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Abstract Two geometrical structures have been extensively studied for a manifold
of probability distributions. One is based on the Fisher information metric, which
is invariant under reversible transformations of random variables, while the other
is based on the Wasserstein distance of optimal transportation, which reflects the
structure of the distance between underlying random variables. Here, we propose a
new information-geometrical theory that provides a unified framework connecting the
Wasserstein distance andKullback–Leibler (KL) divergence.We primarily considered
a discrete case consisting of n elements and studied the geometry of the probability
simplex Sn−1, which is the set of all probability distributions over n elements. The
Wasserstein distance was introduced in Sn−1 by the optimal transportation of com-
modities from distribution p to distribution q, where p, q ∈ Sn−1. We relaxed the
optimal transportation by using entropy, which was introduced by Cuturi. The optimal
solution was called the entropy-relaxed stochastic transportation plan. The entropy-
relaxed optimal cost C( p, q) was computationally much less demanding than the
originalWasserstein distance but does not define a distance because it is not minimized
at p = q. To define a proper divergence while retaining the computational advantage,
we first introduced a divergence function in the manifold Sn−1 × Sn−1 composed
of all optimal transportation plans. We fully explored the information geometry of
the manifold of the optimal transportation plans and subsequently constructed a new
one-parameter family of divergences in Sn−1 that are related to both the Wasserstein
distance and the KL-divergence.
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1 Introduction

Information geometry [1] studies the properties of a manifold of probability distri-
butions and is useful for various applications in statistics, machine learning, signal
processing, and optimization. Two geometrical structures have been introduced from
two distinct backgrounds.One is based on the invariance principle, where the geometry
is invariant under reversible transformations of random variables. The Fisher informa-
tion matrix, for example, is a unique invariant Riemannian metric from the invariance
principle [1–3]. Moreover, two dually coupled affine connections are used as invariant
connections [1,4], which are useful in various applications.

The other geometrical structure was introduced through the transportation problem,
where one distribution of commodities is transported to another distribution. The
minimum transportation cost defines a distance between the two distributions, which
is called the Wasserstein, Kantorovich or earth-mover distance [5,6]. This structure
provides a tool to study the geometry of distributions by taking the metric of the
supporting manifold into account.

Let χ = {1, . . . , n} be the support of a probability measure p. The invariant geom-
etry provides a structure that is invariant under permutations of elements of χ and
results in an efficient estimator in statistical estimation. On the other hand, when we
consider a picture over n2 pixels χ = {(i j); i, j = 1, . . . , n} and regard it as a distri-
bution over χ , the pixels have a proper distance structure in χ . Spatially close pixels
tend to take similar values. A permutation of χ destroys such a neighboring structure,
suggesting that the invariance might not play a useful role. The Wasserstein distance
takes such a structure into account and is therefore useful for problems with metric
structure in support χ (see, e.g., [7–9]).

An interesting question is how these two geometrical structures are related. While
both are important in their own respects, it would be intriguing to construct a unified
framework that connects the two.With this purpose in mind, we examined the discrete
case over n elements, such that a probability distribution is given by a probability vector
p = (p, . . . , pn) in the probability simplex

Sn−1 =
{
p
∣∣∣ pi > 0,

∑
pi = 1

}
. (1)

It is easy to naively extend our theory to distributions over Rn , ignoring mathematical
difficulties of geometry of function spaces. See Ay et al. [4] for details. We consider
Gaussian distributions over the one-dimensional real line X as an example of the
continuous case.

Cuturi modified the transportation problem such that the cost is minimized under an
entropy constraint [7]. This is called the entropy-relaxed optimal transportation prob-
lem and is computationally less demanding than the original transportation problem.
In addition to the advantage in computational cost, Cuturi showed that the quasi-
distance defined by the entropy-relaxed optimal solution yields superior results in
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many applications compared to the original Wasserstein distance and information-
geometric divergences such as the KL divergence.

We followed the entropy-relaxed framework that Cuturi et al. proposed [7–9] and
introduced a Lagrangian function, which is a linear combination of the transportation
cost and entropy. Given a distribution p of commodity on the senders side and q on
the receivers side, the constrained optimal transportation plan is the minimizer of the
Lagrangian function. The minimum value C( p, q) is a function of p and q, which we
called the Cuturi function. However, this does not define the distance between p and
q because it is non-zero at p = q and is not minimized when p = q.

To define a proper distance-like function in Sn−1, we introduced a divergence
between p and q derived from the optimal transportation plan. A divergence is a
general metric concept that includes the square of a distance but is more flexible,
allowing non-symmetricity between p and q. A manifold equipped with a divergence
yields a Riemannian metric with a pair of dual affine connections. Dually coupled
geodesics are defined, which possess remarkable properties, generalizing the Rieman-
nian geometry [1].

We studied the geometry of the entropy-relaxed optimal transportation plans within
the framework of information geometry. They form an exponential family of proba-
bility distributions defined in the product manifold Sn−1 × Sn−1. Therefore, a dually
flat structure was introduced. The m-flat coordinates are the expectation parameters
( p, q) and their dual, e-flat coordinates (canonical parameters) are (α,β), which are
assigned from the minimax duality of nonlinear optimization problems. We can natu-
rally defined a canonical divergence, that is the KL divergence K L[( p, q) : ( p′, q ′)]
between the two optimal transportation plans for ( p, q) and ( p′, q ′), sending p to q
and p′ to q ′, respectively.

To define a divergence from p to q in Sn−1, we used a reference distribution r .
Given r , we defined a divergence between p and q by K L[(r, p) : (r, q)]. There are
a number of potential choices for r: one is to use r = p and another is to use the
arithmetic or geometric mean of p and q. These options yield one-parameter families
of divergences connecting the Wasserstein distance and KL-divergence. Our work
uncovers a novel direction for studying the geometry of a manifold of probability
distributions by integrating the Wasserstein distance and KL divergence.

2 Entropy-constrained transportation problem

Let us consider n terminals χ = (X1, . . . , Xn), some of which, say X1, . . . , Xs , are
sending terminals at which p1, . . . , ps (pi > 0) amounts of commodities are stocked.
At the other terminals, Xs+1, . . . , Xn , no commodities are stocked (pi = 0). These are
transported within χ such that q1, . . . , qr amounts are newly stored at the receiving
terminals X j1, . . . , X jr . There may be overlap in the sending and receiving terminals,
χS = {X1, . . . , Xs} and χR = {

X j1 , . . . , X jr

}
, including the case that χR = χS = χ

(Fig. 1). We normalized the total amount of commodities to be equal to 1 so that
p = (p1, . . . , ps) and q = (q1, . . . , qr ) can be regarded as probability distributions
in the probability simplex Ss−1 and Sr−1, respectively,
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Fig. 1 Transportation from the sending terminals χS to the receiving terminals χR

∑
pi = 1,

∑
qi = 1, pi > 0, qi > 0. (2)

Let Sn−1 be the probability simplex over χ . Then Ss−1 ⊂ S̄n−1, Sr−1 ⊂ S̄n−1, where
S̄n−1 is the closure of Sn−1,

S̄n−1 =
{
r
∣∣∣ ri ≥ 0,

∑
ri = 1

}
. (3)

It should be noted that if some components of p and q are allowed to be 0, we do
not need to treat χS and χR separately, i.e., we can consider both χS and χR to be
equal to χ . Under such a situation, we simply considered both p and q as elements of
S̄n−1.

We considered a transportation plan P = (
Pi j

)
denoted by an s × r matrix, where

Pi j ≥ 0 is the amount of commodity transported from Xi ∈ χS to X j ∈ χR . The plan
P was regarded as a (probability) distribution of commodities flowing from Xi to X j ,
satisfying the sender and receivers conditions,

∑
j

Pi j = pi ,
∑
i

Pi j = q j ,
∑
i j

Pi j = 1. (4)

We denoted the set of P satisfying Eq. (4) as U ( p, q).
Let M = (

mi j
)
be the cost matrix, where mi j ≥ 0 denotes the cost of transporting

one unit of commodity from Xi to X j . We can interpret mi j as a generalized distance
between Xi and X j . The transportation cost of plan P is

C(P) = 〈M, P〉 =
∑

mi j Pi j . (5)

The Wasserstein distance between p and q is the minimum cost of transporting com-
modities distributed by p at the senders to q at the receivers side,

CW ( p, q) = min
P⊂U ( p,q)

〈M, P〉, (6)

where min is taken over all P satisfying the constraints in Eq. (4) [5,6].
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We considered the joint entropy of P,

H(P) = −
∑

Pi j log Pi j . (7)

Given marginal distributions p and q, the plan that maximizes the entropy is given by
the direct product of p and q,

PD = p ⊗ q = (
piq j

)
. (8)

This is because the entropy of PD ,

H (PD) = −
∑

PDi j log PDi j = H( p) + H(q), (9)

is the maximum among all possible P belonging to U ( p, q), i.e.,

H(P) ≤ H( p) + H(q) = H(PD), (10)

where H(P), H( p) and H(q) are the entropies of the respective distributions.
We consider the constrained problem of searching for P that minimizes 〈M, P〉

under the constraint H(P) ≥ const. This is equivalent to imposing the condition that
P lies within a KL-divergence ball centered at PD ,

K L [P : PD] ≤ d (11)

for constant d, because the KL-divergence from plan P to PD is

K L [P : PD] =
∑

Pi j log
Pi j
piq j

= −H(P) + H( p) + H(q). (12)

The entropy of P increases within the ball as d increases. Therefore, this is equiva-
lent to the entropy constrained problem that minimizes a linear combination of the
transportation cost 〈M, P〉 and entropy H(P),

Fλ(P) = 〈M, P〉 − λH(P) (13)

for constant λ [7]. Here, λ is regarded as a Lagrangian multiplier for the entropy
constraint and λ becomes smaller as d becomes larger.

3 Solution to the entropy-constrained problem: Cuturi function

Let us fix λ as a parameter controlling the magnitude of the entropy or the size of
the KL-ball. When P satisfies the constraints in Eq. (4), minimization of Eq. (13) is
formulated in the Lagrangian form by using Lagrangian multipliers αi , β j ,

Lλ(P) = 1

1 + λ
〈M, P〉 − λ

1 + λ
H(P) −

∑
i, j

(
αi + β j

)
Pi j , (14)
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where λ in (13) is slightly modified. By differentiating Eq. (14) with respect to Pi j ,
we have

1 + λ

λ

∂

∂Pi j
Lλ(P) = 1

λ
mi j + log Pi j − 1 + λ

λ

(
αi + β j

) + 1. (15)

By setting the above derivatives equal to 0, we have the following solution,

Pi j ∝ exp

{
−mi j

λ
+ 1 + λ

λ

(
αi + β j

)}
. (16)

Let us put

Ki j = exp
{
−mi j

λ

}
, (17)

ai = exp

(
1 + λ

λ
αi

)
, b j = exp

(
1 + λ

λ
β j

)
. (18)

Then, the optimal solution is written as

P∗
i j = caib j Ki j , (19)

where ai and b j are positive and correspond to the Lagrangian multipliers αi and
β j to be determined from the constraints [Eq. (4)]. c is the normalization constant.
Since r + s constraints [Eq. (4)] are not independent because of the conditions that∑

pi = 1 and
∑

q j = 1, we can use br = 1. Further, we noted that μa and b/μ yield
the same answer for any μ > 0, where a = (ai ) and b = (

b j
)
. Therefore, the degrees

of freedom of a and b are s − 1 and r − 1, respectively. We can choose a and b such
that they satisfy ∑

ai = 1,
∑

b j = 1. (20)

Then, a and b are included in Ss−1 and Sr−1 respectively. We have the theorem below.

Theorem 1 The optimal transportation plan P∗
λ is given by

P∗
λi j = caib j Ki j , (21)

c = 1∑
aib j Ki j

, (22)

where two vectors a and b are determined from p and q using Eq. (4).

We have a generalized cost function of transporting p to q based on the entropy-
constrained optimal plan P∗

λ( p, q):

Cλ( p, q) = 1

1 + λ

〈
M, P∗

λ

〉 − λ

1 + λ
H
(
P∗

λ

)
. (23)
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We called it the Cuturi function because extensive studies have been conducted by
Cuturi and colleagues [7–9]. The function has been used in various applications as a
measure of discrepancy between p and q. The following theorem holds for the Cuturi
function:

Theorem 2 The Cuturi function Cλ( p, q) is a convex function of ( p, q).

Proof Let P∗
1 and P∗

2 be the optimal solutions of transportation problems ( p1, q1) and
( p2, q2), respectively. For scalar 0 ≤ ν ≤ 1, we use

P̄ = νP∗
1 + (1 − ν)P∗

2 . (24)

We have

νCλ ( p1 : q1) + (1 − ν)Cλ ( p2 : q2)
= 1

(1 + λ)

{
ν〈M, P∗

1〉 + (1 − ν)〈M, P∗
2〉
} − λ

1 + λ

{
νH

(
P∗
1

) + (1 − ν)H
(
P∗
2

)}

≥ 1

(1 + λ)
〈M, P̄〉 − λ

1 + λ
H
(
P̄
)
, (25)

because H(P) is a concave function of P. We further have

1

(1 + λ)
〈M, P̄〉 − λ

1 + λ
H
(
P̄
) ≥ min

P

{
1

(1 + λ)
〈M, P〉 − λ

1 + λ
H(P)

}

= Cλ {νp1 + (1 − ν)p2, νq1 + (1 − ν)q2} , (26)

since the minimum is taken for P transporting commodities from ν p1 + (1− ν) p2 to
νq1 + (1 − ν)q2. Hence, the convexity of Cλ is proven. �


When λ → 0, it converges to the originalWasserstein distanceCW ( p, q). However,
it does not satisfy important requirements for “distance”.When p = q,Cλ is not equal
to 0 and does not take theminimumvalue, i.e., there are some q ( �= p) that yield smaller
Cλ than q = p:

Cλ( p, p) > Cλ( p, q). (27)

4 Geometry of optimal transportation plans

We first showed that a set of optimal transportation plans forms an exponential fam-
ily embedded within the manifold of all transportation plans. Then, we studied the
invariant geometry induced within these plans. A transportation plan P is a probabil-
ity distribution over branches (i, j) connecting terminals of χi ∈ χS and χ j ∈ χR .
Let x denote branches (i, j). We used the delta function δi j (x), which is 1 when x is
(i, j) and 0 otherwise. Then, P is written as a probability distribution of the random
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variable x ,

P(x) =
∑
i, j

Pi jδi j (x). (28)

By introducing new parameters

θ i j = log
Pi j
Psr

, θ =
(
θ i j

)
, (29)

it is rewritten in parameterized form as

P(x, θ) = exp

⎧⎨
⎩
∑
i, j

θ i jδi j (x) + log Psr

⎫⎬
⎭ . (30)

This shows that the set of transportation plans is an exponential family, where θ i j are
the canonical parameters and ηi j = Pi j are the expectation parameters. They form an
(sr − 1)-dimensional manifold denoted by ST P , because θ sr = 0.

The transportation problem is related to various problems in information theory
such as the rate-distortion theory. We provide detailed studies on the transportation
plans in the information-geometric framework in Sect. 7, but here we introduce the
manifold of the optimal transportation plans, which are determined by the senders and
receivers probability distributions p and q.

The optimal transportation plan specified by (α,β) in Eq. (16) is written as

Pλ(x,α,β) = exp

⎡
⎣∑

i, j

{
1 + λ

λ

(
αi + β j

) − mi j

λ

}
δi j (x) − 1 + λ

λ
ψλ

⎤
⎦ . (31)

The notation ψ is a normalization factor called the potential function which is defined
by

ψλ(α,β) = − λ

1 + λ
log c, (32)

where c is calculated by taking the summation over all of x ,

c =
∑

x∈(χS ,χR)

exp

⎡
⎣∑

i, j

{
1 + λ

λ

(
αi + β j

) − mi j

λ

}
δi j (x)

⎤
⎦ . (33)

This corresponds to the free energy in physics.
Using

θ i j = 1 + λ

λ

(
αi + β j

) − mi j

λ
, (34)

we see that the set SOT P,λ of the optimal transformation plans is a submanifold of
ST P . Because Eq. (34) is linear in α and β, SOT P,λ itself is an exponential family,
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where the canonical parameters are (α,β) and the expectation parameters are ( p, q) ∈
Ss−1 × Sr−1. This is confirmed by

E

⎡
⎣∑

j

δi j (x)

⎤
⎦ = pi , (35)

E

[∑
i

δi j (x)

]
= q j , (36)

where E denotes the expectation. Because of p ∈ Ss−1 and q ∈ Sr−1, SOPT,λ is a
(r + s − 2)-dimensional dually flat manifold, We can use αs = βr = 0 without loss
of generality, which corresponds to using as = br = 1 instead of the normalization∑

ai = ∑
b j = 1 of a and b.

In a dually flat manifold, the dual potential function ϕλ is given from the potential
function ψλ as its Legendre dual, which is given by

ϕλ( p, q) = p · α + q · β − ψλ(α,β). (37)

When we use new notations η = ( p, q)T , θ = (α,β)T , we have

ψλ(θ) + ϕλ(η) = θ · η, (38)

which is the Legendre relationship between θ and η, and we have the following theo-
rem:

Theorem 3 The dual potential ϕλ is equal to the Cuturi function Cλ.

Proof Direct calculation of Eq. (37) gives

ϕλ( p, q) = p · α + q · β − ψλ(α,β)

= 1

1 + λ
〈M, P〉 +

∑
i, j

Pi j

{(
αi + β j

) − 1

1 + λ
mi j − ψλ

}

= 1

1 + λ
〈M, P〉 + λ

1 + λ

∑
i, j

Pi j
(
log ai + log b j − mi j

λ
+ log c

)

= Cλ( p, q). (39)

�

We summarize the Legendre relationship below.

Theorem 4 The dual potential function ϕλ (Cuturi function) and potential function
(free energy, cumulant generating function) ψλ of the exponential family SOPT,λ are
both convex, connected by the Legendre transformation,

θ = ∇ηϕλ(η), η = ∇θψλ(θ), (40)
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or

α = ∇ pϕλ( p, q), β = ∇qϕλ( p, q), (41)

p = ∇αψλ(α,β), q = ∇βψλ(α,β). (42)

Since SOPT,λ is dually flat, we can introduce a Riemannianmetric and cubic tensor.
The Riemannian metric Gλ is given to Ss−1 × Sr−1 by

Gλ = ∇η∇ηϕλ(η) (43)

in the η-coordinate system ( p, q). Its inverse is

G−1
λ = ∇θ∇θψλ(θ). (44)

Calculating Eq. (44) carefully, we have the following theorem:

Theorem 5 The Fisher information matrix G−1
λ in the θ -coordinate system is given

by

G−1
λ =

[
piδi j − pi p j Pi j − piq j

Pi j − piq j qiδi j − qiq j

]
. (45)

Remark 1 The p-part and q-part of G−1
λ are equal to the corresponding Fisher infor-

mation in Ss−1 and Sr−1 in the e-coordinate systems.

Remark 2 The p-part and the q-part of Gλ are not equal to the corresponding Fisher
information in the m-coordinate system. This is because ( p, q)-part of G is not 0.

We can similarly calculate the cubic tensor,

T = ∇∇∇ψλ (46)

but we have not shown the results here.
From the Legendre pair of convex functions ϕλ and ψλ, we can also introduce the

canonical divergence between two transportation problems ( p, q) and ( p′, q ′),

Dλ

[
( p, q) : ( p′, q ′)] = ψλ(α,β) + ϕλ( p′, q ′) − α · p′ − β · q ′ (47)

where (α,β) corresponds to ( p, q). This is the KL-divergence between the two
optimal transportation plans,

Dλ

[
( p, q) : ( p′, q ′)] = K L[Pλ( p, q) : Pλ( p′, q′)]. (48)
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5 λ-divergences in Sn−1

5.1 Derivation of λ-divergences

We define a divergence between p ∈ Sn−1 and q ∈ Sn−1 using the canonical diver-
gence in the set SOT P,λ of the optimal transportation plans [Eq. (48)]. For the sake of
simplicity, we hereafter only study the case χS = χR = χ . We introduce a reference
distribution r ∈ Sn−1 and define the r-referenced divergence between p and q by

Dr,λ[ p : q] = γλK L
[
P∗

λ(r, p) : P∗
λ(r, q)

]
, (49)

where γλ is a scaling factor, which we discuss later, and P∗
λ(r, p) is the optimal

transportation plan from r to p. Note that its dual

D̃r,λ[ p, q] = γλK L
[
P∗

λ(r, q) : P∗
λ(r, p)

]
(50)

is another candidate. There are other combinations but we study only Eq. (49) as the
first step.

There are various ways of choosing a reference distribution r . We first considered
the simple choice of r = p, yielding the following λ-divergence:

Dλ[ p : q] = γλK L
[
P∗

λ( p, p) : P∗
λ( p, q)

]
. (51)

Theorem 6 Dλ[ p : q] with the scaling factor γλ = λ
1+λ

is given by

Dλ[ p : q] = Cλ( p, p) − Cλ( p, q) − ∇qCλ( p, q) · ( p − q), (52)

which is constructed from the Cuturi function.

Proof The optimal transportation plans are rewritten by the θ coordinates in the form

λ

1 + λ
logP∗

λ( p, p)i j = α′
i + β ′

j − mi j

λ
− ψ ′

λ, (53)

λ

1 + λ
logP∗

λ( p, q)i j = αi + β j − mi j

λ
− ψλ. (54)

Then, we have

Dλ[ p : q] = p · α′ + p · β ′ − ψ ′
λ − p · α − q · β − ψλ − ( p − q) · β

= ϕλ( p, p) − ϕλ( p, q) − ∇qϕλ( p, q) · ( p − q). (55)

Since we showed that ϕλ = Cλ in Theorem 3, we obtain Eq. (52). �

This is a divergence function satisfying Dλ[ p : q] ≥ 0, with equality when and

only when p = q. However, it is not a canonical divergence of a dually flat manifold.
The Bregman divergence derived from a convex function ϕ̃( p) is given by
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D̃λ[ p : q] = ϕ̃( p) − ϕ̃(q) − ∇ pϕ̃(q) · ( p − q). (56)

This is different fromEq. (52),which is derived fromϕλ( p, q). Thus,we call Dλ[ p : q]
Bregman-like divergence.

In the extremes of λ, the proposed divergence Dλ[ p : q] is related to the KL-
divergence and Wasserstein distance in the following sense:

1. When λ → ∞, Dλ converges to K L[ p : q]. This is because P∗ converges to p⊗q
in the limit and we easily have

K L[ p ⊗ p : p ⊗ q] = K L[ p : q]. (57)

2. When λ → 0, Dλ with γλ = λ/(1 + λ) converges to 0, because K L
[
P∗
0( p, p) :

P∗
0( p, q)

]
takes a finite value (see Example 1 in the next section). This suggests

that it is preferable to use a scaling factor other than γλ = λ/(1 + λ) when λ is
small. When λ = 0, Cλ = ϕλ is not differentiable. Hence, we cannot construct the
Bregman-like divergence from C0 [Eq. (52)] in a simple example given in Sect.
5.3.

5.2 Other choices of reference distribution r

We can consider other choices of the reference distribution r . One option is choosing
r , which minimizes the KL-divergence.

D̃λ[ p : q] = γλmin
r

K L
[
P∗

λ(r, p) : P∗
λ(r, q)

]
. (58)

However, obtaining the minimizer r is not computationally easy. Thus, we can simply
replace the optimal r with the arithmetic mean or geometric mean of p and q. The
arithmetic mean is given by the m-mixture midpoint of p and q,

r = 1

2
( p + q). (59)

The geometric mean is given by the e-midpoint of p and q,

r = c
(√

piqi
)
, (60)

where c is the normalization constant.

5.3 Examples of λ-divergence

Below, we consider the case where r = p. We show two simple examples, where
Dλ( p, q) can be analytically computed.

123



Info Geo (2018) 1:13–37 25

Example 1 Let n = 2 and

mii = 0, mi j = 1 (i �= j). (61)

We use a2 = b2 = 1 for normalization,

Pi j = caib j Ki j , (62)

Ki j = exp
{
−mi j

λ

}
=
[
1 ε

ε 1

]
, (63)

ε = exp

{
−1

λ

}
. (64)

Note that ε → 0 as λ → 0.

When λ > 0, the receiver conditions require

cab + caε = p, (65)

cab + cbε = q, (66)

where we use a = a1, b = b1 and

c = 1

ab + ε(a + b) + 1
. (67)

Solving the above equations, we have

a = z − (q− p)/ε

2(1− p)
, (68)

b = z + (q− p)/ε

2(1− q)
, (69)

where

z = −ε(1− p− q) +
√

(q− p)2/ε2 + ε2(1− p− q)2 + 2p(1− p) + 2q(1− q).

We can show Dλ[ p : q] explicitly by using the solution, although it is complicated.
When λ = 0, we easily have

C0(p, q) = |p − q|, (70)

where p = (p, 1− p) and q = (q, 1−q). C0(p, q) is piecewise linear, and cannot be
used to construct a Bregman-like divergence. However, we can calculate the limiting
case of λ → 0 because the optimal transportation plansP∗ where λ is small are directly
calculated by minimizing Cλ( p, q) as
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P∗
λ( p, p) =

[
p 0
0 1 − p

]
+
[−ε ε

ε −ε

]
, (71)

P∗
λ( p, q) =

[
p 0

q − p 1 − q

]
+
[−ε2 ε2

ε2 −ε2

]
. (72)

where we set q > p. The limit of K L divergence is given by

lim
λ→0

K L[P∗
λ( p, p) : P∗

λ( p, q)] =
{
p log p

q (p ≥ q),

(1 − p) log 1−p
1−q (p < q).

(73)

In the general case of n ≥ 2, the optimal transportation plan is P∗
0( p, p) = (piδi j ).

The diagonal parts of the optimal P∗
0( p, q) are min{pi , qi } when mii = 0, mi j >

0 (i �= j). Thus, the K L divergence is given by

K L[P∗
0( p, p) : P∗

0( p, q)] =
∑

i;pi>qi

pi log
pi
qi

. (74)

Remark that when λ → ∞,

lim
λ→∞ K L[P∗

λ( p, p) : P∗
λ( p, q)] =

∑
i

pi log
pi
qi

. (75)

Example 2 We take a family of Gaussian distributions N
(
μ, σ 2

)
,

p
(
x ; μ, σ 2

)
= 1√

2πσ
exp

{
− (x − μ)2

2σ 2

}
(76)

on the real line χ = {x}, extending the discrete case to the continuous case. We

transport p
(
x ; μp, σ

2
p

)
to q

(
x ; μq , σ

2
q

)
, where the transportation cost is

m(x, y) = |x − y|2. (77)

Then, we have

K (x, y) = exp

{
− (x − y)2

2λ2

}
, (78)

where we use 2λ2 instead of previous λ for the sake of convenience.

The optimal transportation plan is written as

P∗(x, y) = ca(x)b(y)K (x, y), (79)
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where a and b are determined from

∫
ca(x)b(y)K (x, y)dy = p(x), (80)

∫
ca(x)b(y)K (x, y)dx = q(x). (81)

The solutions are given in the Gaussian framework, x ∼ N
(
μ̃, σ̃ 2

)
, y ∼ N

(
μ̃′, σ̃ ′2).

As derived in Appendix A, the optimal cost and divergence are as follows:

Cλ(p, q) = 1

1 + λ

[(
μp − μq

)2 + σ 2
p + σ 2

q + λ

2

(
1 − √

1 + X
)

−λ

{
log σpσq + 1

2
log 8π2e2 − 1

2
log

(
1 + √

1 + X
)}]

, (82)

Dλ [p : q] = γλ

[
1

2

(√
1 + X − √

1 + X p

)
+ log

σq

σp
+ 1

2
log

1 + √
1 + X p

1 + √
1 + X

+1 + √
1 + X

4

{(
μp − μq

)2
σ 2
q

+ σ 2
p

σ 2
q

− 1

}]
,

where X = 16σ 2
pσ

2
q

λ2
X p = 16σ 4

p

λ2
. (83)

Note that Dλ = K L
[
P∗

λ( p, p) : P∗
λ( p, q)

]
diverges to infinity in the limit of λ → 0

because the support of the optimal transport P∗
λ( p, q) reduces to a 1-dimensional

subspace. To prevent Dλ from diverging and to make it finite, we set the scaling factor
as γλ = λ

1+λ
. In this case, Dλ is equivalent to the Bregman-like divergence of the

Cuturi function as shown in Theorem 6. With this scaling factor γλ, Dλ in the limits
of λ → ∞ and λ → 0 is given by

lim
λ→∞ Dλ = 1

2

{
(μp − μq)

2

σ 2
q

+ σ 2
p

σ 2
q

− 1

}
+ log

σq

σp
= K L[p : q], (84)

lim
λ→0

Dλ = σp

σq
(μp − μq)

2 + σp

σq
(σp − σq)

2. (85)

6 Applications of λ-divergence

6.1 Cluster center (barycenter)

Let q1, . . . , qk be k distributions in Sn−1. Itsλ-center is definedby p∗,whichminimizes
the average of λ-divergences from qi to p ∈ Sn−1,

p∗ = argmin
p

∑
Dλ[qi : p]. (86)
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The center is obtained from

∂ p

∑
i

Dλ

[
qi : p

] = 0, (87)

which yields the equation to give p∗,
∑

G
(
qi , p∗) (qi − p∗) = 0, (88)

where
G(q, p) = ∇ p∇ pϕλ(q, p). (89)

It is known [5] that the mean (center) of two Gaussian distributions N
(
μ1, σ

2
1

)
and

N
(
μ2, σ

2
2

)
over the real line χ = R is Gaussian N

(
μ1+μ2

2 ,
(σ1+σ2)

2

4

)
, when we use

the square of the Wasserstein distance W 2
2 with the cost function |x1 − x2|2. It would

be interesting to see how the center changes depending on λ based on Dλ[ p : q].
We consider the center of two Gaussian distributions q1 and q2, defined by

ηp = argmin
p

∑
Dλ

[
p : qi

]
. (90)

When λ → 0 and λ → ∞, we have

λ → ∞ : σ 2
p = 2σ 2

q1σ
2
q2

σ 2
q1 + σ 2

q2

, μp = σ 2
q2μq1 + σ 2

q1μq2

σ 2
q1 + σ 2

q2

, (91)

λ → 0 : σp = 2σq1σq2
σq1 + σq2

, μp = σq2μq1 + σq1μq2

σq1 + σq2
. (92)

However, if we use Cλ instead of Dλ the centers are

λ → ∞ : σp = λ, (93)

λ → 0 : σp = σq1 + σq2

2
, (94)

which are not reasonable for large λ.

6.2 Statistical estimation

Let us consider a statistical model M ,

M = {p(x, ξ)} (95)

parameterized by ξ . An interesting example is the set of distributions overχ = (0, 1)n ,
where x is a vector random variable defined on the n-cube χ .
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The Boltzmann machine M is its submodel, consisting of probability distributions
which do not include higher-order interaction terms of random variables xi ,

p(x, ξ) = exp

⎧
⎨
⎩
∑

bi xi +
∑
i< j

wi j xi x j − ψ

⎫
⎬
⎭ , (96)

where ξ = (
bi , wi j

)
. The transportation cost is

m(x, y) =
∑
i

|xi − yi | , (97)

which is the Hamming distance [10].
Let q̂ = q̂(x) be an empirical distribution. Then, Dλ-estimator p∗ = p∗(x, ξ∗) ∈

M is defined by
p
(
x, ξ∗) = argmin

ξ

Dλ

[
q̂ : p(x, ξ)

]
. (98)

Differentiating Dλ with respect to ξ , we obtain the following theorem:

Theorem 7 The λ-estimator ξ∗ satisfies

G
(
q̂, p

) (
p − q̂

) ∂p(x, ξ∗)
∂ξ

= 0. (99)

6.3 Pattern classifier

Let p1 and p2 be two prototype patterns of categories C1 and C2. A separating hyper-
submanifold of the two categories is defined by the set of q that satisfy

Dλ

[
p1 : q] = Dλ

[
p2 : q] (100)

or
Dλ

[
q : p1

] = Dλ

[
q : p2

]
. (101)

It would be interesting to study the geometrical properties of theλ-separating hyper-
submanifold (Fig. 2).

7 Information geometry of transportation plans

We provide a general framework of the transportation plans from the viewpoint of
information geometry. Themanifold of all transportation plans is a probability simplex
M = Sn2−1 consisting of all the joint probability distributionsP overχ×χ . It is dually
flat, where m-coordinates are ηi j = Pi j , from which Pnn is determined.

∑
Pi j = 1. (102)
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Fig. 2 λ-separating hyperplane

The corresponding e-coordinates are log Pi j divided by Pnn as

θ i j = log
Pi j
Pnn

. (103)

We considered three problems in M = Sn2−1, when the cost matrix M = (
mi j

)
is

given.

7.1 Free problem

Minimize the entropy-relaxed transportation cost ϕλ(P) without any constraints on P.
The solution is

P∗
free = exp

(
−mi j

λ
− 1 + λ

λ
ψ

)
= cK, (104)

where c is a normalization constant. This clarifies the meaning of the matrix K [Eq.
(17)], i.e., K is the optimal transportation plan for the free problem.

7.2 Rate-distortion problem

We considered a communication channel in which p is a probability distribution
on the senders terminals. The channel is noisy and Pi j/pi is the probability that x j is
received when xi is sent. The costsmi j are regarded as the distortion of xi changing to
x j . The rate distortion-problem in information theory searches forP, whichminimizes
the mutual information of the sender and receiver under the constraint of distortion
〈M, P〉. The problem is formulated by maximizing ϕλ(P) under the senders constraint
p, where q is free (R. Belavkin, personal communication; see also [16]).
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( ,⋅)

∗

∗

Fig. 3 e-projection in the rate-distortion problem

The optimal solution is given by

P∗
rd = (

cai Ki j
)
, (105)

since q is free and β = 0 or b j = 1. ai are determined from p such that the senders
condition

c
∑
j

ai Ki j = pi (106)

is satisfied. Therefore, the dual parameters ai are given explicitly as

cai = pi∑
j Ki j

. (107)

Let M( p, ·) be the set of plans that satisfy the senders condition
∑
j

Pi j = pi . (108)

Then, we will see that P∗
rd is the e-projection of P∗

free to M( p, ·). The e-projection is
explicitly given by Eq. (107) (Fig. 3).

7.3 Transportation problem

A transportation plan satisfies the senders and receivers conditions. Let M(·, q) be the
set of plans that satisfies the receivers conditions

∑
i

Pi j = q j . (109)
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( , )

(⋅, )

( ,⋅)

Θ

Fig. 4 m-flat submanifolds in the transportation problem

Then, the transportation problem searches for the plan that minimizes the entropy-
relaxed cost in the subset

M( p, q) = M( p, ·) ∩ M(·, q). (110)

Since the constraints Eqs. (108) and (109) are linear in the m-coordinates P, M( p, ·),
M(·, q) and M( p, q) are m-flat submanifolds (Fig. 4).

Since p and q are fixed, M( p, q) is of dimensions (n−1)2, in which all the degrees
of freedom represent mutual interactions between the sender and receiver. We define
them by

Θi j = log
Pi j Pnn
Pin Pnj

, i, j = 1, . . . , n − 1. (111)

They vanish for PD = p ⊗ q, as is easily seen Eq. (111). Since Θi j are linear in
log Pi j , the submanifold E

(
Θi j

)
, in which Θi j ’s take fixed values but p and q are

free, is an 2(n − 1)-dimensional e-flat submanifold.

We introduce mixed coordinates

Ξ = (
p, q,Θi j

)
(112)

such that the first 2(n − 1) coordinates ( p, q) are the marginal distributions in the m-
coordinates and the last (n − 1)2 coordinates Θ are interactions in the e-coordinates
given in Eq. (111). Since the two complementary coordinates are orthogonal, we have
orthogonal foliations of Sn2−1 [1] (Fig. 5).

Given two vectors a = (ai ) and b = (
b j
)
, we considered the following transfor-

mation of P,
TabP = (

caib jPi j
)
, (113)
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( , )

( , )

Θ

(Θ)

Fig. 5 Orthogonal foliations of Sn2−1 with the mixed coordinates

where c is a constant determined from the normalization condition,

c
∑
i, j

ai b j Pi j = 1. (114)

Ξ is the mixed coordinates of P and m-flat submanifold M( p, q), defined by fixing
the first 2(n − 1) coordinates, is orthogonal to e-flat submanifold E (Θ), defined by
making the last (n−1)2 coordinates equal toΘi j . This is called theRAS transformation
in the input-output analysis of economics.

Lemma For any a, b, transformation Tab does not change the interaction terms Θi j .
Moreover, the e-geodesic connecting P and TabP is orthogonal to M( p, q).

Proof By calculating the mixed coordinates of TabP, we easily see that the Θ-part
does not change. Hence, the e-geodesic connecting P and TabP is given, in terms of
the mixed coordinates, by keeping the last part fixed while changing the first part. This
is included in E (Θ). Therefore, the geodesic is orthogonal to M( p, q). �


Since the optimal solution is given by applying Tab to K, even when K is not
normalized, such that the terminal conditions [Eq. (4)] are satisfied, we have the
following theorem:

Theorem 8 The optimal solution P∗ is given by e-projecting K to M( p, q).

7.4 Iterative algorithm (Sinkhorn algorithm) for obtaining a and b

We need to calculate a and b when p and q are given for obtaining the optimal
transportation plan. The Sinkhorn algorithm is well known for this purpose [5]. It is
an iterative algorithm for obtaining the e-projection of K to M( p, q).
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Let TA· be the e-projection ofP toM( p, ·) and let T·B be the e-projection toM(·, q).
From the Pythagorean theorem, we have

K L [TA·P : P] + K L
[
P∗ : TA·P

] = K L
[
P∗ : P

]
, (115)

where P∗ = TabP is the optimal solution; that is, the e-projection of K to M( p, q).
Hence, we have

K L
[
P∗ : TA·P

] ≤ K L
[
P∗ : P

]
(116)

and the equality holds when and only when P ∈ M( p, ·). The e-projection of P
decreases the dual KL-divergence to P∗. The same property holds for the e-projection
to M(·, q). The iterative e-projections of K to M( p, ·) and M(·, q) converges to the
optimal solution P∗.

It is difficult to have an explicit expression of the e-projection of P to M( p, q), but
those of e-projections to M( p, ·) and M(·, q) are easily obtained. The e-projection of
P to M( p, ·) is given by

TA·P = (
ai Pi j

)
, (117)

where a is given explicitly by

ai = pi∑
j Pi j

. (118)

Similarly, the e-projection to M(·, q) is given by

T·BP = (
b j Pi j

)
, (119)

with
b j = q j∑

i Pi j
. (120)

Therefore, the iterative algorithm, which is known as the Sinkhorn Algorithm [7,12]
of e-projection from K is formulated as follows:

Iterative e-projection algorithm

1. Begin with P0 = K.

2. For t = 0, 1, 2, . . ., e-project P2t to M( p, ·) to obtain

P2t+1 = TA·P2t . (121)

3. To obtain P2t+2, e-project P2t+1 to M(·, q),

P2t+2 = T·BP2t+1. (122)

4. Repeat until convergence.

Figure 6 schematically illustrates the iterative e-projection algorithm for finding
the optimal solution P∗.
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Fig. 6 Sinkhorn algorithm as iterative e-projections

8 Conclusions and additional remarks

We elucidated the geometry of optimal transportation plans and introduced a one-
parameter family of divergences in the probability simplex which connects the
Wasserstein distance andKL-divergence. A one-parameter family of Riemannianmet-
rics and dually coupled affine connections were introduced in Sn−1, although they are
not dually flat in general. We uncovered a new way of studying the geometry of prob-
ability distributions. Future studies should examine the properties of the λ-divergence
and apply these to various problems. We touch upon some related problems below.

1. Uniqueness of the optimal plan
The original Wasserstein distance is obtained by solving a linear programming
problem. Hence, the solution is not unique in some cases and is not necessarily
a continuous function of M. However, the entropy-constrained solution is unique
and continuous with respect to M [7]. While ϕλ( p, q) converges to ϕ0( p, q) as
λ → 0, ϕ0( p, q) is not necessarily differentiable with respect to p and q.

2. Integrated information theory of consciousness
Given a joint probability distribution P, the amount of integrated information is
measured by the amount of interactions of information among different terminals.
We used a disconnected model in which no information is transferred through
branches connecting different terminals. The geometric measure of integrated
information theory is given by the KL-divergence from P to the submanifold of
disconnectedmodels [13,14]. However, theWasserstein divergence can be consid-
ered as such a measure when the cost of transferring information through different
terminals depends on the physical positions of the terminals [15]. We can use the
entropy-constrained divergence Dλ to define the amount of information integra-
tion.

3. f -divergence
We used the KL-divergence in a dually flat manifold for defining Dλ. It is pos-
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sible to use any other divergences, for example, the f -divergence instead of
KL-divergence. We would obtain similar results.

4. q-entropy
Muzellec et al. used the α-entropy (Tsallis q-entropy) instead of the Shannon
entropy for regularization [16]. This yields the q-entropy-relaxed framework.

5. Comparison of Cλ and Dλ

Although Dλ satisfies the criterion of a divergence, it might differ considerably
from the original Cλ. In particular, when Cλ( p, q) includes a piecewise linear
term such as

∑
di |pi − qi | for constant di , Dλ defined in Eq. (52) eliminates this

term. When this term is important, we can use {Cλ( p, q)}2 instead of Cλ( p, q)

for defining a new divergence Dλ in Eq. (52). In our accompanying paper [17],
we define a new type of divergence that retains the properties of Cλ and is closer
to Cλ.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: The proof of Example 2

Let us assume that functions a(x) and b(y) are constrained intoGaussian distributions:
a(x) = N

(
μ̃, σ̃ 2

)
, b(y) = N

(
μ̃′, σ̃ ′2). This means that the optimal plan P∗(x, y) is

also given by a Gaussian distribution N (μ,Σ). The marginal distributions p and q
require the mean value of the optimal plan to become

μ = [μp μq ]T . (A.1)

It is also necessary for the diagonal part of the covariance matrix to become

Σ11 = σ 2
p, (A.2)

Σ22 = σ 2
q . (A.3)

Because the entropy-relaxed optimal transport is given by Eq. (79), Σ is composed of
σ̃ 2 and σ̃ ′2 as follows:

Σ11 = σ̃ 2
(
2σ̃ ′2 + λ

)

2
(
σ̃ 2 + σ̃ ′2) + λ

, (A.4)

Σ22 = σ̃ ′2(2σ̃ 2 + λ
)

2
(
σ̃ 2 + σ̃ ′2) + λ

. (A.5)
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Solving Eqs. (A.4, A.5) under the conditions given in Eqs. (A.2, A.3), we have

σ̃ 2 =
{

1

2σ 2
p

(
1 + √

1 + X
) − 2

λ

}−1

, (A.6)

σ̃ ′2 =
{

1

2σ 2
q

(
1 + √

1 + X
) − 2

λ

}−1

, (A.7)

where X = 16σ 2
pσ

2
q

λ2
. (A.8)

Substituting the mean [Eq. (A.1)] and variances [Eqs. (A.6, A.7)] into the definition of
the cost [Eq. (23)], after straightforward calculations, we get Eq. (82). In general, the
η coordinates of the Gaussian distribution q are given by (η1, η2) = (μq , μ

2
q + σ 2

q ).
After differentiating Cλ(p, q) with the η coordinates and substituting them into Eq.
(52), we get Eq. (83).
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