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Abstract

Patch-based de-noising algorithms and patch manifold smoothing have emerged as efficient de-noising
methods. This paper provides a new insight on these methods, such as the Non Local Means [1] or the
image graph de-noising [8], by showing its use for filtering a selected pattern.
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1 Introduction

One of the most efficient patch-based de-noising algorithm is the so-called Non Local Means (NL-Means)
of Buades et al [1]. The fundamental idea is to consider a natural image as a collection of sub-images or
patches. Each noisy patch is approximated by a weighted average of patches where the weights reflect
the similarity between any two patches. The averaging reduces the noise. One way to interpret the
patch-based de-noising methods is to adopt the manifold point of view. We lift the grayscale-valued
image and embed it in a higher dimensional space by considering the manifold of patches. The grayscale
value is seen as a function defined on the manifold. Although a patch is high dimensional (for example a
patch of size 7× 7 is of dimension 49), in practice the intrinsic dimension is much smaller. The weighted
average of patches can be seen as a smoothing on the manifold. For example, in [8] the heat equation on
the manifold is used for de-noising.

In this work, our primary interest is not de-noising but filtering. More precisely, we are interested in
decomposing the image into two components; one corresponding to a specific pattern that is provided
by the user and a second one corresponding to the residual. The pattern of interest (it could be several
patterns) is defined by a set of patches of fixed size. This set is a subset of the collection of patches
provided by the image. It is also a subset of the manifold formed by the patches. From now on, we
refer to it as the “reference set”. We propose to modify the NL-Means algorithm and its graph-based
diffusion variants taking into account the given reference set. This set has to represent all the patches
extracted from the specific pattern, in the sense that any patch related to the pattern of interest should
not be “too far” from the reference set with respect to some metric between patches. NL-Means uses the
Euclidian metric between patches. In the graph-based method described in [8], each pixel is associated to
a feature vector that is built by convolution of the patch at that pixel with a filter bank. The distance is
defined as the Euclidian distance between feature vectors. In both methods, the affinity between pixels is
a nonnegative decreasing function of the metric (e.g. a gaussian function). NL-Means averages the value
at each pixel by weighting the sum by the affinities. We propose first to keep those weights but restrict
the averaging over pixels whose patches are in the reference set. In addition to de-noising the image, we
do two tasks; de-noising and filtering according to the reference set. This defines an operator that we
name “non local filter operator”. We show the limitations of this operator and propose a variant that
we name “projected non local filter operator”. We then introduce the graph-based diffusion approach
relative to the reference set. The pixels form the nodes of a graph. The edges are defined once we define
a notion of affinity or neighborhood between nodes. This is defined relative to the reference set. This
definition is crucial for computing efficiently the eigenfunctions of the Laplace-Beltrami operator of the
whole set. We show that there exists an extension formula between the eigenfunctions on the reference
set and the eigenfunctions on the whole set.
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This paper is organized as follows. In section 2, we present the non local filter and the projected non
local filter operators and motivate our preference for the latter. In section 3, the general framework of
our graph-based diffusion approach relative to the reference set is explained. Details of the extension
formula and its use for projection are given. In section 4, we demonstrate our methods in filtering and
show that the eigenfunctions of the Laplace-Beltrami operator yield an embedding of the manifold of
images into a low-dimensional meaningful space [2].

2 Non Local Filter using a reference set

In this section we first present the NL-Means algorithm and then present two modified versions that aim
at filtering. The first method we propose, the non local filter operator, is a trivial extension of NL-Means
algorithm. This method performs decently when the desired texture is not mixed with other textures.
We illustrate this point in section 4. We then show how to overcome the limitations and propose another
algorithm that we name projected non local filter operator.
The NL-Means algorithm has been introduced for de-noising purposes. Any pixel, say i, is associated to
a fixed-size rectangle centered at it that we call patch(i). The value at location i, say v(i), is replaced
by a weighted average of all the pixels in the image, say NL(v)(i), defined as follows:

NL(v)(i) =
∑
j∈I

a(i, j)v(j) (1)

where the weights {a(i, j)}j - all non negative - depend on the similarity between the pixels i and j and
satisfy

∑
j∈I a(i, j) = 1. The similarity weight is

a(i, j) =
1

Z(i)
e−
||patch(i)−patch(j)||22

ε (2)

where Z(i) is the normalizing factor Z(i) =
∑
j e
−||patch(i)−patch(j)||

2
2

ε . The patches patch(i) and patch(j)
are seen as column vectors. The parameter ε controls the decay of the exponential function. The sim-
ilarity weight is close to 1 if the patches at pixels i and j are close in L2 sense. This method can be
interpreted as follows: The set of patches is a dictionary of the image that is redundant. Any corrupted
patch is then replaced by a weighted average. The noise is attenuated by the averaging. The NL-Means
has proved to be one of the most efficient algorithm for de-noising.

Here we wish to adapt the NL-Means algorithm in order to filter the image given a specific pattern we
want to extract. For example we would like to extract one specific texture from a natural image that
might contain several textures. In that sense, we build the dictionary based on the patches extracted
from the texture we are interested in. In other words, we only consider a sub-dictionary of the whole
dictionary of the image and use it to reconstruct the image. Let R be the given set of pixels that defines
the reference set. As we already said, this set should “represent” the pattern we want to extract; any
patch similar to the pattern has to be close (in L2 sense) to the set of patches centered at any pixels of
R. Our first modification of NL-Means is the non local filter operator that is defined as follows:

NLF (v)(i) =
∑
j∈R

a(i, j)v(j) (3)

where a(i, j) ≥ 0 and
∑
j∈R a(i, j) = 1. The similarity weight is defined as in (2). The matrix formulation

is
NLF (v) = Av. (4)

where A = (a(i, j))i∈I j∈R is row-stochastic. In practice, A is sparse. The weights a(i, j) are thresh-
olded or only computed between nearest neighbors. Here we do the following. For a given pixel i ∈ I,
its kernel density relative to R is Z(i). If the density is below a threshold, say δ, then the reference
set does not represent the patch at pixel i. The distance between patch(i) and patches coming from
R is big. So, we discard this pixel by setting to 0 all the weights a(i, ·). In other words, whenever∑
j∈R e

−||patch(i)−patch(j)||
2
2

ε < δ, NLF (v)(i) is defined as 0. This non local filter is very simple to
implement. The only parameters are the width of the Gaussian, ε, we are using to define the weights
and the threshold δ. The smaller ε is, the bigger the similarity coefficients are. The smaller δ is the
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bigger the support of NLF is. We demonstrate some successful applications of this algorithm in section
4. However this simple model shows its limit when dealing with complicated situation. In particular
it cannot resolve intersections. Indeed, in the case where the texture we are interested in intersects
another texture at a pixel i the density kernel Z(i) might be small. The patch(i) is roughly speaking
the sum of two patches: one coming from the desired texture and one coming from the crossing texture.
The distance between patch(i) and the patches coming from the reference set R is of order the norm
of the crossing texture component of patch(i). We illustrate this limitation in our numerical experiments.

To overcome this flaw, we look at the set of reference patches as a set of clouds. Each cloud, say Cl,
is characterized by its center of mass, say ml, and its covariance matrix, say Cl, that characterize the
tangent space at ml. For example one can partition the set of reference patches into K bins (or clouds)
using any clustering method. The center of mass of bins can be interpreted as the main visual perceptions
of the pattern of interests. They are often called “textons” [4] [3]. The projection of patch(i) onto the
tangent space at ml is given by:

PCl(i) = ml +

nl∑
j=1

< patch(i)−ml , ul,j > ul,j (5)

where nl is the number of principal eigenvalues of Cl and ul,1, . . . ul,nl are the associated normalized
eigenfunctions. The affinity matrix defined in (2) has to be modified. It becomes an affinity between any
patch to any center of mass ml. The affinity is measured in the tangent space of Cl:

a(i, l) =
1

Z(i)
φ(i, l)e−

||PCl
(i)−ml||22
ε (6)

where Z(i) is such that
∑K
l=1 a(i, l) = 1. The coefficient φ(i, l) is here only to ensure the operator is

define locally. In other words, one could define φ(i, l) by:

φ(i, l) = e−||patch(i)−ml||2/η (7)

Other choices are possible (e.g. compute a(i, l) for k nearest neighbors). Similarly to the non local
filter operator, one can threshold the coefficients a(i, l) or the kernel density Z(i) whenever one of these
quantities is insignificant. We then propose the following projected non local filter operator:

PNLF (i) =

K∑
l=1

a(i, l)PCl(i). (8)

where the coefficients a(i, l) are given by (6). Notice that PNLF (i) is a patch. To build the filtered
image one can associate to each pixel i the coordinate of PNLF (i) at the center of the patch.

There are two main advantages of using PNLF instead of NLF . First, instead of using all the patches
coming from R as a sub-dictionary, PNLF learns a condensed dictionary of textons. This reduces
considerably the complexity of the problem. Second, by defining the affinity kernel by means of the
projection, we are able to resolve intersections: the projection kills the orthogonal (with respect to the
tangent space) component of any patch. Numerical results confirm our intuition.

To conclude this section, we would like to emphasize the similarity between our approach and the one
presented in [7]. While we are considering the projection of a patch onto a tangent space, the latter
considers the parallel transport of a patch onto a tangent space.

3 Graph-based Diffusion Filter

In this section we provide a framework based upon diffusion processes for filtering a natural image given a
pattern of interest. We still consider the reference setR which consists of pixels whose patches correspond
to a given pattern. The similarity weights defined previously are organized in a similarity matrix A which
is either A = (a(i, j))i∈I, j∈R in the case of NLF or A = (a(i, j))i∈I, j∈{1...K} where a(i, j) is given by
either (2) or (6) in the case of PNLF . Without loss of generality we consider the first case. In the
second case the set R is replaced by the set {1, . . . ,K}. We now look at the set of pixels I as a graph.
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The nodes are the pixels. The similarity between any two pixels i and j, say w(i, j), is defined relative
to the reference set; the similarity is strong if these pixels have lots of common neighbors in R. We then
naturally define w(i, j) by WI = AAT = (w(i, j))i,j∈I , i.e.,

w(i, j) =
∑
r∈R

a(i, r)a(j, r) . (9)

The kernel WI we have built is relative to the reference set. It defines the local geometries of the graph.
Many works propose to use the first few eigenvectors of the Laplace-Beltrami operator for clustering pur-
poses. For further details, the reader is referred to the fundamental paper of S. Lafon and R. Coifman
[5] and J. Shi and J. Malik [9]. The construction of the kernel WI implies that the eigenfunctions of
the Laplace-Beltrami operator are supported on the region of the image that is similar to the pattern of
interest.

The way WI is defined allows us the following result:

Proposition 3.1 The eigenfunctions of WI = AAT , say ψj, corresponding to nonzero eigenvalues λj >
0 are

ψj =
1

λ
1/2
j

Aφj

where φj are the eigenfunctions of WR = ATA corresponding to the eigenvalues λj. The denominator

λ
1/2
j is a normalization term; ||ψj ||2 = ||φj ||2. Moreover, the sets {φj} and {ψj} are orthogonal.

The main advantage of considering WR = (wR(i, j)) instead of WI is that in practice the size of WR is
much smaller than the size of WI . This provides us with a fast way of computing the eigenfunctions of
WI . However, we are interested in the eigenfunctions of the Laplace-Beltrami operator. The proposition
needs to be slightly modified. Here are the details.

In order to get rid of the non-uniform sampling, the Laplace-Beltrami operator is preferred to the Markov
operator. We first estimate the diagonal density matrix D1 which ith diagonal term is given by

d1(i) =
∑
j∈R

wR(i, j)

where i ∈ R. The kernel WR is then normalized by the density as follows:

W1 = D−1
1 WRD

−1
1 (10)

where W1 is the normalized kernel. Its generic term is given by w1(i, j) = wR(i,j)
d1(i)d1(j)

. The kernel W1 is

made row stochastic by considering W2 = D−1
2 W1 where D2 is a diagonal matrix whose diagonal term

d2(i) =
∑
j∈R

w1(i, j).

Its eigenvalues - all non negative and bounded by 1- are sorted in decreasing order with λ1 = 1. The first
eigenfunction φ1 = 1, a column vector of just ones. The Laplace-Beltrami operator is given by I−W2. It
is convenient to consider the kernel W2 since it shares the same eigenfunctions as the Laplace-Beltrami
operator. The kernel W2 is adjoint to a symmetric kernel

W̃2 = D
−1/2
2 W1D

−1/2
2 .

They share the same eigenvalues λj . The eigenfunctions of W2, denoted φj - that we assume of unit
norm - are related to those of W̃2, denoted φ̃j according to

D
1/2
2 φj = φ̃j . (11)

This implies W̃2 = ÃT Ã, where Ã = ( a(i,j)

d1(j)d2(j)
1/2 )i∈I, j∈R. In other words, the similarity weights a(i, j)

are normalized by the factor d1(j)d
1/2
2 (j). We are using Ã instead of A to compute the Laplace-Beltrami

eigenfunctions; the similarity weights between the pixels in I are given by ÃÃT . The set
{
φ̃j

}
is
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orthonormal in l2(R, dx) and the set {φj} is orthonormal in l2(R, d2(x)dx). Using proposition 3.1 and
equation 11 we get:

ψ̃j =
1

λ
1/2
j

Ãφ̃j =
1

λ
1/2
j

ÃD
1/2
2 φj (12)

where ψ̃j are the eigenfunctions of ÃÃT corresponding to the eigenvalue λj > 0. The set
{
ψ̃j

}
is

orthonormal. We normalize the kernel ÃD
1/2
2 so that the trivial eigenfunction φ1 = 1 ∈ R|R| is associated

to the trivial eigenfunction 1 ∈ R|I|. To do so, we define the diagonal matrix D whose diagonal term
d(i) =

∑
j∈R(ÃD

1/2
2 )(i, j) =

∑
j∈R

a(i,j)
d1(j)

. Let A1 = D−1ÃD
1/2
2 = D−1AD−1

1 . The matrix A1 is row
stochastic. The eigenfunctions ψj are then given by

ψj =
1

λ
1/2
j

A1φj (13)

They form an orthonormal family in l2(I, d2(x)dx). To summarize, We built a row stochastic kernel

A1 = ( a(i,j)
d(i)d1(j)

) from l2(R, d2(x)dx) to l2(I, d2(x)dx) s.t. ψj = 1

λ
1/2
j

A1φj ; it maps the orthonormal

family {φj} onto the orthonormal family {ψj}. As a matter of fact, relation (13) allows us to interpret
ψj as an extension of φj . While the kernel A1 is an averaging operator similar to Nyström interpolation,

the coefficient 1/λ
1/2
j ≥ 1 counter-balances the averaging effect by amplifying the magnitude. Subsection

4.1 illustrates this point while [2] shows how to use this general framework in the context of extendable
Independent Component Analysis.

The orthogonality gives us an easy way to project onto any vectorial space spanned by some eigenfunc-
tions. In practice, we consider the eigenfunctions whose eigenvalues λj are above a certain threshold.
Consider the space spanned by the first L eigenfunctions, ψ1, . . . , ψL. Given a function f ∈ l2(I, d2(x)dx),
its projection is given by

P (f) =

L∑
j=1

αjψj , (14)

where αj =
∑
i∈I f(i)ψj(i) d

2(i), corresponding to the inner-product between f and ψj in l2(I, d2(x)dx).
Subsection 4.2 compares the graph-based diffusion filter to the non local filters (NLF and PNLF).

4 Numerical Results

4.1 Filtering on Smooth Manifolds

Our technique for filtering patterns in an image by using a reference set can be generalized to extending
functions on the manifold. In particular, we demonstrate the extension of the manifold of images, by
using a reference set. It is shown below that a reference set that captures the essential degrees of freedom
in an image database can be used to extend the manifold of images. This idea is discussed in detail in
[2] in the context of extendable Independent Component Analysis. We demonstrate this concept via a
simple example involving images of size 100 x 100 pixels of rotating earth. The images contain earth
image rotated with respect to angles θ = −45 to θ = 45 in longitude and σ = −30 to σ = 60 in latitude.
Each image is represented in a vector of dimension 1002. The data set contains 900 images out of which
we sample uniformly 450 images as a reference set.
We performed the following steps: we reduced the data dimension to R20 via random projections. We
then constructed the affinity matrix A between the reference set and the rest of the data with ε = 0.1,
where the patches correspond to column vectors of the projected images in R20. Finally, we computed
the embedding of the reference set and its extension. In Figure 1 we show a sample of our image data.
In Figure 2 we show the embedding of the reference set into the eigenspace spanned by Φ = [φ1;φ2], and
the embedding of the full data set using the extension to Ψ = [ψ1;ψ2]. The embedding demonstrates the
invariant similarity between earth images with similar rotation angles that is captured by the eigenvectors.
In particular, the extension Ψ is shown to preserve this similarity.

4.2 Few examples

In this subsection we present some numerical results for the non local filters and the graph-based diffusion
filter as well. We test our methods on two specific images. On one hand we use the well-known image
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−45,60 −41.8966,60 −38.7931,60 −35.6897,60 −32.5862,60 −29.4828,60

−26.3793,60 −23.2759,60 −20.1724,60 −17.069,60 −13.9655,60 −10.8621,60

−7.7586,60 −4.6552,60 −1.5517,60 1.5517,60 4.6552,60 7.7586,60

10.8621,60 13.9655,60 17.069,60 20.1724,60 23.2759,60 26.3793,60

29.4828,60 32.5862,60 35.6897,60 38.7931,60 41.8966,60 45,60

−45,56.8966 −41.8966,56.8966 −38.7931,56.8966 −35.6897,56.8966 −32.5862,56.8966 −29.4828,56.8966

Figure 1: A sample of Earth images for θ = −45 to θ = 45, and σ = 60 to σ = 56.89.
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Figure 2: Upper row: data embedding into (Φ1, Φ2). Bottom row: data embedding into (Ψ1, Ψ2) computed
via the extension. Color on left sub-figures is according to θ, and on the right sub-figures according to σ
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of “Barbara” to extract the scarf. On the other hand, we use an image coming from seismic data. It
corresponds to different layers in the ground and we are interested in extracting one specific layer, e.g.
the horizontal or diagonal layer.

The image of “Barbara” contains a few different patterns, e.g. the scarf, the chair or the knee. We focus
on the pattern that defines the scarf. It is a one-dimensional periodic pattern. The patches are extracted
from the grayscale image that was rescaled such that its values are in the interval [0, 1]. The size of the
patches is fixed to 5 × 5. The kernel A is computed using ε = 0.1. We select a small region inside the
scarf that corresponds to the reference set. This is shown by the highlighted polygon in Figure 3. For the
Non Local Filter algorithm, the kernel A is thresholded as explained in section 2; if the kernel density
Z(i) is less than δ, then a(i, ·) = 0. Here we set manually δ = 0.008. In the graph-based diffusion filter
, the thresholding is done at the very last step; if d(i) < δ then A1(i, ·) = 0. We choose δ = 10−5. The
projection is done using 8 eigenfunctions. The reference set contains about 400 pixels. In both methods,
the scarf is almost completely detected; only the region located below the right hand is missed. This is
mainly due to the change of contrast in this region of the image. Both methods detect also some part of
the knee and the chair. This is expected since both objects contain regions corresponding to the selected
pattern. The results are shown in Figure 3. To improve the detection of the scarf, we slightly modify our
data. The rescaled image is normalized as follows. The value at each pixel is normalized by the norm
of its corresponding patch. The same tests are then performed using different parameters; ε = 0.01,
δ = 0.05 for the non local filter, and δ = 10−4 for the graph-based diffusion filter. Figure 4 shows that
the little part of the scarf below the right hand is now detected. The results in Figure 4 are better than
those from Figure 3 because the normalization got rid of the change of contrast along the scarf. If we
decrease δ, Figure 5 shows that more of the knee and the chair are seen. The reference set contains
about 300 pixels. These results could have been obtained using the second operator we proposed; the
projected non local filter. This is illustrated in the left image of Figure 6. In this experiment, we cluster
(using k-means) the reference set into 100 bins. For each bin, we compute the center of mass and the
projection of any patches. The patch size is fixed to 5 × 5. The parameters are η = 0.02 and ε = 1/3.
The coefficients a(i, l) given by relation (6) are set to 0 whenever Z(i) < 10−5. The image obtained in
the right of Figure 6 was obtained using patches of size 17 × 17. The threshold parameter was set to
0. One clearly see from this image the pattern we selected while the rest of the image is smooth. The
image has been decomposed into two components; one corresponding to the pattern of interest (the one
provided by the scarf) and the other component corresponding to a sketch of the image; the bigger the
patch size is the smoother the sketch is. It is easier to extract the pattern once the simple part (the
sketch) of the image is removed; textures are then seen as zero-mean oscillatory periodic functions.
The second example we are considering is an image provided by seismic data. It is made of three different
layers; horizontal, almost vertical and diagonal. We are interested in extracting the horizontal one. We
rescale the image to fit between 0 and 1. We then extract the patches of size 5 × 5 and define the
reference set R by manually selecting a region within the polygon highlighted in Figure 7. This set
contains about 1000 pixels. The ε for the non local filter and the graph-based diffusion filter is set to
0.01. The kernel A is computed as in relation (2). Results displayed in Figure 7 are similar. Both
methods cannot detect the horizontal layer at the intersection of the diagonal and the horizontal layers.
The number of eigenfunctions used for the projection is set to 8. Increasing this number does not change
significantly the results. We overcome this problem by modifying the weights a(i, j) and by increasing
the size of the patches. Increasing the size of the patches while keeping a(i, j) as in relation 2 does
not resolve the intersection; the patches are almost orthogonal since high dimensional. We consider the
projected non local filter operator. We set the patch size to 31×61. As explained at the end of section 2,
the projections of any patch centered at any pixels of the intersection onto the K clusters of the reference
set are significant. We choose K = 25. Each projection is computed using the top 8 eigenfunctions. The
result is displayed on the left panel of Figure 9. The right panel is the graph-based diffusion projection
onto the top 8 eigenfunctions as explained in section 3 where the kernel A is chosen as in relation 6.
In both tests, the horizontal layer is detected across the intersection. Figure 10 displays a sample of 8
textons (each of them corresponding to a center of mass of a cluster).

5 Conclusion

We proposed different patch-based filters for extracting a specific pattern out of an image. Once the
reference set is chosen by the user, the only parameters that need to be tuned are the threshold δ and the
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Figure 3: From left to right, Top to bottom: Original image. Reference set. Non Local Filter with δ = 0.008.
Graph-based Diffusion Filter with 8 eigenfunctions, ε = 0.1, δ = 10−5.
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Figure 4: From left to right, Top to bottom: Normalized image used for patches. Reference set. Non Local
Filter with δ = 0.05. Graph-based diffusion Filter with 8 eigenfunctions, ε = 0.01 and δ = 10−4.

Figure 5: From left to right. Non Local Filter with δ = 0.001. Graph-based Diffusion Filter with 8
eigenfunctions, ε = 0.01 and δ = 3 10−6.
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Figure 6: left: Projected non local filter. Patch 5×5, δ = 10−5, ε = 0.333, η = 0.02. Right: No thresholding.
Patch of size 17 × 17.

Figure 7: From left to right, Top to bottom: Original image. Reference set. non local filter with δ = 0.001.
Graph-based Diffusion Filter with 8 eigenfunctions, ε = 0.01, δ = 10−5.
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Figure 8: From left to right, top to bottom. non local filter with δ = 510−4. Graph-based Diffusion Filter
with 40 eigenfunctions, ε = 0.01 and δ = 10−3. Non Local Filter with δ = 10−5. Graph-based Diffusion
Filter with 8 eigenfunctions, ε = 0.01 and δ = 10−5.

Figure 9: From left to right: Projected Non Local Filter with K=25, nl = 8. Graph-based Diffusion Filter
with 8 eigenfunctions.
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Figure 10: Textons using K=8.

projection parameters (number of clusters, number of principal components, number of eigenfunctions).
The other parameters can be tuned as explained in section 4. We showed that considering patches as a
characterization of local patterns and defining the similarity between patches based on the Euclidian norm
allows us to build filters that perform well when textures are not overlapping. In addition, re-normalizing
patches provides us with a much better similarity weight; it gets rid of the contrast changes. We also
proposed a projected non local filter algorithm that aims at resolving intersections. This model is based on
projections of patches onto tangent spaces at reference points (or center of mass of clusters). This suggests
to replace patches by some local statistics. For example, one could consider local covariance matrices of
patches as feature vectors and measure distances using the Fröbenius norm. Finally, these techniques
extend easily to hyper-spectral imaging. Pixels correspond to points living in a high dimensional space.
Patches are replaced by the bands representing the hyper-spectral data.
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