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Abstract
A large number of learning algorithms, for example, spectral clustering, kernel Principal Compo-
nents Analysis and many manifold methods are based on estimating eigenvalues and eigenfunctions
of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis
of algorithms, it is an important problem to be able to assessthe quality of such approximations.
The contribution of our paper is two-fold:
1. We use a technique based on a concentration inequality forHilbert spaces to provide new much
simplified proofs for a number of results in spectral approximation.
2. Using these methods we provide several new results for estimating spectral properties of the
graph Laplacian operator extending and strengthening results from von Luxburg et al. (2008).

Keywords: spectral convergence, empirical operators, learning integral operators, perturbation
methods

1. Introduction

A broad variety of methods for machine learning and data analysis from Principal Components
Analysis (PCA) to Kernel PCA, Laplacian-based spectral clustering and manifold methods, rely on
estimating eigenvalues and eigenvectors of certain data-dependent matrices. In many cases these
matrices can be interpreted as empirical versions of underlying integral operators or closely related
objects, such as continuous Laplacian operators. Thus establishing connections between empirical
operators and their continuous counterparts is essential to understanding these algorithms. In this
paper, we propose a method for analyzing empirical operators based onconcentration inequalities
in Hilbert spaces. This technique together with perturbation theory results allows us to derive a
number of results on spectral convergence in an exceptionally simple way.We note that the approach
using concentration inequalities in a Hilbert space has already been proved useful for analyzing
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supervised kernel algorithms, see De Vito et al. (2005b), Yao et al. (2007), Bauer et al. (2007) and
Smale and Zhou (2007). Here we develop on this approach to provide a detailed and comprehensive
study of perturbation results for empirical estimates of integral operators as well as empirical graph
Laplacians.

In recent years several works started considering these connections. The first study of this prob-
lem appeared in Koltchinskii and Giné (2000) and Koltchinskii (1998), where the authors consider
integral operators defined by a kernel. In Koltchinskii and Giné (2000) the authors study the rela-
tion between the spectrum of an integral operator with respect to a probability distribution and its
(modified) empirical counterpart in the framework ofU-statistics. In particular they prove that the
ℓ2 distance between the two (ordered) spectra goes to zero under the assumption that the kernel is
symmetric and square integrable. Moreover, under some stronger conditions, rates of convergence
and distributional limit theorems are obtained. The results are based on an inequality due to Lidskii
and to Wielandt for finite dimensional matrices and the Marcinkiewicz law of large numbers. In
Koltchinskii (1998) similar results were obtained for convergence of eigenfunctions and, using the
triangle inequality, for spectral projections. These investigations were continued in Mendelson and
Pajor (2005) and Mendelson and Pajor (2006), where it was shown that, under the assumption that
the kernel is of positive type, the problem of eigenvalue convergence reduces to the study of how
the random operator1n ∑n

i=1Xi ⊗Xi deviates from its averageE[X⊗X], with respect to the operator
norm, whereX,X1, . . . ,Xn are i.i.dℓ2 random vectors. The result is based on a symmetrization tech-
nique and on the control of a suitable Radamacher complexity.
The above studies are related to the problem of consistency of kernel PCA considered in Shawe-
Taylor et al. (2002) and Shawe-Taylor et al. (2005) and refined in Zwald et al. (2004) and Zwald and
Blanchard (2006). In particular, Shawe-Taylor et al. (2002) and Shawe-Taylor et al. (2005) study
the deviation of the sum of the all but the largestk eigenvalues of the empirical matrix to its mean
using McDiarmid inequality. The above result is improved in Zwald et al. (2004) where fast rates
are provided by means of a localized Rademacher complexities approach. The results in Zwald and
Blanchard (2006) are a development of the results in Koltchinskii (1998). Using a new perturba-
tion result the authors study directly the convergence of the whole subspace spanned by the firstk
eigenvectors and are able to show that only the gap between thek andk+1 eigenvalue affects the
estimate. All the above results hold for symmetric, positive definite kernels.

A second related series of works considered convergence of the graph Laplacian in various set-
tings , see for example, Belkin (2003), Lafon (2004), Belkin and Niyogi(2005), Hein et al. (2005),
Hein (2006), Singer (2006) and Giné and Koltchinskii (2006). These papers discuss convergence
of the graph Laplacian directly to the Laplace-Beltrami operator. Convergence of the normalized
graph Laplacian applied to a fixed smooth function on the manifold is discussedin Hein et al. (2005),
Singer (2006) and Lafon (2004). Results showing uniform convergence over some suitable class of
test functions are presented in Hein (2006) and Giné and Koltchinskii (2006). Finally, convergence
of eigenvalues and eigenfunctions for the case of the uniform distributionwas shown in Belkin and
Niyogi (2007).

Unlike these works, where the kernel function is chosen adaptively depending on the number
of points, we will be primarily interested in convergence of the graph Laplacian to its continuous
(population) counterpart for afixedweight function. Von Luxburg et al. (2004) study the conver-
gence of the second eigenvalue which is relevant in spectral clustering problems. These results are
extended in von Luxburg et al. (2008), where operators are definedon the space of continuous func-
tions. The analysis is performed in the context of perturbation theory in Banach spaces and bounds
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on individual eigenfunctions are derived. The problem of out-of-sample extension is considered
via a Nystr̈om approximation argument. By working in Banach spaces the authors haveonly mild
requirements for the weight function defining the graph Laplacian, at the price of having to do a
fairly complicated analysis.

Our contribution is twofold. In the first part of the paper, we assume that the kernelK is sym-
metric and positive definite. We start considering the problem of out-of-sample extension of the
kernel matrix and discuss a singular value decomposition perspective on Nyström-like extensions.
More precisely, we show that a finite rank (extension) operator acting onthe Reproducing Kernel
Hilbert spaceH defined byK can be naturally associated with the empirical kernel matrix: the two
operators have same eigenvalues and related eigenvectors/eigenfunctions. The kernel matrix and its
extension can be seen as compositions of suitable restriction and extension operators that are ex-
plicitly defined by the kernel. A similar result holds true for the asymptotic integral operator, whose
restriction toH is a Hilbert-Schmidt operator. We can use concentration inequalities for opera-
tor valued random variables and perturbation results to derive concentration results for eigenvalues
(taking into account the multiplicity), as well as for the sums of eigenvalues. Moreover, using a per-
turbation result for spectral projections, we derive finite sample boundsfor the deviation between
the spectral projection associated with thek largest eigenvalues. We recover several known results
with simplified proofs, and derive new results.

In the second part of the paper, we study the convergence of the asymmetric normalized graph
Laplacian to its continuous counterpart. To this aim we consider a fixed positive symmetric weight
function satisfying some smoothness conditions. These assumptions allow us tointroduce a suit-
able intermediate Reproducing Kernel Hilbert spaceH , which is, in fact, a Sobolev space. We
describe explicitly restriction and extension operators and introduce a finiterank operator with spec-
tral properties related to those of the graph Laplacian. Again we considerthe law of large numbers
for operator-valued random variables to derive concentration resultsfor empirical operators. We
study behavior of eigenvalues as well as the deviation of the corresponding spectral projections
with respect to the Hilbert-Schmidt norm. To obtain explicit estimates for spectral projections we
generalize the perturbation result in Zwald and Blanchard (2006) to dealwith non-self-adjoint op-
erators. From a technical point the main difficulty in studying the asymmetric graph Laplacian is
that we no longer assume the weight function to be positive definite so that there is no longer a
natural Reproducing Kernel Hilbert space space associated with it. In this case we have to deal with
non-self-adjoint operators and the functional analysis becomes more involved. Comparing to von
Luxburg et al. (2008), we note that the RKHSH replaces the Banach space of continuous func-
tions. Assuming some regularity assumption on the weight functions we can exploit the Hilbert
space structure to obtain more explicit results. Among other things, we derive explicit convergence
rates for a large class of weight functions. Finally we note that for the case of positive definite
weight functions results similar to those presented here have been independently derived by Smale
and Zhou (2009).

The paper is organized as follows. We start by introducing the necessary mathematical objects
in Section 2. We recall some facts about the properties of linear operatorsin Hilbert spaces, such
as their spectral theory and some perturbation results, and discuss some concentration inequalities
in Hilbert spaces. This technical summary section aims at making this paper self-contained and
provide the reader with a (hopefully useful) overview of the needed toolsand results. In Section 3,
we study the spectral properties of kernel matrices generated from random data. We study concen-
tration of operators obtained by an out-of-sample extension using the kernel function and obtain
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considerably simplified derivations of several existing results on eigenvalues and eigenfunctions.
We expect that these techniques will be useful in analyzing algorithms requiring spectral conver-
gence. In fact, in Section 4, we apply these methods to prove convergence of eigenvalues and
eigenvectors of the asymmetric graph Laplacian defined by a fixed weight function. We refine the
results in von Luxburg et al. (2008), which, to the best of our knowledge, is the only other paper
considering this problem so far.

2. Notation and Preliminaries

In this section we will discuss various preliminary results necessary for thefurther development.

2.1 Operator Theory

We first recall some basic notions in operator theory (see, for example, Lang, 1993). In the following
we letA : H →H be a (linear) bounded operator, whereH is a complex (separable) Hilbert space
with scalar product1 (norm)〈·, ·〉 (‖·‖) and(ej) j≥1 a Hilbert basis inH . We often use the notation
j ≥ 1 to denote a sequence or a sum from 1 topwherepcan be infinite. The set of bounded operators
onH is a Banach space with respect to the operator norm‖A‖

H ,H
= ‖A‖ = sup‖ f‖=1‖A f‖. If A is a

bounded operator, we letA∗ be its adjoint, which is a bounded operator with‖A∗‖ = ‖A‖.
A bounded operatorA is Hilbert-Schmidt if∑ j≥1‖Aej‖2 < ∞ for some (any) Hilbert basis(ej) j≥1.
The space of Hilbert-Schmidt operators is also a Hilbert space (a fact which will be a key in our
development) endowed with the scalar product〈A,B〉HS = ∑ j

〈
Aej ,Bej

〉
and we denote by‖·‖HS

the corresponding norm. In particular, Hilbert-Schmidt operators are compact.
A closely related notion is that of atrace classoperator. We say that a bounded operatorA

is trace class, if∑ j≥1

〈√
A∗Aej ,ej

〉
< ∞ for some (any) Hilbert basis(ej) j≥1 (where

√
A∗A is the

square root of the positive operatorA∗A defined by spectral theorem (see, for example, Lang, 1993).
In particular, Tr(A) = ∑ j≥1

〈
Aej ,ej

〉
< ∞ and Tr(A) is called the trace ofA. The space of trace class

operators is a Banach space endowed with the norm‖A‖TC = Tr(
√

A∗A). Trace class operators
are also Hilbert Schmidt (hence compact). The following inequalities relate thedifferent operator
norms:

‖A‖ ≤ ‖A‖HS≤ ‖A‖TC.

It can also be shown that for any Hilbert-Schmidt operatorA and bounded operatorB we have

‖AB‖HS ≤ ‖A‖HS‖B‖, (1)

‖BA‖HS ≤ ‖B‖‖A‖HS.

Remark 1 If the context is clear we will simply denote the norm and the scalar productby ‖·‖
and〈·, ·〉 respectively. However, we will add a subscript when comparing normsin different spaces.
When A is a bounded operator,‖A‖ always denotes the operator norm.

2.2 Spectral Theory for Compact Operators

Recall that the spectrum of a matrixK can be defined as the set of eigenvaluesλ ∈ C, s.t. det(K −
λI) = 0, or, equivalently, such thatλI −K does not have a (bounded) inverse. This definition can be

1. We choose the convention for which the scalar product is linear in the first argument.
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generalized to operators. LetA : H → H be a bounded operator, we say thatλ ∈ C belongs to the
spectrumσ(A), if (A−λI) does not have a bounded inverse. For anyλ 6∈ σ(A), R(λ) = (A−λI)−1

is theresolvent operator, which is by definition a bounded operator. IfA is a compact operator, then
σ(A)\{0} consists of a countable family of isolated points with finite multiplicity|λ1| ≥ |λ2| ≥ · · ·
and eitherσ(A) is finite or limn→∞ λn = 0 (see, for example, Lang, 1993).

If the bounded operatorA is self-adjoint (A = A∗, analogous to a hermitian matrix in the finite-
dimensional case), the eigenvalues are real. Each eigenvalueλ has an associatedeigenspacewhich
is the closed subspace of all eigenvectors with eigenvalueλ. A key result, known as theSpectral
Theorem, ensures that

A =
∞

∑
i=1

λiPλi
,

wherePλ is theorthogonal projection operatoronto the eigenspace associated withλ. Moreover,
it can be shown that the projectionPλ can be written explicitly in terms of the resolvent operator.
Specifically, we have the following remarkable equality:

Pλ =
1

2πi

Z

Γ
(γI −A)−1dγ,

where the integral can be taken over any closed simple rectifiable curveΓ ⊂ C (with positive di-
rection) containingλ and no other eigenvalue. We note that while an integral of an operator-valued
function may seem unfamiliar, it is defined along the same lines as an integral ofan ordinary real-
valued function. Despite the initial technicality, the above equation allows for far simpler analysis
of eigenprojections than other seemingly more direct methods.

This analysis can be extended to operators, which are not self-adjoint, toobtain a decomposition
parallel to the Jordan canonical form for matrices. To avoid overloadingthis section, we postpone
the precise technical statements for that case to the Appendix B.

Remark 2 Though in manifold and spectral learning we typically work with real valued functions,
in this paper we will consider complex vector spaces to be able to use certainresults from the
spectral theory of (possibly non self-adjoint) operators. However, if the reproducing kernel and the
weight function are both real valued, as usually is the case in machine learning, we will show that
all functions of interest are real valued as well.

2.3 Reproducing Kernel Hilbert Space (RKHS)

Let X be a subset ofRd. A Reproducing Kernel Hilbert spaceis a Hilbert spaceH of functions
f : X → C, such that all the evaluation functionals are bounded, that is

f (x) ≤Cx‖ f‖ for some constantCx.

It can be shown that there is a unique conjugate symmetric positive definite kernel functionK :
X×X → C, calledreproducing kernel, associated withH and the following reproducing property
holds

f (x) = 〈 f ,Kx〉 ,
whereKx := K(·,x). It is also well known (Aronszajn, 1950) that any conjugate symmetric positive
definite kernelK uniquely defines a reproducing kernel Hilbert space whose reproducing kernel is
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K. We will assume that the kernel is continuous and bounded, and we set

κ = sup
x∈X

K(x,x).

As a consequence, the elements ofH are bounded continuous functions, the spaceH is separable
and is compactly embedded inC (X) with the compact-open topology (Aronszajn, 1950).

Remark 3 The set X can be taken to be any locally compact separable metric space and the as-
sumption about continuity can be weakened. However, the above setting will simplify some technical
considerations, in particular in Section4.2 where Sobolev spaces are considered.

2.4 Concentration Inequalities in Hilbert spaces

We recall that ifξ1, . . . ,ξn are independent (real-valued) random variables with zero mean and such
that|ξi | ≤C, i = 1, . . . ,n, then Hoeffding inequality ensures that∀ε > 0,

P

[∣∣∣∣∣
1
n

n

∑
i=1

ξi

∣∣∣∣∣≥ ε

]
≤ 2e−

nε2

2C2 .

If we setτ = nε2

2C2 then we can express the above inequality saying that with probability at least(with
confidence) 1−2e−τ, ∣∣∣∣∣

1
n

n

∑
i=1

ξi

∣∣∣∣∣≤
C
√

2τ√
n

. (2)

Similarly if ξ1, . . . ,ξn are zero mean independent random variables with values in a separable com-
plex Hilbert space and such that‖ξi‖ ≤ C, i = 1, . . . ,n, then the same inequality holds with the
absolute value replaced by the norm in the Hilbert space, that is, the following bound

∥∥∥∥∥
1
n

n

∑
i=1

ξi

∥∥∥∥∥≤
C
√

2τ√
n

(3)

holds true with probability at least 1−2e−τ (Pinelis, 1992).

Remark 4 In the cited reference the concentration inequality(3) is stated for real Hilbert spaces.
However, a complex Hilbert spaceH can be viewed as a real vector space with the scalar product
given by〈 f ,g〉HR

= (〈 f ,g〉H +〈g, f 〉H )/2, so that‖ f‖HR
= ‖ f‖H . This last equality implies that(3)

holds also for complex Hilbert spaces.

2.5 Perturbation Theory

First we recall some results on perturbation of eigenvalues and eigenfunctions. About eigenvalues,
we need to recall the notion ofextended enumerationof discrete eigenvalues. We adapt the definition
of Kato (1987), which is given for an arbitrary self-adjoint operator,to the compact operators. Let
A : H → H be a compact operator, an extended enumeration is a sequence of real numbers where
every nonzero eigenvalue ofA appears as many times as its multiplicity and the other values (if
any) are zero. An enumeration is an extended numeration where any element of the sequence is an
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isolated eigenvalue with finite multiplicity. If the sequence is infinite, this last condition is equivalent
to the fact that any element is nonzero.

The following result due to Kato (1987) is an extension to infinite dimensional operators of an
inequality due to Lidskii for finite rank operator.

Theorem 5 (Kato 1987) Let H be a separable Hilbert space with A, B self-adjoint compact op-
erators. Let(γ j) j≥1, be an enumeration of discrete eigenvalues of B−A, then there exist extended
enumerations(β j) j≥1 and(α j) j≥1 of discrete eigenvalues of B and A respectively such that,

∑
j≥1

φ(β j −α j) ≤ ∑
j≥1

φ(γ j),

whereφ is any nonnegative convex function withφ(0) = 0.

By choosingφ(t) = |t|p, p≥ 1, the above inequality becomes

∑
j≥1

|β j −α j |p ≤ ∑
j≥1

|γ j |p.

Letting p = 2 and recalling that‖B−A‖2
HS = ∑ j≥1 |γ j |2, it follows that

∑
j≥1

|β j −α j |2 ≤ ‖B−A‖2
HS.

Moreover, since limp→∞(∑ j≥1 |γ j |p)1/p = supj≥1 |γ j | = ‖B−A‖, we have that

sup
j≥1

|β j −α j | ≤ ‖B−A‖.

Given an integerN, let mN be the sum of the multiplicities of the firstN nonzero top eigenvalues
of A, it is possible to prove that the sequences(α j) j≥1 and(β j) j≥1 in the above proposition can be
chosen in such a way that

α1 ≥ α2 ≥ . . . ≥ αmN > α j j > mN,

β1 ≥ β2 ≥ . . . ≥ βmN ≥ β j j > mN.

However in general we need to consider extended enumerations, which are not necessarily decreas-
ing sequence, in order to take into account the kernel spaces ofA and B, which are potentially
infinite dimensional vector spaces (also see the remark after Theorem II inKato 1987).

To control the spectral projections associated with one or more eigenvalues we need the follow-
ing perturbation result due to Zwald and Blanchard (2006) (see also Theorem 20 in Section 4.3).
Let A be a positive compact operator such that the number of eigenvalues is infinite. GivenN∈N, let
PA

N be the orthogonal projection on the eigenvectors corresponding to the topN distinct eigenvalues
α1 > .. . > αN andαN+1 the next one.

Proposition 6 Let A be a compact positive operator. Given an integer N, if B is another compact
positive operator such that‖A−B‖ ≤ αN−αN+1

4 , then

‖PB
D −PA

N‖ ≤
2

αN −αN+1
‖A−B‖
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where the integer D is such that the dimension of the range of PB
D is equal to the dimension of the

range of PA
N. If A and B are Hilbert-Schmidt, in the above bound the operator norm canbe replaced

by the Hilbert-Schmidt norm.

We note that a bound on the projections associated with simple eigenvalues impliesthat the corre-
sponding eigenvectors are close since, ifu andv are taken to be normalized and such that〈u,v〉> 0,
then the following inequality holds

‖Pu−Pv‖2
HS = 2(1−〈u,v〉2) ≥ 2(1−〈u,v〉) = ‖u−v‖2

H
.

3. Integral Operators Defined by a Reproducing Kernel

Let X be a subset ofRd andK : X×X →C be a reproducing kernel satisfying the assumptions stated
in Section 2.3. Letρ be a probability measure onX and denote byL2(X,ρ) the space of square
integrable (complex) functions with norm‖ f‖2

ρ = 〈 f , f 〉ρ =
R

X | f (x)|2dρ(x). SinceK(x,x) ≤ κ by

assumption, the corresponding integral operatorLK : L2(X,ρ) → L2(X,ρ)

(LK f )(x) =
Z

X
K(x,s) f (s)dρ(s)

is a bounded operator.
Suppose we are now given a set of pointsx = (x1, . . . ,xn) sampled i.i.d. according toρ. Many

problems in statistical data analysis and machine learning deal with the empirical kernel n× n-
matrix K given byK i j = 1

nK(xi ,x j). The question we want to discuss is to which extent we can
use the kernel matrixK (and the corresponding eigenvalues, eigenvectors) to estimateLK (and the
corresponding eigenvalues, eigenfunctions). Answering this questionis important as it guarantees
that the computable empirical proxy is sufficiently close to the ideal infinite samplelimit.
The first difficulty in relatingLK andK is that they operate on different spaces. By default,LK is an
operator onL2(X,ρ), while K is a finite dimensional matrix. To overcome this difficulty we letH

be the RKHS associated withK and define the operatorsTH ,Tn : H →H given by

TH =
Z

X
〈·,Kx〉Kxdρ(x), (4)

Tn =
1
n

n

∑
i=1

〈·,Kxi 〉Kxi . (5)

Note thatTH is the integral operator with kernelK with range and domainH rather than inL2(X,ρ).
The reason for writing it in this seemingly complicated form is to make the parallel with (5) clear.
To justify the “extension operator” in (5), consider the natural “restriction operator”,2 Rn :H → C

n,
Rn f = ( f (x1), . . . , f (xn)). It is not hard to check that the adjoint operatorR∗

n : C
n →H can be written

asR∗
n(y1, . . . ,yn) = 1

n ∑n
i=1yiKxi . Indeed, we see that

〈R∗
n(y1, . . . ,yn), f 〉H = 〈(y1, . . . ,yn),Rn f 〉Cn

=
1
n

n

∑
i=1

yi f (xi) =
1
n

n

∑
i=1

yi〈Kxi , f 〉H ,

2. Rn is also called sampling or evaluation operator. We prefer to call it therestriction operatorsinceRn f is the
restriction of the functionf : X → R to the set of points{x1, . . . ,xn}.
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whereC
n is endowed with 1/n times the canonical scalar product. Thus, we observe thatTn = R∗

nRn

is the composition of the restriction operator and its adjoint. On the other hand for the matrix
K we have thatK = RnR∗

n, regarded as operator onCn. Similarly, if RH denotes the inclusion
H →֒ L2(X,ρ), TH = R∗

H
RH andLK = RH R∗

H
.

In the next subsection, we discuss a parallel with the Singular Value Decomposition for matrices
and show thatTH andLK have the same eigenvalues (possibly, up to some zero eigenvalues) and
the corresponding eigenfunctions are closely related. A similar relation holds for Tn andK . Thus
to establish a connection between the spectral properties ofK andLK , it is sufficient to bound the
differenceTH −Tn, which is done in the following theorem (De Vito et al., 2005b). While the
proof can be found in De Vito et al. (2005b), we provide it for completeness and to emphasize its
simplicity.

Theorem 7 The operators TH and Tn are Hilbert-Schmidt. Under the above assumption with con-
fidence1−2e−τ

‖TH −Tn‖HS≤
2
√

2κ
√

τ√
n

.

Proof We introduce a sequence(ξi)
n
i=1 of random variables in the Hilbert space of Hilbert-Schmidt

operators by
ξi = 〈·,Kxi 〉Kxi −TH .

From (4) follows thatE(ξi) = 0. By a direct computation we have that‖〈·,Kx〉Kx‖2
HS= ‖Kx‖4 ≤ κ2.

Hence, using (4),‖TH ‖HS≤ κ and

‖ξi‖HS≤ 2κ, i = 1, . . . ,n.

From inequality (3) we have with probability 1−2e−τ

‖1
n

n

∑
i=1

ξi‖HS = ‖TH −Tn‖HS≤
2
√

2κ
√

τ√
n

,

which establishes the result.

As a direct consequence of Theorem 7 we obtain several concentration inequalities for eigenval-
ues and eigenfunctions. These results will be discussed in subsection 3.2and they are based on an
interpretation of the Nyström extension in terms of Singular Value Decomposition of the empirical
operator and its mean, as explained in the following subsection.

3.1 Extension Operators

We will now briefly revisit the Nystr̈om extension and clarify some connections to the Singular
Value Decomposition (SVD) for operators. Recall that applying SVD to ap×mmatrixA produces
a singular systemconsisting of singular (strictly positive) values(σ j)

k
j=1 with k being the rank of

A, vectors(u j)
m
j=1 ∈ C

m and(v j)
p
j=1 ∈ C

p such that they form orthonormal bases ofC
m andC

p

respectively, and 




A∗Auj = σ ju j j = 1, . . .k

A∗Auj = 0 j = k+1, . . . ,m

AA∗v j = σ jv j j = 1, . . .k

AA∗v j = 0 j = k+1, . . . , p.
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It is not hard to see that the matrixA can be written asA = VΣ1/2U∗, whereU andV are matrices
obtained by ”stacking”u’s andv’s in the columns, andΣ is ap×mmatrix having the singular values
σi on the firstk-entries on the diagonal (and zero outside), so that






Auj =
√σ jv j j = 1, . . .k

Auj = 0 j = k+1, . . . ,m

A∗v j =
√σ ju j j = 1, . . .k

A∗v j = 0 j = k+1, . . . , p,

which is the formulation we will use in this paper. The same formalism applies more generally to
operators and allows us to connect the spectral properties ofLK andTH as well as the matrixK
and the operatorTn. The basic idea is that each of these pairs (as shown in the previous subsection)
corresponds to a singular system and thus share eigenvalues (up to somezero eigenvalues) and have
eigenvectors related by a simple equation. Indeed the following result can be obtained considering
the SVD decomposition associated withRH (and Proposition 9 considering the SVD decomposition
associated withRn). The proof of the following proposition can be deduced from the resultsin
De Vito et al. (2005b) and De Vito et al. (2006).3

Proposition 8 The following facts hold true.

1. The operators LK and TH are positive, self-adjoint and trace class. In particular bothσ(LK)
andσ(TH ) are contained in[0,κ].

2. The spectra of LK and TH are the same, possibly up to the zero. Ifσ is a nonzero eigenvalue
and u,v are the associated eigenfunctions of LK and TH (normalized to norm1 in L2(X,ρ)
andH ) respectively, then

u(x) =
1

√σ j
v(x) for ρ-almost all x∈ X,

v(x) =
1

√σ j

Z

X
K(x,s)u(s)dρ(s) for all x ∈ X.

3. The following decompositions hold:

LKg = ∑
j≥1

σ j
〈
g,u j

〉
ρ u j g∈ L2(X,ρ),

TH f = ∑
j≥1

σ j
〈

f ,v j
〉

v j f ∈H ,

where the eigenfunctions(u j) j≥1 of LK form an orthonormal basis ofkerLK
⊥ and the eigen-

functions(v j) j≥1 of TH form an orthonormal basis for ker(TH )⊥.

If K is real-valued, both the families(u j) j≥1 and(v j) j≥1 can be chosen as real valued functions.

3. In De Vito et al. (2005b) and De Vito et al. (2006) the results are stated for real kernels, however the proof does not
change ifK is complex valued. Moreover, ifK is real andLK is regarded as integral operator on the space of square
integrable complex functions, one can easily check that the eigenvalues are positive and, ifu is an eigenfunction with
eigenvalueσ ≥ 0, then the complex conjugateu is also an eigenfunction with the same eigenvalue, so that it is always
possible to choose all the eigenfunctions to be real valued.
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Note that the RKHSH does not depend on the measureρ. If the support of the measureρ is only a
subset ofX (e.g., a finite set of points or a submanifold), then functions inL2(X,ρ) are only defined
on the support ofρ whereas functions inH are defined on the whole space isX. The eigenfunctions
of LK andTH coincide (up-to a scaling factor) on the support of the measure, andv is anextension4

of u outside of the support ofρ. Moreover, the extension/restriction operations preserve both the
normalization and orthogonality of the eigenfunctions. In a slightly differentcontext Coifman and
Lafon (2006) showed the connection between the Nyström method and the set of eigenfunctions of
LK , which are calledgeometric harmonics. The main difference between our result and the cited
paper is that we consider all the eigenfunctions, whereas Coifman and Lafon introduce a threshold
on the spectrum to ensure stability since they do not consider a sampling procedure.

An analogous result relates the matrixK and the operatorTn .

Proposition 9 The following facts hold.

1. The operator Tn is of finite rank, self-adjoint and positive, whereas the matrixK is conjugate
symmetric and semi-positive definite. In particular the spectrumσ(Tn) has only finitely many
nonzero elements and is contained in[0,κ].

2. The spectra ofK and Tn are the same up to the zero, that is,σ(K)\{0} = σ(Tn)\{0}. More-
over, ifσ̂ is a nonzero eigenvalue andû, v̂ are the corresponding eigenvector and eigenfunction
of K and Tn (normalized to norm1 in C

n andH ) respectively, then

û =
1√
σ̂

(v̂(x1), . . . , v̂(xn)),

v̂ =
1√
σ̂

(
1
n

n

∑
i=1

Kxi û
i

)
,

whereûi is the i−th component of the eigenvectorû.

3. The following decompositions hold:

Kw =
k

∑
j=1

σ̂ j
〈
w, û j

〉
û j w∈ C

n,

Tn f =
k

∑
j=1

σ̂ j
〈

f , v̂ j
〉
H

v̂ j f ∈H ,

where k is the rank of K and both sums run over the nonzero eigenvalues, the family(û j) j≥1

is an orthonormal basis forker{K}⊥ ⊂C
n and the family(v̂ j) j≥1 of Tn forms an orthonormal

basis for the spaceker(Tn)
⊥ ⊂H , where

ker(Tn) = { f ∈H | f (xi) = 0 ∀i = 1, . . . ,n}.

If K is real-valued, both the families(û j) j≥1 and(v̂ j) j≥1 can be chosen as real valued vectors and
functions, respectively.

4. However, the extension istrivial in the pointsx ∈ X whereK(x,x) = 0, as it happens if the kernel is compactly
supported.
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Note that in this sectionLK , T andTn are self-adjoint operators andK is a conjugate symmetric
matrix. If K is real, we can directly work with real Hilbert spaces. However since we need complex
vector spaces in Section 4 for consistency we stated the above results forcomplex reproducing
kernels.

3.2 Bounds on Eigenvalues and Spectral Projections

Using Theorem 7, we are able to bound theℓ2-distance between the spectrum ofLK and the spectrum
of K .

Proposition 10 There exist an extended enumeration(σ j) j≥1 of discrete eigenvalues for LK and an
extended enumeration(σ̂ j) j≥1 of discrete eigenvalues forK such that

∑
j≥1

(σ j − σ̂ j)
2 ≤ 8κ2τ

n
,

with confidence greater than1−2e−τ. In particular supj≥1 |σ j − σ̂ j | ≤ 2
√

2κ
√

τ√
n .

Proof By Proposition 8, an extended enumeration(σ j) j≥1 of discrete eigenvalues forLK is also an
extended enumeration(σ j) j≥1 of discrete eigenvalues forTH , and a similar relation holds forK and
Tn by Proposition 9. Theorem 5 withA = Tn andB = TH gives that

∑
j≥1

(σ j − σ̂ j)
2 ≤ ‖TH −Tn‖2

HS

for a suitable extended enumerations(σ j) j≥1, (σ̂ j) j≥1 of discrete eigenvalues forT andTn, respec-
tively. Theorem 7 provides us with the claimed bound.

Theorem 4.2 and the following corollaries of Koltchinskii and Giné (2000) provide the same con-
vergence rate (in expectation) under a different setting (the kernelK is only symmetric, but with
some assumption on the decay of the eigenvalues ofLK).

The following result can be deduced by Theorem 5 withp = 1 and Theorem 7, however a
simpler direct proof is given below.

Proposition 11 Under the assumption of Proposition 10 with confidence1−2e−τ

|∑
j≥1

(σ j − σ̂ j)| = |Tr(TH )−Tr(Tn)| ≤
2
√

2κ
√

τ√
n

.

Proof Note that

Tr(Tn) =
1
n

n

∑
i=1

K(xi ,xi), and Tr(TH ) =
Z

X
K(x,x)dρ(x).

Then we can define a sequence(ξi)i=1
n of real-valued random variables byξi = K(xi ,xi)−Tr(TH ).

ClearlyE[ξi ] = 0 and|ξi | ≤ 2κ, i = 1, . . . ,n so that Hoeffding inequality (2) yields with confidence
1−2e−τ ∣∣∣∣∣

1
n

n

∑
i=1

ξi

∣∣∣∣∣= |Tr(TH )−Tr(Tn)| ≤
2
√

2κ
√

τ√
n

.
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From Proposition 6 and Theorem 7 we directly derive the probabilistic bound on the eigen-
projections given by Zwald and Blanchard (2006)—their proof is basedon bounded difference
inequality for real random variables—see also De Vito et al. (2005a). For the sake of simplicity, in
the following result we assume that the number of eigenvalues ofLK is infinite.

Theorem 12 Given an integer N, let m be the sum of the multiplicities of the first N distinct eigen-
values of LK , so that

σ1 ≥ σ2 ≥ . . . ≥ σm > σm+1,

and PN be the orthogonal projection from L2(X,ρ) onto the span of the corresponding eigenfunc-
tions. Let k be the rank ofK , andû1 . . . , ûk the eigenvectors corresponding to the nonzero eigen-
values ofK in a decreasing order. Denote bŷv1 . . . , v̂k ∈H ⊂ L2(X,ρ) the corresponding Nyström
extension given by item2 of Proposition9.

Givenτ > 0, if the number n of examples satisfies

n >
128κ2τ

(σm−σm+1)2 ,

then
m

∑
j=1

‖(I −PN)v̂ j‖2
ρ +

k

∑
j=m+1

‖PNv̂ j‖2
ρ ≤

32κ2τ
(σm−σm+1)2n

, (6)

with probability greater than1−2e−τ.

Proof Let (u j) j≥1 be an orthonormal family of eigenfunctions ofLK with strictly positive eigenval-
ues. Without loss of generality, we can assume thatu1, . . . ,um are the eigenfunctions with eigenval-
uesσ1,σ2, . . . ,σm. Let (v j) j≥1 the corresponding family of eigenfunctions ofTH given by Propo-
sition 8 and complete to an orthonormal basis ofH . Complete also the family ˆv1 . . . , v̂k to an other
orthonormal basis ofH .

Apply Proposition 6 withA = TH andB = Tn by taking into account Theorem 7. With high
probability

‖PTn −PTH ‖2
HS ≤

8κ2τ
(σm−σm+1)2n

≤ am−am+1

2
,

where

PTH =
m

∑
j=1

〈
f ,v j

〉
H

v j PTn =
m

∑
j=1

〈
f , v̂ j

〉
H

v̂ j

and the last bound follows from the condition onn. In particular,σ̂m > σ̂m+1.
Since both(vi) j≥1 and(v̂i) j≥1 are orthonormal bases forH

‖PTn −PTH ‖2
HS = ∑

i, j≥1

|
〈
PTnvi −PTH vi , v̂ j

〉
H
|2

=
m

∑
j=1

∑
i≥m+1

|
〈
vi , v̂ j

〉
H
|2 + ∑

j≥m+1

m

∑
i=1

|
〈
vi , v̂ j

〉
H
|2

≥
m

∑
j=1

∑
i≥m+1
TH vi 6=0

|
〈
vi , v̂ j

〉
H
|2 +

k

∑
j≥m+1

m

∑
i=1

|
〈
vi , v̂ j

〉
H
|2.
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Since the sum oni is with respect to the eigenfunctions ofTH with nonzero eigenvalue, the Mercer
theorem implies that

〈
vi , v̂ j

〉
H

=
〈
ui , v̂ j

〉
ρ. Finally, observe that

m

∑
i=1

|
〈
ui , v̂ j

〉
ρ|

2 = ‖PNv̂ j‖2
ρ

∑
i≥m+1
TH vi 6=0

|
〈
ui , v̂ j

〉
ρ|

2 = ∑
i≥m+1
LKui 6=0

|
〈
ui , v̂ j

〉
ρ|

2 = ‖(I −PN)v̂ j‖2
ρ

where we used that kerTH ⊂ kerTn, so that ˆv j ∈ kerLK
⊥ with probability 1.

The first term on the left side of inequality (6) is the projection of the vector space spanned by the
Nyström extension of the first top eigenvectors of the empirical matrixK onto the orthogonal of the
vector spaceMN spanned by the first top eigenfunctions of the integral operatorLK , the second term
is the projection of the vector space spanned by the Nyström extensions of the other eigenvectors
of K ontoMN. Both differences are inL2(X,ρ) norm. A similar result is given in Zwald and
Blanchard (2006), however, the role of the Nyström extensions is not considered—they study only
the operatorsTH andTn (with our notation). Another result similar to ours is independently given
in Smale and Zhou (2009), where the authors considered a single eigenfunction with multiplicity 1.

4. Asymmetric Graph Laplacian

In this section we will consider the case of the so-called asymmetric normalized graph Laplacian,
which is the identity matrix minus the transition matrix for the natural random walk on agraph.
In such a random walk, the probability of leaving a vertex along a given edge is proportional to
the weight of that edge. As before, we will be interested in a specific classof graphs (matrices)
associated with data.

Let W : X×X → R be a symmetric continuous weight function such that

0 < c≤W(x,s) ≤C x,s∈ X. (7)

Note that we will not requireW to be positive definite, but positive.
A set of data pointsx = (x1, . . . ,xn) ∈ X defines a weighted undirected graph with the weight

matrix W given byW i j = 1
nW(xi ,x j). The (asymmetric) normalized graph LaplacianL : C

n → C
n

is ann×n matrix given by
L = I −D−1W,

where thedegreematrixD is diagonal with

Dii =
1
n

n

∑
j=1

W(xi ,x j) =
n

∑
j=1

W i j ,

which is invertible sinceD ≥ cI by (7).
As in the previous section,X is a subset ofRd endowed with a probability measureρ and

L2(X,ρ) is the space of square integrable complex functions with respect toρ.
Let m(x) =

R

X W(x,s)dρ(s) be thedegree function, bound (7) implies that the operatorL :
L2(X,ρ) → L2(X,ρ)

(L f )(x) = f (x)−
Z

X

W(x,s) f (s)
m(x)

dρ(s),
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is well defined and continuous. The fact thatW is bounded away from zero is essential to control
the behavior of the degree functionm, however it might be possible to replace this condition with
the requirement thatm(x) ≥ c , to consider localized weight functions.

We see that when a setx = (x1, . . . ,xn) ∈ X is sampled i.i.d. according toρ, the matrixL is an
empirical version of the operatorL. We will view L as a perturbation ofL due to finite sampling
and will extend the approach developed in this paper to relate their spectralproperties. Note that
the methods described in the previous section are not directly applicable in thissetting sinceW is
not necessarily positive definite, so there is no RKHS associated with it. Moreover, even ifW is
positive definite,L involves division by a function, and may not be a map from the RKHS to itself.
To overcome this difficulty in our theoretical analysis, we will rely on an auxiliary RKHSH with
reproducing kernelK. Interestingly enough, this space will play no role from the algorithmic point
of view, but only enters the theoretical analysis.

To state the properties ofH we define the following functions

Kx : X → C Kx(t) = K(t,x),

Wx : X → R Wx(t) = W(t,x),

mn : X → R mn =
1
n

n

∑
i=1

Wxi ,

wheremn is the empirical counterpart of the functionmand, in particular,mn(xi) = Dii .
To proceed we need the following assumption, which postulates that the functions

wx,Wx/m,Wx/mn belong toH . However it is important to note that forW sufficiently smooth (as we
expect it to be in most applications) these conditions can be satisfied by choosingH to be a Sobolev
space of sufficiently high degree. This is made precise in the Section 4.2 (see Assumption 2).

Assumption 1 Given a continuous weight function W satisfying(7), we assume there exists a RKHS
H with bounded continuous kernel K such that

Wx,
1
m

Wx,
1

mn
Wx ∈H

‖ 1
m

Wx‖H ≤C,

for all x ∈ X.

Assumption 1 allows to define the following bounded operatorsLH ,AH : H →H

AH =
Z

X
〈·,Kx〉H

1
m

Wxdρ(x),

LH = I −AH

and their empirical counterpartsLn,An : H →H

An =
1
n

n

∑
i=1

〈·,Kxi 〉H
1

mn
Wxi ,

Ln = I −An.

Next result will show thatLH , AH and L have related eigenvalues and eigenfunctions and that
eigenvalues and eigenfunctions (eigenvectors) ofLn, An andL are also closely related. In particular
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we will see in the following that to relate the spectral properties ofL andL it suffices to control
the deviationAH −An. However, before doing this, we make the above statements precise in the
following subsection.

4.1 Extension Operators

In analogy to Section 3.1 we consider the relation between the operators we want to study and their
extensions. We define the restriction operatorRn :H →C

n and the extension operatorEn : C
n →H

as

Rn f = ( f (x1), . . . , f (xn)) f ∈H ,

En(y1, . . . ,yn) =
1
n

n

∑
i=1

yi
1

mn
Wxi (y1, . . . ,yn) ∈ C

n.

Clearly the extension operator is no longer the adjoint ofRn but the connection among the operators
L to Ln andAn can still be clarified by means ofRn andEn. Indeed it is easy to check thatAn = EnRn

andD−1W = RnEn. Similarly the infinite sample restrictions and extension operators can be defined
to relate the operatorsL, AH andLH . The next proposition considers such a connection.

Proposition 13 The following facts hold true.

1. The operator AH is Hilbert-Schmidt, the operatorsL andLH are bounded and have positive
eigenvalues.

2. Givenσ ∈ [0,+∞[, σ ∈ σ(LH ) if and only if1−σ ∈ σ(AH ), with the same eigenfunction.

3. The spectra ofL andLH are the same up to the eigenvalue1. If σ 6= 1 is an eigenvalue and
u,v associated eigenfunctions ofL andLH respectively, then

u(x) = v(x) for almost all x∈ X,

v(x) =
1

1−σ

Z

X

W(x, t)
m(x)

u(t) dρ(t) for all x ∈ X.

4. Finally the following decompositions hold

L = ∑
j≥1

σ j 6=1

σ jPj +P0, (8)

LH = I − ∑
j≥1

σ j 6=1

(1−σ j)Q j +D, (9)

where the projections Qj ,Pj are the spectral projections ofL and LH associated with the
eigenvalueσ j , P0 is the spectral projection ofL associated with the eigenvalue1, and D is a
quasi-nilpotent operator such thatkerD = ker(I −LH ) and QjD = DQ j = 0 for all j ≥ 1.

Furthermore, all the eigenfunctions can be chosen as real-valued.
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The proof of the above result is long and quite technical and can be found in Appendix A. Note that,
with respect to Proposition 9, neither the normalization nor the orthogonality is preserved by the
extension/restriction operations, so that we are free to normalizev with the factor 1/(1−σ), instead
of 1/

√
1−σ as in Proposition 8. One can easily show that, ifu1, . . . ,um is a linearly independent

family of eigenfunctions ofL with eigenvaluesσ1, . . . ,σm 6= 1, then the extensionv1, . . . ,vm is a
linearly independent family of eigenfunctions ofLH with eigenvaluesσ1, . . . ,σm 6= 1. Finally,
we stress that in item 4 both series converge in the strong operator topology, however, though
∑ j≥1Pi = I −P0, it is not true that∑ j≥1Qi converges toI −Q0, whereQ0 is the spectral projection
of LH associated with the eigenvalue 1. This is the reason why we need to write the decomposition
of LH as in (9) instead of (8). An analogous result allows us to relateL to Ln andAn.

Proposition 14 The following facts hold true.

1. The operator An is Hilbert-Schmidt, the matrixL and the operatorLn have positive eigenval-
ues.

2. Givenσ ∈ [0,+∞[, σ ∈ σ(Ln) if and only if1−σ ∈ σ(An), with the same eigenfunction.

3. The spectra ofL andLn are the same up to the eigenvalue1, moreover ifσ̂ 6= 1 is an eigen-
value and thêu, v̂ eigenvector and eigenfunction ofL andLn, then

û = (v̂(x1), . . . , v̂(x1)),

v̂(x) =
1

1− σ̂
1
n

n

∑
i=1

W(x,xi)

mn(x)
ûi

whereûi is the i−th component of the eigenvectorû.

4. Finally the following decompositions hold

L = ∑
j≥1

σ̂ j 6=1

σ̂ j P̂j + P̂0,

Ln = ∑
j≥1

σ̂ j 6=1

σ̂ jQ̂ j + Q̂0 + D̂,

where the projections Qj ,Pj are the spectral projections ofL and Ln associated with the
eigenvalueσ j , P̂0 andQ̂0 are the spectral projections ofL andLn associated with the eigen-
value1, andD̂ is a quasi-nilpotent operator such thatkerD̂ = ker(I −Ln) andQ̂ jD̂ = D̂Q̂ j =
0 for all j with σ̂ j 6= 1.

The last decomposition is parallel to the Jordan canonical form for (non-symmetric) matrices. No-
tice that, since the sum is finite,∑ j≥1

σ̂ j 6=1
Q̂ j + Q̂0 = I .

4.2 Graph Laplacian Convergence for Smooth Weight Functions

If the weight functionW is sufficiently differentiable, we can choose the RKHSH to be a suitable
Sobolev space. For the sake of simplicity, we assume thatX is a bounded open subset ofR

d with a
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niceboundary.5 Givens∈ N, the Sobolev spaceH s =H s(X) is

H s = { f ∈ L2(X,dx) | Dα f ∈ L2(X,dx) ∀|α| = s},

whereDα f is the (weak) derivative off with respect to the multi-indexα = (α1, . . . ,αd) ∈ N
d,

|α| = α1 + · · ·+ αd andL2(X,dx) is the space of square integrable complex functions with respect
to the Lebesgue measure (Burenkov, 1998). The spaceH s is a separable Hilbert space with respect
to the scalar product

〈 f ,g〉H s = 〈 f ,g〉L2(X,dx) + ∑
|α|=s

〈Dα f ,Dαg〉L2(X,dx) .

LetCs
b(X) be the set of continuous bounded functions such that all the (standard)derivatives of order

s exists and are continuous bounded functions. The spaceCs
b(X) is a Banach space with respect to

the norm
‖ f‖Cs

b
= sup

x∈X
| f (x)|+ ∑

|α|=s

sup
x∈X

|(Dα f )(x)|.

SinceX is bounded, it is clear thatCs
b(X)⊂H s and‖ f‖H s ≤ d‖ f‖Cs

b
, whered is a suitable constant

depending only ons. A sort of converse also holds, which will be crucial in our approach,see
Corollary 21 of Burenkov (1998). Letl ,m∈ N such thatl −m> d

2 , then

H l ⊂Cm
b (X) ‖ f‖Cm

b
≤ d′‖ f‖H l (10)

whered′ is a constant depending only onl andm.
From Eq (10) withl = s andm= 0, we see that the Sobolev spaceH s, wheres= ⌊d/2⌋+1, is

a RKHS with a continuous6 real valued bounded kernelKs.
We are ready to state our assumption on the weight function, which implies Assumption 1.

Assumption 2 We assume that W: X×X → R is a positive, symmetric function such that

W(x, t) ≥ c > 0 ∀x, t ∈ X, (11)

W ∈Cd+1
b (X×X). (12)

As we will see, condition (12) quantifies the regularity ofW we need to use Sobolev spaces as RKHS
and, as usual, it critically depends on the dimension of the input space, seealso Remark 19 below.
By inspecting our proofs, (12) can be replaced by the more technical conditionW ∈H d+1(X×X).

As a consequence of Assumption 2, we are able to control the deviation ofLn from LH .

Theorem 15 Under the conditions of Assumption 2, with confidence1−2e−τ we have

‖Ln−LH ‖HS = ‖AH −An‖HS≤C

√
τ√
n
, (13)

where‖·‖HS is the Hilbert-Schimdt norm of an operator in the Sobolev spaceH s with s= ⌊d/2⌋+1,
and C is a suitable constant.

5. The conditions, like quasi-resolved boundary open set, are very technical and we refer to Burenkov (1998) for the
precise assumptions, see Section 4.3 of the cited reference.

6. The kernelKs is continuous onX×X since the embedding ofH s into Cb(X) is compact, see Schwartz (1964).
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To prove this result we need some preliminary lemmas. In the followingC will be a constant that
could change from one statement to the other. The first result shows thatAssumption 2 implies
Assumption 1 withH =H s and that the multiplicative operators defined by the degree function, or
its empirical estimate, are bounded.

Lemma 16 There exists a suitable constant C> 0 such that

1. for all x∈ X, Wx,
1
mWx,

1
mn

Wx ∈H d+1 ⊂H s and‖ 1
mWx‖H s ≤C;

2. the multiplicative operators M,Mn : H s →H s defined by

M f = m f, Mn f = mn f , f ∈H s

are bounded invertible operators satisfying

‖M‖
H s,H s,‖M−1‖

H s,H s,‖Mn‖H s,H s,‖M−1
n ‖

H s,H s ≤C,

‖M−Mn‖H s,H s ≤C‖m−mn‖H d+1,

where‖·‖
H s,H s is the operator norm of an operator in the Sobolev spaceH s.

Proof Let C1 = ‖W‖Cd+1
b (X×X). Given x ∈ X, clearlyWx ∈ Cd+1

b (X) and, by standard results of

differential calculus, bothm andmn ∈Cd+1
b (X) with

‖Wx‖Cd+1
b (X),‖m‖Cd+1

b (X),‖mn‖Cd+1
b (X) ≤C1.

Leibniz rule for the quotient with bound (11) gives that1
m and 1

mn
∈Cd+1

b (X) with

‖ 1
m
‖Cd+1

b (X),‖
1

mn
‖Cd+1

b (X) ≤C2,

whereC2 is independent both onn and on the sample(x1, . . . ,xn). Claim in item 1 is a consequence
of the fact that pointwise multiplication is a continuous bilinear map onCd+1

b (X), andCd+1
b (X) ⊂

H d+1 ⊂H s with
‖ f‖H s ≤C3‖ f‖H d+1 ≤C4‖ f‖Cd+1

b (X).

We claim that ifg∈Cd+1
b (X) and f ∈H s, theng f ∈H s and

‖g f‖H s ≤ ‖g‖H d+1‖ f‖H s.

Indeed, Lemma 15 of Section 4 of Burenkov (1998) withp = p2 = 2, p1 = ∞, l = s andn = d
ensures that

‖g f‖H s ≤ ‖g‖Cs
b(X)‖ f‖H s.

Eq. (10) withm= sandl = d+1 > d/2+s= d/2+[d/2]+1 provides us with the claimed bound.
The content of item 2. is a consequence of the above result withg = m,mn,

1
m, 1

mn
, andm−mn,

respectively, satisfying‖g‖H d+1 ≤C4max{C1,C2} = C5.
The constantC will be the maximum among the constantsCi .

Next lemma shows that the integral operator of kernelW and its empirical counterpart are Hilbert-
Schmidt operators and it bounds their difference.
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Lemma 17 The operators LW,H ,LW,n : H s →H s defined by

LW,H =
Z

X
〈·,Ks

x〉H sWxdρ(x),

LW,n =
1
n

n

∑
i=1

〈
·,Ks

xi

〉
H sWxi ,

are Hilbert-Schmidt. Furthermore, with confidence1−2e−τ

‖LW,H −LW,n‖HS≤C

√
τ√
n
.

for a suitable constant C.

Proof Note that‖
〈
·,Ks

xi

〉
H sWxi‖HS = ‖Ks

xi
‖H s‖Wxi‖H s ≤ C1 for a suitable constantC1, which is

finite by item 1 of Lemma 16 and the fact thatKs is bounded. HenceLW,n,LW,H are Hilbert Schmidt
operators onH s. The random variables(ξi)

n
i=1 defined byξi =

〈
·,Ks

xi

〉
H sWxi −LW,H , taking value

in the Hilbert space of Hilbert-Schmidt operators, are zero mean and bounded. Applying (3) we
have with confidence 1−2e−τ

‖LW,H −LW,n‖HS≤C

√
τ√
n
, (14)

for a suitable constantC.

We then consider multiplication operators defined by the degree functions.

Lemma 18 With confidence1−2e−τ

‖M−Mn‖H s,H s ≤C

√
τ√
n
.

for a suitable constant C.

Proof Item 2 of Lemma 16 ensures thatM and Mn are bounded operators onH s with
‖M−Mn‖H s,H s ≤C1‖m−mn‖H d+1.

The random variables(ξi)
n
i=1, defined byξi = Wxi −m∈H d+1 are zero mean and bounded. Apply-

ing (3) we have with high probability

‖m−mn‖H d+1 ≤ C2
√

τ√
n

,

so that the claim is proved with a suitable choice forC.

Remark 19 In the above lemma we need to control m−mn in a suitable Hilbert space in order
to use Hoeffding inequality(3). Lemma15 of Burenkov (1998) ensures that‖M−Mn‖H s,H s is
bounded by‖m−mn‖Cs

b(X). In order to control it with a Sobolev norm by means of(10), we need

to require that m−mn ∈ H l with l > s+ d/2. Furthermore, the requirement thatH s is a RKHS
with continuous bounded kernel implies that s> d/2 so that l> d. Hence a natural requirement on
the weight function is that Wx ∈ H l (X), which is closely related to Assumption 2 with the minimal
choice l= d+1.
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Finally, we can combine the above two lemmas to get the proof of Theorem 15.
Proof [Proof of Theorem 15] By Lemma 16, bothM andMn are invertible operators and

AH = M−1LW,H , An = M−1
n LW,n,

so that we can consider the following decomposition

An−AH = M−1
n LW,n−M−1LW,H (15)

= (M−1
n −M−1)LW,H +M−1

n (LW,n−LW,H )

= M−1
n (M−Mn)M

−1LW,H +

+ M−1
n (LW,n−LW,H ).

By taking the Hilbert-Schmidt norm of the above expression and using (1) with the bounds provided
by Lemma 16, we get

‖An−AH ‖HS≤C2‖M−Mn‖H s,H s‖LW,H ‖HS+C‖LW,n−LW,H ‖HS.

The concentration inequalities (17) and (18) give (13), possibly redefining the constantC.

In the next section we discuss the implications of the above result in terms of concentration of
eigenvalues and spectral projections.

4.3 Bounds on Eigenvalues and Spectral Projections

Since the operators are no longer self-adjoint the perturbation results in Section 3.2 cannot be used.
See Appendix B for a short review about spectral theory for compact(not necessarily self-adjoint)
operators. The following theorem is an adaptation of results in Anselone (1971), compare with
Theorem 4.21.

Theorem 20 Let A be a compact operator. Given a finite setΛ of non-zero eigenvalues of A, letΓ
be any simple rectifiable closed curve (having positive direction) withΛ inside andσ(A)\Λ outside.
Let P be the spectral projection associated withΛ, that is,

P =
1

2πi

Z

Γ
(λ−A)−1 dλ,

and define
δ−1 = sup

λ∈Γ
‖(λ−A)−1‖.

Let B be another compact operator such that

‖B−A‖ ≤ δ2

δ+ ℓ(Γ)/2π
< δ,

whereℓ(Γ) is the length ofΓ, then the following facts hold true.

1. The curveΓ is a subset of the resolvent set of B enclosing a finite setΛ̂ of non-zero eigenvalues
of B;
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2. Denoting bŷP the spectral projection of B associated withΛ̂, then

‖P̂−P‖ ≤ ℓ(Γ)

2πδ
‖B−A‖

δ−‖B−A‖ ;

3. The dimension of the range of P is equal to the dimension of the range ofP̂.

Moreover, if B−A is a Hilbert-Schmidt operator, then

‖P̂−P‖HS≤
ℓ(Γ)

2πδ
‖B−A‖HS

δ−‖B−A‖ .

We postpone the proof of the above result to Appendix A.
We note that, ifA is self-adjoint, then the spectral theorem ensures that

δ = min
λ∈Γ,σ∈Λ

|λ−σ|.

The above theorem together with the results obtained in the previous section allows to derive several
results.

Proposition 21 If Assumption 2 holds, letσ be an eigenvalue ofL, σ 6= 1, with multiplicity m. For
anyε > 0 andτ > 0, there exists an integer n0 and a positive constant C such that, if the number of
examples is greater than n0, with probability greater than1−2e−τ,

1. there areσ̂1, . . . , σ̂m (possibly repeated) eigenvalues of the matrixL satisfying

|σ̂i −σ| ≤ ε for all i = 1, . . . ,m.

2. for any normalized eigenvectorû ∈ C
n of L with eigenvaluêσi for some i= 1, . . . ,m, there

exists an eigenfunction u∈H s ⊂ L2(X,ρ) of L with eigenvalueσ, satisfying

‖v̂−u‖H s ≤C

√
τ√
n
,

wherev̂ is the Nystr̈om extension of the vectorû given in item3 of Proposition14.

If LH is self-adjoint, then n0 ≥ 4C2τ
ε2 provided thatε < minσ′∈σ(LH ),σ′ 6=σ |σ′−σ|.

Proof Theorem 15 gives that, with probability greater than 1−2e−τ,

‖An−AH ‖ ≤ ‖An−AH ‖HS≤
C1

√
τ√

n
≤ δ2

δ+ ε
. (16)

for all n ≥ n0, where C1 is a suitable constant,n0 ∈ N is such that C1
√

τ√
n0

≤ δ2

δ+ε and

δ−1 = supλ∈Γ‖(λ−AH )−1‖. Under these conditions, we apply Theorem 20 withA = AH , B = An

andΓ = {λ ∈ C | |λ− (1−σ)| = ε}, so thatℓ(Γ) = 2πε. SinceAH is compact and assumingε small
enough, we have thatΛ = {1−σ}.
Item 1 of Theorem 20 with Proposition 14 ensures thatΛ̂ = {1− σ̂1, . . . ,1− σ̂m}, so that|σ̂i −σ|< ε
for all i = 1, . . . ,m. Let nowû∈C

n be a normalized vector such thatL û= σ̂i û for somei = 1, . . . ,m.
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Proposition 14 ensures that ˆv is an eigenfunction ofAn with eigenvalue 1− σ̂, so thatQ̂v̂ = v̂ where
Q̂ is the spectral projection ofAn associated witĥΛ. Let Q be the spectral projection ofAH associ-
ated with 1−σ and defineu= Qv̂∈H s. By definition ofQ, AH u= (1−σ)u. SinceH s⊂ L2(X,ρ),
Proposition 13 ensures thatLu = σu. Item 2 of Theorem 20 gives that

‖v̂−u‖H s = ‖Q̂v̂−Qv̂‖H s ≤ ‖Q̂−Q‖
H s,H s‖v̂‖H s ≤ ‖v̂‖H s

ε
δ

‖An−AH ‖HS

δ−‖An−AH ‖HS

≤ C2

1− (σ+ ε)
C1

δ+ ε
δ2

√
τ√
n
,

where we use (16), the fact that‖An−AH ‖ ≤ δ2

δ+ε and

‖v̂‖H s ≤ 1
1− σ̂

sup
x∈X

‖ 1
mn

Wx‖H s =
C2

1− σ̂
≤ C2

1− (σ+ ε)

with C2 being the constant in item 1 of Lemma 16.
If AH is self-adjoint, the spectral theorem ensures thatδ = ε, so thatn0 ≥ 4C2τ

ε2 .

Next we consider convergence of the spectral projections ofAH andAn associated with the first
N-eigenvalues. For sake of simplicity, we assume that the cardinality ofσ(AH ) is infinite.

Proposition 22 Consider the first N eigenvalues of AH . There exist an integer n0 and a constant
C > 0, depending on N andσ(AH ), such that, with confidence1−2e−τ and for any n≥ n0,

‖PN − P̂D‖HS≤
C
√

τ√
n

,

where PN, P̂D are the eigenprojections corresponding to the first N eigenvalues of AH and D eigen-
values of An, and D is such that the sum of the multiplicity of the first D eigenvalues of An is equal
to the sum of the multiplicity of the first N eigenvalues of AH .

Proof The proof is close to the one of the previous proposition. We apply Theorem 20 withA= AH ,
B = An and the curveΓ equal to the boundary of the rectangle

{λ ∈ C | αN +αN+1

2
≤ ℜe(λ) ≤ ‖A‖+2, |ℑm(λ)| ≤ 1},

whereαN is theN-largest eigenvalue ofAH andαN+1 theN+1-largest eigenvalue ofAH . Clearly
Γ encloses the firstN largest eigenvalues ofAH , but no other points ofσ(A). Define δ−1 =
supλ∈Γ‖(λ−AH )−1‖ andn0 ∈ N such that

C1
√

τ√
n0

≤ δ2

δ+ ℓ(Γ)/2π
and

C1
√

τ√
n0

< 1,

whereC1 is the constant in Theorem 15. As in the above corollary, with probability greater than
1−2e−τ, for all n≥ n0

‖An−AH ‖ ≤ δ2

δ+ ℓ(Γ)/2π
and ‖An−AH ‖ < 1.

927



ROSASCO, BELKIN AND DE V ITO

The last inequality ensures that the largest eigenvalues ofAn is smaller than 1+ ‖AH ‖, so that by
Theorem 20, the curveΓ encloses the firstD-eigenvalues ofAn, whereD is equal to the sum of the
multiplicity of the firstN eigenvalues ofAH . The proof is finished lettingC = δ+ℓ(Γ)/2π

δ2 C1.
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Appendix A. Some Proofs

We start giving the proof of Proposition 13.
Proof [ of Proposition 13]

We first need a preliminary fact. The functionm is bounded from above and below by a positive
constant by (7), so that the measureρW = mρ, having densitym w.r.t. ρ, is equivalent7 to ρ. This
implies that the spacesL2(X,ρ) andL2(X,ρW) are the same vector space and the corresponding
norm are equivalent. In this proof, we regardL as an operator fromL2(X,ρW) into L2(X,ρW),
observing that its eigenvalues and eigenfunctions are the same as the eigenvalues and eigenfunctions
of L, viewed as an operator fromL2(X,ρ) into L2(X,ρ)—however, functions that are orthogonal in
L2(X,ρW) in general are not orthogonal inL2(X,ρ).

Note that the operatorIK : H → L2(X,ρW) defined byIK f (x) = 〈 f ,Kx〉 is linear and Hilbert-
Schmidt since

‖IK‖2
HS = ∑

j≥1

‖IKej‖2
ρW

=
Z

X
∑
j≥1

〈
Kx,ej

〉2
dρW(x)

=
Z

X
K(x,x)m(x) dρ(x) ≤ κ‖m‖∞,

whereκ = supx∈X K(x,x). The operatorI∗W : L2(X,ρW) →H defined by

I∗W f =
Z

X

1
m

Wx f (x)dρ(x)

is linear and bounded since, by Assumption 1

‖
Z

X

1
m

Wx f (x)dρ(x)‖H ≤
Z

X
‖ 1

m
Wx‖H | f (x)|dρ(x) ≤C‖ f‖ρ ≤

C
c
‖ f‖ρW .

A direct computation shows that

I∗WIK = AH = I −LH , σ(AH ) = 1−σ(LH )

and
IK I∗W = I −L, σ(IK I∗W) = 1−σ(L).

7. Two measures are equivalent if they have the same null sets.
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Both I∗WIK andIK I∗W are Hilbert-Schmidt operators since they are composition of a bounded operator
and Hilbert-Schmidt operator. Moreover, letσ 6= 1 andv ∈ H with v 6= 0 such thatLH v = σv.
Lettingu = IKv, then

Lu = (I − IK I∗W)IKv = IKLH v = σu and I∗Wu = I∗WIKv = (1−σ)v 6= 0,

so thatu 6= 0 andu is an eigenfunction ofL with eigenvalueσ. Similarly we can prove that ifσ 6= 1
andu ∈ L2(X,ρ),u 6= 0 is such thatLu = σu, thenv = 1

1−σ I∗Wu is different from zero and is an
eigenfunction ofLH with eigenvalueσ.

We now show thatL is a positive operator onL2(X,ρW), so that bothL andLH have positive
eigenvalues. Indeed, letf ∈ L2(X,ρW),

〈L f , f 〉ρW
=

Z

X
| f (x)|2m(x)dρ(x)−

Z

X

(
Z

X

W(x,s)
m(x)

f (s)dρ(s)

)
f (x)m(x)dρ(x)

=
1
2

Z

X

Z

X

[
| f (x)|2W(x,s)−2W(x,s) f (x) f (s)+ | f (s)|2W(x,s)

]
dρ(s)dρ(x)

=
1
2

Z

X

Z

X
W(x,s)| f (x)− f (s)|2dρ(s)dρ(x) ≥ 0,

where we used thatW(x,s) = W(s,x) > 0 andm(x) =
R

X W(x,s)dρ(s). SinceW is real valued, it
follows that we can always choose the eigenfunctions ofL as real valued, and, as a consequence,
the eigenfunctions ofLH .

Finally we prove that bothL andLH admit a decomposition in terms of spectral projections—
we stress that the spectral projection ofL is orthogonal inL2(X,ρW), but not inL2(X,ρ).
SinceL is a positive operator onL2(X,ρW), it is self-adjoint, as well asIK I∗W, hence the spectral
theorem gives

IK I∗W = ∑
j≥1

(1−σ j)Pj

where for all j, Pj : L2(X,ρW) → L2(X,ρW) is the spectral projection ofIK I∗W associated to the
eigenvalue 1−σ j 6= 0. Moreover note thatPj is also the spectral projection ofL associated to the
eigenvalueσ j 6= 1. By definitionPj satisfies:

P2
j = Pj ,

P∗
j = Pj the adjoint is inL2(X,ρW),

PjPi = 0, i 6= j,

PjPker(IK I∗W) = 0,

∑
j≥1

Pj = I −Pker(IK I∗W) = I −P0

wherePker(IK I∗W) is the projection on the kernel ofIK I∗W, that is, the projectionP0. Moreover the sum
in the last equation converges in the strong operator topology. In particular we have

IK I∗WPj = Pj IK I∗W = (1−σ j)Pj ,

so that
L = I − IK I∗W = ∑

j≥1

σ jPj +P0.

929



ROSASCO, BELKIN AND DE V ITO

Let Q j : H →H be defined by

Q j =
1

1−σ j
I∗WPj IK .

Then from the properties of the projectionsPj we have,

Q2
j =

1
(1−σ j)2 I∗WPj IK I∗WPj IK =

1
1−σ j

I∗WPjPj IK = Q j ,

Q jQi =
1

(1−σ j)(1−σi)
I∗WPj IK I∗WPi IK =

1
1−σi

I∗WPjPi IK = 0, i 6= j.

Moreover,

∑
j≥1

(1−σ j)Q j = ∑
j≥1

(1−σ j)
1

1−σ j
I∗WPj IK = I∗W(∑

j≥1

Pj)IK = I∗WIK − I∗WPker(IK I∗W)IK

so that
IK I∗W = ∑

j≥1

(1−σ j)Q j + I∗WPker(IK I∗W)IK ,

where again all the sums are to be intended as converging in the strong operator topology. If we let
D = I∗WPker(IK I∗W)IK then

Q jD =
1

1−σ j
I∗WPj IK I∗WPker(IK I∗W) = I∗WPjPker(IK I∗W) = 0,

and, similarlyDQ j = 0. By constructionσ(D) = 0, that is,D is a quasi-nilpotent operator. Equa-
tion (9) is now clear as well as the fact that kerD = ker(I −LH ).

Proof [Proof of Proposition 14] The proof is the same as the above proposition by replacingρ with
the empirical measure1n ∑n

i=1 δxi .

Next we prove Theorem 20.
Proof [Proof of Theorem 20] We recall the following basic result. LetS and T two bounded
operators acting onH and definedC = I −ST. If ‖C‖ < 1, thenT has a bounded inverse and

T−1−S= (I −C)−1CS

where we note that‖I −C‖−1 ≤ 1
1−‖C‖ since‖C‖ < 1, see Proposition 1.2 of Anselone (1971).

Let A andB two compact operators. LetΓ be a compact subset of the resolvent set ofA and
define

δ−1 = sup
λ∈Γ

‖(λ−A)−1‖,

which is finite sinceΓ is compact and the resolvent operator(λ−A)−1 is norm continuous (see, for
example, Anselone, 1971). Assume that

‖B−A‖ < δ,
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then for anyλ ∈ Γ

‖(λ−A)−1(B−A)‖ ≤ ‖(λ−A)−1‖‖B−A‖ ≤ δ−1‖B−A‖ < 1.

Hence we can apply the above result withS= (λ−A)−1, T = (λ−B), since

C = I − (λ−A)−1(λ−B) = (λ−A)−1(B−A).

It follows that(λ−B) has a bounded inverse and

(λ−B)−1− (λ−A)−1 = (I − (λ−A)−1(B−A))−1(λ−A)−1(B−A)(λ−A)−1.

In particular,Γ is a subset of the resolvent set ofB and, ifB−A is a Hilbert-Schmidt operator, so is
(λ−B)−1− (λ−A)−1.

Let Λ be a finite set of non-zero eigenvalues. LetΓ be any simple closed curve withΛ inside
andσ(A)\Λ outside. LetP be the spectral projection associated withΛ, then

P =
1

2πi

Z

Γ
(λ−A)−1 dλ.

Applying the above result, it follows thatΓ is a subset of the resolvent set ofB and we let̂Λ be the
subset ofσ(B) insideΓ andP̂ the corresponding spectral projection, then

P̂−P =
1

2πi

Z

Γ
(λ−B)−1− (λ−A)−1 dλ

=
1

2πi

Z

Γ
(I − (λ−A)−1(B−A))−1(λ−A)−1(B−A)(λ−A)−1 dλ.

It follows that

‖P̂−P‖ ≤ ℓ(Γ)

2π
δ−2‖B−A‖

1−δ−1‖B−A‖ =
ℓ(Γ)

2πδ
‖B−A‖

δ−‖B−A‖ .

In particular if ‖B−A‖ ≤ δ2

δ+ℓ(Γ)/2π < δ, ‖P̂−P‖ ≤ 1 so that the dimension of the range ofP is

equal to the dimension of the range ofP̂. It follows thatΛ̂ is not empty.
If B−A is a Hilbert-Schmidt operator, we can replace the operator norm with the Hilbert-Schmidt
norm, and the corresponding inequality is a consequence of the fact thatthe Hilbert-Schmidt oper-
ator are an ideal.

Appendix B. Spectral Theorem for Non-self-adjoint Compact Operators

Let A : H → H be a compact operator. The spectrumσ(A) of A is defined as the set of complex
number such that the operator(A−λI) does not admit a bounded inverse, whereas the complement
of σ(A) is called the resolvent set and denoted byρ(A). For anyλ ∈ ρ(A), R(λ) = (A−λI)−1 is the
resolvent operator, which is by definition a bounded operator. We recall the main results about the
spectrum of a compact operator (Kato, 1966)
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Proposition 23 The spectrum of a compact operator A is a countable compact subset of C with no
accumulation point different from zero, that is,

σ(A)\{0} = {λi | i ≥ 1, λi 6= λ j if i 6= j}

with lim i→∞ λi = 0 if the cardinality ofσ(A) is infinite. For any i≥ 1, λi is an eigenvalue of A, that
is, there exists a nonzero vector u∈ H such that Au= λiu. Let Γi be a rectifiable closed simple
curve (with positive direction) enclosingλi , but no other points ofσ(A), then the operator defined
by

Pλi
=

1
2πi

Z

Γi

(λI −A)−1dλ

satisfies
Pλi

Pλ j
= δi j Pλi

and (A−λi)Pλi
= Dλi

for all i , j ≥ 1,

where Dλi
is a nilpotent operator such that Pλi

Dλi
= Dλi

Pλi
= Dλi

. In particular the dimension of
the range of Pλi

is always finite.

We notice thatPλi
is a projection onto a finite dimensional spaceHλi

, which is left invariant by
A. A nonzero vectoru belongs toHλi

if and only if there exists an integerm≤ dimHλi
such that

(A−λ)mu = 0, that is,u is a generalized eigenvector ofA. However, ifA is symmetric, for alli ≥ 1,
λi ∈ R, Pλi

is an orthogonal projection andDλi
= 0 and it holds that

A = ∑
i≥1

λiPλi

where the series converges in operator norm. Moreover, ifH is infinite dimensional,λ = 0 is always
in σ(A), but it can be or not an eigenvalue ofA.

If A be a compact operator withσ(A) ⊂ [0,‖A‖], we introduce the following notation. Denoted
by pA the cardinality ofσ(A)\{0} and given an integer 1≤N ≤ pA, let λ1 > λ2 > .. . ,λN > 0 be the
first N nonzero eigenvalues ofA, sorted in a decreasing way. We denote byPA

N the spectral projection
onto all the generalized eigenvectors corresponding to the eigenvaluesλ1, . . . ,λN. The range ofPA

N
is a finite-dimensional vector space, whose dimension is the sum of the algebraic multiplicity of the
first N eigenvalues. Moreover

PA
N =

N

∑
j=1

Pλ j
=

1
2πi

Z

Γ
(λI −A)−1dλ

whereΓ is a rectifiable closed simple curve (with positive direction) enclosingλ1, . . . ,λN, but no
other points ofσ(A).
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