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Abstract
Divergences, also known as contrast functions, are distance-like quantities defined
on manifolds of non-negative or probability measures. Using the duality in optimal
transport, we introduce and study the one-parameter family of L(±α)-divergences.
They extrapolate between the Bregman divergence corresponding to the Euclidean
quadratic cost, and the L-divergence introduced by Pal and the author in connection
with portfolio theory and a logarithmic cost function. They admit natural generaliza-
tions of exponential family that are closely related to the α-family and q-exponential
family. In particular, the L(±α)-divergences of the corresponding potential functions
are Rényi divergences. Using this unified frameworkwe prove that the induced geome-
tries are dually projectively flat with constant sectional curvatures, and a generalized
Pythagorean theorem holds true. Conversely, we show that if a statistical manifold
is dually projectively flat with constant curvature ±α with α > 0, then it is locally
induced by an L(∓α)-divergence. We define in this context a canonical divergence
which extends the one for dually flat manifolds.

Keywords Statistical manifold · Optimal transport · Exponential concavity and
convexity · Spaces of constant curvature · Projective flatness · Rényi divergence,
α-divergence

1 Introduction

In this paperwe study geometric properties of statisticalmanifolds defined by solutions
to some optimal transport problems.We show that they characterize dually projectively
flat manifolds with constant curvatures and provide natural geometries to general-
izations of exponential family. Before stating our main results let us describe the
background and motivations of our study.
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1.1 Background

Information geometry studies manifolds of probability distributions and measures
using geometric ideas. For modern introductions to its theory and applications we
refer the reader to the recent monographs [3,9]. Typically the geometry is induced by
a divergence which is a distance-like quantityD [q : p] ≥ 0 defined on the underlying
manifold M. Of particular importance is the Bregman divergence. Given a differ-
entiable concave function ϕ(ξ) defined on a convex domain Ω in R

d , the Bregman
divergence of ϕ is defined for ξ, ξ ′ ∈ Ω by

D(0+)
[
ξ : ξ ′] = Dϕ(ξ ′) · (ξ − ξ ′) − (

ϕ(ξ) − ϕ(ξ ′)
)
, (1)

where D is the Euclidean gradient and a · b is the dot product (the meaning of the
superscript 0+ will become clear in Sect. 1.2). For example, if M is an exponential
family of probability densities where ξ is the natural parameter, the relative entropy,
also known as the Kullback–Leibler divergence, can be expressed as the Bregman
divergence of the cumulant generating function ϕ(ξ) (which is convex, so in (1) we
may consider −ϕ or use D(0−) to be defined in Sect. 3). The differential geometry of
Bregman divergence was first studied by Nagaoka and Amari in [27].

Following the general framework established by Eguchi [16,17], the geometry
induced on M by a given divergence D [· : ·] consists of a Riemannian metric g and
a dual pair (∇,∇∗) of torsion-free affine connections (see Definition 10). We call
the quadruplet (M, g,∇,∇∗) a dualistic structure or a statistical manifold. The Rie-
mannian metric is given by the quadratic approximation of D [q : p] when q ≈ p,
whereas the two affine connections capture higher order local properties and allow us
to define primal and dual geodesics that are in some sense compatible with the diver-
gence. In contrast with usual Riemannian geometry where the Levi-Civita connection
is the canonical connection defined by the metric, in information geometry we usually
use a pair of connections (∇,∇∗) to reflect the asymmetry of the divergence: gener-
ally we have D [p : q] 	= D [q : p]. When the divergence is symmetric (for example
when D [q : p] = 1

2d(p, q)2 where d is a metric) both ∇ and ∇∗ coincide with the
Levi-Civita connection. From this geometric perspective, the Bregman divergence is
fundamental in the sense that it is the canonical divergence which generates a dually
flat geometry, i.e., both the primal and dual connections ∇ and ∇∗ have zero curva-
ture (see for example [3, Sect. 6.6] and [9, Sect. 4.2]; this is also a limiting case of
Theorem 3). Moreover, the Bregman divergence satisfies a generalized Pythagorean
theorem which enables explicit computation and geometric interpretation of projec-
tions based on the divergence. By now these results are well-known and numerous
applications can be found in the two monographs cited above.

Motivated by portfolio theory, in a series of papers [31–34,41,42] we introduced
and studied the L-divergence (L stands for logarithmic) defined by

D(1) [ξ : ξ ′] = log(1 + Dϕ(ξ ′) · (ξ − ξ ′)) − (
ϕ(ξ) − ϕ(ξ ′)

)
, (2)

where now the potential function ϕ is exponentially concave, i.e, Φ = eϕ is concave.
Being the logarithmof the concave functionΦ,ϕ is itself concave and the L-divergence
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has a logarithmic correction term that captures the extra concavity. An important
example of L-divergence is the “excess growth rate” defined for probability vectors
p = (pi ), q = (qi ) (here i ∈ {0, 1, . . . , d}) by

D [q : p] = log

(
d∑

i=0

1

d + 1

qi

pi

)

−
d∑

i=0

1

d + 1
log

qi

pi
, (3)

where ϕ(p) = ∑d
i=0

1
d+1 log pi . Exponentially concave functions appear naturally

in many recent applications in analysis, probability and statistics. In particular, let
us mention the paper [18] on Bochner’s inequality on metric measure spaces. Other
examples can be found in the references of [33].

In [33] we established the following results where the underlying manifold is the
open unit simplex:

(i) The dualistic structure induced by the L-divergence (2) is dually projectively flat
with constant curvature −1, and the generalized Pythagorean theorem (which has
a financial interpretation in terms of optimal trading frequency) holds true.

(ii) The L-divergence can be expressed in terms of the optimal transport map with
respect to a logarithmic cost function, whereas the Bregman divergence corre-
sponds to the classical quadratic cost. Furthermore, displacement interpolations
for these transport problems are related to the dual geodesics of the induced dual-
istic structure.

It is natural to ask if there is a unified framework that covers both Bregman and
L-divergences. Moreover, can we characterize statistical manifolds that satisfy these
(very strong) geometric properties? On the other hand, Amari and Nagaoka [2] con-
sidered α-families of probability distributions and the corresponding α-divergences
that generalize the exponential family and the Kullback–Leibler divergence. We will
see that these questions are intimately related.

The connection between optimal transport and information geometry is a recent
topic that has started to receive serious attention. For example, the recent paper [4] stud-
ies the manifold of entropy-relaxed optimal transport plans and defines a divergence
which interpolates between the Kullback–Leibler divergence and theWassersteinmet-
ric (optimal transport cost). Dynamic approach are considered in [14] and the recent
papers [13,24]. Also see [30] which builds on the ideas of [33] and embeds a large
family of optimal transport problems in a generalized simplex.

1.2 Summary of main results

The key objects of study in this paper are the L(±α)-divergences defined for α > 0.
The L(α)-divergence is defined by

D(α)
[
ξ : ξ ′] = 1

α
log(1 + α∇ϕ(ξ ′) · (ξ − ξ ′)) − (

ϕ(ξ) − ϕ(ξ ′)
)
, (4)

where the function ϕ is α-exponentially concave, i.e., eαϕ is concave. To cover the case
of positive curvature, we will also consider a local L(−α)-divergenceD(−α) where ϕ is
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α-exponentially convex, i.e., eαϕ is convex. When α = 1 we have the L(1)-divergence
(2), and when α → 0+ it reduces to the Bregman divergence (1) of a concave function
(D(0−) is the Bregman divergence of a convex function). Based on financial arguments,
the L(α)-divergence was introduced recently in [42] as the canonical interpolation
between the Bregman and L-divergences. In this paper we consider also the L(−α)-
divergence and show that they are of fundamental importance. We note that there
exists other natural extrapolations of the Bregman divergence.1 For example, Zhang
[43] (also see [29,44,45]) introduced a parameterized family D(α)

Φ of divergences for
a given convex function Φ, which includes the Bregman and α-divergences among
others, and introduced the concepts of referential duality and representational duality.
The biduality of divergence also plays a role in this paper (see Corollary 1).

While we worked on the open unit simplex in our previous paper [33], here we
consider a general open convex domainΩ inRd . This answers a question asked in [33,
Sect. 1] about extending the results to general domains. By a translation if necessary,
we may assume that 0 ∈ Ω [this is used for the normalization of the function c(α)

in (5)]. Nevertheless, we note that exponential concavity/convexity impose certain
restrictions on the domains of ϕ and the L(−α)-divergence.

In Sects. 2 and 3we prove the following result which connects the L(±α)-divergence
with optimal transport and generalizes the classical Legendre duality for Bregman
divergence.

Theorem 1 For α > 0, consider the function

c(α)(x, y) = 1

α
log (1 + αx · y) , (5)

where x · y is the Euclidean dot product. Then the L(α)-divergence (28) admits the
self-dual representation

D(α)
[
ξ : ξ ′] = c(α)(ξ, η′) − ϕ(ξ) − ψ(η′), (6)

where ψ is the α-conjugate of ϕ and is (locally) α-exponentially concave, and η =
D(α)ϕ(ξ) is the α-gradient which generalizes the Legendre transformation.

Similarly, when ϕ is α-exponentially convex, the L(−α)-divergence has the self-dual
representation

D(−α)
[
ξ : ξ ′] = ϕ(ξ) + ψ(η′) − c(α)(ξ, η′), (7)

where now ϕ and ψ are α-exponentially convex.

Precise statements corresponding to Theorem 1 are given in Theorems 6, 8, 9 and
11. The self-dual expressions (6) and (7) are motivated by optimal transport which
identifies the dual coordinate system η as the image of ξ under the optimal transport
map. This idea comes from our previous paper [33].

Motivated by the relationships betweenBregmandivergence and exponential family
(see [10]), in Sect. 4 we consider generalizations of exponential family that are closely

1 The author thanks an anonymous referee for pointing this out.
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related to theα-family andq-exponential family [2,5,28].We show that the analogue of
the cumulant generating function is α-exponentially concave/convex (Propositions 2,
3), and the corresponding L(±α)-divergence is the Rényi divergence (Theorem 13).
Moreover, the dual function is the Rényi entropy. Our results thus provide a new
approach to the geometry of Rényi and α-divergences. When α → 0 we recover the
dually flat geometry of exponential family. The case of finite simplex is discussed in
Sect. 6.4.

In Sects. 5 and 6 we study the statistical manifold (M = Ω, g,∇,∇∗) induced by
the L(±α)-diverence. Our approach, based on the duality in Theorem 1, gives a unified
treatment covering both the Bregman and L-divergences and simplifies the proofs in
[33]. The following result summarizes Theorems 14, 15 and 16.

Theorem 2 Forα > 0, the dualistic structure induced by the L(±α)-divergence defined
on an open convex set Ω ⊂ R

d with d ≥ 2 is dually projectively flat, has constant
sectional curvature ∓α, and the generalized Pythagorean theorem holds (when α →
0+ we reduce to the dually flat case).

By dual projective flatness, we mean that there exist ‘affine’ coordinate systems
(ξ and η) under which the primal and dual geodesics are, respectively, straight lines
up to time reparameterizations (for the precise technical statement see Definition 11).
Since the properties in Theorem 2 are very strong and spaces of constant curvatures
play fundamental roles in differential geometry, it is natural to ask if Theorem 2 has a
converse. Indeed there is one and it will be proved in Sect. 7 (see Theorems 18, 19).

Theorem 3 Consider a dualistic structure (M, g,∇,∇∗) which is dually projectively
flat and has constant curvature −α < 0. Then locally there exist affine coordinate
systems ξ and η for ∇ and ∇∗ respectively, and α-exponentially concave functions
ϕ(ξ) and ψ(η) which satisfy the generalized Fenchel identity

ϕ(ξ) + ψ(η) ≡ c(α)(ξ, η).

Moreover, the self-dual representation (6) defines locally a canonical divergencewhich
induces the given dualistic structure. Analogous statements hold when the curvature
is α > 0.

Our results establish the L(±α)-divergence as the canonical divergence for a dually
projectively flat statistical manifold with constant curvature, thus generalizing the
Bregman divergence for dually flat manifolds (see [21] for another characterization
based on affine differential geometry). Recently, Ay and Amari [8] (also see [19])
defined a canonical divergence for an arbitrary statistical manifold and showed that on
a dually flatmanifold (i.e.,α = 0) it reduces to theBregmandivergence. It is interesting
to know if their canonical divergence is consistent with our L(±α)-divergences. Since
the L(±α)-divergences have properties analogous to those of the Bregman divergence,
explicit computations are tractable and a natural question is to study how they perform
in applied problems such as clustering [10] and statistical estimation. Projectively flat
connections, statistical manifolds with constant curvatures and relations with affine
differential geometry have been studied in the literature; see in particular [12,15,21,
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22,25]. Using ideas of optimal transport and the L(±α)-divergence, we consider these
properties as a whole and are able to give a new and elegant characterization of the
geometry.

In optimal transport, it is well known that the quadratic cost, which corresponds in
our setting to the Bregman divergence, is intimately related to Brownian motion and
the heat equation (via the Wasserstein gradient flow of entropy, see [7,20]) as well
as large deviations [1] and the Schrödinger problem [23]. A programme suggested in
[33] is to study the analogues for our logarithmic cost functions, and in [34] we took a
first step by studying a multiplicative Schrödinger problem. We plan to address some
of these questions in future research. Another intriguing problem is to connect other
information-geometric structures (such as curvature and the ρ-τ embedding, see [43])
with optimal transport.

2 Divergences induced by optimal transport maps

Amajor theme of this paper is that the L(±α)-divergences are intimated related to opti-
mal transport maps. As a motivating example we first consider the classical Bregman
divergence which corresponds to the quadratic cost. Then we introduce the general
framework of c-divergence following the ideas of [33].

2.1 TheMonge–Kantorovich optimal transport problem

We begin by introducing some basic terminologies of optimal transport. For further
details we refer the reader to standard references such as [6,37,39,40]. LetX and Y be
Polish spaces (i.e., complete and separable metric spaces) interpreted respectively as
the source and target spaces of the optimal transport problem. Let c : X ×Y → R be a
continuous cost function. Given Borel probability measuresμ ∈ P(X ) and ν ∈ P(Y),
the Monge–Kantorovich optimal transport problem is

inf
γ

∫

X×Y
c(x, y)dγ (x, y), (8)

where the infimum is taken over joint distributions γ ∈ P(X×Y)whosemarginals are
μ and ν respectively. We call γ a coupling of the pair (μ, ν) and write γ ∈ Π(μ, ν).
If γ attains the infimum in (8), we say that it is an optimal coupling. For certain cost
functions and under suitable conditions onμ and ν, the optimal coupling has the form

γ = (Id × T )#μ

for some measurable map T : X → Y . Here we use F#μ = μ ◦ F−1 to denote the
pushfoward of a measure. In this case the optimal coupling is deterministic, and we
call T an optimal transport map.
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Remark 1 Note that if we replace the cost function c by

c̃(x, y) = c(x, y) + h(x) + k(y), (9)

where h and k and real-valued functions onX andY respectively, then for any coupling
γ ∈ Π(μ, ν) we have

∫
c̃dγ =

∫
cdγ +

∫
hdμ +

∫
kdν.

The last two integrals, if they exist, are determined once μ and ν are fixed and are
independent of the coupling γ . This means that we are free to modify the cost function
in the manner of (9) without changing the optimal couplings.

2.2 Quadratic cost and Bregman divergence

A fundamental example is where X = Y = R
d (d ≥ 1) and

c(x, y) = 1

2
‖x − y‖2 = 1

2

d∑

i=1

(xi − yi )2 (10)

is the quadratic cost (where we write x = (x1, . . . , xd)). Suppose μ, ν ∈ P(Rd) have
finite second moments, i.e.,

∫
‖x‖2dμ(x) < ∞,

∫
‖y‖2dν(y) < ∞,

and suppose μ is absolutely continuous with respect to the Lebesgue measure on Rd .
By Brenier’s theorem [11], there exists a convex function ϕ : Rd → R ∪ {+∞} such
that its gradient Dϕ (which is defined μ-a.e.) pushforwards μ to ν. Moreover, the
deterministic coupling

γ = (Id × ∇ϕ)#μ

solves the Monge–Kantorovich problem. In fact, it can be shown that the optimal
transport map T (x) = Dϕ(x), which is a Legendre trasnformation, is unique μ-a.e.

To see how the Bregman divergence comes into play, suppose that ϕ isC2 and D2ϕ

(the Hessian) is strictly positive definite. Then the Legendre transform y = T (x) is a
diffeomorphism (see [3, Chapter 1]), and we have x = Dϕ∗(y) and ϕ∗ is the convex
conjugate of ϕ. By Fenchel’s inequality, for any x and y′ we have

ϕ(x) + ϕ∗(y′) ≥ x · y′, (11)

and equality holds if and only if y′ = Dϕ(x). Intuitively, the inequality (11) quantifies
the inefficiency of coupling x ′ = Dϕ∗(y′) with y = Dϕ(x) when compared to y′.
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Since ϕ∗(y′) = x ′ · y′ − ϕ(x ′), we may rearrange (11) to get

ϕ(x) − ϕ(x ′) − Dϕ(x ′) · (x − x ′) ≥ 0,

which is nothing but the Bregman divergence of ϕ.

2.3 c-divergence

Now we show that this idea can be formulated in an abstract framework using gen-
eralized concepts of convex analysis. These concepts were introduced by Moreau
in [26] and later become fundamental in optimal transport (see [35, Sect. 3.3] for a
discussion). In the following definition we fix a cost function c : X × Y → R.

Definition 1 Let f : X → R ∪ {−∞} and g : Y → R ∪ {−∞}.
(i) The c-transforms of f and g are defined respectively by

f c(y) = inf
x∈X

(c(x, y) − f (x)) , y ∈ Y,

gc(x) = inf
y∈Y

(c(x, y) − g(x)) , x ∈ X .
(12)

(ii) We say that f (respectively g) is c-concave if f cc = f (respectively gcc = g).
(iii) If f and g are c-concave, their c-superdifferentials are defined by

∂c f = {(x, y) ∈ X × Y : f (x) + f c(y) = c(x, y)},
∂cg = {(x, y) ∈ X × Y : gc(x) + g(y) = c(x, y)}. (13)

If f is c-concave on X , then

f (x) + f c(y) ≤ c(x, y) (14)

for all (x, y) ∈ X ×Y , and equality holds if and only if (x, y) ∈ ∂c f . We call (14) the
(generalized) Fenchel inequality (or identity when equality holds) which generalizes
(11). The following result (see for example [6, Theorem 2.13]) is sometimes called
the Fundamental Theorem of Optimal Transport.

Theorem 4 Suppose the cost function c is continuous and bounded below, and there
exist a ∈ L1(μ) and b ∈ L1(ν) such that c(x, y) ≤ a(x) + b(y). Then, a coupling γ

of the pair (μ, ν) solves the Monge–Kantorovich problem (8) if and only if there exists
a c-concave function f on X such that supp(γ ) ⊂ ∂c f .

By Theorem 4, a c-concave function f on X (or, rather, its c-superdifferential) can
be regarded as encoding the solution to an optimal transport problem.

Let f is a c-concave function on X . Assume that f is c-differentiable in the fol-
lowing sense: for each x ∈ X there is a unique element y ∈ Y such that (x, y) ∈ ∂c f .
We call y = Dc f (x) the c-gradient of f . This is a rather strong assumption but
is satisfied for the cost functions considered in this paper. By Theorem 4 we may
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regard Dc f : X → Y as an optimal transport map. For a detailed discussion of the
smoothness properties of optimal transport maps see [40, Chapter 11].

Using the definition of c-concavity, for any x, x ′ ∈ X we have

f (x ′) + c(x, y′) − c(x ′, y′) ≥ f (x), y′ = Dc f (x ′). (15)

Analogous definitions and results hold for a c-concave function g onY . The inequality
(15)motivates the definition of c-divergence (amore suggestive namemay be transport
divergence) which was first introduced in [33].

Definition 2 (c-divergence) Let f be c-concave and c-differentiable on X . The c-
divergence of f is the functional D f : X × X → [0,∞) defined by

D f
[
x : x ′] = c(x, y′) − c(x ′, y′) − ( f (x) − f (x ′)), x, x ′ ∈ X , y′ = Dc f (x ′).

(16)
If g is a c-differentiable c-concave function on Y , we define the dual c-divergence
Dg : Y × Y → [0,∞) by

D∗
g

[
y : y′] = c(x ′, y) − c(x ′, y′) − (g(y) − g(y′)), y, y′ ∈ Y, x ′ = Dcg(y′).

(17)

Theorem 5 (self-dual representations) Let y′ = Dc f (x ′). Then

D f
[
x : x ′] = c(x, y′) − f (x) − f c(y′). (18)

Similarly, if x = Dcg(y), then

D∗
g

[
y : y′] = c(x ′, y) − g(y) − gc(x ′). (19)

Proof By the generalized Fenchel identity (14), we have

f (x ′) + f c(y′) = c(x ′, y′) ⇒ f c(y′) = c(x ′, y′) − f (x ′).

It follows that

D f
[
x : x ′] = c(x, y′) − c(x ′, y′) − ( f (x) − f (x ′))

= c(x, y′) − f (x) − f c(y′).

This gives (18). The proof of the second identity (19) is similar. ��
Corollary 1 (Duality of c-divergence) Suppose f c is c-differentiable on the range of
Dc f . Let y = Dc f (x) and y′ = Dc f (x ′). Then

D f
[
x ′ : x] = D∗

f c
[
y : y′] . (20)
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This result can be viewed as the “biduality”—in the language of Zhang [43] – of the
c-divergence. Namely, using the c-conjugate f c and the dual coordinates y = Dc f (x)
(representational duality) in the L(α)-divergence is equivalent to interchanging the
order of the arguments (referential duality). See [29,44,45] for more discussions about
the two dualities.

Remark 2 On the other hand, given an α-exponentially concave function ϕ, we don’t
have a natural way to associate it to a ‘dual’ α-exponentially convex function, say
ψ , by some conjugate operation. Under our framework, the L(α)-divergence and the
L(−α)-divergence are not related or dual to each other. In particular, the parameter α

of our L(±α)-divergence does not play the same role as the α in say the α-divergence
or Zhang’s D(α)

Φ divergence [43].

Example 1 Suppose c(x, y) = 1
2‖x− y‖2 is the quadratic cost onRd . It is easy to show

that f is c-concave if and only if ϕ(x) = 1
2‖x‖2 − f (x) is convex. The c-gradient of

f is Dc f = Dϕ, and the c-divergence D f is the Bregman divergence of ϕ.

2.4 A logarithmic cost function

Nowwe introduce a logarithmic cost which leads to the L(±α)-divergences. Because of
the logarithm, to state the result in the framework of c-divergencewe consider a specific
domain, namely the positive quadrantX = Y = R

d++ = (0,∞)d . (Tomake it a Polish
space, we may use for example the metric d(x, y) = (

∑d
i=1(log x

i − log yi )2)1/2.)
We keep the discussion brief as a self-contained treatment on general convex domains
will be given in Sect. 3.

For α > 0, consider the continuous cost function on Rd given by

c(α)(x, y) = 1

α
log(1 + αx · y). (21)

Remark 3 While c(α) may take negative values, it is equivalent (up to scaling and
addition of linear terms, see Remark 1) to the non-negative cost function

log

(
1

1 + αd
+ α

1 + αd

d∑

i=1

xi yi
)

− α

1 + αd

d∑

i=1

log(xi yi ), (22)

so that Theorem 4 is applicable. For α = 1, this cost function was introduced and
studied (under various parameterizations) in [32–34]. In particular, (22) (with α = 1)
is equivalent to the excess growth rate given in (3) under the change of variables
qi = yi/(1 + ∑

j y
j ) and pi = (1/xi )/(1 + ∑

j 1/x
j ) for 1 ≤ i ≤ d (see [34] for

details). The symmetric representation chosen here is more convenient in information-
geometric computations.
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As α → 0+, the cost function c(α)(x, y) in (21) converges to x · y. This is equivalent
to the quadratic cost

c(x, y) = 1

2
‖x − y‖2 = −x · y + 1

2
‖x‖2 + 1

2
‖y‖2

after a change of variable y �→ −y (say).

The following theorem establishes the L(α)-divergence as a c-divergence. Anal-
ogous results hold for the L(−α)-divergence if we pick c(−α) = −c(α). We omit the
proof as this result will not be used in the rest of the paper and most of the work (which
builds on [33, Sect. 3]) is contained in Sect. 3.

Theorem 6 Consider the cost function c = c(α) given by (21).

(i) f is c-concave if and only if eα f is concave on R
d .

(ii) Suppose f is c-concave. The c-gradient of f at x, if it exists, is given by

Dc f (x) = Df (x)

1 − αDf (x) · x . (23)

(iii) Suppose f is c-concave and differentiable. Then the c-divergence of f is the L(α)-
divergence given by

D f [x : x ′] = D(α)[x : x ′] := 1

α
log(1 + αDf (x ′) · (x − x ′)) − ( f (x) − f (x ′)).

3 Exponential concavity/convexity and the L(±˛)-divergences

In this section we define exponential concavity and convexity as well as the associated
L(±α)-divergenceD(±α). We also derive their self-dual representations. Our treatment
is motivated by, but independent from, the connection with optimal transport maps
given in Sect. 2.

3.1 Exponential concavity and convexity

Definition 3 Let Ω ⊂ R
d be an open convex set, ϕ : Ω → R, and fix α > 0. Also

write Φ = eαϕ .

(i) We say that ϕ is α-exponentially concave if Φ is concave on Ω . For α = 0+ (that
is, the limit as α → 0+), we say that ϕ is 0+-exponentially concave if ϕ is concave.

(ii) We say that ϕ is α-exponentially convex if Φ is convex on Ω . For α = 0+, we say
that ϕ is 0+-exponentially convex if ϕ is convex.

Assuming ϕ is twice continuously differentiable on Ω , we have

D2Φ = D2eαϕ = αeαϕ
(
D2ϕ + α(Dϕ)(Dϕ)�

)
, (24)
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where (Dϕ)� is the transpose of the column vector Dϕ. From this we have the fol-
lowing elementary lemma which justifies the limiting cases in Definition 3.

Lemma 1 Suppose ϕ is twice continuously differentiable on Ω and α > 0.

(i) ϕ is α-exponentially concave if and only if

− D2ϕ − α(Dϕ)(Dϕ)� ≥ 0. (25)

(ii) ϕ is α-exponentially convex if and only if

D2ϕ + α(Dϕ)(Dϕ)� ≥ 0. (26)

Here the inequalities are in the sense of positive semidefinite matrix.

Because of the product term in (24), we cannot pass between exponential concavity
and convexity simply by considering −ϕ. This is different from the classical case
α = 0. In particular, from Lemma 1 we see that an α-exponentially concave function
is always concave, but an α-exponentially convex function is not necessarily convex.
In Sect. 5 we will regard (25) and (26) as the Riemannian metrics induced by D(α)

and D(−α) respectively.

3.2 L(±˛)-divergences

By convention we always let α > 0 be fixed. Suppose ϕ is a differentiable and α-
exponentially concave function. By the concavity of Φ = eαϕ , for any ξ, ξ ′ ∈ Ω we
have

Φ(ξ ′)+ DΦ(ξ ′) · (ξ − ξ ′) ≥ Φ(ξ) ⇒ 1+αDϕ(ξ ′) · (ξ − ξ ′) ≥ eα(ϕ(ξ)−ϕ(ξ ′)). (27)

This motivates the following definition of the L(α)-divergence. It is different from
the Bregman divergence in that our divergence is given by the ratio rather than the
difference in (27).

Definition 4 (L(α)-divergence) If ϕ is differentiable and α-exponentially concave, we
define the L(α)-divergence of ϕ by

D(α)
[
ξ : ξ ′] = 1

α
log

(
1 + αDϕ(ξ ′) · (ξ − ξ ′)

) − (
ϕ(ξ) − ϕ(ξ ′)

)
, ξ, ξ ′ ∈ Ω.

(28)
For α = 0+, we define the L(0+)-divergence by the Bregman divergence (1).

From (27) we have that D(α)
[
ξ : ξ ′] ≥ 0. If Φ is strictly concave, then

D(α)
[
ξ : ξ ′] = 0 only if ξ = ξ ′.

For an α-exponentially convex function, the analog of (27) is

1 + αDϕ(ξ ′) · (ξ − ξ ′) ≤ eα(ϕ(ξ)−ϕ(ξ ′)). (29)
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Unfortunately, now the left hand side of (29)may become negative and so its logarithm
may not exist. Nevertheless, we can define the L(−α)-divergence locally when ξ and
ξ ′ are close. This is sufficient for defining the dualistic structure (g,∇,∇∗).

Definition 5 (local L(−α)-divergence) If ϕ is differentiable and α-exponentially con-
vex, we define the L(−α)-divergence of ϕ locally by

D(−α)
[
ξ : ξ ′] = (

ϕ(ξ) − ϕ(ξ ′)
) − 1

α
log

(
1 + αDϕ(ξ ′) · (ξ − ξ ′)

)
, (30)

for all pairs (ξ, ξ ′) inΩ such that the logarithm in (30) exists. For α = 0+, ϕ is convex
and we define (globally) the L(0−)-divergence as the Bregman divergence

D(0−)
[
ξ : ξ ′] = (

ϕ(ξ) − ϕ(ξ ′)
) − Dϕ(ξ ′) · (ξ − ξ ′). (31)

3.3 Duality of L(±˛) divergence

In this subsection we develop a duality theory for α-exponentially concave and convex
functions.By conventionwealways assumeα > 0 is fixed.Wegeneralize theLegendre
transform and conjugate which will be used to formulate the self-dual representations
of the L(±α)-divergences. They correspond to the c-transform in Sect. 2.

To ensure that the potential function ϕ is well-behaved and the differential geomet-
ric objects associated with the L(±α)-divergences are well-defined, we will impose
throughout this paper some regularity conditions.

3.3.1 Duality for˛-exponentially concave functions

We first consider the case where ϕ is α-exponentially concave.

Condition 7 (conditions for L(α)-divergence) We assume ϕ is smooth on Ω and the
matrix −D2ϕ − α(Dϕ)(Dϕ)� is strictly positive definite on Ω . By considering a
translation of the variable ξ if necessary, we assume without loss of generality that
for all ξ ∈ Ω we have

1 − αDϕ(ξ) · ξ = 1 − α

d∑

�=1

ξ� ∂ϕ

∂ξ�
(ξ) > 0. (32)

Note that by strict concavity of Φ = eαϕ and (27), the condition (32) holds whenever
0 ∈ Ω (for example, in Sect. 2.4 we have Ω = R

d++ and 0 ∈ Ω).

Observe that there does not exist any positive and strictly concave functionΦ = eαϕ

on the real line. Thus, in order that ϕ is α-exponentially concave on Ω , the domain Ω

must not contain any line (rays are fine). This is different from the Bregman case where
the concave function may be globally defined on R

d . Examples of feasible domains
in our setting include the open simplex (considered in [33]) as well as the positive
quadrant Rd++ = (0,∞)d .
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Condition (32) will be used in the following construction. For each ξ ′ ∈ Ω , the
supporting tangent hyperplane of Φ = eαϕ at ξ ′ is given by

ξ ∈ Ω �→ Φ(ξ ′) + DΦ(ξ ′) · (ξ − ξ ′) = eαϕ(ξ ′) (1 − αDϕ(ξ ′) · ξ ′ + αDϕ(ξ ′) · ξ
)
.

Thus (32) is equivalent to positivity of the constant coefficient. By concavity of Φ, for
ξ ∈ Ω we have

eαϕ(ξ) = min
ξ ′∈Ω

eαϕ(ξ ′) ((1 − αDϕ(ξ ′) · ξ ′) + αDϕ(ξ ′) · ξ
)
. (33)

Since Φ is strictly concave, the minimum is attained uniquely at ξ ′ = ξ . This and the
logarithm is the basis of Theorem 8 which is our duality result. To prepare for it let us
introduce some notations.

Definition 6 (α-gradient) We define the α-gradient of ϕ at ξ ∈ Ω by

D(α)ϕ(ξ) = 1

1 − αDϕ(ξ) · ξ
Dϕ(ξ), (34)

where Dϕ = D(0)ϕ is the Euclidean gradient. Condition 7 ensures that it is well-
defined.

Definition 7 (dual coordinate) We define the dual coordinate η by

η = D(α)ϕ(ξ). (35)

We letΩ ′ = D(α)ϕ(Ω) be the range of η (which may not be convex). The coordinates
of η are denoted using lower-indices, i.e., η = (η1, . . . , ηd).

This terminology is justified by the following result.

Proposition 1 The α-gradient D(α)ϕ is a diffeomorphism fromΩ ontoΩ ′ which is an
open set in R

d .

Proof It is clear from (34) that the map D(α)ϕ is smooth.
To show that D(α)ϕ is injective, suppose towards a contradiction that D(α)ϕ(ξ) =

D(α)ϕ(ξ ′) for distinct ξ, ξ ′ ∈ Ω . By definition, we have

Dϕ(ξ)

1 − αDϕ(ξ) · ξ
= Dϕ(ξ ′)

1 − αDϕ(ξ ′) · ξ ′ .

It follows that for any ξ ′′ ∈ Ω , we have

1 + αDϕ(ξ) · ξ ′′

1 − αDϕ(ξ) · ξ
= 1 + αDϕ(ξ ′) · ξ ′′

1 − αDϕ(ξ ′) · ξ ′ .
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Rearranging, we have the identity

1 + αDϕ(ξ) · (ξ ′′ − ξ)

1 − αDϕ(ξ) · ξ
= 1 + αDϕ(ξ ′) · (ξ ′′ − ξ ′)

1 − αDϕ(ξ ′) · ξ ′ .

Letting ξ ′′ be ξ and ξ ′ respectively, we see after some computation that

(1 + αDϕ(ξ) · (ξ ′ − ξ)) · (1 + αDϕ(ξ ′) · (ξ − ξ ′)
) = 1.

Observe that this is equivalent to

D(α)
[
ξ ′ : ξ

] + D(α)
[
ξ : ξ ′] = 0,

which is a contradiction since D(α)
[
ξ ′ : ξ

]
,D(α)

[
ξ : ξ ′] > 0 by Condition 7. This

proves that the α-gradient is injective.
Finally, from Condition 7 again we have −D2ϕ − α(Dϕ)(Dϕ)� > 0. This can

be used to show that the Jacobian ∂η
∂ξ

is invertible. By the inverse function theorem,

D(α)ϕ : Ω → Ω ′ is a diffeomorphism and Ω ′ is open. (Essentially the same result
is proved in [33, Theorem 3.2] so we do not provide the details. Also see (72) below
which gives an explicit expression of the Jacobian.) ��

Definition 8 (α-conjugate) Consider the function c(α) given by (21) and defined for
x, y ∈ R

d with 1 + αx · y > 0. We define the α-conjugate ψ of ϕ on the open set
Ω ′ = D(α)ϕ(Ω) by

ψ(η) = c(α)(ξ, η) − ϕ(ξ), ξ = (D(α)ϕ)−1(η). (36)

By (41) below 1 + αξ · η > 0, hence c(α)(ξ, η) and ψ(η) are well-defined.

Theorem 8 (α-duality) For ξ ∈ Ω , η ∈ Ω ′ we have

ϕ(ξ) = min
η′∈Ω ′

(
c(α)(ξ, η′) − ψ(η′)

)
, (37)

ψ(η) = min
ξ ′∈Ω

(
c(α)(ξ ′, η) − ϕ(ξ ′)

)
. (38)

Furthermore, ψ is locally α-exponentially concave on Ω ′ in the sense that −D2ψ −
α(Dψ)(Dψ)� > 0 on Ω ′, and we have 1 − αDψ(η) · η > 0 on Ω ′ so that the
α-gradient D(α)ψ(η) = 1

1−αDψ(η)·η Dψ(η) is well-defined. We have

(D(α)ϕ)−1 = D(α)ψ. (39)
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Proof Taking logarithm in (33) and rearranging, we have

ϕ(ξ) = min
ξ ′∈Ω

{
ϕ(ξ ′) + 1

α
log

(
1 − αDϕ(ξ ′) · ξ ′ + αDϕ(ξ ′) · ξ

)}

= min
ξ ′∈Ω

{
1

α
log

(
1 + α

Dϕ(ξ ′)
1 − αDϕ(ξ ′) · ξ ′ · ξ

)
+ ϕ(ξ ′)

+ 1

α
log

(
1 − αDϕ(ξ ′) · ξ ′)

}

= min
ξ ′∈Ω

{
c(α)(ξ, η′) + ϕ(ξ ′) + 1

α
log

(
1 − αDϕ(ξ ′) · ξ ′)

}
.

(40)

Note that since η′ = D(α)ϕ(ξ ′), from (34) we have the useful identity

1 + αξ ′ · η′ = 1

1 − αDϕ(ξ ′) · ξ ′ . (41)

With this observation, we see that

ϕ(ξ ′) + 1

α
log

(
1 − αDϕ(ξ ′) · ξ ′) = −

(
c(α)(ξ ′, η′) − ϕ(ξ ′)

)
= −ψ(η′).

Putting this into (40) gives (37).
From (37), for any η, ξ ′ we have

ϕ(ξ ′) ≤ c(α)(ξ ′, η) − ψ(η) ⇒ ψ(η) ≤ c(α)(ξ ′, η) − ϕ(ξ ′).

By definition we have ψ(η) = c(α)(ξ, η) − ϕ(ξ), so (38) holds as well. In particular,
for any ξ, ξ ′ ∈ Ω we have

ψ(η) = c(α)(ξ, η) − ϕ(ξ) ≤ c(α)(ξ ′, η) − ϕ(ξ ′). (42)

Using (41), we compute

c(α)(ξ ′, η) − c(α)(ξ, η) = 1

α
log

(
1 + αξ ′ · η

1 + αξ · η

)

= 1

α
log

(
1

1 + αξ · η
+ αξ ′ · η

1 + αξ · η

)

= 1

α
log

(
1 + αDϕ(ξ) · (ξ ′ − ξ)

)
.

It follows that

c(α)(ξ ′, η) − c(α)(ξ, η) − (
ϕ(ξ ′) − ϕ(ξ)

) = D(α)
[
ξ ′ : ξ

]
(43)

is the L(α)-divergence of ϕ.
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By (37), for any ξ ∈ Ω , η is the unique minimizer (over Ω ′) of

η′ �→ 1

α
log

(
1 + αξ · η′) − ψ(η′).

Since Ω ′ is open, we have the first order condition ξ
1+αξ ·η = Dψ(η). Rearranging,

we have

1 − αDψ(η) · η = 1

1 + αξ · η
.

Thus D(α)ψ(η) is well-defined, D(α)ψ(η) = ξ , and we have (39).
It remains to show that

− D2ψ(η) − α(Dψ(η))(Dψ(η))� (44)

is strictly positive definite on Ω ′. Expressing (43) in terms of ψ using the definition
(36) of α-conjugate, it can be shown that

D(α)
[
ξ : ξ ′] = 1

α
log

(
1 + αDψ(η) · (η′ − η)

)− (
ψ(η′) − ψ(η)

)
,

so the L(α)-divergence of ϕ is the L(α)-divergence of ψ with the arguments inter-
changed (this is a special case of Corollary 1). It follows that (44) is the Riemannian
metric of D(α) expressed in terms of the dual coordinates η. Since ϕ satisfies Condi-
tion 7 by assumption, the matrix (44) is strictly positive definite as well. ��

From (36) and (43), we immediately obtain the self-dual representation which com-
pletes the circle of ideas and the duality theory for α-exponentially concave functions.

Theorem 9 (self-dual representation) The L(α)-divergence of ϕ admits the self-dual
representation

D(α)
[
ξ : ξ ′] = c(α)(ξ, η′) − ϕ(ξ) − ψ(η′), ξ, ξ ′ ∈ Ω. (45)

3.3.2 Duality for˛-exponentially convex functions

Now we state without proof the analogous results for the L(−α)-divergence defined
by an α-exponentially convex function. The only difference is that because eαϕ is
convex, we have to take maximums instead of minimums and switch the inequalities
accordingly. Also, as the L(−α)-divergence may not be globally defined, here we only
consider the local geometry.

Condition 10 (conditions for L(−α)-divergence)Weassumeϕ is smooth and thematrix
D2ϕ +α(Dϕ)(Dϕ)� is strictly positive definite on Ω . Translating and restricting the
domain if necessary, we assume that 0 ∈ Ω and

1 + αDϕ(ξ ′) · (ξ − ξ ′) > 0 (46)
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for all ξ, ξ ′ ∈ Ω . This implies that the L(−α)-divergence is defined for all ξ, ξ ′ ∈ Ω .

Theorem 11 (duality for L(−α)-divergence) Consider the α-gradient and c(α) defined
as in (34) and (21). Then the map ξ �→ η = D(α)ϕ(ξ) = Dϕ(ξ)

1−αϕ(ξ)·ξ is a diffeomor-
phism, and the (−α)-conjugate ψ defined by (36) is locally α-exponentially convex.
The functions ϕ and ψ are related by

ϕ(ξ) = max
η′∈Ω ′

(
c(α)(ξ, η′) − ψ(η′)

)
, ψ(η) = max

ξ ′∈Ω

(
c(α)(ξ ′, η) − ϕ(ξ ′)

)
.

The L(−α)-divergence (30) admits the self-dual representation

D(−α)
[
ξ : ξ ′] = ϕ(ξ) + ψ(η′) − c(α)(ξ, η′), ξ, ξ ′ ∈ Ω. (47)

4 Generalizations of exponential family and Rényi divergence

It is well known that Bregman divergences (D(0±)) arise naturally in applications
involving exponential families. In fact, it was shown by Banerjee et al in [10] that there
is a one-to-one correspondence between what they call regular Bregman divergences
and regular exponential families. Are there parameterized families of probability dis-
tributions that correspond to the L(±α) divergences?

In this section we consider generalizations of exponential family that are closely
related to the α-family [2, Sect. 2.6] and the q-exponential family [3, Sect. 4.3]. We
show that a suitably defined potential function is α-exponentially concave/convex,
and the corresponding L(±α)-divergences are Rényi divergences. This gives a natural
framework to study the geometry induced by the Rényi divergence.

4.1 Motivations

We first recall the main idea in [10]. Consider an exponential family of probability
densities of the form

log p(x, ξ) = ξ · h(x) − ϕ(ξ), (48)

where h(x) = (h1(x), . . . , hd(x)) is a vector of sufficient statistics, andϕ is the convex
cumulant generating function. LetD = D(0−) be the Bregman divergence of ϕ. By the
self-dual representation (induced by the function c(ξ, h(x)) = −ξ ·h(x); see Sect. 2),
we have

log p(x, ξ) = −D
[
ξ : ξ ′] + ψ(h(x)), (49)

where ψ is the convex conjugate of ϕ and h(x) plays the role of the dual variable η′.
Remarkably, the function −ψ is the Shannon entropy (see [3, Sect. 2.1]).

Now let us consider an L(α)-divergenceD(α) withα > 0,whereϕ isα-exponentially
concave. Its self-dual representation (see Theorem 9) is

D(α)
[
ξ : ξ ′] = 1

α
log

(
1 + αξ · η′) − ϕ(ξ) − ψ(η′).
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Imitating (49), let us consider a parameterized density of the form

log p(x, ξ) = −D(α)
[
ξ : ξ ′] − ψ(h(x)) = − 1

α
log(1 + αξ · h(x)) + ϕ(ξ), (50)

where h(x) = η′ as well. Rearranging gives the representation

p(x, ξ) = (1 + αξ · h(x))−
1
α eϕ(ξ). (51)

If μ is the dominating measure of the family, the normalizing function ϕ(ξ) in (51) is
given by

ϕ(ξ) = − log
∫

(1 + αξ · h(x))−
1
α dμ(x). (52)

It is the analogue of the cumulant generating function in (48). For lack of a better
name, let us call (51) an F (α)-family.

Similarly, the L(−α)-divergence leads to the F (−α)-family

p(x, ξ) = (1 + αξ · h(x))
1
α e−ϕ(ξ), (53)

where

ϕ(ξ) = log
∫

(1 + αξ · h(x))
1
α dμ(x). (54)

Remark 4 For α′ 	= 1, Amari and Nagaoka [2, Sect. 2.6] defined an α′-family of
positive measures whose densities are given by

L(α)(p(x, ξ)) = C(x) +
∑

i

ξ i Fi (x), L(α)(u) = 2

1 − α′ u
1−α′
2 ,

or p(x, ξ) =
[
1 − α′

2

(

C(x) +
∑

i

ξ i Fi (x)

)] 2
1−α′

,

(55)

where C and Fi are functions on X . When α′ → 1 then (55) reduces to the expo-
nential family. Comparing this with (52) and (54), we see that our F (±α)-families are
essentially a normalized version of their α′-family with a different parameterization.
We keep our formulation so as to be consistent with (50) (which is the motivation of
this section) and the framework of the paper.

4.2 Exponential concavity/convexity of'

In order that the densities (51) and (53) are well-defined, we need to check that the
potential functions (52) and (54) indeed define α-exponentially concave/convex func-
tions. We impose the following conditions which formalize the ideas in Sect. 4.1.
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Condition 12 Let μ be a probability measure on a measurable space X . Let h =
(h1, . . . , hd) : X → R

n++ be a vector-valued function such that if ξ · h(x) = ξ ′ · h(x)
μ-almost everywhere on X then ξ = ξ ′.

For the F (α)-case, we assume that 1 + αξ · h > 0 and the integral in (52) is finite
for all ξ in an open convex set Ω ⊂ R

d and we can differentiate with respect to ξ

under the integral sign. Analogous conditions are imposed for theF (−α)-case. In both
cases we call ϕ the potential function of the family.

4.2.1 F (˛)-family

Proposition 2 For α > 0 fixed, the potential function ϕ(ξ) of the F (α)-family defined
by (52) is α-exponentially concave on Ω .

Proof We need to check that Φ = eαϕ is concave on Ω . From (52), we have

Φ(ξ) =
(∫

(1 + αξ · h(x))−
1
α dμ(x)

)−α

, (56)

which can be regarded as a generalized harmonic average.
Let X be the random element X(x) = x , where x ∈ X and X is the sample space.

Given ξ ∈ Ω , let Eξ denote the expectation with respect to p(x, ξ), and let Zξ be the
random vector defined by

Zξ = h(X)

1 + αξ · h(X)
. (57)

Differentiating (56) and simplifying, we have

∂Φ

∂ξ i
(ξ) = α

(∫
(1 + αξ · h(x))−

1
α dμ

)−α−1 (∫
(1 + αξ · h(x))−

1
α
−1hi (x)dμ

)

= α

(∫
(1 + αξ · h(x))−

1
α dμ(x)

)−α ∫
p(x, ξ)Zξ,i dμ(x)

= αΦ(ξ)Eξ Zξ,i .

In particular, we have
Dϕ(ξ) = Eξ [Zξ ] (58)

which can be interpreted as an expectation parameter (although Zξ is not observable
if ξ is unknown). Differentiating one more time and calculating carefully, we get

∂2Φ

∂ξ i∂ξ j
(ξ) = α(1 + α)

(
Eξ [Zξ,i ]Eξ [Zξ, j ] − Eξ [Zξ,i Zξ, j ]

)

= −α(1 + α)Cov(Zξ,i , Zξ, j ).

Since D2Φ is a negative multiple of the covariance matrix of Zξ , Φ is concave and ϕ

is α-exponentially concave. ��
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4.2.2 F (−˛)-family

Next we consider the F (−α)-family. Interestingly, the result is a little different and
depends on the value of α.

Proposition 3 Consider the potential function ϕ(ξ) of the F (−α)-family defined by
(54).

1. If 0 < α < 1, then ϕ is α-exponentially convex.
2. If α > 1, then ϕ is α-exponentially concave.

Proof Now we heave

Φ(ξ) = eαϕ(ξ) =
(∫

(1 + αξ · h)
1
α dμ

)α

.

A computation similar to that in the proof of Proposition 2 shows that

Dϕ(ξ) = Eξ Zξ = Eξ

[
h(X)

1 + αξ · h(X)

]

and

∂2Φ

∂ξ i∂ξ j
(ξ) = α(1 − α)Covξ (Zξ,i , Zξ, j ).

Now Φ is convex if 0 < α < 1 and concave if α > 1. ��

4.3 Rényi entropy and divergence

Based on information-theoretic reasonings, Rényi entropy and divergence were first
introduced byRényi in [36] and they have numerous applications in information theory
and statistical physics. See [38] for a survey of their remarkable properties. We show
that these quantities arise naturally in our F (±α)-families.

We first recall the definitions of Rényi entropy and divergence. Same as above we
fix a measure space (X , μ).

Definition 9 Let α̃ ∈ (0, 1) ∪ (1,∞). Let P , Q be probability measures on X that
are absolutely continuous with respect to μ. We let p = dP

dμ
and q = dQ

dμ
be their

densities.

1. The Rényi entropy of P of order α̃ (and with reference measure μ) is defined by

Hα̃(P) = 1

1 − α̃
log

∫
pα̃dμ. (59)

We also denote the above by Hα̃(p).

123



60 Information Geometry (2018) 1:39–78

2. The Rényi divergence or order α̃ between P and Q is defined by

Dα̃ (P||Q) = 1

α̃ − 1
log

∫
pα̃q1−α̃dμ. (60)

Note that Hα̃(P) = −Dα̃ (P||μ) if μ itself is a probability measure. We use a
different notation to distinguish the Rényi divergence from the L(±α)-divergences
D(±α)

[
ξ : ξ ′] (and α̃ from α). It is well known that as α̃ → 1, the Rényi entropy and

divergence converge respectively to the Shannon entropy and the Kullback–Leibler
divergence.

The following is the main result of this section. The different cases correspond to
the exponential concavity/convexity of ϕ established in Propositions 2 and 3.

Theorem 13

(i) Consider an F (α)-family with α > 0 and potential function ϕ (see (52)). Then the
L(α)-divergence of ϕ is the Rényi entropy of order α̃ := 1 + α:

D(α)
[
ξ : ξ ′] = Dα̃

(
p(·, ξ ′)||p(·, ξ)

)
. (61)

Moreover, the α-conjugate ψ of ϕ (see Definition 8) is the Rényi entropy of order
α̃:

ψ(η) = Hα̃(p(·, ξ)), η = D(α)ϕ(ξ). (62)

(ii) Consider an F (−α)-family (see (53)). If 0 < α < 1, the L(−α)-divergence of ϕ is
the Rényi entropy of order α̃ := 1 − α:

D(−α)
[
ξ : ξ ′] = Dα̃

(
p(·, ξ ′)||p(·, ξ)

)
, (63)

and the (−α)-conjugate is ψ(η) = −Hα̃(p(·, ξ)) (note the minus sign).
If α > 1, the L(α)-divergence of ϕ is given by

D(α)
[
ξ : ξ ′] = α − 1

α
Dα

(
p(·, ξ)||p(·, ξ ′)

)
, (64)

Here α̃ = α and the order of the arguments stay the same. The (−α)-conjugate is

ψ(η) = −1

α
log

∫
p(x, ξ)1−αdμ.

Note that it is not a Rényi entropy since 1 − α < 0.

Proof (i) We want to compute

D(α)
[
ξ : ξ ′] = 1

α
log

(
1 + αDϕ(ξ ′) · (ξ − ξ ′)

) − (ϕ(ξ) − ϕ(ξ ′)).
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First, using (57) and (58), we have

1 + αDϕ(ξ ′) · (ξ − ξ ′) = 1 + αEξ ′ [Zξ ′ ] · (ξ − ξ ′)

= 1 + αEξ ′
[

h(X)

1 + αξ ′ · h(X)
· (ξ − ξ ′)

]

= Eξ ′
1 + αξ · h(X)

1 + αξ ′ · h(X)
.

(65)

From (51), we have

1 + αξ ′ · h(X) = eαϕ(ξ ′)

p(X , ξ ′)α
.

It follows from (65) that

D(α)
[
ξ : ξ ′] = 1

α
log

(
1 + αDϕ(ξ ′) · (ξ − ξ ′)

) − (ϕ(ξ) − ϕ(ξ ′))

= 1

α
logEξ ′

eαϕ(ξ)/p(X , ξ)α

eαϕ(ξ ′)/p(X , ξ ′)α
− (ϕ(ξ) − ϕ(ξ ′))

= 1

α
logEξ ′

p(X , ξ ′)α

p(X , ξ)α
.

Expressing the divergence in terms of the integral, we have

D(α)
[
ξ : ξ ′] = 1

α
log

∫
p(x, ξ ′)1+α p(x, ξ)−αdμ

= 1

α̃ − 1
log

∫
p(x, ξ ′)α̃ p(x, ξ)1−α̃dμ

= Dα̃

(
p(·, ξ ′) || p(·, ξ)

)
,

where α̃ = 1 + α > 1.
Next we consider the α-conjugate

ψ(η) = 1

α
log (1 + αξ · η) − ϕ(ξ).

Using the identity (41) and following the argument in (65), we have

1 + αξ · η = (1 − αDϕ(ξ) · ξ)−1

=
(
Eξ

[
(1 + αξ · h(X))−1

])−1

=
(
Eξ

[
p(X , ξ)αe−αϕ(ξ)

])−1
.
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From this we get

ψ(η) = − 1

α
log

∫
p(x, ξ)1+αe−αϕ(ξ)dμ − ϕ(ξ)

= 1

1 − α̃

∫
p(x, ξ)α̃dμ = Hα̃(p(·, ξ)).

This proves (i), and the proof of (ii) is similar. ��
Remark 5 It appears from the above results that the F (−α)-family with α > 1 is
different from the other cases. Nevertheless, theF (α)-family for α > 0 and theF (−α)-
family for 0 < α < 1 together give all Rényi entropy/divergence of order α̃ ∈
(0, 1) ∪ (1,∞).

Example 2 (finite simplex) Let X = {0, 1, . . . , d} be a finite set and let μ be the
counting measure on X . Fix α > 0. Let hi (x) = δi (x) be the indicator function for
point i , i = 1, . . . , d. Then (51) gives, for α > 0, the F (α)-family of probability mass
functions on X given by

p(i, ξ) = (1 + αξ i )−1/αeϕ(ξ), i = 1, . . . , d, p(0, ξ) = eϕ(ξ), (66)

where the α-exponentially concave function ϕ is

ϕ(ξ) = log p(0, ξ) = − log

(

1 +
d∑

i=1

(1 + αξ i )−1/α

)

,

and the domain is Ω = {ξ ∈ R
d : 1 + αξ i > 0 ∀i}. The coordinate ξ ∈ Ω is a

global coordinate system of the open simplex Sd = {p = (p0, . . . , pd) ∈ (0, 1)1+d :∑
i p

i = 1}. From (66), we have

ξ i = 1

α

((
p(0, ξ)

p(i, ξ)

)α

− 1

)
, i = 1, . . . , d.

By Theorem 13, the L(α)-divergence of ϕ is the discrete Rényi divergence of order
α̃ = 1 + α > 0.

Alternatively, we may express the simplex Sd as an F (−α)-family where

p(i, ξ) = (1 + αξ i )
1
α e−ϕ(ξ), i = 1, . . . , d, p(0, ξ) = e−ϕ(ξ),

ϕ(ξ) = − log p(0, ξ) = log

⎛

⎝1 +
d∑

j=1

(1 + αξ j )1/α

⎞

⎠ ,

and

ξ i = 1

α

((
p(i, ξ)

p(0, ξ)

)α

− 1

)
, i = 1, . . . , d.
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When 0 < α < 1, the L(−α)-divergence of ϕ is the discrete Rényi divergence of order
α̃ = 1 − α > 0.

The corresponding dualistic structures will be considered in Sect. 6.4.

5 Dualistic structure of L(±˛)-divergence

In this and the next sections we study the dualistic structure induced by a given L(±α)-
divergence. First we state the general definition of dualistic structure. For preliminaries
in differential geometry see [3,9].

Definition 10 Let M be a smooth manifold. A dualistic structure onM is a quadruplet
(M, g,∇,∇∗) where g (also denoted by 〈·, ·〉) is a Riemannian metric, and (∇,∇∗) is
a pair of torsion-free affine connections that are dual with respect to g: for any vector
fields X , Y and Z , the covariant derivatives satisfy the identity

Z〈X ,Y 〉 = 〈∇Z X ,Y 〉 + 〈X ,∇∗
ZY 〉. (67)

We also call M equipped with a dualistic structure a statistical manifold.

For a dualistic structure, it is easy to see that the average ∇ = 1
2 (∇ + ∇∗) is the

Levi-Civita connection of the metric g. By the general results of Eguchi (see [16,17]),
any divergence (see [3, Definition 1.1]) on a manifoldM defines a dualistic structure
onM. It is this structure induced by D(±α) that we study in this section.

We will derive explicit coordinate representations of this dualistic structure. The
geometric consequences will be studied in Sect. 6.We stress that while any divergence
induces a geometric structure, the self-dual representationsmotivated by optimal trans-
port suggest the appropriate coordinate systems ξ and η = D(α)ϕ(ξ).

By the results of Sect. 4, for anF (±α)-family this gives the geometry induced by the
Rényi divergence. The Rényi divergence is closely related to the α-divergence.2 Our
framework is more general as it does not depend on the probabilistic representation.
We discuss the connection with the α-divergences in Sect. 6.4.

5.1 Notations

We focus on the case of L(α)-divergence. The arguments for the L(−α)-divergence
are essentially the same (with some changes of signs due to the different self-dual
representation) andwill be left for the reader. Themain results for the L(−α)-divergence
will be stated in Sect. 5.3.

Henceforth we fix an α-exponentially concave function ϕ on Ω satisfying Condi-
tion 7, and let D = D(α) be the L(α)-divergence of ϕ. We let ξ = (ξ1, . . . , ξd) be the
Euclidean coordinate system on Ω . We will use the self-dual representation derived
in Theorem 9:

D
[
ξ : ξ ′] = 1

α
log

(
1 + αξ · η′) − ϕ(ξ) − ψ(η′). (68)

2 The author thanks Shun-ichi Amari for pointing this out.
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Here η = D(α)ϕ(ξ) = (η1, . . . , ηd) is the dual coordinate system given by the α-
gradient. To simplify the notations we let

Π(ξ, η′) = Π(α)(ξ, η′) = 1 + αξ · η′, (69)

where ξ ∈ Ω and η′ ∈ Ω ′ = D(α)ϕ(Ω). We regard ξ and η as column vectors. The
transpose of a vector or matrix A is denoted by A�. The identity matrix is denoted by
I .

Consider the smooth manifold M = Ω where the primal coordinate ξ (identity
map) and the dual coordinateη = D(α)ϕ(ξ) are global coordinate systems.Note that by
symmetry of the cost function c(α) and the associated α-duality, it suffices to consider
the primal connection ∇ expressed in the primal coordinate system ξ . Consider the
coordinate vector fields ∂

∂ξ1
, . . . , ∂

∂ξd
. By definition, the coordinate representations of

(g,∇,∇∗) under ξ are given by

gi j (ξ) =
〈

∂

∂ξ i
,

∂

∂ξ j

〉
= − ∂

∂ξ i

∂

∂ξ
′ j D

[
ξ : ξ ′]

∣∣∣∣
ξ=ξ ′

,

Γi jk(ξ) =
〈
∇ ∂

∂ξ i

∂

∂ξ j
,

∂

∂ξ k

〉
= − ∂2

∂ξ i∂ξ j

∂

∂ξ
′kD

[
ξ : ξ ′]

∣∣∣
∣
ξ=ξ ′

,

Γ ∗
i jk(ξ) =

〈
∇∗

∂

∂ξ i

∂

∂ξ j
,

∂

∂ξ k

〉
= − ∂2

∂ξ
′i∂ξ

′ j
∂

∂ξ k
D
[
ξ : ξ ′]

∣∣
∣∣
ξ=ξ ′

.

(70)

Note that by construction the duality (67) automatically holds (see for example [3,
Theorem 6.2]). We also define

Γi j
k(ξ) = Γi jm(ξ)gmk(ξ),

Γ ∗
i j
k(ξ) = Γ ∗

i jm(ξ)gmk(ξ),
(71)

where
(
gi j (ξ)

)
is the inverse of

(
gi j (ξ)

)
and the Einstein summation convention (see

for example [3, p.21]) is used. This implies that

∇ ∂

∂ξ i

∂

∂ξ j
= Γi j

k(ξ)
∂

∂ξ k
, ∇∗

∂

∂ξ i

∂

∂ξ j
= Γ ∗

i j
k(ξ)

∂

∂ξ k
.

We also let ∂ξ
∂η

=
(

∂ξ i

∂η j

)
and ∂η

∂ξ
=

(
∂ηi
∂ξ j

)
be the Jacobian matrices of the transition

maps. They are inverses of each other.
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5.2 Dualistic structure of L(˛)-divergence

5.2.1 The Riemannian metric

Proposition 4 The coordinate representation G(ξ) = (
gi j (ξ)

)
of the Riemannian

metric g is given by

G(ξ) = −1

Π(α)(ξ, η)

(
I − α

Π(α)(ξ, η)
ηξ�

)
∂η

∂ξ
. (72)

Its inverse is given by

G−1(ξ) =
(
gi j (ξ)

)
= −Π(α)(ξ, η)

∂ξ

∂η

(
I + αηξ�) . (73)

Proof Using the self-dual representation (68), we have

∂

∂ξ i
D
[
ξ : ξ ′] = η′

i

Π(ξ, η′)
− ∂ϕ

∂ξ i
(ξ),

∂2

∂ξ i∂ξ ′ j D
[
ξ : ξ ′] = 1

Π(ξ, η′)2

(
Π(ξ, η′)

∂η′
i

∂ξ ′ j − αη′
iξ

� ∂η′
�

∂ξ ′ j

)
.

(74)

Setting ξ = ξ ′ and expressing in matrix form, we obtain (72).
We obtain (73) by taking the inverse of (72). For the middle term, we may use the

Sherman–Morrison formula (see (77) below) to get

(
I − α

Π(ξ, η)
ηξ�

)−1

= I + αηξ�.

��
Remark 6 In Proposition 4 the Riemannian matrix is given in terms of the Jacobian
matrix ∂η

∂ξ
. This is to emphasize the role of duality (compare (72) with [3, (1.66)])

and to enable explicit expressions of the Christoffel symbols Γi j
k = Γi jmgmk which

appear in the primal geodesic equations.
Let ξ ∈ Ω and v ∈ R

d . By direct differentiation of (28), we have

d2

dt2
D [ξ + tv : ξ ]

∣∣∣∣
t=0

= 1

2
v� (

−D2ϕ(ξ) − α(Dϕ(ξ))(Dϕ(ξ))�
)

v. (75)

Thus we also have

gi j (ξ) = − ∂2ϕ

∂ξ i∂ξ j
(ξ) − α

∂ϕ

∂ξ i
(ξ)

∂ϕ

∂ξ j
(ξ) (76)
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which is the positive definite matrix in (25). Using the Sherman–Morrison formula

(
A + uv�)−1 = A−1 − A−1uv�A−1

1 + v�A−1u
, (77)

we can invert G(ξ) to get

G−1(ξ) = −(D2ϕ)−1 + α
(D2ϕ)−1(Dϕ)(Dϕ)�(D2ϕ)−1

1 + α(Dϕ)�(D2ϕ)−1(Dϕ)
.

While this formula is explicit, it is difficult to use in differential-geometric computa-
tions. The same remark applies to the connections.

5.2.2 Affine connections

Proposition 5 The Christoffel symbols of the primal connection are given by

Γi jk(ξ) = α

Π(α)(ξ, η)2
η j

∂ηi

∂ξ k
+ α

Π(α)(ξ, η)2
ηi

∂η j

∂ξ k

− 2α2

Π(α)(ξ, η)3
ηiη jξ

� ∂η�

∂ξ k
, (78)

Γi j
k(ξ) = −α

Π(α)(ξ, η)

(
ηiδ

k
j + η jδ

k
i

)
= −α

(
∂ϕ

∂ξ i
δkj + ∂ϕ

∂ξ j
δki

)
. (79)

where δ·· is the Kronecker delta.

Proof From our previous computation (74), we have

∂

∂ξ i

∂

∂ξ ′kD
[
ξ : ξ ′] = 1

Π(ξ, η′)
∂η′

i

∂ξ ′k − α

Π(ξ, η′)2
η′
iξ

� ∂η′
�

∂ξ ′k .

Differentiating one more time and writing Π = Π(ξ, η′), we get

∂2

∂ξ i∂ξ j

∂

∂ξ ′kD
[
ξ : ξ ′] = −α

Π2 η′
j
∂η′

i

∂η′
k

− α

Π2 η′
i

∂η′
j

∂ξ ′k + 2α2

Π3 η′
iη

′
jξ

� ∂η′
�

∂ξ ′k .

Setting ξ = ξ ′, we obtain (78).
To prove (79), we first use (73) to write

gmk(ξ) = −Π(ξ, η)

(
∂ξm

∂ηk
+ α

∂ξm

∂η�

η�ξ
k
)

.
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It follows that

Γi j
k(ξ) = Γi jm(ξ)gmk(ξ)

= −
(

α

Π
η j

∂ηi

∂ξm
+ α

Π
ηi

∂η j

∂ξm
− 2α2

Π2 ηiη jξ
� ∂η�

∂ξm

)(
∂ξm

∂ηk
+ α

∂ξm

∂η�

η�ξ
k
)

= −α

Π
η jδ

k
i − α

Π
ηiδ

k
j + 2α2

Π2 ηiη jξ
k − 2α2

Π
ηiη jξ

k + 2α3

Π2 ηiη jξ
kξ�η�.

It can be verified that the last three terms cancel out and the resulting expression gives
the first equality in (78). The second equality follows from the definition of η as the
α-gradient (34) as well as the identity (41). ��

5.3 Dualistic structure of L(−˛)-divergence

Here we state the corresponding results for the L(−α)-divergence.

Proposition 6 For thedualistic structure generatedbyD(−α) whereϕ isα-exponentially
convex, we have

gi j (ξ) = ∂2ϕ

∂ξ i∂ξ j
(ξ) + α

∂ϕ

∂ξ i
(ξ)

∂ϕ

∂ξ j
(ξ), (80)

Γi j
k(ξ) = −α

(
∂ϕ

∂ξ i
(ξ)δkj + ∂ϕ

∂ξ j
(ξ)δki

)
. (81)

Note that (79) and (81) have the same form (even though here ϕ is α-exponentially
convex). This is because Γi j

k = Γi jmgmk and the changes of signs cancel out in the
product.

6 Geometric consequences

With all the coefficients available, we derive in this section the geometric properties
of the dualistic structure (g,∇,∇∗). We state the results for any D(±α) with α > 0,
but the proofs will again be given for the case of D(α). In Sect. 6.4 we specialize to
the unit simplex and explain the connections with the α-divergence.

6.1 Dual projective flatness

The following definition is taken from [25].

Definition 11 (Projective flatness) Let∇ and ∇̃ be torsion-free affine connections on a
smooth manifold. They are projectively equivalent if there exists a differential 1-form
τ such that

∇XY = ∇̃XY + τ(X)Y + τ(Y )X (82)

123



68 Information Geometry (2018) 1:39–78

for any smooth vector fields X and Y . We say that ∇ is projectively flat if ∇ is
projectively equivalent to a flat connection (a connection whose Riemann–Christoffel
curvature tensor vanishes).

If we write τ = ai (ξ)dξ i , say, using the primal coordinate system, then (82) is
equivalent to

Γi j
k(ξ) = Γ̃i j

k(ξ) + ai (ξ)δkj + a j (ξ)δki . (83)

Theorem 14 For anyD(±α), the induced primal connection∇ and the dual connection
∇∗ are both projectively flat.

Proof Weonly consider the primal connection.Consider the 1-formdefinedby τ(X) =
−αXϕ,where Xϕmeans thederivative ofϕ in the directionof X . In primal coordinates,
we have

τ = −
d∑

i=1

α
∂ϕ

∂ξ i
dξ i . (84)

Let ∇̃ be the flat Euclidean connectionwith respect to the coordinate system ξ such that
its Christoffel symbols satisfy Γ̃i j

k(ξ) ≡ 0. From (83), we see that ∇ is projectively
equivalent to ∇̃ and thus ∇ is projectively flat. ��

Motivated by Theorem 14, we say that the induced dualistic structures are
dually projectively flat. Projective flatness can be related to the behaviors of the
geodesics. Recall that a (smooth) curve γ : [0, 1] → M is said to be a pri-
mal geodesic if ∇γ̇ (t)γ̇ (t) ≡ 0. Equivalently, its primal coordinate representation
ξ(t) = (ξ1(t), . . . , ξd(t)) satisfies the primal geodesic equations

ξ̈ k(t) + ξ̇ i (t)ξ̇ j (t)Γi j
k(ξ(t)) = 0, k = 1, . . . , d, (85)

where the dots denote derivatives with respect to time. Similarly, the curve γ is a dual
geodesic if ∇∗

γ̇ (t)γ̇ (t) ≡ 0.
The following result is well-known in differential geometry.

Lemma 2 If ∇ and ∇̃ are projectively equivalent, then a ∇-geodesic is a ∇̃-geodesic
up to a time reparameterization, and vice versa.

Corollary 2 For the dualistic structure induced by D(±α), if γ is a primal (dual)
geodesic, then its trace in the primal (dual) coordinate system is a straight line.

Thus the primal geodesics are straight lines under the primal coordinate system but
run at non-constant speeds. Let us consider the time reparameterization. Using (79),
we note that the primal geodesic equation (85) (under the primal coordinate system)
is equivalent to the single vector equation

ξ̈ (t) = 2αξ̇(t)
d

dt
ϕ(ξ(t)). (86)

From this we immediately see that the trace of the primal geodesic is a straight line
under the coordinate ξ .
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Proposition 7 Let γ : [0, 1] → M be a primal geodesic. Then, in primal coordinates,
we have

ξ(t) = (1 − h(t))ξ(0) + h(t)ξ(1), (87)

where h : [0, 1] → [0, 1] is given by

h(t) =
∫ t
0 e

2αϕ(ξ(s))ds
∫ 1
0 e2αϕ(ξ(s))ds

. (88)

Proof We already know that a primal geodesic can be written in the form (87) for
some time change h. Plugging this into the geodesic equation (86), we have

ḧ(t) = 2αḣ(t)
d

dt
ϕ(ξ(t)) ⇒ d

dt
log ḣ(t) = 2α

d

dt
ϕ(ξ(t)).

Integrating and using the fact that h(0) = 0 and h(1) = 1, we obtain the desired
formula (88). ��

Anatural question is the relationship between the primal and dual coordinate vector
fields. This is studied in the following proposition.

Proposition 8

(i) For D(α), the inner product between ∂
∂ξ i

and ∂
∂η j

is

〈
∂

∂ξ i
,

∂

∂η j

〉
= −1

Π(ξ, η)
δi j + α

Π(ξ, η)2
ξ jηi . (89)

(ii) For D(−α), the inner product between ∂
∂ξ i

and ∂
∂η j

is

〈
∂

∂ξ i
,

∂

∂η j

〉
= 1

Π(ξ, η)
δi j − α

Π(ξ, η)2
ξ jηi . (90)

Proof Consider (i). Using Proposition 4, we compute

〈
∂

∂ξ i
,

∂

∂η j

〉
=
〈

∂

∂ξ i
,
∑

m

∂ξm

∂η j

∂

∂ξm

〉

=
∑

m

∂ξm

∂η j

〈
∂

∂ξ i
,

∂

∂ξm

〉

=
∑

m

∂ξm

∂η j

(
−1

Π(ξ, η)

∂ηi

∂ξm
+ α

Π(ξ, η)2
ηi
∑

�

ξ� ∂η�

∂ξm

)

.

We obtain (89) under some simplification. ��
The formulas (89) and (90) are quite interesting. In the dually flat case (i.e., D(0±),

also see [3, Theorem 6.6]), the two coordinate fields are orthonormal in the sense that
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〈
∂

∂ξ i
, ∂

∂η j

〉
= ±δi j . When α > 0, the first term of the inner product is conformal to

±δi j , but there is an extra term related to duality. This formula is the key ingredient
in the proof of the generalized Pythagorean theorem.

6.2 Curvatures

Next we consider the primal Riemann–Christoffel curvature tensor R defined by

R(X ,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z , (91)

where X ,Y , Z are vector fields and [X ,Y ] = XY − Y X is the Lie bracket. Under the
primal coordinate system, we use the notation

R

(
∂

∂ξ i
,

∂

∂ξ j

)
∂

∂ξ k
= Ri jk

� ∂

∂ξ�
.

It can be shown (see for example [3, Sect. 5.8]) that the coefficients are given by

Ri jk
� = ∂iΓ jk

� − ∂ jΓik
� + Γ jk

mΓim
� − Γik

mΓ jm
�. (92)

The dual curvature tensor R∗ is defined analogously.

Proposition 9

(i) For D(α), the primal curvature tensor is given by

Ri jk
�(ξ) = α

(
gik(ξ)δ�

j − g jk(ξ)δ�
i

)
. (93)

(ii) For D(−α), the primal curvature tensor is given by

Ri jk
�(ξ) = −α

(
gik(ξ)δ�

j − g jk(ξ)δ�
i

)
. (94)

Proof This is a straightforward but lengthy computation using (79), (81) and (92). We
omit the details. ��
Definition 12 When dimM ≥ 2, a torsion-free connection has constant sectional
curvature k ∈ R with respect to the metric g if its curvature tensor R satisfies the
identity

R(X ,Y )Z = k (〈Y , Z〉X − 〈X , Z〉Y ) (95)

for all vector fields X , Y and Z .

Using coordinate vector fields, we see that R has constant curvature k if and only
if in any coordinate system we have

Ri jk
� = k

(
g jkδ

�
i − gikδ

�
j

)
. (96)
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Comparing this with (93) and (94), we obtain

Theorem 15 If d = dimM ≥ 2, for D(±α) the primal and dual connections have
constant sectional curvature ∓α with respect to the induced metric.

It is known that for a general dualistic structure (M, g,∇,∇∗), ∇ has constant
sectional curvature k with respect to g if and only if the same statement holds for
∇∗. For a proof see [12, Proposition 8.1.4]. Some general properties of dualistic
structures with constant curvatures are given in [12, Theorem 9.7.2]. For example, it
is known that such a manifold is conjugate symmetric, conjugate Ricci-symmetric,
and the connections ∇ and ∇∗ are equiaffine. In Sect. 7, we show that if we assume in
addition that the manifold is dually projectively flat in the sense of Theorem 14, then
the geometry can be characterized elegantly in terms of the L(±α)-divergence.

6.3 Generalized Pythagorean theorem

The generalized Pythagorean theorem is a fundamental result of information geometry
and has numerous applications in information theory, statistics and machine learning.
It was first proved for the Bregman divergence (D(±α) in our context) which induces
a dually flat geometry. For an exposition of this beautiful result see [3, Chapter 1].
In [32,33] we introduced the L-divergence (L(α)-divergence when α = 1) on the
unit simplex and proved the generalized Pythagorean theorem. In [33] the proof is
quite different from that of the Bregman case and is rather involved because there we
expressed the dualistic structure in terms of the exponential coordinate system. Here
we give a unified and simplified treatment covering all L(±α)-divergences.

Theorem 16 Consider any L(±α)-divergence D = D(±α) and the induced dualistic
structure. Let p, q, r ∈ Ω and suppose that the dual geodesic from q to p exists
(this amounts to say that the line segment between ηq and ηp lies in the dual domain
Ω ′. We need this assumption because Ω ′ may not be convex). Then the generalized
Pythagorean relation

D [q : p] + D [r : q] = D [r : p] (97)

holds if and only if the primal geodesic from q to r and the dual geodesic from q to p
meet g-orthogonally at q.

Proof Again we consider the case of D(α); the proof for D(−α) is similar. By the
self-dual representation (Theorem 9), we have

D [q : p] = 1

α
log

(
1 + αξq · ηp

) − ϕ(ξq) − ψ(ηp)

and similarly forD [r : q] andD [r : p]. Using these expressions and the identity (36),
we see that the Pythagorean relation (97) holds if and only if

(
1 + αξq · ηp

) (
1 + αξr · ηq

) = (
1 + αξr · ηp

) (
1 + αξq · ηq

)
.
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Expanding and simplifying, we have

(ξr − ξq) · (ηp − ηq) = α(ξq · ηp)(ξr · ηq) − α(ξr · ηp)(ξq · ηq). (98)

On the other hand, consider the primal geodesic from q to r . By projective flatness,
in primal coordinates, the initial velocity vector (given by the inverse exponential map
and expressed using the primal coordinate system) is proportional to ξr −ξq . Similarly,
in dual coordinates, the initial velocity of the dual geodesic from q to p is proportional
to ηp − ηq . By Proposition 8, we see that the two geodesics are orthogonal at q if and
only if

0 =
〈
(ξ ir − ξ iq)

∂

∂ξ i
, (ηp, j − ηq, j )

∂

∂η j

〉

= (ξ ir − ξ iq)(ηp, j − ηq, j )

(−1

Π
δi j + α

Π2 ηq,iξ
j
q

)

= −1

Π
(ξr − ξq) · (ηp − ηq) + α

Π2

(
(ξ ir − ξ iq)ηq,i

) (
(ηp, j − ηq, j )ξ

j
q

)
,

where Π = Π(ξq , ηq) = 1 + αξq · ηq . Rearranging, we have

(1 + αξq · ηq)(ξr · ηp − ξr · ηq − ξq · ηp + ξq · ηq)

= α(ξr · ηq − ξq · ηq)(ξq · ηp − ξq · ηq).

The proof is completed by verifying that this and (98) are equivalent. ��

6.4 The˛-divergence

In this subsection we specialize to the unit simplex

Sd = {p = (p0, p1, . . . , pd) ∈ (0, 1)1+d : p0 + · · · + pd = 1}.

The following definition is taken from [3, (3.39)]. Also see [9, Definition 2.9].

Definition 13 (α-divergence) Let α 	= ±1. The α-divergence is defined by

Dα [p : q] = 4

1 − α2

(

1 −
d∑

i=0

(pi )
1−α
2 (qi )

1+α
2

)

, p, q ∈ Sd . (99)

We also consider the discrete Rényi divergence given by

Dα̃ (p||q) = 1

α̃ − 1
log

(
d∑

i=0

(pi )α̃(qi )1−α̃

)

. (100)
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Note the difference in the notations to avoid confusion. The following elementary
lemma (whose proof is omitted) shows that the two divergences are monotone trans-
formations of each other.

Lemma 3 For α̃ ∈ (0, 1) ∪ (1,∞), let α = 1 − 2α̃ ∈ (−∞,−1) ∪ (−1, 1). Then for
p, q ∈ Sd we have

Dα̃ (p||q) = 1

α̃ − 1
log (1 + α̃(α̃ − 1)Dα [p : q]) . (101)

As inExample 2,wemay expressDα̃ (p||q) as the L(α̃−1)-divergence of theF (α̃−1)-
potential function when α̃ ∈ (1,∞), and as the L(−(1−α̃))-divergence of theF−(1−α̃)-
potential function when α̃ ∈ (0, 1).

Let α and α̃ be as in Lemma 3. Let (g,∇,∇∗) be the dualistic structure induced on
Sd by the α-divergence Dα [p : q], and let (g̃, ∇̃, ∇̃∗) be that induced by the Rényi
divergence Dα̃ (p||q). Since the two divergences are related by a monotone transfor-
mation, from (70), (101) and the chain rule we have g̃i j = α̃gi j , Γ̃i jk = α̃Γi jk and
Γ̃ ∗
i jk = α̃Γ ∗

i jk . (Here the multiplier α̃ is the derivative of the transformation (101) at

0.) This implies that Γi j
k = Γ̃i j

k and Γ ∗
i j
k = Γ̃ ∗

i j
k , so the two dualistic structures have

the same primal and dual geodesics and the same primal and dual curvature tensors
(see (92)).

Theorem 17 For α = 1 − 2α̃ ∈ (−∞,−1) ∪ (−1, 1), the statistical manifold
(Sd , g,∇,∇∗) induced by the α-divergence (99) is dually projectively flat with con-

stant curvature 1−α2

4 .

Proof We only indicate how the curvature is determined, as the rest follows immedi-
ately from other results of this section. We have α̃ = 1−α

2 . Suppose α ∈ (−∞,−1).

The Rényi divergence Dα̃ (p||q) is then an L(α′)-divergence where α̃ = 1 + α′ ∈
(1,∞). By Theorem 15, we have

R̃(X ,Y )Z = −α′ (g̃(Y , Z) − g̃(X , Z)Y ) .

But R = R̃ and g̃ = α̃g. So we have

R(X ,Y )Z = −α′α̃ (g(Y , Z) − g(X , Z)) = 1 − α2

4
(g(Y , Z) − g(X , Z)) .

This shows that the curvature is 1−α2

4 . The case α ∈ (−1, 1) is similar. ��
In this context, our geometry reduces to the geometry of the α-divergence, and

Theorem 16 implies the corresponding Pythagorean theorem. See in particular [2, p.
179] where the curvature 1−α2

4 is determined using affine differential geometry. Their
(8.67) is the product form of our (97) for the Rényi divergence (101). Thus, our results
provide a new approach to study the geometry (compare with [2, Sect. 3.6]). We plan
to carry out a deeper study in future papers.
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7 Dually projectively flat manifolds with constant curvatures

Using the expressions given in (70), any divergence D [· : ·] on a manifoldM defines
a dualistic structure (M, g,∇,∇∗). This operation is not one-to-one; it is easy to
construct exampleswhere twodifferent divergences induce the samedualistic structure
on M. An interesting question is whether we can single out a divergence which is in
some sense most natural for a given dualistic structure. If so, we call it a canonical
divergence. For dually flat manifolds, it is possible to show that there is a canonical
divergence of Bregman type (see [3, Sect. 6.6]). Thus, a dualistic structure is dually
flat if and only if it is (locally) induced by a Bregman divergence.

In this section we ask and solve the same question where the manifold is dually pro-
jectively flat with constant curvature. We assume that the manifoldM has dimension
d ≥ 2, and both ∇ and ∇∗ are projectively flat and have constant sectional curvature
±α where α > 0 (note that if α = 0 the manifold is dually flat and we reduce to the
classical setting). Our aim is to characterize the geometry based on these properties.
The key idea is to use these properties to extend in a novel way the proofs of [3,
Theorem 6.2] and [9, Theorem 4.3] which address the dually flat case. Using tools of
affine differential geometry, an alternative characterization is given in [21, Corollary
1].

7.1 Dual coordinates and potential functions

Theorem 18 Consider a statistical manifold (M, g,∇,∇∗) such that both ∇ and ∇∗
are projectively flat and have constant negative sectional curvature −α where α > 0.
Then, near each point of M, there exist local coordinate systems ξ and η such that
the following statements hold:

(i) The primal geodesics are straight lines in the ξ coordinates up to time reparam-
eterizations, and the dual geodesics are straight lines in the η coordinates up to
time reparameterizations.

(ii) The coordinates satisfy the constraint 1 + α
∑d

�=1 ξ�η� > 0.
(iii) There exist local α-exponentially concave functions ϕ(ξ) and ψ(η) such that the

generalized Fenchel identity

ϕ(ξ) + ψ(η) ≡ c(α)(ξ, η) = 1

α
log (1 + αξ · η) (102)

holds true.
(iv) Under the coordinate systems ξ and η respectively, the Riemannian metric is given

by

gi j (ξ) = − ∂2ϕ

∂ξ i∂ξ j
(ξ) − α

∂ϕ

∂ξ i
(ξ)

∂ϕ

∂ξ j
(ξ),

gi j (η) = − ∂2ψ

∂ηi∂η j
(η) − α

∂ψ

∂ηi
(η)

∂ψ

∂η j
(η).

(103)
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If the constant curvature is +α > 0, analogous statements hold where the functions ϕ

andψ in (iii) are α-exponentially convex, and in (103) the negative signs are replaced
by positive signs.

Proof Let the curvature be −α < 0 (the proof for positive curvature is similar).
Consider the primal connection ∇ which is projectively flat. By Definition 11, there
exists a flat connection ∇̃ and a 1-form τ such that (82) holds. As ∇̃ is flat, near
each point there exists an affine coordinate system ξ = (ξ1, . . . , ξd) under which the
∇̃-geodesics are constant velocity straight lines. By projective equivalence, the primal
geodesics are straight lines under the ξ coordinates up to time reparameterizations.
Furthermore, if we write τ = ai (ξ)dξ i where the ai (ξ)’s are smooth functions of ξ ,
by (83) we have

Γi j
k(ξ) = ai (ξ)δkj + a j (ξ)δki . (104)

Motivated by our previous result (84), we want to show that

ai (ξ) = −α
∂ϕ

∂ξ i
(ξ) (105)

for some α-exponentially concave function ϕ. To this end we will use the assumption
that ∇ has constant sectional curvature −α with respect to g.

Using the representation (104) of the primal Christoffel symbols, we compute

Ri jk
�(ξ) = ∂iΓ jk

� − ∂ jΓik
� + Γ jk

mΓim
� − Γik

mΓ jm
�

= (∂i a j − ∂ j ai )δ
�
k + (∂i ak − akai )δ

�
j − (∂ j ak − aka j )δ

�
i .

(106)

On the other hand, since ∇ has constant curvature −α, by (96) we have

Ri jk
�(ξ) = α

(
gik(ξ)δ�

j − g jk(ξ)δ�
i

)
. (107)

Equating (106) and (107) and using the assumption that dimM = d ≥ 2 (so that we
can pick different indices), we see that

∂a j

∂ξ i
(ξ) = ∂ai

∂ξ j
(ξ) (108)

and
αgi j (ξ) = ∂i a j (ξ) − ai (ξ)a j (ξ). (109)

By (108), the 1-form τ = ai (ξ)dξ i is closed. So, locally, it is exact. Thus, there
exists a locally defined function ϕ(ξ) such that our claim (105) holds. In particular,
the 1-form τ is locally given by τ(X) = −αXϕ.

Now we may write the metric (109) in the form

gi j (ξ) = − ∂2ϕ

∂ξ i∂ξ j
(ξ) − α

∂ϕ

∂ξ i
(ξ)

∂ϕ

∂ξ j
(ξ). (110)
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Since the matrix
(
gi j (ξ)

)
is strictly positive definite, from (24) we have that D2eαϕ <

0. In particular, ϕ is locally α-exponentially concave.
Without loss of generality we may assume 0 belongs to the domain of ϕ. This

implies (see (27)) that

1 − αDϕ(ξ) · ξ > 0

and the α-gradient

η := ∇(α)ϕ(ξ) = 1

1 − αDϕ(ξ) · ξ
∇ϕ(ξ) (111)

is well-defined. As in (41) we have 1 + αξ · η > 0.
With the dual coordinate η defined by (111), we define the dual function ψ(η) by

the generalized Fenchel identity:

ψ(η) = c(α)(ξ, η) − ϕ(ξ). (112)

By α-duality ψ is locally α-exponentially concave, and the Fenchel identity (102)
holds by construction.

Since the dual connection∇∗ is uniquely determined given g and∇ (see [3, (6.6)]),
with the results in Sect. 5 it is a now routine exercise to verify that η is an affine
coordinate system for the projectively flat dual connection ∇∗, and the metric is also
given by the second formula in (103). This completes the proof of the theorem. ��

7.2 Canonical divergence

Using Theorem 18, we can define locally a canonical divergence which generalizes
the one for a dually flat manifold. It is interesting to know whether this canonical
divergence coincides with the one defined by Ay and Amari in [8] for a generic
dualistic structure.

Theorem 19 (canonical divergence) Consider the setting of Theorem 18where α > 0.
Let ξ , η, ϕ and ψ be given as in the theorem.

(i) If the curvature is −α < 0, we define the local L(α)-divergence

D [q : p] = 1

α
log

(
1 + αξq · ηp

) − ϕ(ξq) − ψ(ηp). (113)

(ii) If the curvature is α > 0, we define the local L(−α)-divergence

D [q : p] = ϕ(ξq) + ψ(ηp) − 1

α
log

(
1 + αξq · ηp

)
. (114)

Then these divergences are independent of the choices of ξ , η, ϕ and ψ . Furthermore,
the canonical divergence induces the given Riemannian metric and the primal and
dual connections.
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Proof Note that the primal affine coordinate system ξ is unique up to an affine trans-
formation. The rest are then determined by (111) and (112). By a direct computation,
we can verify that (113) and (114) remain invariant. ��
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