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Information Geometry for Regularized Optimal
Transport and Barycenters of Patterns

Shun-ichi Amari · Ryo Karakida ·
Masafumi Oizumi · Marco Cuturi

Abstract We propose a new divergence on the manifold of probability distri-
butions, building upon the entropic regularization of optimal transportation
problems. As shown in (Cuturi, 2013), regularizing the optimal transport
problem with an entropic term is known to bring several computational ben-
efits. However, because of that regularization, the resulting quantities do not
define a proper distance or divergence between probability distributions. We
have recently tried to introduce a family of divergences connecting the Wasser-
stein distance and the KL divergence from the information geometry point of
view (see Amari et al. (2018)). However, that proposal was not able to retain
key intuitive aspects of the Wasserstein geometry, such as translation invari-
ances, which play a key role when used in the more general barycenter problem.
The divergence we propose in this work is able to retain such properties and
admits an intuitive interpretation.

Keywords Wasserstein distance · Kullback-Leibler divergence · Optimal
transportation · Barycenter · Shape preservation

1 Introduction

Two major geometrical structures have been introduced on the probability
simplex, the manifold of discrete probability distributions. The first one is
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based on the principle of parameterization invariance, which requires that the
geometry between probability distributions must be invariant under invertible
transformations of random variables. That viewpoint is the cornerstone of the
theory of information geometry (Amari, 2016), which acts as a foundation
for statistical inference. The second direction is grounded on the theory of
optimal transport, which exploits prior geometric knowledge on the space in
which random variables are valued (Villani, 2003). Computing optimal trans-
port amounts to obtaining a coupling between these two random variables that
is optimal in the sense that it has a minimal expected metric cost between the
first and second variables. However, computing that solution can be challeng-
ing, and is usually carried out by solving a linear program. Cuturi (2013)
considered a relaxed formulation of optimal transport, in which the negative-
entropy of the coupling is used as a regularizer. We call that approximation
of the original optimal transport cost the C function. Entropic regularization
provides two major advantages: the regularized optimal transport problem
is usually easier and faster to compute than the solution of the linear pro-
gram, and can be done using Sinkhorn’s algorithm (1964); unlike the original
optimal transport geometry, regularized transport distances are differentiable
functions of their input, a property which can be exploited in problems arising
from pattern classification and clustering (Cuturi and Avis, 2014; Cuturi and
Peyré, 2016) as well as more advanced inference tasks that use the C function
as an output loss (Frogner et al., 2015; Genevay et al., 2018), a model fitting
loss (Rolet et al., 2016) or a way to learn mappings (Courty et al., 2017).

The C function suffers, however, from a few issues. It is neither a distance
nor a divergence, notably because comparing a probability measure with it-
self does not result in a null discrepancy, namely if p belongs to the simplex,
then C(p,p) 6= 0. More worryingly, the minimizer of C(p, q) with respect to
q is not reached at q = p. To solve these issues, we have proposed a first
attempt at unifying the information and optimal transport geometrical struc-
tures in (Amari et al., 2018). However, the information-geometric divergence
introduced in that previous work loses some of the nice properties inherent to
the C-function. For example, the C-function can be used to extract a common
shape as the barycenter of several patterns (Cuturi and Doucet, 2014), which
our former proposal was not able to. Therefore, it is desirable to define a new
divergence from C, in the rigorous sense that it is minimized when comparing
a measure with itself, and, preferably convex in both arguments, while still
retaining the attractive properties of optimal transport.

We propose in this paper such a new divergence between probability distri-
butions p and q that is both inspired by optimal transport while incorporating
elements of information geometry. Its basic ingredient remains the entropic reg-
ularization of optimal transport. We show that the barycenters obtained with
that new divergence are more sharply defined than those obtained with the
original C-function, still keeping the shape-location decomposition property.
We illustrate these new definitions with simple numerical illustrations.
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2 C-Function: Entropy-regularized Optimal Transportation Plan

The general transportation problem is concerned with the optimal transporta-
tion of commodities, initially distributed according to a distribution p, so that
they end up being distributed as another distribution q. In its full generality,
such a transport can be carried out on a metric manifold, and both p and q be
continuous measures on that manifold. We consider in this paper the discrete
case, where that metric space is of finite size n, namely X = {1, 2, . . . , n}. We
normalize the total amount of commodities such that it sums to 1: p and q
are therefore probability vectors of size n in the n− 1 dimensional simplex,

Sn−1 =

{
p ∈ Rn |

∑
i

pi = 1, pi ≥ 0

}
. (1)

We leave out extensions to the continuous case for future work. Let Mij be the
cost of transporting a unit of commodity from bin i to bin j, usually defined as
a distance (or a suitable power thereof) between points i and j in X. In what
follows we only assume that Mij > 0 for i 6= j and Mii = 0. A transportation
plan P = (Pij) ∈ Rn×n+ is a joint (probability) distribution over X ×X which
describes at each entry Pij the amount of commodities sent from bin i to bin j.
Given a source distribution p and a target distribution q, the set of transport
plans allowing a transfer from p to q is defined as

U(p, q) =

P ∈ Rn×n+ : ∀i ≤ n,
∑
j

Pij = pi, ∀j ≤ n,
∑
i

Pij = qj

 . (2)

Note that if a matrix is in U(p, q) then its transpose is in U(q,p).
The transportation cost of a plan P is defined as the dot product of P

with the cost matrix M = (Mij),

〈M ,P 〉 =
∑
ij

MijPij . (3)

Its minimum among all feasible plans

W (p, q) = min
P∈U(p,q)

〈M ,P 〉 (4)

is the Wasserstein distance on Sn−1 parameterized by the ground metric M .
Cuturi (2013) studied the regularization of that problem using entropy

H(P ) = −
∑
ij

Pij logPij , (5)

to consider the problem of minimizing

L(P ) = 〈M ,P 〉 − λH(P ), (6)
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where λ > 0 is a regularization strength. We call its minimum the C-function:

Cλ(p, q) = min
P∈U(p,q)

L(P ). (7)

The Cλ function is a useful proxy for the Wasserstein distance, with favor-
able computational properties, and has appeared in several applications as a
very useful alternative to information-geometric divergences such as the KL
divergence.

The optimal transportation plan is given in the following Theorem (Cuturi
and Peyré, 2016; Amari et al., 2018).

Theorem 1 The optimal transportation plan P ∗λ is given by

P ∗λ = [caibjKij ]ij , (8)

K =

[
exp

(
−Mij

λ

)]
ij

, (9)

where c, a normalization constant, and vectors a, b ∈ Sn−1 are determined
from p and q such that the sender and receiver conditions (namely marginal
conditions) are satisfied.

In our previous paper (Amari et al., 2018) we studied the information
geometry of the manifold of optimal transportation plans. We proposed a
family of divergences that combine the KL divergence and the Wasserstein
distance. However, these divergences are closer in spirit to the KL divergence,
and lose therefore some crucial properties of the C-function. We define in this
work a new family of divergences directly from the C-function.

3 Divergence Derived from C-Function

The C-function Cλ(p, q) does not satisfy the requirements for a distance or
divergence, which would be that for such a function ∆ we have that for any
p, q ∈ Sn−1

∆(p, q) ≥ ∆(p,p) = 0. (10)

In order to find the minimizer q∗ of Cλ(p, q) for a given p, we use the expo-
nentiated version Kλ of the cost M depending on λ given in (9).

We further define its conditional version,

K̃λ =

[
Kji,λ

Kj·

]
ij

, (11)

Kj· =
∑
i

Kji. (12)

K̃λ is a linear operator from Sn−1 into Sn−1, and we will use for convenience
the notation

q̃ = K̃λq. (13)
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Fig. 1 Shrinkage operator K̃λ.

K̃λ is a monotonic shrinkage operator mapping Sn−1 in its interior (see Fig.
1), and K̃λSn−1 ⊂ K̃λ′Sn−1 for λ > λ′. When λ = 0, K̃λ is the identity
mapping

K̃0q = q. (14)

As λ tends to infinity, K̃λSn−1 converges to a single point, the center of Sn−1,
1/n, where 1 = (1, 1, . . . , 1)T , and

K̃∞ =
1

n
[1 · · ·1] . (15)

Hence, for any q, K̃∞q is the uniform distribution 1/n.

Theorem 2 The minimizer of Cλ(p, q) with respect to q, given p, is

q∗ = K̃λp. (16)

Proof By differentiation, we have the equation

∂qCλ(p, q∗) = 0 (17)

to determine the minimizer q∗. This gives the condition

bi = 1, (18)

for q∗ (see the duality theorem in (Amari et al., 2018)). Hence, the optimal
transportation plan from p to q∗ is given by

P ∗ij = caiKij , (19)

where suffix λ is omitted to alleviate notations. From∑
j

caiKij = pi, (20)

we have
cai =

pi
Ki·

. (21)

So
q∗ = K̃λp, (22)

proving the theorem.
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Fig. 2 Comparison of Cλ and Dλ. (a) Cλ as the function of q. Cλ is minimized when
q = K̃p. (c) Dλ as the function of q. Dλ is minimized when q = p.

We define a new family of divergences Dλ(p, q) that also depend on λ.

Definition 1

Dλ[p : q] = (1 + λ)
(
Cλ(p, K̃λq)− Cλ(p, K̃λp)

)
. (23)

Figure 2 compares Cλ and Dλ in Sn−1. The following theorem is obtained of
which proof is given in Appendix I.

Theorem 3 Dλ[p : q] is a convex function with respect to p and q, satisfying
the constraints (10). It converges to the Wasserstein distance as λ→ 0.

4 Behavior of K̃λ

The divergence Dλ is defined through K̃λ. We study properties of K̃λ, includ-
ing two limiting cases of λ→ 0,∞.

We first consider the case for small λ to see how K̃λ behaves, assuming
that X has a graphical structure. We assume that Mii = 0, Mij = 1 when i is
a nearest neighbor of j, and Mij > 1, otherwise. By putting

ε = exp

(
− 1

λ

)
, λ = − 1

log ε
, (24)

we have

Kij = exp

(
−Mij

λ

)
= εMij , (25)

K̃i|j =
εMji∑
i ε
Mji

. (26)
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Then, by neglecting higher-order terms of ε, we have

K̃i|j =


1− |N(i)|ε, i = j,

ε, i ∈ N(j),

0, otherwise,

(27)

where N(j) is the set of nearest neighbors of j. When X is a plane consisting of
n×n pixels, a neighbor consists of four pixels, |N(j)| = 4, exept for boundary
pixels. We see that K̃i|j is approximated by the discrete Laplacian operator
∆,

K̃ = (1− ε)I + ε∆. (28)

This shows that K̃ is a diffusion operator, flattening pattern q, that is, shifting
q toward the uniform distribution 1/n.

The inverse of K̃ is

K̃−1 = (1 + ε)I − ε∆. (29)

This is the inverse diffusion operator, which sharpens q by emphasizing larger
components.

In order to make clear the character of diffusion without assuming λ is
small, we consider a continuous pattern p = p(ξ), ξ ∈ Rn and the metric

M (ξ, ξ′) = |ξ − ξ′|2 . (30)

Then,

Kλ (ξ, ξ′) = exp

(
−|ξ − ξ

′|2

λ

)
, (31)

and we easily have

K̃λ (ξ|ξ′) =
1

(
√
πλ)n

exp

(
−|ξ − ξ

′|2

λ

)
. (32)

This is a diffusion kernel. When p is a Gaussian distribution

p(ξ) = exp

(
− 1

2σ2
|ξ|2
)
, (33)

we have

K̃λp = exp

(
− 1

2τ2
|ξ|2
)
, (34)

with

τ2 = σ2 +
λ

2
. (35)

Hence, K̃λp is Gaussian, where the variance τ2 is increased by λ/2, blurring
the original p.

We lastly consider the case when λ is large enough, studying the limiting
behavior as λ→∞.
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When λ is large, we expand Kλ as

Kij,λ = exp

(
−Mij

λ

)
= 1− Mij

λ
, (36)

Kj·,λ = n
(

1− m̄j·

λ

)
, m̄j· =

1

n

∑
i

Mji, (37)

obtaining

K̃i|j,λ =
Kji,λ

Kj·,λ
=

1

n

(
1− m̃ij

λ

)
, m̃ij = Mji − m̄j·. (38)

Hence,

K̃λ(q − p)i =
1

nλ

∑
j

m̃ij (qj − pj) , (39)

showing that this is of order 1/λ. Let M̃ is the moment matrix defined by

M̃jk =
1

n

∑
i

m̃ijm̃ik. (40)

Then, we have the following theorem, of which proof is given in Appendix II.

Theorem 4 When λ is large enough,

lim
λ→∞

Dλ[p : q] =
1

2
(q − p)TM̃(q − p), (41)

which is a squared energy distance defined by the moment matrix M̃ .

5 Right Barycenter of Patterns

We consider the barycenter of image patterns represented as probability mea-
sures p = p(ξ) on the plane ξ = (x, y) ∈ R2 using divergence Dλ. The plane is
discretized into a grid of n×m pixels, and therefore p is a probability vector
of size nm.

Let us consider a family S of patterns, S = (pi)i=1,...,N . A right D-
barycenter q∗D(S) of these patterns is the minimizer of

F rD(S, q) =
∑
i

Dλ[pi : q]. (42)

Cuturi and Doucet (2014) used Cλ(p, q) to define the following barycenter,
as a minimizer of

FC(S, q) =
∑

Cλ(pi, q). (43)

We call such a minimizer the C-barycenter q∗C(S). Cuturi and Doucet showed
that the C-barycenter can extract for some pattern families S a common shape.
In particular, Cuturi and Doucet used a family S of deformed double rings at
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various sizes and positions, whose barycenter q∗C(S) turns out to be a standard
double ring pattern. Other information-theoretic divergences such as the KL-
divergence or Heillinger divergence are not able to recover such a common
shape. We will show that the right D-barycenter q∗D(S) exhibits the same
property, but with a sharper solution.

The right D-barycenter minimizes

1

1 + λ

∑
Dλ(pi : q) =

∑
Cλ(pi, K̃λq)−

∑
Cλ(pi, K̃λpi). (44)

The second term of the right-hand side of (44) does not depend on q, so that
it may be deleted for minimization. Let us put

q̃ = K̃λq. (45)

Then, the D-barycenter is derived from the C-barycenter by

q∗C = K̃λq
∗
D, (46)

provided (46) is solvable. In this case,

q∗D = K̃−1
λ q∗C (47)

is a sharpened version of q∗C . However, (46) might not be always solvable.
The image K̃λSn−1 is a simplex sitting inside Sn−1. Since the C-barycenter

q∗C is not necessarily inside K̃λSn−1, we need to solve the D-barycenter prob-
lem (44) under the constraint that q is constrained inside K̃λSn−1. When
the C-barycenter q∗C is inside K̃λSn−1, the D-barycenter q∗D is simply given
by (46), which is more localized or sharper than q∗C . When q∗C is not inside
K̃λSn−1, the solution of (44) is on the boundary of the simplex K̃λSn−1,
which implies that some components of q∗D are forced to be equal to 0.

Theorem 5 The right D-barycenter q∗D(S) of S is a sharper (more localized)
version of the C-barycenter.

Agueh and Carlier (2011) showed that when the ground metric is the
quadratic Euclidean distance, the W -barycenter has the property that its
shape is determined from the shapes of each element pi in S, but does not
depend on their location, namely that it is translation invariant. The C-
barycenter also inherits this property, and we show that so does the right
D-barycenter.

Let us consider a pattern p(ξ) = p(x, y) on the (x, y)-plane, where ξ =
(x, y). The center ξp of p(x, y) is defined by

ξp =

∫
ξp(ξ)dξ. (48)

Given a ξ̄, we define a shift operator Tξ̄, which shifts p(x, y) by ξ̄ = (x̄, ȳ),

Tξ̄p(ξ) = p(ξ − ξ̄). (49)
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Let P (ξ, ξ′) be a transportation plan from p(ξ) to q(ξ). When q(ξ) is
shifted as Tξ̄q(ξ), we naturally define the transportation plan Tξ̄P (ξ, ξ′),

Tξ̄P (ξ, ξ′) = P̄ (ξ, ξ′) = P
(
ξ, ξ′ − ξ̄

)
, (50)

which transports p(ξ) to Tξ̄q(ξ).
We study how the transportation cost changes by a shift. As recalled above,

we use the squared Euclidean distance as the ground cost,

m (ξ, ξ′) = ‖ξ − ξ′‖2 . (51)

Then, the direct cost of transportation is

〈M,P 〉 =

∫
m (ξ, ξ′)P (ξ, ξ′) dξdξ′. (52)

The cost of the shifted plan is

〈M,Tξ̄P 〉 =

∫
m (ξ, ξ′)P

(
ξ, ξ′ − ξ̄

)
dξdξ′ (53)

=

∫
m
(
ξ, ξ′′ + ξ̄

)
P (ξ, ξ′′) dξdξ′′ (54)

=

∫ {
‖ξ − ξ′′‖2 +

∥∥ξ̄∥∥2 − 2ξ̄ · (ξ − ξ′′)
}
P (ξ, ξ′′) dξdξ′′ (55)

= 〈M,P 〉+ ‖ξ̄‖2 − 2ξ̄ · (ξp − ξq) . (56)

Note that a shift does not change the entropy

H {P (ξ, ξ′)} = H
{
Tξ̄P (ξ, ξ′)

}
. (57)

When ξp = ξq, two patterns p and q are said to be co-centered. For two
co-centered p, q, we have

L (Pp,q) ≥ L
(
Pp,K̃λp

)
, (58)

where Pp,q is a transportation plan sending p to q. Hence, q∗ = Kλp mini-
mizes the transportation cost among all co-centered q.

We fix ξq and search for the optimal shape q∗(ξ) located at ξq that min-
imizes the transportation cost Cλ (Pp,q) from p to q. In order to derive the
optimal shape, we shift q by Tξ̄,

ξ̄ = ξq − ξp, (59)

such that p and q̄ = Tξ̄q are co-centered. Then, for a plan Pp,q̄, we have Pp,q
which is the shifted plan of Pp,q̄ by −ξ̄,

Pp,q = T−ξ̄Pp,q̄, (60)

q = T−ξ̄q̄. (61)
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We have
Cλ (TξP ) = Cλ(P ) +

∥∥ξ̄∥∥2 − 2ξ̄ · (ξp − ξq) . (62)

We have an important relation that Cλ (Pp,q) is decomposed into a sum
of the shape deformation cost among co-centered patterns and the positional
transportation cost, as

Cλ (Pp,q) = Cλ (Pp,q̄) + ‖ξp − ξq‖2 (63)

because of
ξp = ξq̄. (64)

Lemma 1 Given p, the Cλ-optimal pattern q(ξ) transporting p to q is a
shifted and blurred version of p(ξ),

q∗(ξ) = Tξp−ξqK̃λp(ξ), (65)

not depending on the locations ξp and ξq.

Let p1(ξ), · · · , pn(ξ) be n local patterns. We search for their C- and right
D-barycenters q(ξ) that minimize

FC(q) =

n∑
i=1

Cλ (Ppi,q) , FD(q) =

n∑
i=1

Dλ (Ppi,q) , (66)

The center of pi(ξ) is denoted by ξi = ξpi . Before solving the problem, let
us respectively shift pi(ξ) from ξi to ξ0, a fixed common location, such that
all shifted p̄i(ξ)’s are co-centered. Let q∗C(ξ) and q∗D(ξ) be the barycenters of
all co-centered p̄i(ξ), which do not depend on the locations of pi(ξ) but their
shapes.

Theorem 6 (Shape-Location Separation Theorem) The barycenters q∗C(ξ)
and q∗D(ξ) of p1(ξ), · · · , pn(ξ) are located at the barycenter of ξ1, · · · , ξn and
their shapes are given by the respective barycenters of p̄1(ξ), · · · , p̄n(ξ).

Proof From (63), we have

FC(q) =
∑

Cλ (Ppi,q̄i) +
∑
‖ξpi − ξq‖

2
, (67)

FD(q) =
∑

Cλ

(
Ppi,K̃λq̄

)
+
∑
‖ξpi − ξq‖

2
, (68)

where q̄i is the shifted version of q to the center of pi. Here, the shape and
location of q is separated. Minimizing the first term, we have q∗ which is the
respective barycenters of the shapes of co-centered p1, · · · ,pn. The second
term gives the barycenter of locations ξ1, · · · , ξn.

Corollary 1 When pi are shifts of an identical p, their right D-barycenter
has the same shape as the original p, whereas the C-barycenter is a blurred
version of p,

q∗C = Kλp. (69)

We show a simple example where pi are shifted p, a cat shape (Fig. 3a).
Its C-barycenter has a blurred shape Kλp (Fig. 3b) tending to the uniform
distribution as λ→∞. However, the shape of the right D-barycenter is exactly
the same as p (Fig. 3c).
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Fig. 3 (a) Cat images. (b) The C-barycenter of panel (a). The C-barycenter has a blurred
shape Kλp tending to the uniform distribution as λ → ∞. (c) The D-barycenter of panel
(a). The shape of the right D-barycenter is exactly the same as the original shape p.

6 Left Barycenter of Patterns

Since we use the assymetric divergence Dλ to define a barycenter, we may
consider another barycenter by putting the unknown barycenter in the left
argument of Dλ.

We consider again a family S of patterns, S = (qi)i=1,...,N . The barycenter
p of these patterns based on divergence Dλ is defined by the minimizer of

F lD(S,p) =
∑
i

Dλ[p : qi], (70)

and is called the left D-varycenter. We propose to solve that problem using the
accelerated gradient descent approach outlined in (Cuturi and Doucet, 2014),
with two differences: all examples qi must be smoothed beforehand follow-
ing an application of K̃λ, and the gradient incorporates now not only terms
resulting from Cλ(p, K̃λqi), but also from −Cλ(p, K̃λp) which, as explained
in Equation (73), is simply minus the Kullback-Leibler divergence between p
and the vector K̃λ1, that is the entropy of p plus the dot product between p
and log(K̃λ1). As a result the gradient of −Cλ(p, K̃λp) is equal to, up to a
constant term, − log(p) + log(K̃λ1), which tends to sharpen further any iter-
ate compared to the simple minimization of the Cλ barycenter. Note that this
approach, namely adding the entropy to the regularized Wasserstein barycen-
ter problem, was used in a heuristic way by Solomon et al. (2015) who called
it entropic sharpening, without proving that the resulting problem was con-
vex. Our work shows that, up to a given strength, the entropic sharpening of
regularized Wasserstein barycenters remains a convex problem.

It might be easier to calculate numerically, but it does not have the shape-
location separation property. An example of the left D-barycenter of four
patterns is shown in Fig. 4.
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Fig. 4 Four shapes considered in our experiments to compute barycenters according to Cλ

or Dλ
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Dλ left barycenter, Entropy : 10.0627
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Fig. 5 We consider in this example the squared-Euclidean distance on grids as the ground
metric cost. We study the iso-barycenter of the four shapes presented in Figure 4 using two
different discrepancy functions, Cλ and Dλ. (left) barycenter obtained using Algorithm 2
of Solomon et al. (2015), itself a specialized version of Benamou et al.’s algorithm (2014).
We used a 10−10 tolerance for the l1 norm between two successive iterates as a stopping
criterion). (right) Dλ left-barycenter obtained with our accelerated gradient approach. We
use a jet colormap to highlight differences in the support of the barycenters. As expected,
the entropy of the Cλ barycenter is higher than that of the Dλ left barycenter, since the
latter optimization incorporates a penalization term, −Cλ(p, K̃λp), which is equivalent to
penalizing the entropy of the solution p. This difference in entropy results in subtle yet
visible differences between the two solutions, with sharper edges for the Dλ left barycenter.

Conclusions

We defined a new divergence between two probability distributions based on
the C-function, which is the entropy-regularized cost function (Cuturi, 2013).
Although it is useful in many applications, it does not satisfy the criteria of a
distance or divergence. We defined a new divergence function Dλ derived from
Cλ, which works better than the original Cλ for some problems, in particular,
the barycenter problem. We proved that the minimizer of Cλ(p, q) is given by
K̃λp, where K̃λ is a diffusion operator depending on the base metric M . We
studied properties of K̃λ showing how it changes as λ increases, elucidating
properties of Dλ.

We applied Dλ to obtain the barycenter of a cluster of image patterns. It is
proved that the right D-barycenter keeps a good property that the shape and
locations of patterns are separated, which is a merit of the C-function based
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barycenter. Moreover, the D-barycenter gives even a sharper shape than the
C-barycenter.

We cannot touch upon computational aspects of the D-barycenter, because
this is a theoretical paper proposing a new divergence and its properties. We
also defined the left D-barycenter, because Dλ is an asymmetric divergence.
This is computationally easy to calculate. However, it remains as our future
study to explore its properties.

Appendix I: Proof of convexity of Dλ

Let us put the Hessian of the cost function as follows:

Gλ =
∂2Cλ(p, K̃λq)

∂η∂ηT
=

[
X Y
Y T Z

]
, (71)

expressed by block matricesX,Y ,Z where η = (p, q)T . Because Cλ is strictly
convex (Amari et al., 2018), Gλ is positive definite and the block component
Z is also regular and positive definite.

By using

P ∗ij = pi
Kij

Ki·
, (72)

we get

Cλ(p, K̃λp) = λ

n∑
i=1

pi ln
pi
Ki·

. (73)

Therefore, its Hessian becomes

G′λ =
∂2Cλ(p, K̃λp)

∂η∂ηT
= λ

[
diag

(
1
pi

)
+ 1

pn
11T O

O O

]
, (74)

where O is the zero matrix and diag(pi) represents a diagonal matrix whose
ij component is given by piδij . Let us put R = Gλ−G′λ. The determinant of
R is given by

det(R) = det(Z)det(R′), (75)

where we put

R′ = X − Y Z−1Y T − λ
(

diag

(
1

pi

)
+

1

pn
11T

)
. (76)

Because Z is positive definite, the positive definiteness of R is equivalent to
that of R′. As derived in (Amari et al., 2018),

G−1
λ =

1

1 + λ

[
piδij − pipj Pij − piqj
Pji − qipj qiδij − qiqj

]
, (77)
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and we can represent the (p,p)-block part of G−1
λ by using the block compo-

nents of Gλ as follows:

(X − Y Z−1Y T )−1 =
1

1 + λ

(
diag(pi)− ppT

)
. (78)

By using the Sherman-Morrison formula, we get

X − Y Z−1Y T = (1 + λ)

(
diag

(
1

pi

)
+

1

pn
11T

)
. (79)

Finally, we obtain

R′ = diag

(
1

pi

)
+

1

pn
11T . (80)

Because thisR′ is positive definite,R is also positive definite and Dλ is strictly
convex.

By using Eq.(14) and C0(p,p) = 0, we can confirm that Dλ converges to
the Wasserstein distance as λ→ 0.

Appendix II: Proof of Dλ approaching an energy function for large
λ

We expand Dλ[p, q] in terms of K̃λ(q − p) as

1

(1 + λ)
Dλ[p, q] = Cλ

(
p, K̃λp+ K̃(q − p)

)
− Cλ

(
p, K̃λp

)
(81)

= ∂qCλ

(
p, K̃λp

)
· K̃λ(q − p)

+
1

2
∂q∂qC

(
p, K̃λp

)
· K̃λ(q − p)⊗ K̃λ(q − p) (82)

=
1

2
∂q∂qC

(
p, K̃λp

)
· K̃λ(q − p)⊗ K̃λ(q − p), (83)

because of
∂qCλ

(
p, K̃λp

)
= 0, (84)

where ⊗ is the tensor product. Higher-order terms are neglected.
When λ is large, we expand Kλ as

Kij,λ = exp

{
−Mij

λ

}
= 1− Mij

λ
, (85)

Kj·,λ = n
(

1− m̄·j
λ

)
, m̄j· =

1

n

∑
i

Mji, (86)

obtaining

K̃i|j,λ =
Kji

Kj·
=

1

n

(
1− m̃ij

λ

)
, m̃ij = Mji − m̄j·. (87)
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Hence

K̃λ(q − p)i =
1

nλ

∑
j

m̃ij (qj − pj) . (88)

We have

∂q∂qC
(
p, K̃λp

)
= ∂q∂qCλ (p,1) +O

(
1

λ

)
. (89)

So we calculate ∂q∂qCλ(p, q̃) when

q̃i =
(
K̃λp

)
i

=
1

n
+ εi (90)

and expand it up to O
(
ε2
)
.

The optimal transportation plan for p→ q is

p∗ij = caibj (91)

when λ→∞, because Kij,λ = 1. Hence,

P ∗ij = piqj . (92)

We have already obtained the inverse of ∂η∂ηCλ(p, q) in (45) of the pre-
vious paper

G−1
λ =

1

1 + λ

[
piδij − pipj P ∗ij − piqj
P ∗ji − qipj qiδij − qiqj

]
. (93)

Hence, it is block-diagonal
(
P ∗ij − piqj = 0

)
, and the (q, q)-part of Gλ (λ →

∞) is

Gλ,qq = (1 + λ) [qiδij − qiqj ]−1
(94)

= (1 + λ)

(
diag

(
1

qi

)
+

1

qn
11T

)
. (95)

In our case of q = 1/n,

G = ∂q∂qC = (1 + λ)(nδij + n). (96)

We finally calculate

G · K̃λ(q − p)⊗ K̃λ(q − p)

=
(1 + λ)n

n2λ2

∑
m̃ijm̃ik (qj − pj) (qk − pk) +

(1 + λ)n

n2λ2
{
∑
ij

m̃ij (qj − pj)}2

=
1 + λ

λ2
(q − p)TM̃(q − p),

Note that
∑
i m̃ij = 0.
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