an
urban area, and the sink represents the distribution of workplaces. Every commuter
can travel on the network, paying a fixed cost of 1 per travel distance, or outside
the network by own means, paying a slightly larger cost a. In contrast to branched
transport, the resulting total transport cost is proportional to the transportedmass. In
addition, the urban planning model has maintenance costs which are proportional
to the total network length with proportionality factor ε. Those maintenance costs
again lead to the preference of hierarchically branched networks.

1.3. The Considered Setting

To better understand the model behaviour, an energy scaling law for the net-
work costs has been derived in [17] (and will be reproved in this work, see
Theorem2.2.1) for the following simple problem geometry (Fig. 1 left). In two-
dimensional Euclidean space one considers as source and sink distribution the
following measures concentrated on two lines:

μ0 = L1�[0, �] × {0}, μ1 = L1�[0, �] × {1},

where � > 0, L1 denotes the one-dimensional Lebesgue measure and� indicates
its restriction onto a subset of R2. Note that the case of measures with a larger or
smaller distance between their supports or with a different common total mass can
easily be reduced to the above situation and that [17] actually also considers the
analogous problem in more than two dimensions. One seeks the optimal network
(with respect to the urban planning or branched transport costs) to transport themass
fromμ0 toμ1. This situation may, for instance, be viewed as a strong simplification
of thewater transportwithin a single plant or a forest:μ0 represents the groundwater
reservoir and μ1 the water consumption in the leaf canopy (Fig. 1 right).

The truly optimal transport network is too hard to find, but the previously
described energy scaling analysis allows to examine how near-optimal network
patterns look like. A qualitative sketch is given in Fig. 1 left: such a network is
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Fig. 1. Left: Sketch of the considered setting, two measuresμ0 andμ1 supported on lines at
distance 1, as well as an exemplary transport network in between composed of elementary
cells (dashed line). Right: Photograph of a box tree exhibiting a branched network structure
and a comparatively thin leaf canopy that may almost be thought of as a lower-dimensional
manifold

composed of multiple hierarchical levels. Each level consists of an array of V-
shaped elementary cells, with heights and aspect ratios depending on the level and
on the problem parameters a and ε, the details are given in [17].

For numerical network optimization we will also consider different geometric
settings such as sources and sinks distributed on a circle (see Fig. 8).

1.4. The Connection to the Mumford–Shah Problem

The Mumford–Shah problem is a variational formulation of an image segmen-
tation or denoising task, originally introduced in [34]. The corresponding energy
functional is designed to smooth out a given noisy imagewhile preserving the edges
or discontinuities visible inside the image. The work was very influential, andmany
techniques have been devised to deal with the problem numerically and analyti-
cally. Among these techniques there are so-called functional lifting methods that
find a convex formulation of the highly complicated and non-convex Mumford–
Shah segmentation at the expense of introducing an additional dimension to the
problem [38].

The essential observation in the context of network optimization now is that a
two-dimensional, divergence-free mass flux (the flux running through the network)
becomes a gradient field after rotation by π

2 . This gradient field can be interpreted
as the gradient of an image, which suddenly allows us to reformulate network
optimization as a Mumford–Shah-type image processing problem and thus to use
the functional lifting techniques.

The outline of the article is as follows. We will introduce urban planning and
branched transport in Sect. 2 as well as the energy scaling result, which is the
main analytical application of our new convex formulation. The relation between
network optimization and image processing is derived in Sect. 3, as is the convex
reformulation. Section3 further contains the applications, the lower bound of the
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energy scaling as well as a numerical approach based on the reformulation. We
close with a discussion in Sect. 4.

2. Transport Networks and Their Energy Scaling

We consider two different models for transport networks: so-called branched
transport and urban planning. The formulation in which we state both models is
originally due to Xia [42]; the fact that also urban planning can be formulated this
way has been shown in [16].

In the following,Hn andLn denote the n-dimensional Hausdorff and Lebesgue
measure, fbm(�) is the set of non-negative finite Borel measures on � ⊂ R

n , and
rca(�;Rn) denotes the set of vector-valued regular countably additive measures
(Radon measures). Both fbm(�) and rca(�;Rn) are equipped with the notion of

weak-∗ convergence, denoted by
∗
⇀. Finally, the Dirac delta distribution at a point

x ∈ R
n will be denoted by δx .

2.1. Flux-Based Formulations of Urban Planning and Branched Transport

Definition 2.1.1. (Discrete mass flux) A transport path is a weighted directed graph
G inRn with verticesV (G), straight edges E(G), andweight functionw : E(G) →
[0,∞).

Denote the initial and final point of an edge e ∈ E(G) by e+ and e− so that the
edge has direction ê = e−−e+

|e−−e+| . The edge can be identified with the vector measure

μe = (H1�e) ê. The discrete mass flux corresponding to a transport path G is the
vector measure

FG =
∑

e∈E(G)

w(e)μe.

Let μ+ = ∑k
i=1 aiδxi , μ− = ∑l

i=1 biδyi be discrete finite non-negative mea-
sures with ai , bi > 0, xi , yi ∈ R

n and equal mass ‖μ+‖fbm = ‖μ−‖fbm. G is
called a transport path between μ+ and μ−, or equivalentlyFG is called a discrete
mass flux between μ+ and μ−, if divFG = μ+ − μ− in the distributional sense.

The measure μ+ and μ− can be thought of as a mass source and sink, respec-
tively, and the transport path G or equivalently the discrete mass flux FG describe
how the mass is transported from the source to the sink. Here, the edge weightw(e)
indicates how much mass is flowing along edge e, and the divergence condition
divFG = μ+ − μ− ensures that no mass gets lost on the way from μ+ to μ−.

Definition 2.1.2. (Urban planning and branched transport cost function) Let a >

1, ε > 0. The urban planning cost of a transport path G or discrete mass flux FG

is given by

Eε,a
F (FG) = Eε,a

F (G) =
∑

e∈E(G)

min(aw(e), w(e) + ε) l(e),



284 Alessio Brancolini, Carolin Rossmanith, and Benedikt Wirth

where l(e) denotes the length of edge e. The branched transport cost for ε ∈ (0, 1)
is given by

Mε
F(FG) = Mε

F(G) =
∑

e∈E(G)

w(e)1−ε l(e).

The functionals Eε,a
F and Mε

F model the cost associated with the mass transport
encoded by G. The cost contribution of each edge is proportional to the transport
distance l(e). The transport cost per particle and distance is min(a, 1 + ε

w(e) ) for
urban planning and w(e)−ε for branched transport. Obviously, the cost per particle
decreases the larger the total flux w(e) through the edge, that is, the more particles
travel together. These economies of scale lead to the fact that branched networks
are more cost-efficient than non-branched ones. Indeed, it pays off to first collect
mass together, then transport it inexpensively in bulk, and only later again divert
the single particles to their final destinations. The parameters ε and a encode the
strength of these economies of scale.

As already mentioned before, in urban planning the cost also has an alternative
interpretation [17]: it can be viewed as the sum of the maintenance costs for the
transport network (given by ε times the total network length) and the transport costs,
which split up into a contribution from mass transport via the network (at cost 1
per particle and distance) as well as a contribution from mass transport outside the
network (at a slightly larger cost a per particle and distance).

Definition 2.1.3. (Continuous mass flux and cost function) Letμ+, μ− ∈ fbm(Rn)

of equal mass. A vector measure F ∈ rca(Rn;Rn) is a mass flux between μ+
and μ−, if there exist sequences of discrete measures μk+, μk− with μk+

∗
⇀ μ+,

μk−
∗
⇀ μ− as k → ∞, and a sequence of discrete mass fluxes FGk between μk+

and μk− with FGk

∗
⇀ F . Note that divF = μ+ − μ− follows by continuity with

respect to weak-∗ convergence.
A sequence (μk+, μk−,FGk ) satisfying the previous properties is called approx-

imating graph sequence, and we write (μk+, μk−,FGk )
∗
⇀ (μ+, μ−,F).

If F is a mass flux between μ+ and μ−, the urban planning and branched
transport cost are respectively defined as

Eε,a
F (F) = inf

{
lim inf
k→∞ Eε,a

F (Gk) : (μk+, μk−,FGk )
∗
⇀ (μ+, μ−,F)

}
,

Mε
F(F) = inf

{
lim inf
k→∞ Mε

F(Gk) : (μk+, μk−,FGk )
∗
⇀ (μ+, μ−,F)

}
.

As before, F ∈ rca(Rn;Rn) describes the mass transport from a source μ+ to
a sink μ−. One is interested in the optimally cost-efficient mass transport, that is,
for fixed μ+ and μ− one seeks the mass flux between μ+ and μ− with least cost
Eε,a
F or Mε

F.

Remark 2.1.4. (Upper bound on urban planning) For later reference, note that in
urban planning the cost minimizing mass flux F between μ+ and μ− satisfies

Eε,a
F (F) ≤ aW1(μ+, μ−),
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where W1(μ+, μ−) = min
μ∈�(μ+,μ−)

ˆ
Rn×Rn

|x − y| dμ(x, y)

with �(μ+, μ−) = {μ ∈ fbm(Rn × R
n) : μ(A × R

n) = μ+(A), μ(Rn × B) =
μ−(B) for A, B Borel ⊂ R

n} denotes the Wasserstein distance.
Indeed, ifμ+, μ− are discrete measures, let π = ∑

x∈sptμ+,y∈sptμ− cx,yδ(x,y) ∈
�(μ+, μ−) be the optimal transport plan for the Wasserstein distance between
μ+, μ−. Now introduce the transport path with vertices V (G) = sptμ+ ∪ sptμ−,
edges E(G) = {

ex,y : x ∈ sptμ+, y ∈ sptμ−
}
, and weights w(ex,y) = cx,y ,

where ex,y be the oriented line segment from x to y. Obviously,

Eε,a
F (F) ≤ Eε,a

F (G) =
∑

e∈E(G)

min{aw(e), w(e) + ε}l(e) ≤
∑

e∈E(G)

aw(e)l(e)

= a
∑

x∈sptμ+,y∈sptμ−
cx,y |x − y| = aW1(μ+, μ−).

For non-discrete measures μ+, μ−, let (Gn, μ
n+, μn−)

∗
⇀ (F , μ+, μ−) be an

approximating graph sequence. We then finally have

Eε,a
F (F) ≤ lim inf

n→∞ Eε,a
F (FGn ) ≤ lim inf

n→∞ aW1(μ
n+, μn−) = aW1(μ+, μ−).

2.2. Energy Scaling for a Simple, Two-Dimensional Situation

Given an initial and final measure μ+ and μ−, we look for the optimal mass
fluxes between μ+ and μ−, that is, for minimizers of

Eε,a,μ+,μ−[F] =
{
Eε,a
F (F) if F is a mass flux between μ+ and μ−,

∞ else,

Mε,μ+,μ−[F] =
{
Mε

F(F) if F is a mass flux between μ+ and μ−,

∞ else.

To derive an energy scaling law we here consider the geometrically simple, two-
dimensional (n = 2) situation with source and sink

μ+ := μ0 = L1�[0, �] × {0}, μ− := μ1 = L1�[0, �] × {1} (2.2.1)

(cf. Fig. 1 left). It is not difficult to see that the minimum urban planning and
branched transport cost for ε = 0 are given by

E∗,a,μ0,μ1 := min
F

E0,a,μ0,μ1 [F] = W1(μ0, μ1) = �,

M∗,μ0,μ1 := min
F

M0,μ0,μ1 [F] = W1(μ0, μ1) = �.

Indeed, both urban planning and branched transport cost are known to be bounded
below by the Wasserstein distance (see [42, Lemma 4.2] for the case of branched
transport; for the case of urban planning the equivalent formulation of [16] allows
the same proof), and a minimizing flux achieving the above value is given by
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F = (0
1

)L2�[0, �] × [0, 1]. Our aim is to prove via a novel relation to image
inpainting that urban planning and branched transport satisfy the following energy
scaling law:

Theorem 2.2.1. (Energy scaling) There are constants C1,C2, ε0 > 0 independent
of ε, a, � such that for 0 < ε < min(ε0, �3) and a > 1 we have

C1�min{a − 1, ε
2
3 } ≤ minF Eε,a,μ0,μ1 [F] − E∗,a,μ0,μ1 ≤ C2�min{a − 1, ε

2
3 },

C1�ε| log ε| ≤ minF Mε,μ0,μ1 [F] − M∗,μ0,μ1 ≤ C2�ε| log ε|.
The proof of the above result has already been performed in [17]. In particular,

the upper bound was proven by providing a constructionF with the desired energy
scaling. The lower bound was obtained by a technique common in pattern analysis.
One aim of this article is to establish the lower bound via a completely different
route, by finding a convex relaxation of the problem and proving a lower bound
via convex duality. The essential ingredient here is the identification of a relation
between transport network optimization and image inpainting. The remainder of
the article derives this relation and provides the lower bound proof as well as some
numerical simulations as applications.

3. Optimal Networks in 2D via Convex Optimization

In this section we will transform the urban planning and the branched transport
problem in two dimensions to variants of theMumford–Shah segmentation problem
from image processing. Since for the Mumford–Shah segmentation problem there
are well-known convex reformulations via so-called functional lifting, the urban
planning and branched transport problem in two dimensions each come with a
convex formulation as well. While we show that the convex problems provide a
lower bound to the original network optimization, we do not examine when they are
equivalent. Thiswould require to prove a limsup inequalitywhich probably involves
a difficult technical construction outside the scope of this article (cf. Remark 3.2.3
and Sect. 4). We will use the convex formulations to put forward a proof of the
lower bound in Theorem2.2.1 which is solely based on convex duality as well as
to perform numerical network optimization that cannot get stuck in local minima.

3.1. Bijection Between Fluxes and Images

Denoting by Br (A) the open r -neighbourhood of a set A ⊂ R
2, let � ⊂ R

2

and V ⊂ R
2 be open bounded convex domains with � ⊂⊂ V ; for simplicity we

shall assume

V ⊃ B1(�).

Wewill later only consider the case where the initial and final measure of the urban
planning or branched transport problem are concentrated on the boundary ∂�, that
is,

sptμ+ ⊂ ∂�, sptμ− ⊂ ∂�. (3.1.1)
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For the specific choice (2.2.1) we may for instance take � = (0, �) × (0, 1) and
V = B1(�). Now let u ∈ BV(V ) represent a grey value image, where BV(V )

denotes the space of scalar functions of bounded variation on V . The gradient of
u can be decomposed into a part continuous with respect to the two-dimensional
Lebesgue measure L2, a jump part concentrated on the discontinuity set Su of u,
and a Cantor part Dcu [2, (3.89) and (3.90)],

Du = ∇uL2�V + [u]νH1�Su + Dcu.

Here ∇u is the Radon–Nikodym derivative of the Lebesgue-continuous part with
respect to L2, ν is the unit normal to the (rectifiable) discontinuity set Su , and [u]
is the jump in function values across Su in direction ν.

Definition 3.1.1. (Flux corresponding to an image) Let u ∈ BV(V ) be an image.
The flux Fu ∈ rca(V ;R2) associated to the image u is defined by

Fu = Du⊥ = ∇u⊥L2�V + [u]ν⊥H1�Su + Dcu
⊥,

where superscript ⊥ denotes a counterclockwise rotation by π
2 .

Note that Fu is divergence-free in the distributional sense (in V ). Indeed, let
φ ∈ C∞

c (V ) be a smooth test function with compact support, then
ˆ
V

φ d(divFu) = −
ˆ
V

∇φ · dFu =
ˆ
V

∇φ⊥ · dDu = −
ˆ
V
div(∇φ⊥)u dL2 = 0

due to div(∇φ⊥) = ∂2

∂x2∂x1
φ − ∂2

∂x1∂x2
φ = 0.

Remark 3.1.2. (Initial and final measure in the domain interior] Note that (3.1.1)
imposes a strong restriction on the admissible initial and final measures that only
allows specific applications. However, using the same ideas as in [12] one can in
principle also treat the case ofmeasures in the interior of�; a simple example of this
approach is provided in Fig. 8. In essence, one can augment the sought network by
a fixed artificial flux transporting all mass back from μ− to μ+. As a consequence,
the combined flux can again be represented as the rotated gradient of an image, and
one merely has to adapt the energy functional in order to ignore the contributions
from the artificial flux. Throughout this article, however, we will restrict ourselves
to the simpler setting of initial and final measures concentrated on ∂�.

As explainedbefore,we consider the case ofμ+ andμ− being anymeasures of equal
mass satisfying (3.1.1). Without loss of generality we may assume ∂� to contain
the origin and to lie in the right halfplane. The function γ : [0,H1(∂�)) → ∂�

shall parameterize ∂� counterclockwise by arclength, starting in γ (0) = 0, and
its image of [0, t) shall be denoted ∂�t = γ ([0, t)). Finally, let us introduce the
orthogonal projection

π∂� : R2 → ∂�, x → argmin
{|x − y| : y ∈ ∂�

}

(in case of nonuniqueness we pick the lexicographically first point, which is well-
defined since the set of closest points in ∂� is closed and bounded; the following
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arguments do not depend on this specific choice, though). The next definition intro-
duces a function whose gradient can be thought of as an extension of two given
measures μ+, μ− on ∂� onto R

2. Roughly speaking, the function is chosen such
that the tangential derivative of its trace on ∂� is μ+ − μ−. The restriction of this
function onto V \� will be used as a kind of boundary condition in order to avoid
(equivalent but lengthier)Mumford–Shah energy formulations with additional con-
tributions from the ∂�-trace of BV(�)-functions.

Definition 3.1.3. (Admissible fluxes and images) Given finite Borel measures
μ+, μ− satisfying (3.1.1), we define the function

u(μ+, μ−) : R2 → R, x → (μ+ − μ−)(∂�γ −1(π∂�(x))) (3.1.2)

(note that u(μ+, μ−) is constant along rays orthogonal to ∂� up to its so-called
medial axis).

The sets of admissible fluxes and of admissible images are given as

AF (μ+, μ−) = {F ∈ rca(V ;R2) : sptF ⊂ �, divF = μ+ − μ−},
Au(μ+, μ−) = {u ∈ BV(V ) : u = u(μ+, μ−) on V \�}. (3.1.3)

The following lemma establishes a one-to-one relation between admissible
fluxes and admissible images (its proof is deferred to the “Appendix”):

Lemma 3.1.4. (Bijection between images and fluxes) The mapping u → Fu��

from Au(μ+, μ−) to AF (μ+, μ−) is one-to-one. In particular, for any F ∈
AF (μ+, μ−) there is a unique image uF ∈ Au(μ+, μ−) with F = FuF��.

Definition 3.1.5. (Image corresponding to a flux) Given a flux F ∈ AF (μ+, μ−),
the image uF from the previous lemma is called the image corresponding to F .

3.2. Image Inpainting Problem Induced by 2D Network Optimization

Let us now introduce functionals Ẽε,a,μ+,μ− ,M̃ε,μ+,μ− acting on images rather
than mass fluxes.

Definition 3.2.1. (Mumford–Shah-type functionals) We set Ẽε,a, M̃ε : BV(V ) →
[0,∞],

Ẽε,a[u] = a
ˆ

�\Su
|Du| dx +

ˆ
Su∩�

min{a[u], [u] + ε} dH1(x),

M̃ε[u] =
ˆ
Su∩�

[u]1−ε dH1(x) + ι0((∇uL2 + Dcu)��),

where the indicator function is given by

ι0(μ) =
{
0 if μ = 0

∞ otherwise.
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Furthermore, forμ+, μ− ∈ fbm(R2) of equalmass and satisfying (3.1.1),we define
the following functionals on BV(V ):

Ẽε,a,μ+,μ−[u] =
{
Ẽε,a[u] if u ∈ Au(μ+, μ−),

∞ else,

M̃ε,μ+,μ−[u] =
{
M̃ε[u] if u ∈ Au(μ+, μ−),

∞ else.

Both functionals can be viewed as image inpainting functionals. Indeed, the
image u is prescribed on V \�, and inside � it is to be reconstructed as the mini-
mizer of Ẽε,a,μ+,μ− or M̃ε,μ+,μ− . Furthermore, both functionals are of Mumford–
Shah-type in that their integrand is convex in Du away from the jump set Su , but
subadditive on the jump set.

In this section we prove the following theorem, expressing the relation between
the network costs and the image processing functionals:

Theorem 3.2.2. (Lower bound on transport problems via Mumford–Shah func-
tionals) For any flux F ∈ AF (μ+, μ−) and the corresponding image uF ∈
Au(μ+, μ−) (see Definition 3.1.5) we have

Eε,a,μ+,μ−[F] ≥ Ẽε,a,μ+,μ−[uF ], Mε,μ+,μ−[F] ≥ M̃ε,μ+,μ−[uF ].
Remark 3.2.3. (Upper bound) We believe that the opposite inequality holds as
well, but we do not attempt a proof here. It would imply that the urban planning
and branched transport problem can in fact be formulated as the minimization of
the above variants of the Mumford–Shah image segmentation functional. In view
of LemmaA.0.2 below, a proof would require to show a certain limsup inequality,
namely that the functionals Ẽε,a,μ+,μ− and M̃ε,μ+,μ− are actually the sequentially
weakly-∗ lower semi-continuous envelopes of their restrictions to images uFG

corresponding to discrete graphsG. For the standardMumford–Shah functional this
is implied by [26, Theorem0.6]. For other variants of theMumford–Shah functional
one would have to carefully study the regularity of the singular set of minimizers.
The difficulties one would encounter are of similar type as those which characterize
the regularity theory for the standardMumford–Shahminimizers (which still is only
partial despite several decades of investigation). In addition, existence theorems like
[3, Theorem 4.1] or [2, Theorem 5.24] do not apply in our case.

The proof of Theorem 3.2.2 makes use of a few technical but standard den-
sity and continuity results, which are derived in LemmasA.0.1 to A.0.3 in the
“Appendix”. In detail, LemmaA.0.1 shows that in Definition2.1.3 of the cost func-
tion one may restrict to initial and final measures of the approximating graph
sequences with support on ∂�, LemmaA.0.2 shows the equivalence of flux- and
image-based energy functionals for discrete fluxes, and LemmaA.0.3 proves the
lower semi-continuity of the image-based energy functionals. We will furthermore
make use of images corresponding to discrete fluxes, which can be described by as
specific special functions of bounded variation as detailed in the following remark:
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Remark 3.2.4. (Density of piecewise constant images) Let SBV(V ) ⊂ BV(V )

denote the space of special functions of bounded variation, that is, those functions
in BV(V ) whose derivative has no Cantor part. Furthermore, let D ⊂ SBV(V )

denote the set of piecewise constant images u whose discontinuity set is composed
of finitely many straight lines.

D is dense in BV(V ) with respect to weak-∗ convergence. Indeed, consider a
quadrilateral grid G over V of sidelength 1

n and approximate u ∈ BV(V ) by the
function un ∈ D which on each square face of G equals the average of u on that
face,

un(y) =
 
V n
i j

u dx for all y ∈ V n
i j :=

([ i
n , i+1

n

) ×
[
j
n ,

j+1
n

))
∩ V .

We have un → u strongly in L1(V ), which together with the boundedness of

‖Dun‖rca implies un
∗
⇀ u up to a subsequence.

Proof. (Proof of Theorem3.2.2) By Lemmas 3.1.4, A.0.1, A.0.2, and A.0.3 we
have

Eε,a
F (F) = inf{lim inf

n→∞ Eε,a
F (Gn) : (FGn , μ

n+, μn−)
∗
⇀ (F , μ+, μ−),

μn+, μn− satisfy (3.1.1)}
= inf{lim inf

n→∞ Ẽε,a(uFGn
) : (FGn ,

μn+, μn−)
∗
⇀ (F , μ+, μ−), uFGn

∈ Au(μ
n+, μn−)}

= inf{lim inf
n→∞ Ẽε,a(un) : (Du⊥

n , μn+, μn−)
∗
⇀ (Du⊥

F , μ+, μ−),

un ∈ D ∩ Au(μ
n+, μn−)}

= inf{lim inf
n→∞ Ẽε,a(un) : un

∗
⇀ uF in BV(V ), un ∈ D ∩ H}

≥ Ẽε,a(uF ),

which is the desired result. In particular, the first equality is due to LemmaA.0.1, the
second to Lemma A.0.2, the third to Lemma 3.1.4, and the fourth to the definition
of Au(μ+, μ−) in (3.1.3) and of H in (A.0.2). The final inequality is then due to
the lower semi-continuity Lemma A.0.3.

The result for M̃ε is obtained analogously. ��

3.3. Functional Lifting of Network Optimization

In a series of articles [39,40] Pock, Cremers, Bischof, and Chambolle showed
that theminimization of certain variational problems admits a convex reformulation
via so-called functional lifting. The underlying idea is based on [1] and [21], which
consider functionals of the form

J [u] =
ˆ

�

g(x, u(x),∇u(x)) dx +
ˆ
Su

ψ(x, u+, u−, ν) dH1(x),
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where u+ and u− are the function values of u on either side of the discontinuity set
Su , and g : �×R×R

2 → [0,∞] andψ : �×R×R× S1 → [0,∞]. Introducing
the characteristic function of the subgraph of the image u,

1u : � × R → {0, 1}, (x, s) →
{
1 if u(x) > s,

0 else,

the authors show

J [u] ≥ sup
φ∈K

ˆ
�×R

φ · dD1u

with K =
{
φ = (φx , φs) ∈ C∞

0 (� × R;R2 × R) :
φs(x, s) ≥ g∗(x, s, φx (x, s)) ∀(x, s) ∈ � × R,
∣∣∣∣
ˆ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ ψ(x, s1, s2, ν) ∀x ∈ �, s1 < s2, ν ∈ S1
}
.

Here, g∗ denotes the Legendre–Fenchel dual of g with respect to its last argument.
Consequently, insteadofminimizing the potentially non-convex functionalJ [u] for
u one can find a solution to the saddle point problemmin1u supφ∈K

´
�×R

φ ·dD1u .
Unfortunately, the set {v ∈BV(�×R; {0, 1}) : v = 1u for some u ∈BV(�)}

of characteristic functions, over which one minimizes, is non-convex. However,
this set can be relaxed to the larger set

C =
{
v ∈ BV(� × R; [0, 1]) : lim

s→−∞ v(x, s) = 1, lim
s→∞ v(x, s) = 0

}
.

With this relaxation,

inf
u∈BV(�)

J [u] ≥ inf
v∈C

sup
φ∈K

ˆ
�×R

φ · dDv, (3.3.1)

where the right-hand side is a convex problem.
For our setting, given μ+, μ− ∈ fbm(R2) of equal mass and with (3.1.1), let

1u(μ+,μ−) be the characteristic function of the subgraph of the function defined in
(3.1.2), and let us introduce the sets

C̃ =
{
v ∈ BV(V × R; [0, 1]) :
lim

s→−∞ v(x, s) = 1, lim
s→∞ v(x, s) = 0, v = 1u(μ+,μ−) on (V \�) × R

}
,

K1 =
{
φ = (φx , φs) ∈ C∞

0 (V × R;R2 × R) :
φs ≥ 0, |φx | ≤ a,

∣∣∣
´ s2
s1

φx (x, s) ds
∣∣∣

≤ min{|s2 − s1| + ε, a|s2 − s1|} ∀x ∈ V, s1, s2 ∈ R

}
,

K2 =
{
φ = (φx , φs) ∈ C∞

0 (V × R;R2 × R) :
φs ≥ 0,

∣∣∣
´ s2
s1

φx (x, s) ds
∣∣∣ ≤ |s2 − s1|1−ε ∀x ∈ V, s1, s2 ∈ R

}
.
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Note that K1 is K for the choice corresponding to urban planning,

g(x, u, p) = ap, ψ(x, u+, u−, ν) = min{a|u+ − u−|, |u+ − u−| + ε},
and that K2 is K for the choice corresponding to branched transport,

g(x, u, p) = ι0(p), ψ(x, u+, u−, ν) = |u+ − u−|1−ε.

Applying the previous discussion, we have

min
F∈AF (μ+,μ−)

Eε,a,μ+,μ−[F] ≥ inf
u∈Au(μ+,μ−)

Ẽε,a,μ+,μ−[u]

≥ inf
v∈C̃

sup
φ∈K1

ˆ
�×R

φ · dDv,

min
F∈AF (μ+,μ−)

Mε,μ+,μ−[F] ≥ inf
u∈Au(μ+,μ−)

M̃ε,a,μ+,μ−[u]

≥ inf
v∈C̃

sup
φ∈K2

ˆ
�×R

φ · dDv.

The right-hand sides are convex optimization problems in v. Furthermore, in some
cases the optimal v can be shown to have the form 1u for the solution u of the
generalised Mumford–Shah problem ([21, Theorem 8.1] for the one-dimensional
problem). The optimal mass flux can then be readily read off as Du⊥.

3.4. Lower Bound on Network Costs by Convex Duality

As an application of the convex reformulation from the previous section we
finally obtain a proof of the lower bound in Theorem2.2.1 just based on convex
duality. In particular, we show the following:

Theorem 3.4.1. There exist c, ε0 > 0 such that for n = 2 and ε < ε0 we have

min
F

Eε,a,μ0,μ1 [F] − E∗,a,μ0,μ1 ≥ c�min{ε 2
3 , a − 1},

min
F

Mε,μ0,μ1 [F] − M∗,μ0,μ1 ≥ c�ε| log ε|.

Proof. Here we choose � = (0, �) × (0, 1) and V = B1(�). Note that for μ0, μ1
from (2.2.1) we have u(μ0, μ1)(x) = x1 for x ∈ ∂�. Swapping the infimum and
supremum in the convex formulation we obtain

min
F∈AF (μ0,μ1)

Eε,a,μ0,μ1 [F] ≥ sup
φ∈K1

inf
v∈C̃

ˆ
�×R

φ · dDv

= sup
φ∈K1

inf
v∈C̃

ˆ
P

φ · ν dH2(x, s) −
ˆ

�×R

v div φ dx ds

= sup
φ∈K1

ˆ
P

φ · ν dH2(x, s)−
ˆ

�×R

max(0, div φ) dx ds,



Optimal Micropatterns in 2D Transport Networks 293

Fig. 2. Sketch of the flow φi in cross-section � × {s}

where P = {(x, s) ∈ ∂� × R : 1u(μ0,μ1)(x, s) = 1} = {(x, s) ∈ ∂� × R : x1 ≥
s}, ν is the unit outward normal to P , as well as

min
F∈AF (μ0,μ1)

Mε,μ0,μ1 [F] ≥ sup
φ∈K2

ˆ
P

φ · ν dH2(x, s) −
ˆ

�×R

max(0, div φ) dx ds.

All that remains to do is to construct a proper test function φ to be used in the
above convex duality estimate. Define the clockwise circular flow

θ(x1, x2) = 1
r

( x2−x1

)
if r = ∣∣( x2−x1

)∣∣ ≤ 1
2 and θ(x1, x2) = 0 else.

Obviously, div θ = 0 in the sense of distributions. Now we stretch this circular
flow horizontally by a factor 2βi > 2 (which will be specified later), i = 1, 2, and
divide by two,

ϕi (x) = 1
2 Biθ(B−1

i x) for Bi = ( 2βi 0
0 1

)
.

It is readily checked that also div ϕi = 0. Now define φi = (φi
x , 0) as (cf. Fig. 2)

φi
x (x, s) =

⎧
⎪⎨

⎪⎩

0 if s /∈ [0, �],
ϕi (x1 − s, x2) if x2 ≤ 1

2 , s ∈ [0, �],
−ϕi (x1 − s, 1 − x2) else.

Denoting the unit outward normal to ∂� by n and using div φi
x (·, s) = 0 as well as

φi
x ((s, x2), s) = ϕi (0, x2) = (

βi
0

)
for x2 ∈ [0, 1] we can calculate

ˆ
P

φi · ν dH2(x, s) =
ˆ �

0

ˆ
{x∈∂� : x1≥s}

φi
x · n dH1(x) ds

=
ˆ �

0

(ˆ
[s,�]×[0,1]

div φi
x (·, s) dx −

ˆ
{s}×[0,1]

φi
x (x, s) · (−1

0

)
dH1(x)

)
ds = βi�,

where in the second step we used the divergence theorem. Now the test functions
φ1, φ2 canbe approximated arbitrarilywell by divergence-free functions inC∞

0 (V×
R;R2 × R) so that the above convex duality estimates imply
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min
F∈AF (μ0,μ1)

Eε,a,μ0,μ1 [F] ≥
ˆ
P

φ1 · ν dH2(x, s)=β1� = E∗,a,μ0,μ1 + �(β1 − 1),

min
F∈AF (μ0,μ1)

Mε,μ0,μ1 [F] ≥
ˆ
P

φ2 · ν dH2(x, s) = β2�=M∗,μ0,μ1 + �(β2 − 1),

where β1, β2 will be chosen such that
∣∣∣∣
ˆ s2

s1
φ1
x (x, s) ds

∣∣∣∣ ≤ min{|s2 − s1| + ε, a|s2 − s1|} ∀x ∈ V, s1, s2 ∈ R,

∣∣∣∣
ˆ s2

s1
φ2
x (x, s) ds

∣∣∣∣ ≤ |s2 − s1|1−ε ∀x ∈ V, s1, s2 ∈ R

as well as β1 ≤ a in order to satisfy |φ1
x | ≤ a. We are going to show that β1 =

min(1 + cε
2
3 , a) and β2 = 1 + cε| log ε| are admissible choices for some c > 0,

which concludes the proof.
Fix a position x = (x1, x2), where due to symmetry it suffices to consider

x2 ∈ [0, 1
2 ]. Let us abbreviate ŝ = s − x1 and ri (ŝ) = |B−1

i

( ŝ
x2

)| =
√
x22 + ( ŝ

2βi
)2.

We have

|φi (x, s)| = |ϕi (−ŝ, x2)| = 1
ri (ŝ)

√
β2
i x

2
2 + ( ŝ

4βi
)2 =

√
β2
i +(ŝ/(4x2βi ))2

1+(ŝ/(2x2βi ))2
,

where φi is nonzero. Note that for s̄i = 4x2βi

√
(β2

i − 1)/3,

|φi (x, s)| ≤
{

βi if ŝ ∈ [−s̄i , s̄i ],
1 else,

thus, in particular, |φi (x, s)| ≤ βi .
We first consider the case i = 1, in which we have (assuming s2 ≥ s1 without

loss of generality)

∣∣∣∣
ˆ s2

s1
φ1(x, s) ds

∣∣∣∣ − |s2 − s1| ≤
ˆ s2

s1
|φ1(x, s)| − 1 ds

≤ 2s̄1(β1 − 1) ≤ 4β1

√
β2
1−1
3 (β1 − 1) ≤ 4

√
β2
1−1
3 (β2

1 − 1),

which is indeed smaller than ε, as required, ifwe chooseβ1 = min(1+ 1
4 (

3
2 )

2
3 ε

2
3 , a).

Likewise, this choice of β1 also satisfies
∣∣∣∣
ˆ s2

s1
φ1(x, s) ds

∣∣∣∣ − a|s2 − s1| ≤ 2s̄1(β1 − a) ≤ 0,

as required.
For i = 2, assume first ŝ1, ŝ2 ∈ [−s̄i , s̄i ]. In that case,

∣∣∣∣
ˆ s2

s1
φ2(x, s) ds

∣∣∣∣ /|s2 − s1| ≤
ˆ s2

s1
|φ2(x, s)| ds/|s2 − s1| ≤ β2.
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Choosing β2 = 1+ ε| log ε|
2 , this is smaller than (2s̄2)−ε ≤ |s2 − s1|−ε, as required.

Indeed, for ε ≤ 1, β2 = 1 + ε| log ε|
2 ≤ √

ε
−ε ≤ (

4
√

ε| log ε|
3

)−ε ≤ (2s̄2)−ε. It

remains to show
∣∣∣
´ s2
s1

φ(x, s) ds
∣∣∣ ≤ |s2 − s1|1−ε for ŝ1 or ŝ2 outside [−s̄2, s̄2]. In

the next paragraph we will show

|φ2(x, s)| ≤ (1 − ε)|2ŝ|−ε for ŝ ∈ [−β2, β2]\[−s̄2, s̄2], (3.4.1)

which then yields for a given �s = |s2 − s1| (exploiting that |φ2| decreases to both
sides of ŝ = 0)

∣∣∣∣
ˆ s2

s1
φ2(x, s) ds

∣∣∣∣ ≤
ˆ s2

s1
|φ2(x, s)| ds ≤

ˆ x1+ �s
2

x1− �s
2

|φ2(x, s)| ds

≤
{

(�s)1−ε if �s
2 ≤ s̄2,

(2s̄2)1−ε + 2
´ �s

2
s̄2

(1 − ε)|2ŝ|−ε dŝ = (�s)1−ε else,

as required.

To prove inequality (3.4.1), let us abbreviate t = (1−ε)1/ε

2 ≈ 1
2e . Obviously,

(1 − ε)|2ŝ|−ε = | tŝ |−ε ≥ 1 ≥ |φ2(x, s)| for ŝ ∈ [−t, t]\[−s̄2, s̄2],
while for ŝ ∈ [−β2, β2]\[t, t] we have

|φ2(x, s)| ≤
√

β4
2+t2/4

β2
2+t2

≤ (1 − ε)|2β2|−ε ≤ (1 − ε)|2ŝ|−ε,

where the middle inequality holds for ε small enough due to

√
β4
2+t2/4

β2
2+t2

→
√

(4e)2+1
(4e)2+4

< 1 and (1 − ε)|2β2|−ε → 1 as ε → 0. ��

3.5. Numerical Optimization of Urban Planning and Branched Transport
Networks

The proposed convex reformulation of the branched transport and urban plan-
ning model as variants of the Mumford–Shah segmentation problem allows a
numerical network optimization that cannot get stuck in local minima due to the
convexity. We shall use a finite difference discretization of the right-hand side in
(3.3.1) (similarly to [38]) and apply a simple primal-dual algorithm to numerically
find the saddle point.

In the following, for simplicity we assume without loss of generality a rect-
angular domain V ⊂ R

2 with bottom left corner at the origin. We discretize the
domain V ×R of the lifted function v by a finite three-dimensional n×m × p grid

G = {(ih1, jh2, lhs) : i = 0, . . . , n, j = 0, . . . ,m, l = 0, . . . , p},
where h1, h2, hs > 0 denote the grid size in each direction. Hence, the dis-
crete counterparts of v ∈ BV(V × R; [0, 1]) and φ ∈ C∞

0 (V × R;R2 × R)
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are given by vh : G → [0, 1] and φh : G → R
2 × R. For the sake of

simplicity, for every (ih1, jh2, lhs) ∈ G, we write vhi jl = vh(ih1, jh2, lhs)

and φh
i jl = φh(ih1, jh2, lhs). Defining the finite difference gradient operator

D = (D1, D2, Ds)
T by

(D1v
h)i jl = vhi+1, j,l−vhi, j,l

h1
, (D2v

h)i jl = vhi, j+1,l−vhi, j,l
h2

, (Dsv
h)i jl = vhi, j,l+1−vhi, j,l

hs
,

the discretized form of saddle point problem (3.3.1) reads

min
vh∈Ch

max
φh∈Kh

∑

i, j,l

φh
i jl(Dvh)i jl , (3.5.1)

in which the discrete versions of the convex sets C̃ andK = K1 (for urban planning)
or K2 (for branched transport) are given by

Ch =
{
vh : G → [0, 1] : vhi j0 = 1, vhi jp = 0 ∀i, j, vh

= 1hu(μ+,μ−) on G\(� × R)
}
,

Kh
1 =

{
φh = (φh

x , φ
h
s ) : G → R

2 × R :

φh
s ≥ 0, |φh

x | ≤ a, |hs
s2∑

l=s1

(φh
x )i jl |

≤ min{|s2 − s1| + ε, a|s2 − s1|} ∀i, j, s1 < s2
}
,

Kh
2 =

{
φh = (φh

x , φ
h
s ) : G → R

2 × R : φh
s ≥ 0, |hs

s2∑

l=s1

(φh
x )i jl |

≤ |s2 − s1|1−ε ∀i, j, s1 < s2
}
.

Above, 1hu(μ+,μ−) denotes the restriction of 1u(μ+,μ−) onto the grid G.
The discretized saddle point problem is solved using the primal-dual algo-

rithm from [24], which alternatingly performs a primal gradient descent and a dual
gradient ascent step with step length τ (respectively σ ), accompanied by an over-
relaxation with parameter θ . Denoting the kth approximation to vh and φh by vk

and φk , respectively, the iterative algorithm reads
⎧
⎪⎨

⎪⎩

vk+1 = PCh (vk − τD∗φk),

vk+1 = vk+1 + θ(vk+1 − vk),

φk+1 = PKh (φk + σDvk+1),

starting from an arbitrary initialization v0, φ0. The orthogonal projection PKh onto
Kh is performed by Dykstra’s method [7], while the projection PCh onto the set
Ch is straightforward. When vk has sufficiently converged, it is typically close to
binary. The rounding of vk to {0, 1} is then interpreted as the sought function 1u ,
and the optimal flux is identified as Du⊥. While the primal-dual algorithm is very
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Fig. 3. Parameter study for urban planning. Top: plot of the manually computed minimal
energy for different values of ε and fixed a = 5. The line type indicates the optimal network
topology. Bottom: numerically computed optimal fluxes for evenly spaced values of ε in the
same range. The numerically obtained network topologies match the predicted ones except
for example 9©

simple and straightforward to implement, there may be more efficient optimiza-
tion approaches that better exploit the structure of the optimization problem. In
particular, (3.5.1) has the form of a second order cone program in φh (which can
be easily seen by first performing the minimization in vh) with conic constraints
φh ∈ Kh , for which there are efficient interior point algorithms. Note, though, that
the primal-dual algorithm is more straightforward to parallelize, for instance on
graphics cards.

Figures3 and 4 shownumerically optimized urban planning and branched trans-
portation networks or rather fluxes between four evenly-spaced point sources at the
top of a rectangular domain and four evenly spaced point sinks at the bottom of the
domain. For such a simple geometric setting one can still calculate the true optimal
solution manually by enumerating all possible network topologies and optimizing
their vertex positions by hand. In both figures, the top graph shows the manually
computed optimal energy and corresponding network topology for different param-
eter values. Below, numerical solutions are shown that uniformly sample the same
parameter range. Except for example 9© in Fig. 3 and example 3© in Fig. 4, the
numerical solutions coincide with the predicted, truly optimal network topology.
The discrepancy between the numerical and the true solution in examples 9© and 3©
(which both lie close to a bifurcation point) may be due to our discretization grid,
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Fig. 4. Parameter study for branched transport. Top: plot of the manually computed minimal
energy for different values of ε. The line type indicates the optimal network topology.Bottom:
numerically computed optimal fluxes for evenly spaced values of ε in the same range. The
numerically obtained network topologies match the predicted ones except for example 3©

Fig. 5. Example of a numerical optimization for urban planning, resulting in a non-binary
solution v (the images show different cross-sections). This indicates a lack of tightness of
the convex reformulation for the chosen parameters (a = 2.13 and ε = 0.5). The parameters
lie close to a bifurcation at which the truly optimal network topology changes from four
vertical pipes to a single tree

which is vertically aligned and thus slightly favours vertical structures, since at
fixed grid resolution diagonal structures cannot be represented as exactly. Note that
unlike for other numerical approaches, the shown result cannot just be a suboptimal
local optimum, since the numerical method always leads to the global optimum due
to convexity.

If the proposed convex reformulation of urban planning and branched transport
were always tight, the optimal solution v to (3.3.1) would be binary and only take
values 0 or 1. However, in some situations this is not the case. For the case of urban
planning, Fig. 5 shows a numerically optimized function v which distinctly takes on
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Fig. 6. Numerical optimization results for transport from 16 more or less evenly spaced
point sources of same mass at the top to 16 evenly spaced point sinks (of same mass as well)
at the bottom (a = 5 in case of urban planning). Instead of the optimal flux we show the
corresponding optimal image u

Fig. 7. Numerical optimization results for urban planning and branched transport with dif-
ferent parameters (a = 5 in case of urban planning). In the left column, the prescribed
masses are + 1

2 ,− 1
8 , + 1

8 , − 1
2 , + 1

8 ,− 1
8 (counterclockwise from top), in the right column

+ 1
2 , − 1

8 , + 1
8 , − 1

2 , − 1
2 , + 1

2

three values, 0, 1
2 , and 1. In our numerical experience, this may sometimes happen

close to a bifurcation point, where the optimal network topology changes. Indeed,
the parameters of Fig. 5 lie almost exactly at a bifurcation where the truly optimal
solution changes from four vertical pipes to a single tree.

Figure6 shows numerical results obtained on a rectangular domain with 16
evenly spaced point sources of samemass at the top and asmanypoint sinks (of same
mass as well) at the bottom (approximating a continuous line measure discretely).
Instead of the optimal flux we here show the corresponding optimal image u, whose
jump set represents the network. Depending on the chosen parameters, mass is
preferentially collected in one or more tree-like networks before being separated
again. With decreasing parameter ε (which in a way encodes the efficiency of
transporting mass in bulk) the number of trees increases.



300 Alessio Brancolini, Carolin Rossmanith, and Benedikt Wirth

Fig. 8. Numerical optimization results for urban planning and branched transport for a single
point source at the centre of the circular domain to 32 point sinks on the boundary (a = 5
in case of urban planning). The discontinuity set of the image corresponds to the optimal
network. For this geometry, the image u takes values in S1, which is here indicated by the
periodic colour scale

Figure7 shows computational examples in which the underlying domain is non-
rectangular and in which sources and sinks of different weights alternate on the
domain boundary. A more complex case is displayed in Fig. 8, where we simulated
the transport from a point source at the centre of the circular domain to 32 point
sinks of equal mass on the boundary (approximating a uniform measure). Such a
geometry can be achieved by a trick using a periodic covering of the disk. In detail,
we chose the domain � = B1(0)\{0} and prescribed the sought image u outside
� taking values in S1 rather than R (in between each two point sinks the image
is prescribed to equal the midpoint between both sink positions on S1). Now R

is interpreted as a covering of S1 via the mapping s → (cos s, sin s) so that the
calculations can be performed as before (similarly to the approach in [25]).

4. Discussion

The key idea to arrive at the convexification of network optimization in thiswork
was the identification of network optimization with particular image inpainting
problems, for which convexifications are known.

Let us stress that, even though we considered a simple rectangular or circular
problem domain �, the same approach can easily be applied for more general
convex domains.

However, the formulation as image inpainting imposes twomajor restrictions on
the network optimization problem. First of all, such a formulation is only possible
in two spatial dimensions because otherwise there cannot be any interpretation of
rotated mass fluxes as image gradients. Secondly, since image gradients are always
curl-free, the corresponding mass fluxes must be divergence-free in the domain
interior. As a consequence, the source and sink distribution μ+ and μ− must lie on
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the boundary of the domain. Deviations from this situation may be possible (see
Fig. 8), but introduce additional complications.

The convexification derived in this work has only been shown to represent a
lower bound to the original network optimization. It still remains an open question
when it is actually equivalent. This question naturally decomposes into two separate
issues: First one has to investigate whether the network optimization problems and
their Mumford–Shah versions are equivalent. As explained in Sect. 3.2, this leads
to analysing the regularity of the singular set of minimizers of Mumford–Shah-
type functionals, which is notoriously difficult and for which results are so far only
partial. For instance, the Mumford–Shah conjecture for the standard Mumford–
Shah functional has been proved in two dimensions assuming that the singular
set is connected by Bonnet in [11]. The second issue concerns the tightness of the
convexification via functional lifting. For some lifted functionals there exist thresh-
olding results showing that the solution of the original problem can be recovered
from the convexified problem via thresholding (see for instance [20]), however, our
numerical experiments indicate that this may sometimes not be the case. Neverthe-
less, our proposed convexification turned out to be tight enough to derive the sharp
lower bound in the energy scaling law for complicated networks, and also in most
numerical simulations it yielded the truly optimal network geometry.
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A. Auxiliary Results

In this section we first provide the deferred proof of Lemma3.1.4, after which we
collect some density and continuity results needed for the the central statement of
this article, Theorem3.2.2.

Proof. (Proof of Lemma3.1.4) We first verify that indeedFu�� ∈ AF (μ+, μ−).
Denoting by n the unit outward normal to ∂(V \�) and by T the trace operator on
BV(V \�) [27, S5.3], for φ ∈ C∞

c (V ) we have

ˆ
V

φ d div(Fu��) = −
ˆ

�

∇φ · dFu =
ˆ

�

∇φ⊥ · dDu

=
ˆ
V

∇φ⊥ · dDu −
ˆ
V \�

∇φ⊥ · dDu

= −
ˆ
V
u div(∇φ⊥) dL2 +

ˆ
V \�

u div(∇φ⊥) dL2

−
ˆ

∂�

Tu∇φ⊥ · n dH1 = −
ˆ

∂�

Tu∇φ⊥ · n dH1
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= −
ˆ

[0,H1(∂�))

Tu(γ (t)) d
dt φ(γ (t)) dt

=
ˆ

[0,H1(∂�))

φ(γ (t)) d d
dt T u(γ (t))

=
ˆ

∂�

φ d(μ+ − μ−) =
ˆ
V

φ d(μ+ − μ−),

where we have used Tu(γ (t)) = u(μ+, μ−) ◦ γ (t) with d
dt u(μ+, μ−) ◦ γ =

μ+ − μ−.
Next, let F ∈ AF (μ+, μ−) be given. We extend this flux to a flux F̃ on R

2 as
follows:

F̃ = F + (Du(μ+, μ−)⊥)�(V \�).

It is straightforward to check div F̃ = 0 in the distributional sense. Indeed, for
φ ∈ C∞

c (R2) and n the inner normal to ∂�, we have

ˆ
R2

∇φ · dF̃(x) =
ˆ

�

∇φ · dF(x) +
ˆ
R2\�

∇φ · dDu(μ+, μ−)⊥

= −
ˆ

�

φ d divF −
ˆ
R2\�

∇φ⊥ · dDu(μ+, μ−)

=
ˆ

�

φ d(μ− − μ+) −
ˆ

∂�

Tu∇φ⊥ · n dH1

+
ˆ
R2\�

u(μ+, μ−) div(∇φ⊥) dL2

=
ˆ

�

φ d(μ− − μ+) +
ˆ

∂�

φ d(μ+ − μ−) = 0.

Next, we mollify F̃ using a smooth Dirac sequence ηδ ∈ C∞
c (R2) with support in

the δ-ball around the origin, sptηδ ⊂ Bδ(0),

Fδ = F̃ ∗ ηδ.

For any δ > 0, Fδ is smooth and divergence-free (with a slight misuse of notation
we interpret Fδ as the density with respect to L2). Now define

Gδ = −F⊥
δ , uδ(x) = (u(μ+, μ−) ∗ ηδ)(−1, 0) +

ˆ
γ

Gδ · dγ,

where γ is any Lipschitz-continuous path connecting (−1, 0)T with x . Since Gδ is
curl-free (recall that the curl of a two-dimensional vector field is defined via the
curl of the embedded vector field in R

3) and thus conservative, uδ is independent
of the particular path γ chosen. We have

∇uδ = Gδ = −F⊥
δ

∗
⇀ −F̃⊥
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in rca(V ) as δ → 0. Furthermore, due to ∇uδ = −F⊥
δ = (Du(μ+, μ−)) ∗ ηδ =

∇(u(μ+, μ−) ∗ ηδ) in V \Bδ(�) and uδ(−1, 0) = (u(μ+, μ−) ∗ ηδ)(−1, 0) we
have uδ = u(μ+, μ−) ∗ ηδ on V \Bδ(�) so that

sup
x∈V \Bδ(�)

|uδ(x)| ≤ sup
x∈R2

|u(μ+, μ−)(x)| ≤ μ+(∂�) + μ−(∂�).

Thus, ‖uδ‖L1(V ) is uniformly bounded by virtue of Poincaré’s inequality and the
uniform boundedness of ‖∇uδ‖L1(V ). Combining the above properties, we see that
as δ → 0 a subsequence of uδ converges weakly-∗ in BV(V ) against some function
uF ∈ BV(V ) which satisfies all conditions from the definition of Au(μ+, μ−) as
well as Du⊥

F�� = F (recall that un is said to convergeweakly-∗ in BV(V ) against

u, un
∗
⇀ u, if un → u in L1(V ) and Dun

∗
⇀ Du in rca(V ) [2, Definition3.11]).

The uniqueness of uF follows in the standard way: assume, ui ∈ Au(μ+, μ−),
i = 1, 2, satisfy F = Du⊥

i ��, then u = u2 − u1 satisfies Du = 0 as well as
u = 0 on V \� so that u ≡ 0. ��
Next we provide some standard results required for the proof of Theorem3.2.2,
which establishes a relation between flux-based and Mumford–Shah-type func-
tionals. We first show that in Definition2.1.3 of the cost function one may restrict
to initial and final measures of the approximating graph sequences with support on
∂�. This will allow us to represent each discrete flux of an approximating graph
sequence by a corresponding image.

Lemma A.0.1. (Reduction of measure support) Let μ+, μ− ∈ fbm(R2) of equal
mass, satisfying (3.1.1), and let J either denote the branched transport functional
Mε

F or the urban planning functional Eε,a
F . We have

J (F) = inf
{
lim inf
n→∞ J (Gn) : (FGn , μ

n+, μn−)
∗
⇀ (F , μ+, μ−),

μn+, μn− satisfy (3.1.1)
}

.

Proof. Let (FGn , μ
n+, μn−)

∗
⇀ (F , μ+, μ−) be an approximating graph sequence.

Then, we haveJ (F) = limn→∞ J (Gn). We will construct another approximating
graph sequence (FG̃n

, μ̃n+, μ̃n−)with sptμ̃n+, sptμ̃n− ⊆ ∂� and the same limit energy

J (F) = limn→∞ J (G̃n). Indeed, for μn+ = ∑Nn
i=1 a

n
i δxni

and μn− = ∑Mn
i=1 b

n
i δyni

we set

μ̃n+ =
Nn∑

i=1

ani δπ∂�(xni ), μ̃n− =
Mn∑

i=1

bni δπ∂�(yni ),

where π∂� : R
2 → ∂� is the closest point projection (as before, in case of

non-uniqueness an arbitrary closest point is chosen). Since μ̃n+ is the measure
μn+ projected onto ∂�, which is Lipschitz regular and contains the support of

μ+, it is clear that μn+
∗
⇀ μ+ implies μ̃n+

∗
⇀ μ+ (analogously for μ̃n−). Let

further Gn+ be a J -minimizing transport path between μ̃n+ and μn+ and Gn− a J -
minimizing transport path between μn− and μ̃n−. Such transport paths exist, since
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optimal mass fluxes between discrete measures are known to be discrete graphs
(in the urban planning case this follows from the same argument as in [16, proof
of Prop. 4.3.1]; in the branched transport case this is contained in [5, Theorem4.7]
or [43, Theorem4.10]). Moreover, note that by Remark2.1.4 the minimum urban
planning cost is bounded above by a times the Wasserstein-1 distance W1, which
metrises weak-∗ convergence, and that the minimum branched transport cost is
continuous with respect to weak-∗ convergence [42, Lemma 4.1]. Thus we have

J (Gn±) → 0 as n → ∞ due to W1(μ
n±, μ̃n±) → 0.

Wenowset G̃n = (V (Gn)∪V (Gn+)∪V (Gn−), E(Gn)∪E(Gn+)∪E(Gn−)). It is clear
that G̃n is a transport path between μ̃n+ and μ̃n−. Furthermore, J (Gn±) →n→∞ 0

implies FGn±
∗
⇀ 0 and thus

FG̃n
= FGn + FGn+ + FGn−

∗
⇀ F as n → ∞.

Finally, as desired, we have

J (G̃n) ≤ J (Gn) + J (Gn+) + J (Gn−) → J (F) and

J (G̃n) ≥ J (Gn) → J (F)

as n → ∞. ��
The next lemma establishes the desired equivalence between flux-based and
Mumford–Shah-type energies on the level of discrete fluxes.

Lemma A.0.2. (Equivalence for discrete fluxes) Let μ+, μ− ∈ fbm(R2) of equal
mass, satisfying (3.1.1), and let G be a transport path between μ+ and μ−. Then

Eε,a
F [G] = Ẽε,a[uFG ], Mε

F[G] = M̃ε[uFG ]
for FG from Definition2.1.1 and uFG from Definition3.1.5.

Proof. For simplicity let us abbreviate u ≡ uFG . By Lemma3.1.4, u ∈
Au(μ+, μ−) as well as

Du�� = −
∑

e∈E(G)

w(e)(H1�e)ê⊥

for ê the unit vector parallel to the edge e. In particular, u is piecewise constant
with a discontinuity set Su ∩� = ⋃

e∈E(G) e on which it has jump size [u] = w(e).
Inserting this into the urban planning and branched transport energy, we obtain

Ẽε,a[u] =
ˆ
Su∩�

min{a[u], [u] + ε} dH1(x)

=
∑

e∈E(G)

l(e)min{aw(e), w(e) + ε} = Eε,a
F [G],

M̃ε[u] =
ˆ
Su∩�

[u]1−ε dH1(x) =
∑

e∈E(G)

l(e)w(e)1−ε = Mε
F[G],

which is the desired result. ��
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The previous energy relation is extended from discrete fluxes to general ones
by continuity, for which reason we need to show a continuity property of the
Mumford–Shah-type functionals. Since all functions u ∈ Au(μ+, μ−) satisfy
u(x) = u(π∂�(x))∀x ∈ V \�, it suffices to examine continuity on the set of
functions

H = {u ∈ BV(V ) : u(x) = u(π∂�(x))∀x ∈ V \�}. (A.0.2)

Note that H is closed in BV(V ) with respect to weak-∗ convergence (even with

respect to L1(V )-convergence). Indeed, let un ∈ H with un
∗
⇀ u in BV(V ), then

a subsequence converges pointwise almost everywhere against u, and since the un
are constant along rays orthogonal to ∂�, the pointwise limit must be so as well.

Lemma A.0.3. (Lower semi-continuity) Ẽε,a and M̃ε are sequentially weakly-∗
lower semi-continuous on H.

Proof. For u ∈ H , n ∈ N, and any measurable set B ⊂ V define

EB[u] = a|Du|(B\Su) +
ˆ
Su∩B

min{a[u], [u] + ε} dH1,

Mn
B[u] =

ˆ
Su∩B

min{n[u], [u]1−ε} dH1 + n|Du|(B\Su).

We have Ẽε,a[u] = E�[u] as well as M̃ε[u] = supn M
n
�
[u]. Note that by the

monotone convergence theorem one has

sup
n

ˆ
Su∩B

min{n[u], [u]1−ε} dH1 = lim
n→∞

ˆ
Su∩B

min{n[u], [u]1−ε} dH1

=
ˆ
Su∩B

[u]1−ε dH1.

Thus it suffices to show the sequential weak-∗ lower semi-continuity of E� and
Mn

�
for all n.

Now let Bδ = Bδ(�) be the open δ-neighbourhood of�. By [2, Theorem5.4], EBδ

and Mn
Bδ

are sequentially weakly-∗ lower semi-continuous on BV(Bδ). Consider

a sequence uk
∗
⇀ u in H and let C ∈ R be an upper bound on its total variation,

C > ‖Duk‖rca, ‖Du‖rca. We have

E�(u) ≤ EBδ (u) ≤ lim inf
k→∞ EBδ (uk) ≤ lim inf

k→∞ E�(uk)

+a|Du|(Bδ\�) ≤ lim inf
k→∞ E�(uk) + aδC.

The last inequality uses the fact that outside�, u is constant along rays orthogonal to
∂� so that the total variation of u on each set Ss = {x ∈ R

2\� : dist(x, ∂�) = s}
is the same for all s > 0, where dist denotes the Euclidean distance. Indeed, writing
∂t for the tangential derivative, we have

|Du|(Bδ\�) =
ˆ

(0,δ)
|Du|(Ss) ds =

ˆ
(0,δ)

|∂t u|(Ss) ds = δ|∂t u|(∂�)

≤ δ|Du|(∂�) ≤ δC.
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Since δ is arbitrary, the above implies the sequential weak-∗ lower semi-continuity
of E�. Analogously,

Mn
�
(u) ≤ Mn

Bδ
(u) ≤ lim inf

k→∞ MBδ (uk) ≤ lim inf
k→∞ M�(uk)

+n|Du|(Bδ\�) ≤ lim inf
k→∞ M�(uk) + nδC,

again implying the sequential weak-∗ lower semi-continuity of Mn
�
by the arbi-

trariness of δ. ��
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