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1. Introduction

Power-law diffusion equations involving p-Laplacian div
(|∇u|p−2∇u

)
with constant (p = const) and variable (p = p(x)) 

exponents attract a considerable attention in connection with studies on non-Newtonian fluids (Ružička, 2000), turbulence 
modeling (Wukie and Orkwis, 2017), phase transitions (Alamgir and von Luxburg, 2011), data clustering (Bühler and Hein, 
2011), machine learning (Slepčev and Thorpe, 2017), and image processing (Blomgren et al., 1997; Chen et al., 2006). 
These and other studies devoted to power-law diffusions call for development of efficient numerical methods for solving 
second-order elliptic partial differential equations with p-type gradient nonlinearities and some very recent results are 
reported in Toulopoulos and Wick (2017), Caliari and Zuccher (2017).

In this paper, we apply the alternating direction method of multipliers (ADMM) to p-Laplace-type diffusion problems 
arising in distance function and optimal transport approximations (p is large and constant) and image enhancement (p is 
small and variable).

ADMM belongs to a family of splitting methods for solving variational minimization problems and has recently become 
a very popular tool for problems arising in imaging, machine learning, mobile communications, and many other scientific 
and engineering disciplines (Han et al., 2013; Hastie et al., 2015; Glowinski et al., 2017).

The basic problem we are dealing with in this paper is as follows. Let � be a bounded domain in Rn (for the sake 
of simplicity, we consider only the cases when n = 2 or n = 3), p = p(x) > 0, and u(x) be the solution to the p-Poisson 
equation

−�pu ≡ −div
(
|∇u|p−2∇u

)
= f (x) in � (1)
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subject to proper boundary conditions. Equivalently, u(x) can be defined as the minimizer of the following p-diffusion 
energy

E p(u) ≡
∫
�

|∇u|p

p
dx −

∫
�

f u dx −→ min . (2)

Several approaches for numerically solving (1) have been proposed recently in Toulopoulos and Wick (2017) for p =
const > 1 and (Caliari and Zuccher, 2017) for p = p(x) ≥ 1. These include combining finite elements with quasi-Newton 
and Newton-like methods (Toulopoulos and Wick, 2017; Caliari and Zuccher, 2017) and augmented Lagrangian techniques 
(Toulopoulos and Wick, 2017). When p ≥ 1, since we deal with large and constant p, our ADMM-based approach seems 
appropriate and computationally efficient, as each of its iterations requires

• solving a Poisson equation with a properly updated right-hand side (so the corresponding matrix and its factorization 
are computed only once) and

• numerically solving a 1D polynomial equation.

Setting 0 < p < 1 leads to a non-convex energy minimization problem. p-Laplace diffusion with p = const ∈ (0, 1) and 
its applications to signal and image processing were considered in Nikolova (2015), Chartrand and Yin (2016) (see also 
references therein). Our approach is essentially an iteratively reweighted L1 minimization scheme (Candes et al., 2008;
Chartrand and Yin, 2008) but it seems we are the first who consider the case of variable exponent p = p(x) ∈ (0, 1], which, 
in addition, is adaptively constructed.

We consider the following applications of our numerical schemes for p-Laplace diffusion problems.

Distance function approximation. As shown in Bhattacharya et al. (1989), Kawohl (1990), u(x), the solution to (1) with 
f (x) ≡ 1 and subject to homogeneous Dirichlet boundary conditions u(x) = 0 on ∂�, converges to dist(x), the 
distance from ∂�, as p → ∞. Thus our numerical approach can be used for approximating the distance function, 
as detailed in Section 3.1.

Optimal transportation. According to Evans and Gangbo (1999) (see also Ambrosio, 2003; Villani, 2003) the solution to (1)
with f (x) = f1(x) − f2(x), 

∫
�

f (x) dx = 0, and subject to the Neumann boundary conditions ∂u
∂n = 0, converges, as 

p → ∞, to the solution of an optimal mass transportation of f1(x) to f2(x). So our numerical approach can be 
also used for approximating optimal transportation plans, as discussed in Section 3.2.

Image enhancement. As demonstrated in Section 4 a proper modification of (2) with variable and adaptively chosen image-
dependent exponent p = p(x) ∈ (0, 1] can be used for image enhancement purposes. We show that our simple 
modification of the ADMM method leads to impressive image dehazing and low-light image enhancing results.

The distance function estimation problem we deal with differs from traditional problems of computing distances between 
points on surfaces or inside volumes bounded by surfaces (Crane et al., 2013; Solomon et al., 2014) (see also references 
therein). The distance-from-surface problem we consider in this paper is important for a number of applications including 
efficient implementation of level-set methods (Burger and Osher, 2005), surface reconstruction from scattered points (Calakli 
and Taubin, 2011), medical image analysis and visualization (Jones et al., 2006), computer graphics (Koschier et al., 2017), 
computational mechanics (Biswas et al., 2004), and computational fluid dynamics (Tucker, 2011; Roget and Sitaraman, 2013). 
Last but not least, we would like to mention the characteristic function method of Kantorovich (Babuška et al., 2003) and 
its extension by Rvachev and others (Freytag et al., 2011).

As mentioned above, our approach to the distance-from-surface estimation problem consists of applying ADMM to the 
variational problem (2). As demonstrated in Belyaev and Fayolle (2015), p-Laplace diffusion can be used for computing 
accurate approximations of the distance function. So we hope that the computational approach to (2) developed in this 
paper turns p-Laplace diffusion into a highly competitive tool for distance function estimation. It is also worth to note 
that in Belyaev and Fayolle (2015) ADMM was applied to a different energy minimization problem to achieve an accurate 
distance function approximation; in this paper, we show that (2) coupled with ADMM yields better results.

Applications of p-Laplace diffusion for approximating optimal transportation problems were previously considered in 
Mazón et al. (2014) (see also references therein). In Glowinski and Marroco (1975) (2) was minimized by an iterative 
scheme. Augmented Lagrangian methods are frequently used for numerical solution of optimal transportation problems 
(Benamou and Carlier, 2015; Solomon et al., 2014). In our study, we approximate the Monge transportation problem (the 
so-called earth mover’s distance problem) by (2) and propose a variant of ADMM which shows a fast convergence rate. Our 
goal here is not to compete with the elegant and computationally efficient method of Solomon et al. (2014) and/or even the 
faster method of Li et al. (2018). Instead we are interested in developing a sufficiently flexible approach which, after proper 
adjustments, can be extended to deal with modifications of the Monge transportation problem such as, for example, those 
considered in Benamou and Carlier (2015), Mazón et al. (2014).

Finally, we consider an application of (2) with variable exponent p = p(x), 0 < p(x) ≤ 1, to image dehazing and low-light 
image enhancement problems. The novelty of our approach is twofold. Firstly, p-Laplace diffusion with 0 < p(x) ≤ 1 has 
not been considered before to the best of our knowledge. Secondly, the variable exponent p(x) is learnt (automatically 
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and adaptively determined) from an input image. To validate our approach as a proof-of-concept we compare it with two 
state-of-the-art image dehazing and low-light image enhancing methods (He et al., 2011; Guo et al., 2017).

2. Numerical solutions to p-Laplace diffusion equations

2.1. Splitting and relaxation

To solve (2), let us introduce a dual variable ξ (x) and consider instead the constrained problem∫
�

1

p
|ξ |pdx −

∫
�

f u dx −→ min, where ξ = ∇u,

then relaxing the constraint ξ = ∇u, we arrive at∫
�

1

p
|ξ |pdx + r

2

∫
�

(∇u − ξ)2dx −
∫
�

f u dx −→ min, (3)

where r > 0.
If ξ(x) is fixed, then minimization of (3) w.r.t. u(x) leads to the Poisson equation

−�u = −div ξ + 1

r
f in �.

Let us now fix u(x) and optimize w.r.t. ξ (x). For a given x ∈ �, the optimal ξ (x) can be found in the form ξ (x) =
c(x)∇u(x). Indeed, if x is fixed, the optimal ξ minimizes

1

p
|ξ |p + r

2
(∇u − ξ)2

and, therefore, is situated on the straight segment connecting the origin of coordinates with ∇u. In other words, ξ = c∇u
for some scalar c. To determine for each x the scalar function c(x), ξ(x) = c(x)∇u(x) is substituted in (3) leading to

1

p
cp|∇u|p + r

2
|∇u|2(c − 1)2 −→ min (4)

or, equivalently

g(c) ≡ cp−1|∇u|p−2 + r(c − 1) = 0. (5)

For a given x ∈ �, if |∇u(x)| 
= 0, equation (5) always has a root 0 < c < 1, because g(0) = −r < 0 and g(1) = |∇u|p−2 > 0. 
Although in general it is not possible to find the root of (5) analytically, we can compute it numerically.

Newton’s method. One step of the standard Newton’s method for solving numerically g(c) = 0 is given by

ck+1 = ck − g(ck)

g′(ck)
. (6)

We have g′(c) = (p − 1)|∇u|p−2cp−2 + r, and thus

ck+1 = ck − cp−1
k |∇u|p−2 + r(ck − 1)

(p − 1)|∇u|p−2cp−2
k + r

Given that 0 < c < 1, we can start from c1 = 1. Then, given that g(1) = |∇u|p−2, and g′(1) = (p − 1)|∇u|p−2 + r, we arrive 
at these first two steps for Newton’s method

c1 = 1, c2 = 1 − |∇u|p−2

(p − 1)|∇u|p−2 + r
,

which provides already a good approximation.
If |∇u| ≤ 1, Newton’s method with c1 = 1 converges quickly. However, if |∇u| > 1, Newton’s method for solving (5) may 

demonstrate a slow convergence if started from c1 = 1. Fig. 1 demonstrates such a case. To find a better starting value for 
solving (5) by Newton’s iterations when |∇u| > 1, let us consider the polynomial g(cα) and note that setting

α = r1/(p−1)

(p−2)/(p−1)
|∇u|
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Fig. 1. The graph of g(c) near its root (p = 15, |∇u| = 5 and r = 2). In this case, starting from c1 = 0 or c1 = 1 may require a dozen of Newton steps to 
achieve a reasonably accurate root localization.

turns g(cα) = 0 into

cp−1 + αc − 1 = 0. (7)

Since (7) has a root between 0 and 1 and the influence of the term cp−1 in (7) is rather small, starting the Newton iterations 
for (7) from c = 1 is a good approximation. This justifies the following heuristic choice of starting point c1 for the Newton 
iterations for (5)

c1 =
{

1 if |∇u| ≤ 1

α if |∇u| > 1.

With this selection of c1, only few iterations are needed to obtain a good numerical approximation of the root of (5) in 
[0, 1]. In the example shown in Fig. 1, the starting point is c1 = α = 0.236 which is sufficiently close to the root.

Approximation. Instead of searching for ξ (x) = c(x)∇u(x) and substituting in (3) to arrive at (4), we can use an approxima-
tion of the pth power of the Lp norm of ξ by∫ |ξ |

|∇u|1−p
dx (8)

in (3). Here, as before, an iterative procedure is applied: ∇uk determines ξk which, in its turn, determines ∇uk+1. So we 
can assume that ξ is close to ∇u and, therefore, (8) approximates∫

|ξ |pdx . (9)

Now optimizing (3) with (8) instead of (9) w.r.t. ξ leads to a standard shrinkage operation used in sparse optimization (see, 
for example, Han et al., 2013, Section 4.4) and yields the closed form solution

ξ = max

{
|∇u| − 1/p

r|∇u|1−p
,0

} ∇u

|∇u| . (10)

This approach works well for low values of p and thus is suitable for the image processing applications that we consider 
in Section 4, where 0 < p ≤ 1. Unfortunately, this approximation does not work as well for the problems considered in 
Section 3, where p is large and where we use instead a few iterations of (6).

Iterative solver. To summarize, to compute a numerical solution to (2), we iteratively repeat two steps consisting in:

• minimizing (3) w.r.t. u(x) with ξ (x) being fixed, which involves solving a simple Poisson problem,
• and then minimizing (3) w.r.t. ξ(x) with u(x) being fixed, by solving numerically (5) or using the approximation (10).

2.2. Alternating direction method of multipliers (ADMM)

In order to improve the convergence of the precedent iterative scheme, the alternating direction method of multipliers 
(ADMM) can be used to solve (2). Let us add a Lagrange multiplier term in (3)∫

�

1

p
|ξ |pdx +

∫
�

μ · (ξ − ∇u)dx + r

2

∫
�

(ξ − ∇u)2dx −
∫
�

f u dx −→ min, (11)

where r > 0 and μ(x) is the vector of the Lagrange multipliers.
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Let us rewrite (11) as∫
�

{
1

p
|ξ |p + r

2

[
ξ − (∇u − μ

r
)
]2 − μ2

2r
− f u

}
dx −→ min . (12)

Then, if u and μ are fixed the optimal ξ is proportional to ∇u − μ
r and thus has the form c(x) 

(
∇u(x) − μ(x)

r

)
. Substituting 

this expression for ξ in (12) leads to solving for c

1

p
cp

∣∣∣∇u − μ

r

∣∣∣p + r

2

∣∣∣∇u − μ

r

∣∣∣2
(c − 1)2 −→ min

or equivalently∣∣∣∇u − μ

r

∣∣∣p−2
cp−1 + r(c − 1) = 0, (13)

which can be solved numerically using the same techniques that were used for solving (5). Alternatively, we can also apply 
an approximation to the pth power of the Lp norm of ξ leading to the closed form

ξ = max

{
|s| − 1/p

r|∇u|1−p
,0

}
s

|s| ,

s = ∇u − μ

r
. (14)

With fixed ξ and μ, optimizing (11) w.r.t. u(x) leads to solving the Poisson equation

−�u = −div ξ − div
μ

r
+ 1

r
f in �. (15)

Finally, we arrive at an iterative procedure for solving (1)

1: repeat
2: Optimize (12) for ξ (k+1) by solving (13) or using (14),

3: Solve −�u(k+1) = − div ξ (k+1) − div μ(k)

r + 1
r f for u(k+1) ,

4: Update μ(k+1) = μ(k) + r
(
ξ (k+1) − ∇u(k+1)

)
5: until convergence

Here the rate of convergence is measured by the relative residual error

‖u(k+1) − u(k)‖2

‖u(k)‖2
(16)

between two successive iterations and the above iterative process is stopped when (16) is less than a user-specified thresh-
old ε. In our experiments we used a value of ε = 10−3.

3. Distance function and optimal transport approximations with p-diffusion

3.1. Distance function

Formulation. Setting f (x) ≡ 1 in (1) and considering the homogeneous Dirichlet boundary condition up = 0 on ∂� we 
arrive at

−�pup = 1 in �, up = 0 on ∂� (17)

with 2 ≤ p < ∞.
Let dist(x) denote the shortest distance from x to ∂�. As shown in Bhattacharya et al., Kawohl (1989, 1990),

up(x) → dist(x) as p → ∞, (18)

and the convergence is strong in Sobolev space W 1,k(�) for arbitrary k > 1. One can improve the above distance function 
approximation by considering

v p(x) = − ∣∣∇up
∣∣p−1 +

[
p

up + ∣∣∇up
∣∣p

] p−1
p

(19)

p − 1
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Fig. 2. Approximation to the distance function by the solution of the p-Poisson problem (17). Top row: p = 5 (left) and p = 15 (right). Bottom row: p = 25
(left) and the exact distance (right).

for which

v p = 0 and
∂v p

∂n
= 1 on ∂�. (20)

Thus v p(x) delivers a more accurate approximation of dist(x) near ∂�. See Belyaev and Fayolle (2015) for a justification 
of this normalization and additional details. Interestingly normalization (19) has been recently employed in turbulence 
modeling for estimating the so-called wall distance (Wukie and Orkwis, 2017).

Initialization and Poisson distance. To initialize the numerical schemes from Section 2 to solve (17), we start from the solution 
to the homogeneous Dirichlet problem for the following Poisson equation

−�u = 1 in �, u = 0 on ∂�. (21)

This so-called Poisson distance function approximation (21) is used in several geometric modeling and image processing 
applications including action recognition (Gorelick et al., 2007; Gorelick et al., 2006), shape skeletonization (Aubert and 
Aujol, 2012), estimating the wall distance in turbulence modeling (Tucker, 1998), and geometric de-featuring (Xia et al., 
2012).

Numerical experiments. Distance function approximations obtained by the p-Poisson distance are illustrated in Fig. 2 for 
a 2D domain. The solution to (17) is computed numerically by using ADMM (Section 2.2). The geometrical domain is 
triangulated, and the Poisson problems (15) are solved by finite elements using linear basis functions and homogeneous 
Dirichlet boundary conditions.

Fig. 2 illustrates the behavior of the solution to (17) for different values of p = 5, 15 and 25. Notice that the approxima-
tion to the exact distance function improves as p increases (compare to the image corresponding to the exact distance to 
the boundary).

The point-wise absolute and relative errors w.r.t. the exact distance to the boundary dist(x) for the 2D domain of Fig. 2
are shown in Fig. 3 for p = 25. One can observe that the largest errors are located at and near distance function singularities 
(the medial axis of �) and concave angles of ∂�. In particular, concave angles of ∂� worsen smoothness properties of the 
solutions to Poisson equation (15) near ∂� (Grisvard, 2011). In addition, a concave angle of ∂� weakens smoothness of 
dist(x) near the vertex of the angle.

This phenomenon occurs for other methods based on solving elliptic boundary value problems, e.g. Poisson problems. It 
also occurs, for example, with the geodesics-in-heat method (Crane et al., 2013) adapted for estimating the distance from 
a 2D curve or a surface in 3D. This is illustrated in the bottom row of Fig. 3 (the time-step recommended in Crane et al.
(2013) was used). The images also demonstrate that, in term of approximation quality, our approach delivers better results 
than the geodesics-in-heat method.

The relative residual error (16) between two successive iterations of the ADMM, is shown in Fig. 4 for different values 
of p during a few iterations of the ADMM. Only a few iterations are necessary to reach convergence. In contrast to Fig. 2, 
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Fig. 3. Point-wise absolute (left) and relative (right) errors for the p-Poisson distance (top) and its normalization (19) (middle) w.r.t. the exact distance to 
the boundary of a 2D domain. Here p = 25. Bottom row: relative point-wise error for the p-Poisson distance (v p, p = 25) on the left, its normalization (19)
in the middle and the geodesics-in-heat method (φ) (Crane et al., 2013) on the right; the same colormap is used for comparison.

Fig. 4. Relative residual error for the solution of (17) on the rider domain for different values of p.

Fig. 4 shows advantages of using smaller values of p: the p-Laplacian is less degenerate and ADMM demonstrates a better 
convergence.

In Fig. 5, we compare the result obtained for p = 25 with the approach described in Belyaev and Fayolle (2015, Section 5), 
which is also based on ADMM iterations but is used to solve a different variational problem
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Fig. 5. Approximation to the distance function by: top row – the ADMM approach of (Belyaev and Fayolle, 2015) for 20 iterations, and until the residual 
error is below some threshold; bottom row – the solution of the p-Poisson problem (17) for p = 25, and its normalization (19).

Fig. 6. Solution to (17) for large values of p (left: p = 100 and right: p = 200).

∫
�

(|∇u| − 1)2dx → min, u = 0 on ∂�. (22)

One advantage of the p-Laplacian approach (17) over (22) for the distance function estimation consists of the normalization 
(19), which makes the approximation very accurate near the boundary. Another advantage is that for sufficiently high value 
of p, one can obtain a better approximation of the distance, with only a few iterations of ADMM.

While an approximation of the distance function based on the solution of the p-Poisson problem (17) was also presented 
in Belyaev and Fayolle (2015, Section 7), the numerical solution was computed with a traditional non-linear solver and 
limited to small values of p (the numerical examples shown in Belyaev and Fayolle (2015) are up to p = 10). The numerical 
approach proposed in this paper allows instead to solve efficiently (17) for much larger values of p, as already illustrated 
for p = 25 in Fig. 2 and for p = 100 and 200 in Fig. 6.

3D numerical experiments. Our approach consisting of applying ADMM iterations to (17) and using normalization (19) natu-
rally works in 3D for approximating the distance to an input surface represented by a triangle mesh. The Poisson problems 
(15) are now solved on a tetrahedralization of the 3D domain by finite element with linear basis functions. Fig. 7 shows the 
numerical solution to (17) for p = 15 after a couple of iterations of ADMM. One notices that the normalization (19) allows 
to improve significantly the distance approximation (compare the left and middle images in Fig. 7 against the exact distance 
on the right).

The point-wise absolute error |up(x) − dist(x)| and relative error

|up(x) − dist(x)|

|dist(x)|
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Fig. 7. p-Poisson distance (left), normalized p-Poisson distance (middle) obtained by solving (17) with ADMM (Section 2.2) and distance (right) to the 
surface of the Armadillo triangle mesh. In this example p = 15 is used.

Fig. 8. Absolute (left) and relative (right) error for the p-Poisson distance (top) and its normalization (19) (bottom) w.r.t. the exact distance to the boundary 
(see also Fig. 7).

w.r.t. the exact distance dist(x) are shown in Fig. 8 for further comparison. Similar to the 2D case in Fig. 3, higher errors are 
located near distance function singularities of the domain and concave angles of the boundary. Additionally, higher errors 
can occur at poorly shaped tetrahedra, near small features of the domain boundary. One could use moving mesh approaches 
(Cao et al., 2003) and/or techniques for improving the shapes of the generated tetrahedra such as Klingner and Shewchuk
(2008), Tournois et al. (2009) to improve the result.

Behavior near the boundary. The normalization (19) allows us to improve the approximation of the distance near the bound-
ary. This is illustrated in Fig. 9 on a selected region of the Armadillo model (left). Both p = 15 and p = 100 are shown. 
For p = 15 the normalized solution (19) delivers already a close approximation of the distance (compare for the center-left 
column the top and bottom row). For increased values of p (for example p = 100 is shown in Fig. 9) the difference between 
the solution of (17) and its normalization becomes less evident, as illustrated in the center-right column.
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Fig. 9. Behavior near the boundary. Left-most: selected region on the Armadillo model. Four central images correspond to p = 15 (top-left), p = 100
(top-right), p = 15 normalized by (19) (bottom-left), and p = 100 normalized by (19) (bottom-right). Right-most: the exact distance from the boundary. 
The maximum values achieved by the approximate and exact distances provide us with a reliable indicator of approximation quality.

Table 1
Timings for solving (17) to approximate the distance function for triangulated 2D and tetrahedral 3D domains.

2D model #nodes #tris time (s)

Rider, p = 5 1258 2228 0.08
Rider, p = 15 1258 2228 0.11
Rider, p = 25 1258 2228 0.15

3D model #nodes #tets time (s)

Armadillo, p = 5 16962 88927 15.45
Armadillo, p = 15 16962 88927 16.1
Armadillo, p = 25 16962 88927 17.6
Fertility, p = 5 21811 114769 20.27
Fertility, p = 15 21811 114769 21.198
Fertility, p = 25 21811 114769 23.31

Computational timings. Table 1 shows computational timings for approximating the distance to a curve in 2D, and surface in 
3D by solving (17) for different values of p and different domains. The times correspond to evaluating the distance approx-
imation at every node of the domain. ADMM (Section 2.2) is used. The Poisson problems are solved on a triangulation or 
tetrahedralization of the domain using linear elements. The timings are more expensive in the 3D case as the corresponding 
matrices are less sparse. The implementation is written entirely in MATLAB and run on an Intel Core i3 at 3.3 GHz with 
4GB of RAM. The code is not particularly optimized outside of using vectorized operations. Linear systems are solved with 
the backslash (‘\’) operator.

3.2. Optimal transport

Formulation. The connection between p-Poisson equations and optimal transportation problems was established by Evans 
and Gangbo in Evans and Gangbo (1999) (see also Ambrosio, 2003 and the description in Villani (2003, Section 2.4.6), where 
a connection to the diffusion of particles is made). Given two densities f1 and f2, with equal mass 

∫
�

f1 dx = ∫
�

f2 dx, let 
us consider the p-Poisson problem

−�pup ≡ −div
(
|∇up|p−2∇up

)
= f1 − f2. (23)

Evans and Gangbo showed that the limit of up , the solution to (23), as p → ∞ is a function u∞ , which satisfies

−div (a∇u∞) = f1 − f2, a(x) ≥ 0, |∇u∞| ≤ 1.

This solution u∞ is the transportation potential, and its gradient −∇u∞ gives the direction of optimal transport. Further-
more, the transport density a(x) allows to compute the distance in the direction −∇u∞ .

Another possible interpretation is as follows. The problem

−�u = f1 − f2 in �,
∂u = 0 on ∂�

∂n
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Fig. 10. Transport direction given by −∇up , with up solution to (23), for different sources and sinks (top and bottom row). From left to right: p = 5, 15
and 25.

defines a diffusion of particles born with rate f1(x) and dying with rate f2(x). The optimal trajectories for the particles 
happen where |∇u| is large. Thus, in order to accelerate the diffusion, we can use instead

−div (a∇u) = f1 − f2,

where a(x) is large when |∇u(x)| is large. For example, we can set a(x) = |∇u(x)|p−2 with p > 2, leading back to (23).
We arrive at (23) from (1) by setting f (x) ≡ f1(x) − f2(x). Thus, the problem (23) can be solved with the numerical 

techniques developed in Section 2.
The method described here presents similarities with Solomon et al. (2014). Indeed, both approaches correspond to 

different formulations and approximations of the same problem, while both relying on ADMM for the numerical solution. 
In Solomon et al. (2014), the approximation comes from the spectral approximation of the curl free part, while in this work 
the approximation comes from solving a p-Poisson problem (p controls the approximation accuracy).

Boundary conditions. The reflecting boundary condition

∂up

∂n
= 0 on ∂�

is used with the problem (23). Both methods in Section 2 contain a step that requires solving a simple Poisson sub-problem. 
In the case of the ADMM, it is

−�u = −div ξ − div
μ

r
+ 1

r
f in �.

The corresponding boundary conditions for this problem are given by

∂u

∂n
=

(
ξ + μ

r

)
· n on ∂�. (24)

Numerical experiments. Fig. 10 illustrates the results obtained from the numerical solution of (23) for different values of p, 
when f1 and f2 are Dirac distributions. ADMM (Section 2.2) is used with a few Newton iterations (6). The linear Poisson 
problems (15) are solved by the finite element method, using linear basis functions on the triangulated domain with Neu-
mann boundary conditions (24). As Dirac distributions are used for f1 and f2, the direction of optimal transport given by 
−∇u∞ correspond to the geodesics, as illustrated in Fig. 10, where −∇up is shown for increasing values of p. The vector 
field −∇up is colored according to its magnitude, and the size of the arrows is set proportional to the magnitude as well. 
The corresponding relative residual error at each iteration is shown in Fig. 11 for the same domain (for the choice of source 
and sink shown in the first row of Fig. 10).

Similar computations can be performed as well on a surface in R3, with the surface represented by a triangle mesh. 
The numerical approaches described in Section 2 requires discrete versions of the gradient, divergence and Laplace–Beltrami 
operators on a triangle mesh. Discrete exterior calculus (see for example Desbrun et al., 2008) can be used to obtain 
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Fig. 11. Relative residual error for solving the optimal transport problem (23) on the rider domain for p = 5,15,25.

Fig. 12. Transport direction given by −∇up for up solution to (23) on different triangle meshes. p = 25.

Fig. 13. Relative residual error for the examples of Fig. 12. Left: Bunny; Right: Kitten.

expressions for these discrete operators. Fig. 12 illustrates the results of numerical experiments on two different input 
triangle meshes corresponding to the solution of (23) for p = 25, with Dirac distributions for f1(x) and f2(x). In these 
examples, (23) is solved by ADMM iterations (Section 2.2). The vector field −∇up is shown in Fig. 12, with the vectors color 
and length proportional to the magnitude. As Dirac distributions are used for f1 and f2, the gradient flow of the optimal 
transportation can be interpreted as the geodesic from the source to the sink on the surface. The corresponding relative 
residual error for each domain is shown in Fig. 13.

Computational timings. Table 2 shows timings for computing an approximation to the optimal transport problem by solving 
(23) for different values of p and different triangulated domains in 2D and surfaces in 3D. In this case as well, the times 
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Table 2
Timings for solving (23) by ADMM for two Dirac masses on different triangulated 2D domains and triangle mesh 
surfaces in 3D.

2D model #nodes #tris time (s)

Rider, p = 5 1258 2228 1.21
Rider, p = 15 1258 2228 1.98
Rider, p = 25 1258 2228 2.18

3D model #nodes #tris time (s)

Bunny, p = 5 2762 5534 7.65
Bunny, p = 15 2762 5534 8.38
Bunny, p = 25 2762 5534 8.01
Kitten, p = 5 9447 18894 16.7
Kitten, p = 15 9447 18894 20.66
Kitten, p = 25 9447 18894 22.92

correspond to evaluating up , the solution to (23), at every node of the computational domain. ADMM is used and the 
Poisson problems are solved using linear elements. The same experimental conditions as for the distance approximation 
(Section 3.1) are used.

4. Image processing applications

We now turn our attention to using the numerical solutions of the p-Poisson equation (1) developed in Section 2 to 
image processing applications, namely to the task of image enhancement.

Curiously, image enhancement often starts from a proper image smoothing step. Let us start from the following 
p-diffusion minimization problem∫

�

1

p
|∇u|p + λ

2

∫
�

(H[u − g])2 −→ min, (25)

where g(x) is a given image and H is a smoothing operator (for example, H is the convolution with a Gaussian kernel). 
For p = 1, variational problem (25) becomes a member of the famous total variation (TV) family of methods introduced in 
Rudin et al. (1992). High popularity of TV-based methods is based on two pillars

• they deal with convex energies and
• they promote sparsity in the gradient domain.

The former property allows for using highly efficient computational methods developed for dealing with convex minimiza-
tion problems. The latter one is crucial since typically natural images allow for accurate approximations by images, which 
are sparse in the gradient domain.

In particular, the variational model (25) with p = 1 and various choices for smoothing operators H[·] is widely used for 
texture+structure image decomposition (Meyer, 2001, Chapter 1), (Aujol et al., 2006), (Aubert and Kornprobst, 2006, Section 
5.2), (Vese and Le Guyader, 2016, Chapter 5). Indeed, let us set p = 1 in (25) and assume that an input image g(x) can 
be decomposed into the sum of an high-frequency texture component and a structure component sparse in the gradient 
domain. Then one can hope that the smoothing operator H in (25) suppresses the image texture and the TV term allows 
for recovering the structure component of g(x).

Recently, however, non-convex regularization methods have started to attract interest, because they allow to recover 
sparser solutions from fewer measurements (Chartrand and Yin, 2016). In particular, the Lp -based regularization (corre-
sponding to the p-diffusion energy) with 0 < p < 1 has become a popular tool for sparsity enforcement (Selesnick and 
Bayram, 2014; Nikolova, 2015; Chartrand and Yin, 2016).

In our study, we deal with a variational model which is more general than (25). Namely we consider∫
�

(
a(x)|∇u|p(x)

)
+ λ

2

∫
�

(H[u − g])2 −→ min, (26)

with variable exponent 0 < p ≡ p(x) ≤ 1 and weight function a(x). Further we suggest to select p(x) and a(x) adaptively in 
order to achieve a better suppression of high-frequency image details.

While the use of p-diffusion energy term with variable exponent p(x) ≥ 1 has been previously considered in a number 
of works, such as Diening et al. (2011), Radulescu and Repovs (2015), Tang et al. (2017) for image processing applications, 
it seems that the case 0 < p(x) ≤ 1 has not been considered before.
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4.1. Adaptive image smoothing

We assume that small-scale image details and texture contribute to the high-frequency part of the level-set curvature

k(x) = div

( ∇g(x)

|∇g(x)|
)

of the input image g(x). Let k̃(x) be obtained from k(x) by suppressing high frequencies of k(x). We would like to find an 
image which is close to the structure component of g(x) and whose level-set curvature is close to k̃(x). We achieve this by 
using a two-step procedure.

In the first step, we determine (learn) the variable exponent p(x) and weight a(x) from the input image g(x). We solve 
(26) with p = 1 and a = 1 and measure a disparity between k1(x), the level-set curvature of the resulting image, and k̃(x). 
The disparity indicates where additional smoothing should be applied to g(x) and is therefore used to define p(x) and a(x).

In the second step, once p(x) and a(x) are given, we use a modification of the numerical methods described in Section 2
to solve (26).

Computation of p(x) and a(x). We obtain k̃(x) by applying a simple low-pass filter, such as a Butterworth low-pass filter [
1 +

( |ω|
b

)m]−1
with cutoff frequency b, to k(x) the level set curvature of the input image g(x).

The next stage of our two-step approach consists of minimizing (26) with fixed values p = 1 and a = 1. We use a variant 
of the method described in Section 2.2. The variational problem to be minimized becomes

L(u, ξ ,μ) =
∫
�

{
|ξ | + λ

2
H[u − g]2

+ μ · (ξ − ∇u) + r

2
|ξ − ∇u|2

}
, (27)

where μ(x) is a vector of Lagrange multipliers and r > 0.
For fixed u and μ, minimizing the subproblem w.r.t. ξ allows for a closed-form solution

ξ = max

{
|s| − 1

r
,0

}
s

|s| , s = ∇u − μ

r
. (28)

For fixed ξ and μ, computing the optimal u leads to solving a linear PDE

−r(�u − div(ξ)) + div(μ) + λH∗H[u − g] = 0

which can be done in this case with the Fast Fourier Transform (FFT).
This leads to the following iterative procedure

1: repeat

2: ξ (k+1) = max
{|s| − 1

r ,0
} s

|s| , where s = ∇u(k) − μ(k)

r

3: u(k+1) = arg min
u

L(u, ξ (k+1), μ(k)),

4: μ(k+1) = μ(k) + r
(
ξ (k+1) − ∇u(k+1)

)
.

5: until convergence

Let k1(x) be the level set curvature of the solution obtained from minimizing (26) with p = 1 and a = 1. We estimate 
the difference between k̃ and k1 by |k1 − k̃|, smooth it by convolving it with the Gaussian kernel Gσ , and normalize

d(x) = Gσ ∗ |k1 − k̃|
max

(
Gσ ∗ |k1 − k̃|

) . (29)

Now the disparity d(x) is used to define the weight a(x) and variable exponent p(x) by

a(x) = α d(x) and p(x) = 1 − d(x)

2
,

where α is a positive constant (we use α = 8 in our experiments). Thus the bigger disparity d(x) is, the bigger weight a(x)

and smaller exponent p(x) are used.
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Minimizing the weighted p(·)-diffusion energy. Following ideas of Oh et al. (2013), Aström and Schnorr (2015) we employ a 
slight modification of ADMM to solve (26) numerically with adaptive weight a(x) and exponent p(x). Instead of (27), we 
now consider

La,p(u, ξ ,μ) =
∫
�

{
a(x)|ξ |p(x) + λ

2
H[u − g]2

+ μ · (ξ − ∇u) + r

2
|ξ − ∇u|2

}
, (30)

where μ(x) is a vector of Lagrange multipliers and r > 0 is a constant.
We follow the same iterative procedure as used previously (for p = 1 and a = 1). However, we don’t have a closed-form 

solution for optimizing w.r.t. ξ and instead we resort to the approximation introduced in Section 2.2 for the pth power of 
the Lp norm of ξ . This leads us to the following modification of (14)

ξ = max

{
|s| − a(x)

r|∇u|1−p(x)
,0

}
s

|s| ,

s = ∇u − μ

r
. (31)

The iterative procedure becomes

1: repeat

2: ξ (k+1) = max
{
|s| − a(x)

r|∇u(k)|1−p(x)

}
s
|s| , where s = ∇u(k) − μ(k)

r

3: u(k+1) = arg min
u

La,p(u, ξ (k+1), μ(k)),

4: μ(k+1) = μ(k) + r
(
ξ (k+1) − ∇u(k+1)

)
.

5: until convergence

Here, as before, the relative residual error (16) is used as a measure of convergence and the iterations are stopped once it 
goes below some threshold (10−3 was used in our experiments).

For the case 0 < p(x) ≤ 1 and the applications that we are considering here, this approximation provides the best result 
experimentally. Additionally, the standard ADMM with shrinkage (28) and the modified ADMM with (31) for the variable 
exponent case show similar performance in terms of numerical convergence in practice.

The only user-specified parameters are the weight λ in (26) and the parameter b controlling the amount of smoothing 
applied to the level-set curvature k(x).

Given this approach for computing a numerical solution to (26), we now turn to two possible applications in image 
processing: removing haze in images and enhancement of low-light images.

4.2. Application to image dehazing

Let g(x) be an original image with haze (see for examples the left images in Fig. 14), the solution u(x) to (26) provides 
us with the image structure. The image texture is then obtained from g(x) − u(x). A simple enhancement for haze removal 
of the image is obtained from the following uniform enhancement

u(x) + β(g(x) − u(x)), (32)

with β > 1 a constant.
While this approach works well when haze is uniformly distributed in the image, it seems better to use an approach 

with selective enhancement when the haze is located only in some region of the image. This leads to

u(x) + h(x, β) (g(x) − u(x)), (33)

where h(·, ·) should be selected such that it is close to 1 in the region without haze, and equal to some larger value in the 
region with haze. We use a simple implementation based on the dark channel prior (He et al., 2011)

h(x, β) = β
[

gdark(x)
]2 + 1, (34)

where gdark(x) is the dark channel prior of the input image g(x).
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Fig. 14. Application to haze removal. From left to right: original image, results obtained with (He et al., 2011), and results obtained with our approach. 
These images are best seen on a computer screen.

In Fig. 14, we present a visual comparison of our approach with the popular dark channel prior method (He et al., 2011). 
While the dark channel prior method often generates more natural-looking results (as seen, for example, in the top row of 
Fig. 14), our two-pass approach allows to better extract fine image details. This better reconstruction of small-scale image 
features is visible, for example, on the second image from the bottom in Fig. 14. For this image, finer details of the clock 
and the building are better recovered by the two-pass approach based on solving (26). See also the left group of images in 
Fig. 16 with a magnified view on some of the features.
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Fig. 15. Application to low-light image enhancement. From left to right: original image, results obtained from (Guo et al., 2017), and results obtained with 
our approach. These images are best seen on a computer screen.

4.3. Application to low-light image enhancement

The second application for the solution of (26) that we consider, is the enhancement of low-light images. The method 
described below is based on a recent work on low-light image enhancement (Guo et al., 2017). In this work, the authors 
consider a retinex-based model and assume that a captured image L = R ◦ T is the composition of the observed scene 
R and an illumination map T (◦ stands for the element-wise multiplication). If L is a low-light image, then R can be 
considered as a recovered (enhanced) image. Given the illumination map T , the enhanced image is obtained by R = L

(T +ε)
, 

where the division is done element-wise and ε is a small regularization parameter for preventing division by zero. Thus the 
main ingredient of this approach consists of recovering the illumination map T which is achieved by applying a TV-based 
smoothing scheme to L, see Guo et al. (2017) for details.
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Fig. 16. Left group of images demonstrates image dehazing: results obtained with the approach presented in this paper (left) and results obtained with (He 
et al., 2011) (right). Right group of images demonstrates low light image enhancement: results obtained with the approach presented in this paper (top) 
and results obtained with (Guo et al., 2017) (bottom). These images are best seen on a computer screen.

Fig. 17. Relative residual error plots (16) over a few iterations for dehazing and low-light image enhancing applications. Different colors are used for the 
residual plots corresponding to the different images used in Fig. 14 and 15.

It turns out that using (26) with adaptively selected weights (our two-pass scheme) instead of TV-based smoothing 
often allows for a better restoration of fine image details, as seen in Fig. 15, and in the magnified view in the right group 
of images in Fig. 16.

4.4. Visual convergence analysis

Fig. 17 shows plots of the relative residual error (16) for the ADMM algorithm used for image processing applications. 
Plots for both image dehazing (left) and low-light image enhancement (right) are provided for all the test images shown in 
Fig. 14 and 15. One can observe that the relative error quickly decreases and is below 10−3 within 20 iterations for both 
these image processing tasks.

5. Discussion and conclusion

In this work, we introduce efficient ADMM-based numerical schemes for solving p-Laplacian diffusion problems. We 
show that solutions to these models can be used to solve different problems in geometric modeling and image processing. 
With constant and large exponent p > 1, solutions to these models allow us to compute smooth approximants of the 
distance to surface function and to approximate solutions to optimal transportation plans.

While solving p-Poisson problems to compute smooth approximation of the distance to surface problems has already 
been considered before in Belyaev and Fayolle (2015), the ADMM-based numerical approach proposed in this paper exhibits 
a better performance.

By considering a variable exponent 0 < p(x) ≤ 1, we show that solutions to our modified power-law diffusion model can 
be used for different tasks of image enhancement, such as dehazing and improvement of low-light images. Furthermore, 
we present a strategy for automatically and adaptively selecting the exponent p(x). We demonstrate that our approach is 
competitive with state-of-the-art image dehazing and low-light image enhancing methods, and can even outperform them 
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in some cases, while being very generic. However, additional studies are needed in order to turn our approach into a 
powerful image processing tool.
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