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ransport-based techniques for signal and data analysis have 
recently received increased interest. Given their ability to 
provide accurate generative models for signal intensities and 
other data distributions, they have been used in a variety of 

applications, including content-based retrieval, cancer detection, 
image superresolution, and statistical machine learning, to name a 
few, and they have been shown to produce state-of-the-art results. 
Moreover, the geometric characteristics of transport-related met-
rics have inspired new kinds of algorithms for interpreting the 
meaning of data distributions. Here, we provide a practical over-
view of the mathematical underpinnings of mass transport-related 
methods, including numerical implementation, as well as a review, 
with demonstrations, of several applications. Software accompa-
nying this article is available from [43].

Purposes for optimal mass transport

Motivation and goals
Numerous applications in science and technology depend on 
effective modeling and information extraction from signal and 
image data. Examples include being able to distinguish between 
benign and malignant tumors in medical images; learning mod-
els (e.g., dictionaries) for solving inverse problems; identifying 
people from images of faces, voice profiles, or fingerprints; and 
many others. Techniques based on the mathematics of optimal 
mass transport, also known as Earth Mover’s Distance in engi-
neering-related fields, have received significant attention 
recently given their ability to incorporate spatial (in addition to 
intensity) information when comparing signals, images, and 
other data sources, thus giving rise to different geometric inter-
pretations of data distributions. These techniques have been 
used to simplify and augment the accuracy of numerous pattern 
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recognition-related problems. Some examples covered in 
this article include image retrieval [32], [44], signal and 
image representation [25], [27], [40], [50], inverse problems 
[30], cancer detection [4], [39], texture and color modeling 
[18], [41], shape and image registration [22], [29], and 
machine learning [12], [17], [19], [28], [36], [42], to name a 
few. This article is meant to serve as an introductory guide 
to those wishing to familiarize themselves with these emerg-
ing techniques. Specifically, we

■■ provide a brief overview of key mathematical concepts 
related to optimal mass transport

■■ describe recent advances in transport-related methodology 
and theory 

■■ provide a practical overview of their applications in mod-
ern signal analysis, modeling, and learning problems.

Why transport?
In recent years, numerous techniques for signal and image 
analysis have been developed to address important learning 
and estimation problems. Researchers working to unveil solu-
tions to these problems have found it necessary to develop 
techniques to compare signal intensities across different sig-
nal/image coordinates. A common problem in medical imag-
ing, for example, is the analysis of magnetic resonance 
images with the goal of learning about brain morphology dif-
ferences between healthy and diseased populations. Decades 
of research in this area have culminated with techniques such 
as voxel- and deformation-based morphology that make use 
of nonlinear registration methods to understand differences in 
tissue density and locations. Likewise, the development of 
dynamic time-warping techniques was necessary to enable the 
comparison of time series data more meaningfully without 
confounds from commonly encountered variations in time. 
Furthermore, researchers desiring to create realistic models of 
facial appearance have long understood that appearance mod-
els for the eyes, lips, nose, and other facial features are signifi-
cantly different and thus must be dependent on a position 
relative to a fixed anatomy. The pervasive success of these as 
well as other techniques, such as optical flow, level-set meth-
ods, and deep neural networks, have shown that 1) nonlinearity 
and 2) modeling the location of pixel intensities are essential 
concepts to keep in mind when solving modern regression 
problems related to estimation and classification.

The previously mentioned methodology for modeling 
appearance and learning morphology, time series analysis and 
predictive modeling, deep neural networks for classification of 
sensor data, and the like is algorithmic in nature. The trans-
port-related techniques reviewed in this article are nonlinear 
methods that, unlike linear methods such as Fourier, wave-
lets, and dictionary models, explicitly model signal intensities 
and their locations. Furthermore, they are often based on the 
theory of optimal mass transport from which fundamental 
principles can be put to use. Thus, they hold the promise to 
ultimately play a significant role in the development of a theo-
retical foundation for certain subclasses of modern learning 
and estimation problems. 

A brief historical note
The optimal mass transport problem seeks the most efficient 
way of transforming one distribution of mass to another, rela-
tive to a given cost function. The problem was initially studied 
by the French mathematician Gaspard Monge in his seminal 
work “Mémoire sur la Théorie des Déblais et des Remblais” 
[35] in 1781. In 1942, Leonid V. Kantorovich, who, at that 
time, was unaware of Monge’s work, proposed a general for-
mulation of the problem by considering optimal mass trans-
port plans, which, as opposed to Monge’s formulation, allows 
for mass splitting [23]. Kantorovich shared the 1975 Nobel 
Prize in Economic Sciences with Tjalling Koopmans for 
his work in the optimal allocation of scarce resources. 
Kantorovich’s contribution is considered “the birth of the 
modern formulation of optimal transport” [49], and it made the 
optimal mass transport problem an active field of research in 
the following years.

A significant portion of the theory of the optimal mass 
transport problem was developed in the 1990s, starting with 
Brenier’s seminal work on the characterization, existence, and 
uniqueness of optimal transport maps [9], followed by Caf-
farelli’s work on regularity conditions of such mappings [10] 
and Gangbo and McCann’s work on a geometric interpreta-
tion of the problem [20]. A more thorough history and back-
ground on the optimal mass transport problem can be found 
in Villani’s book Optimal Transport: Old and New [49] and 
Santambrogio’s book Optimal Transport for Applied Math-
ematicians [45]. The significant contributions in mathemati-
cal foundations of the optimal transport problem together 
with recent advancements in numerical methods [6], [14], [31], 
[37] have spurred the recent development of numerous data-
analysis techniques for modern estimation and detection (e.g., 
classification) problems.

Formulation of the problem and methodology
While reviewing both the continuous and discrete formula-
tions of the optimal transport problem (i.e., Monge’s and 
Kantorovich’s formulations), the geometrical characteristics of 
the problem, and the transport-based signal/image embed-
dings, we have elected to avoid measure-theoretic notation, 
and other detailed mathematical language, in lieu of a more 
informal and intuitive description of the problem. However, it 
must be said that certain mathematical precision is required to 
best understand the differences between Monge’s and 
Kantorivich’s formulation, their geometric interpretations, and 
other points. The interested reader may find it useful to con-
sult [24] for a more complete and mathematical description of 
the concepts explained in the following sections.

Optimal transport: Formulation
Over the past century or so, the theory of optimal transport 
(Earth mover’s distance) has developed two main formulations, 
one utilizing a continuous map (Monge’s formulation) and 
another utilizing what is called a transport plan (Kantarovich’s 
formulation), for assigning the spatial correspondence neces-
sary for the related transport problem. Although Monge’s 
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continuous formulation is helpful in problems where a point-to-
point assignment is desired, Kantarovich’s formulation is more 
general and also covers the case of discrete (Dirac) masses (in 
our case, signal intensities). These not only differ in mathemat-
ical formulation but also have consequences with regard to 
their respective numerical solutions as well as applications.

Monge’s continuous formulation
The Monge optimal mass transport problem is formulated as 
follows. Consider two signals or images I0 and I1 defined over 
their respective domains 0X  and .1X  Here, 0X  and 1X  are 
typically subsets of Rd  and can often be taken as the unit 
square (or cube in three dimensions). Although a detailed 
measure-theoretic formulation is typically required (see [24]), 
we bypass the rigorous formulation here and simply assume 
that ( )I x0  and ( )I y1  correspond to signal intensities at posi-
tions x 0! X  and .y 1! X  For digital signals, an interpolating 
model can be used to construct these functions defined over 
continuous domains from sampled discrete data. The signals 
are required to be nonnegative, i.e., ( )I x 00 $  x 06 ! X   
and ( )I y 01 $  .y 16 ! X  In addition, the total amount of 
signal  (or mass) for both signals should be equal to the 
same constant (which is generally chosen to be 1): 

( ) ( ) .I x dx I y dy 10 1
0 1

= =
X X
# #  In other words, I0 and I1 are 

assumed to be probability density functions (PDFs).
Monge’s optimal transportation problem is to find a func-

tion :f 0 1"X X  that pushes I0 onto I1 and minimizes the 
objective function,

	 ( , ) ( , ( )) ( ) ,infM I I c x f x I x dx
f MP

0 1 0
0

=
! X
# � (1)

where :c R0 1 "#X X + is the cost of moving pixel intensity 
( )I x0  from x to f(x) [Monge considered the Euclidean distance 

as the cost function in his original formulation, 
( , ( )) ( ) ,c x f x x f x= - @  and MP stands for a measure preserv-

ing map that moves all the signal intensity from I0 to I1. That 
is, for a subset B 11 X  the MP requirement is that

	 ( ) ( ) .I x dx I y dy
{ : ( ) }x f x B B

0 1=
!

# # � (2)

If f is one to one, this just means that for ,A 01 X

( ) ( ) .I x dx I y dy
( )A f A

0 1=# #

Such maps f MP!  are sometimes called transport maps 
or mass-preserving maps. Simply put, the Monge formulation 
of the problem seeks to rearrange signal I0 into signal I1 while 
minimizing a specific cost function. In cases when f is smooth 
and one to one, then the requirement (2) can be written in a 
differential form as

	 ( ( )) ( ( )) ( )det Df x I f x I x1 0= � (3)

almost everywhere, where Df is the Jacobian of f [see 
Figure 1(a)]. Note that both the objective function and the 
constraint in (1) are nonlinear with respect to f(x). Hence, for 

more than a century, the answers to questions regarding 
existence and characterization of the Monge’s problem 
remained unknown.

For certain measures, the Monge’s formulation of the opti-
mal transport problem is ill posed in the sense that there is no 
transport map to rearrange one PDF to another. For instance, 
consider the case where I0 is a Dirac mass and I1 is not. Kan-
torovich’s formulation alleviates this problem by finding the 
optimal transport plan as opposed to the transport map.

Kantorovich’s formulation
Kantorovich formulated the transport problem by optimizing 
over transportation plans, which we denote as .c  One can 
think of c  as the joint distribution of I0 and I1 describing 
how much mass is being moved to different coordinates; i.e., 
let A be a subset of 0X  and similarly B 13 X . For notation-
al simplicity, we will not make a distinction between a 
probability distribution and its density. More precisely,  
we associate a probability distribution to a signal I0 by 
( ) ( ) .I A I x dx

A
0 0= #

The quantity ( )A B#c  tells us how much mass in set A is 
being moved to set B. Here, the MP constraint can be expressed 
as ( ) ( )B I B0 1#c X =  and ( ) ( ) .A I A1 0#c X =  Kantorovich’s 
formulation for the optimal transport problem can then be 
written as

	 ( , ) ( , ) ( , ) .minK I I c x y d x y0 1
MP 0 1

c=
#X X!c
# � (4)

Note that the integration notation ( , )d x yc  is meant to rep-
resent the fact that this integral is more general than the routine 
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FIGURE 1. (a) The Monge transport map and (b) Kantorovich’s  
transport plan.



46 IEEE Signal Processing Magazine   |   July 2017   |

Riemman-type integral commonly used in signal processing, 
and the integral can cover integration over domains that are more 
general. The minimizer of the optimization problem above, ,*c  
is called the optimal transport plan. However, unlike the Monge 
problem, in Kantorovich’s formulation, the objective function 
and the constraints are linear with respect to ( , ) .x yc  Moreover, 
Kantorovich’s formulation is in the form of a convex optimi-
zation problem. We also note that the Monge problem is more 
restrictive than the Kantorovich problem; i.e., in Monge’s ver-
sion, mass from a single location in 0X  is being sent to a single 
location in .1X  Kantorovich’s formulation, however, considers 
transport plans that can deal with arbitrary measurable sets and 
has the ability to distribute mass from the one location in one 
density to multiple locations in another [see Figure 1(b)]. For any 
transport map :f 0 1"X X  there is an associated transport plan, 
determined by

	 ( ) ( ) .A B I x dx
{ : ( ) }x A f x B

0#c =
! !
# � (5)

Furthermore, when an optimal transport map f *  exists, it can 
be shown that the transport plan *c  derived from (5) is an 
optimal transportation plan [49].

The Kantorovich problem is especially interesting in a dis-
crete setting, i.e., for PDFs of the form ( )I p x xii

M
i0 1

d= -
=
/  

and ( ),I q y yjj

N
j1 1

d= -
=
/  where ( )xd  is the Dirac delta 

function. Generally speaking, for such PDFs a transport map 
that pushes I0 into I1 does not exist. In these cases, mass split-
ting, as allowed by the Kantorovich formulation, is necessary 
[see Figure 1(b)]. The Kantorovich problem can be written as

	

( , ) ( , )

 ,  

, , ..., ,  , ..., ,

minK I I c x y

p q

i M j N0 1 1

. .s t
ji

i j ij

ij
j

i ij
i

j

ij

0 1

$

c

c c

c

=

= =

= =

c
//

/ / �

(6)

where ijc  identifies how much of the mass particle mi at xi 
needs to be moved to yj [see Figure 1(b)]. The optimization 
above has a linear objective function and linear constraints; 
therefore, it is a linear programming problem. This problem 
is convex (which, in practice, translates to a relatively easier 
process of finding a global minimum), but not strictly so, 
and the constraint provides a polyhedral set of M × N matri-
ces. In practice, a nondiscrete measure is often approximated 
by a discrete measure, and the Kantorovich problem is 
solved through the linear programming optimization 
expressed in (6).

Basic properties
Consider a transportation cost c(x, y) that is continuous and 
bounded from below. Given two signals I0 and I1 as previously 
shown, there always exists a transportation plan minimiz-
ing (4). This holds true for both when signals I0 and I1 are 
functions and when they are discrete probability distribu-
tions [49]. Another important question is regarding the exis-
tence of an optimal transport map instead of a plan. Brenier 

[9] addressed this problem for the special case where 
( , ) | | .c x y x y 2= -  Bernier’s results were later relaxed to 

more general cases by Gangbo and McCann [20], which led 
to the following theorem.

Theorem
Let I0 and I1 be nonnegative functions of the same total mass 
and with bounded support. When ( , ) ( )c x y h x y= -  for some 
strictly convex function h, then there exists a unique optimal 
transportation map f *  minimizing (1). In addition, the opti-
mal transport plan is unique and given by (5). Moreover, if 
( , ) | | ,c x y x y 2= -  then there exists a (unique up to adding a 

constant) convex function z  such that .f * dz=  A proof is 
available in [20] and [49].

Optimal mass transport: Geometric properties

Wasserstein metric
Let Ω be a bounded subset of Rd  on which the signals are 
defined. As an example, for signals (d = 1) or images (d = 2), 
this can simply be the space [ , ] .0 1 d  Let ( )P X  be the set of 
probability densities supported on Ω. The p-Wasserstein met-
ric, Wp, for p 1$  on ( )P X  is then defined as using the opti-
mal transportation problem (4) with the cost function 
( , ) | | .c x y x y p= -  For I0 and I1 in ( )P X ,

( , ) * | | ( , ) .infW I I x y d x yp MP
p p

0 1

1

c= -
#

!c
X X

` j#

For any ,p 1$  Wp is a metric on ( ) .P X  The metric space 
( ( ), )P WpX  is referred to as the p-Wasserstein space. To under-
stand the nature of the optimal transportation distances, it is 
useful to note that for any ,p 1$  the convergence with respect 
to Wp is equivalent to the weak convergence of measures; i.e., 

( , )W I I 0p n "  as n " 3 if and only if for every bounded and 
continuous function :f R"X

( ) ( ) ( ) ( ) .f x I x dx f x I x dxn "
X X
# #

For the specific case of p = 1, the p-Wasserstein metric 
is also known as the Monge–Rubinstein metric [49] or the 
Earth mover’s distance [44]. The p-Wasserstein metric in one 
dimension has a simple characterization. For one-dimensional 
(1-D) signals I0 and I1, the optimal transport map has a closed-
form solution. Let Fi be the cumulative distribution function 
of Ii for i = 0, 1, i.e.,

( ) ( ) , .forF x I x dx i 0 1
( )inf

i i
x

= =
X
#

Note that this is a nondecreasing function going from 0 to 1. 
We define the pseudoinverse of F0 as follows: for ( , ),z 0 1!  

( )F z1-  is the smallest x for which ( )F x z0 $ , i.e.,

( ) { : ( ) }.infF z x F x z0
1

0! $X=-

If I 00 2 , then F0 is continuous and increasing (and thus 
invertible), and the inverse of the function F0 is equal to 
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the pseudoinverse we just defined. In other words, the pseu-
doinverse is a generalization of the notion of the inverse of 
a function. The pseudoinverse (i.e., the inverse if I 00 2  
and )I 01 2  provides a closed-form solution for the p-Was-
serstein distance:

	 ( , ) ( ) ( ) .W I I F z F z dzp
p

p
0 1 0

1
1
1

0

1
1

= -- -` j# � (7)

The closed-form solution of the p-Wasserstein distance in one 
dimension is an attractive property, as it alleviates the need for 
optimization. This property was employed in the sliced- 
Wasserstein metrics as defined below.

Sliced-Wasserstein metric
The idea behind the sliced-Wasserstein metric is to first obtain 
a set of 1-D representations for a higher-dimensional proba-
bility distribution through projections (slicing the measure) 
and then calculate the distance between two input distribu-
tions as a functional on the Wasserstein distance of their 1-D 
representations. In this sense, the distance is obtained by 
solving several 1-D optimal transport problems, which have 
closed-form solutions.

The projection of high-dimensional PDFs is closely relat-
ed to the well-known Radon transform in the imaging and 
image processing community [8], [25]. The d-dimensional 
Radon transform R  maps a function ( )I L Rd

1!  where 
( ): { : | | ( ) | }L I I x dxR R Rd d

1
Rd

" 3#= #  into the set of its 
integrals over the hyperplanes of .Rn  It is defined as

( , ): ( ) ,

, ;

I t I t s ds

t R S

R

d 1
R

6 6! !

i i i

i

= + =

-

#

here, i=  is the subspace orthogonal to ,i  and Sd 1-  is the unit 
sphere in .Rd  Note that : .L LR R SR d d

1 1
1

" # -^ ^h h  In other 
words, the Radon transform projects a PDF, ,I P Rd! ^ h  
where d > 1, into an infinite set of 1-D PDFs (., ) .IR i  The 
sliced-Wasserstein metric for PDFs I0 and I1 on Rd  is then 
defined as

( , ) ( (., ), (., ))SW I I W I I dR Rp p
p p

0 1 0 1

1

Sd 1
i i i=

-
` j# ,

where p 1$ , and Wp is the p-Wasserstein metric, which, 
for 1-D PDFs, (., )IR 0 i  and (., )IR 1 i  has a closed-form 
solution [see (7)]. For more details and definitions of the 
sliced-Wasserstein metric, we refer the reader to [8], [25] 
and [29].

Wasserstein spaces, geodesics, and Riemannian structure
In this section, we assume that Ω is convex. Here, we highlight 
that the p-Wasserstein space ( ( ), )P WpX  is not just a metric 
space but has additional geometric structure. In particular, for 
any p 1$  and any , ( ),I I P0 1 ! X  there exists a continuous 
path (interpolation) between I0 and I1 whose length is the 
distance between I0 and I1.

Furthermore, the space with p = 2 is special because it pos-
sesses a structure of a formal, infinite dimensional, Rieman-
nian manifold. That structure was first noted by Otto [38], who 
developed the formal calculations for using this structure. The  
precise description of the manifold of probability measures 
endowed with Wasserstein metric can be found in [1].

Next, we review the two main notions that have a wide 
use. We characterize the geodesics in ( ( ), ),P WpX  and in the 
case of p = 2, we describe what is the local, Riemannian 
metric of ( ( ), ) .P W2X  Finally, we state the seminal result 
of Benamou and Brenier [5], who provided a characteriza-
tion of geodesics via action minimization, which is useful in 
computations and also gives an intuitive explanation of the 
Wasserstein metric.

We first recall the definition of the length of a curve in a 
metric space. Let (X, d) be a metric space and : [ , ] .I a b X"  
Then the length of I, denoted by L(I) is

( ) ( ( ), ( )) .supL I d I t I t
,m a t t t b i

m

i i
1

1
N m0 1

=
g1 1 1! = = =

-/

A metric space (X, d) is a geodesic space if, for any I0 and I1, 
there exists a curve : [ , ]I X0 1 "  such that ( ) , ( )I I I I0 10 1= =  
and for all , ( ( ), ( )) ( | )s t d I s I t L I0 1 [ , ]s t1# # = . In particu-
lar, the length of I is equal to the distance from I0 to I1. Such a 
curve I is called a geodesic. The existence of geodesics is use-
ful because it allows one to define the average of I0 and I1 as 
the midpoint of the geodesic connection between them.

An important property of ( ( ), )P WpX  is that it is a geodesic 
space and that geodesics are easy to characterize. Specifically, 
they are given by the displacement interpolation (also known as 
a McCann interpolation). When a unique transportation map 
f *  from I0 to I1 exists that minimizes (1) for ( , ) | | ,c x y x y p= -  

the geodesic is obtained by moving the mass at constant speed 
from x to ( ) .f x*  More precisely, for [ , ]t 0 1!  and x ! X let

( ) ( ) ( )f x t x tf x1* *
t = - +

be the position at time t of the mass initially at x. Note that f *0  
is identity mapping and .f f* *

1 =  Pushing forward the mass by 
,f *t  which by (3) has the form

( ( ))
( ( ))
( )

det
I f x

Df x
I x*

*t t
t

0
=

if f *  is smooth, provides the desired geodesic from I0 to I1. The 
velocity of each particle ( )f f x x* *

t t2 = -  is the displacement of 
the optimal transportation map. Figure 2 conceptualizes the geo-
desic between two PDFs in ( )P X  and visualizes it for three dif-
ferent pairs of PDFs.

An important fact regarding the 2-Wasserstein space is 
Otto’s presentation of a formal Riemannian metric for this 
space [38]. It involves shifting to a Lagrangian point of view. 
To explain, consider the path I(x, t) in ( )P X  with I(x, t) smooth. 
Then ( , ) ( , )/s x t I t x t2 2=  can be considered a tangent vector 
to the manifold or a density perturbation. Instead of thinking 
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of increasing/decreasing the density, this perturbation can be 
viewed as resulting from moving the mass by a vector field. In 
other words, consider vector fields v(x, t) such that

	 · ( ) .s Ivd=- � (8)

There are many such vector fields. Otto defined the size of 
( · , )s t  as the square root of the minimal kinetic energy of the 

vector field that produces the perturbation to density s, i.e.,

	 , | | .mins s v Idx2
( )v 8satisfies

G H= # � (9)

Utilizing the Riemmanian manifold structure of ( )P X  togeth-
er with the inner product presented in (9), the 2-Wasserstein 
metric can be reformulated into finding the minimizer of the 
following action among all curves in ( )P X  connecting 
I0 and I1 [5],

, , ,

, , , ,

infW I I I x t v x t dxdt

I Iv

I I I I
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0 1
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,I v
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2
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1 2
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$ $ $ $
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=

+ =

= =
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^
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^
^
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^

h

h h
h
h

h
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##

where the first constraint is the well-known continu-
ity equation.

Optimal transport: Embeddings and transforms
The optimal transport problem and, specifically, the 
2-Wasserstein metric and the sliced-2-Wasserstein metric 
have been recently used to define nonlinear transforms for 
signals and images [25], [27], [40], [50]. In contrast to com-
monly used linear signal transformation frameworks (e.g., 
Fourier and wavelet transforms) that employ signal intensi-
ties only at fixed coordinate points, thus adopting an Eulerian 
point of view, the idea behind transport-based transforms is 
to consider the intensity variations together with the loca-
tions of the intensity variations in the signal. Therefore, such 

transforms adopt a Lagrangian point 
of view for analyzing signals; i.e., they 
are able to move signal (pixel) intensi-
ties around. Moreover, the transforms 
can be viewed as Euclidean embedd
ings for the data, under the previously 
described transport-related metric space 
structure. The benefit of such a Eu
clidean embedding is that they facili-
tate the application of many standard 
data-analysis algorithms (e.g., learn-
ing). Here, we briefly describe these 
transforms and some of their promi-
nent properties.

The linear optimal transportation 
framework
The linear optimal transportation (LOT) 
framework was proposed by Wang et al. 

[50]. The framework was used in [4] and [39] for pattern rec-
ognition in biomedical images and specifically histopathology 
and cytology images. Later, it was extended in [27] as a gener-
ic framework for pattern recognition, and it was used in [26] 
for the single-frame superresolution reconstruction of face 
images. The LOT framework, which provides an invertible 
Lagrangian transform for images, was initially proposed as a 
method to simultaneously amend the computationally expen-
sive requirement of calculating pairwise 2-Wasserstein dis-
tance between N signals for pattern recognition purposes and 
to allow for the construction of generative models for images 
involving textures and shapes. For a given set of images 

( ),I Pi 2! X  for , ..., ,i N1=  and a fixed template I0, all non-
negative and having been normalized to have the same sum, 
the transform projects the images to the tangent space at I0. 
The projections are acquired by finding the optimal velocity 
fields corresponding to the optimal transport plans between I0 
and each image in the set.

The framework provides a linear embedding for ( )P2 X  
with respect to a fixed signal ( )I P0 2! X . This means that the 
Euclidean distance between an embedded signal, denoted as 
,Iiu  and the fixed reference, I0, is equal to ( , ),W I Ii2 0  and the 

Euclidean distance between two embedded normalized signals 
is, generally speaking, an approximation of their 2-Wasserstein 
distance. The geometric interpretation of the LOT framework 
is presented in Figure 3. The linear embedding then facilitates 
the application of linear techniques such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA) to 
probability measures.

The cumulative distribution transform
Park et al. [40] considered the LOT framework for 1-D PDFs 
(positive signals normalized to integrate to 1), and since in 
dimension one the transport maps are explicit, they were able 
to characterize the properties of the transformed densities. 
Similar to the LOT framework, let Ii for , ...,i N1=  and I0 
be signals (PDFs) defined on .R  The framework first 

t = 0 t = 0.25 t = 0.75t = 0.5 t = 1 t = 0 t = 0.25 t = 0.75t = 0.5 t = 1

I(x, t ) = det(Dgt(x))I0(gt (x))∗ ∗

∗∗gt (ft(x)) = x

I(x, t ) = (1 – t )I0(x ) + t I1(x )

(a) (b)

FIGURE 2. Geodesics in (a) the 2-Wasserstein space and in (b) the Euclidean space between various 
1-D and two-dimensional (2-D) PDFs. Note that the geodesic in the 2-Wasserstein space captures 
the nonlinear structure of the signals and images and provides a natural morphing. (Face portraits 
courtesy of the public CMU Pose, Illumination, and Expression database.)
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calculates the optimal transport maps between Ii and I0 using 
( ) ( )f x F F xi i

1
0%= -  for all , ...,i N1= . Then the forward and 

inverse transport-based transform, denoted as the cumulative 
distribution transform (CDT) by Park et al. [40], for these 
density functions with respect to the fixed template I0 is 
defined as

( )
( ) ( )

,
IdI f I

I f I f
(Analysis)
(Synthesis)

i i

i i i

0
1

0
1%

= -

= - -l

u)

where ( ) ( ) ( ( )) .I f x I f xi i0
1

0
1% = --  Note that the L2-norm 

(Euclidean distance) of the transformed signals, ,Iiu  corre-
sponds to the 2-Wasserstein distance between I0 and Ii. In con-
trast to the higher-dimensional LOT, however, the Euclidean 
distance between two transformed (embedded) signals Iiu  and 
,I ju  is the exact 2-Wasserstein distance between Ii and Ij (see 

[40] for a proof) and not just an approximation. Hence, the 
transformation is isometric (preserves) with respect to the 
2-Wasserstein metric. This isometric nature of the CDT was 
utilized in [28] to provide positive definite kernels for machine 
learning of n-dimensional signals.

From a signal processing point of view, the CDT is a non-
linear signal transformation that captures certain nonlinear 
variations in signals including translation and scaling. Specifi-
cally, it gives rise to the transformation pairs presented in Table 1. 
From Table 1, one can observe that although ( )I t x-  is non-
linear in x  (when (.)I  is not a linear function), its CDT repre-
sentation ( ) ( )I t I t0x+u  becomes affine in x  (a similar effect 
is observed for scaling). In effect, the Lagrangian transforma-
tions (compositions) in original signal space are rendered into 
Eulerian perturbations in transform space, borrowing from 
the partial differential equation (PDE) parlance. Furthermore, 
Park et al. [40] demonstrated that the CDT facilitates certain 
pattern recognition problems. More precisely, the transforma-
tion turns certain not linearly separable and disjoint classes of 
signals into linearly separable ones. Formally, let C be a set of 
1-D maps, and let , ( )P Q P21 X  be sets of positive PDFs born 
from two positive PDFs , ( )p q P0 0 2! X  (which we denote as 
mother density functions or signals) as 

{ | ( ), },

{ | ( ), }.

P p p h p h h C

Q q q h q h h C

0

0

%

%

6

6

!

!

= =

= =

l

l

If there exists no h C!  for which ( )p h q h0 0 %= l , then the 
sets P and Q are disjoint but not necessarily linearly separable 
in the signal space. A main result of [40] states that the sig-
nal classes P and Q are guaranteed to be linearly separable in 
the transform space (regardless of the choice of the reference 
signal I0) if C satisfies the following conditions:
1)	 h C h C1

&! !-

2)	 , ( ) ,  [ , ]h h C h h C1 0 11 2 1 2& 6! ! !t t t+ -

3)	 , ( ), ( )h h C h h h h C1 2 1 2 2 1&! !

4)	 ( ) ,  .h p h q h C0 0% 6! !l

The set of translations { | ( ) , }C f f x x R!x x= = +  and 
scaling { | ( ) , },C f f x ax a R!= = +  for instance, satisfy the 

above conditions. We refer the reader to [40] for further infor-
mation. Figure 4(a) and (b) demonstrates the linear separation 
property of the CDT. The signal classes P and Q are chosen to 
be the set of all translations of a single Gaussian and a Gauss-
ian mixture including two Gaussian functions with a fixed 
mean difference, respectively. The discriminant subspace is 
calculated for these classes, and it is shown that although the 
signal classes are not linearly separable in the signal domain, 
they become linearly separable in the transform domain.

The Radon CDT
The CDT framework was extended to 2-D density functions 
(images) through the sliced-Wasserstein distance in [25] and 
was denoted the Radon CDT. It is shown in [25] that similar 
characteristics of the CDT, including the linear separation 
property, also hold for the Radon CDT. Figure 4 clarifies the 
linear separation property of the Radon CDT and demonstrate 
the capability of such transformations. In particular, Figure 4(c) 
and (d) shows a facial expression data set with two classes (i.e., 
neutral and smiling expressions) and its corresponding repre-
sentations in the LDA discriminant subspace calculated from 
the images [Figure 4(c)] and the Radon CDT of the data set 

Table 1. The CDT pairs. Note that the composition holds for all strictly 
monotonically increasing functions g.

Property 
Signal Domain
I(x) 

CDT Domain 
( )I xu  

Translation ( )I x x-  ( ) ( )I x I x0x+u  

Scaling ( )aI ax  
( ) ( )

( )a
I x

x a
a

I x
1

0-
-u

 

Composition ( ) ( ( ))g x I g xl  ( (
( )
( )

) ) ( )g
I x
I x

x x I x1

0
0+ --

u
 

W2(I0, I1)

W2(I1, I2)

I0
I2

I1

I1
~

I2
~

I0 = 0
~

P2(Ω)

Ii = (fi – Id) √I0
~

~ ~ ~ ~ ~|I0 – Ii | = |Ii | = W2(I0, Ii), |I1 – I2| ≈ W2(I1, I2)

∗

W2(I0, I2)

FIGURE 3. A graphical representation of the LOT framework. The framework 
embeds the PDFs (i.e., signals or images) Ii in the tangent space (i.e., the 
set of all tangent vectors) of ( )P X  with respect to a fixed PDF I0. As a con-
sequence, the Euclidean distance between the embedded functions I1u  and 
I2u  provides an approximation for the 2-Wasserstein distance, ( , ) .W I I2 1 2
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P = {p|p = h ′(p0 o h), ∀h ∈ C}
Q = {q|q = h ′(q0 o h), ∀h ∈ C}
C = {h|h(x) = x + t, t ∈R}

Projection of the Data Onto a 3-D
Discriminant Subspace

Projection of the Transformed Data Onto a
3-D Discriminant Subspace

Projection of the Data Onto a 2-D
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Projection of the Transformed Data Onto a
2-D Discriminant Subspace
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FIGURE 4. Examples for the linear separability characteristic of the CDT and the Radon CDT. The discriminant subspace for each case is calculated using 
the penalized-linear discriminant analysis. It can be seen that the nonlinear structure of the data is well captured in the transform spaces. (a) and (b) The 
linear separation property of the CDT. (c) A facial expression data set with two classes and its corresponding representations in the LDA discriminant 
subspace and (d) the Radon CDT of the data set and the corresponding representation of the transformed data in the LDA discriminant subspace. 3-D: 
three-dimensional. (Face portraits courtesy of the public CMU Pose, Illumination, and Expression database.)
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and the corresponding representation of the transformed data 
in the LDA discriminant subspace [Figure 4(d)]. It is clear that 
the image classes become more linearly separable in the trans-
form space. In addition, the cumulative percentage variation 
(CPV) of the data set in the image space, the Radon transform 
space, the Ridgelet transform space, and the Radon-CDT space 
are shown in Figure 5. The figure shows that the variations in 
the data set could be explained with fewer components in the 
Radon-CDT space.

Numerical methods
The development of robust and efficient numerical methods 
for computing transport-related maps, plans, metrics, and geo-
desics is crucial for the development of algorithms that can be 
used in practical applications. We next present several notable 
approaches for finding transportation maps and plans. Table 2 
provides a high-level overview of these methods.

A linear programming problem
The linear programming problem is an optimization problem 
with a linear objective function and linear equality and 
inequality constraints. Several numerical methods exist for 
solving linear programming problems, among which are  
the simplex method and its variations and the interior-point 
methods. The computational complexity of the mentioned 
numerical methods, however, scales at best cubically in the 
size of the domain. Hence, assuming the measures considered 
have N particles, the number of unknowns sijc  is N2 and the 
computational complexities of the solvers are at best 
( )logN NO 3  [14], [44]. The computational complexity of the 

linear programming methods is a very important limiting fac-
tor for the applications of the Kantorovich problem.

We note that, in the special case where I0 and I1 both have 
N equidistributed particles, the optimal transport problem 

simplifies to a one-to-one assignment problem that can be solved 
in ( ) .logN NO 2  In addition, several multiscale approaches and 
sparse approximation approaches have recently been intro-
duced to improve the computational performance of the linear 
programming solvers [37], [46].

Entropy-regularized solution
Cuturi’s work [14] provides a fast and easy-to-implement vari-
ation of the Kantorovich problem by considering the transpor-
tation problem from a maximum-entropy perspective. The 
idea is to regularize the Wasserstein metric by the entropy of 
the transport plan. This modification simplifies the problem 
and enables much faster numerical schemes with complexity 
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FIGURE 5. The cumulative percentage of the face data set in Figure 4 in the 
image space, the Radon transform space, the Ridgelet transform space, 
and the Radon-CDT transform space.

Table 2. The key properties of various numerical approaches.

Comparison of Numerical Approaches

Method Remark 

Linear programming Applicable to general costs. Good approach if the PDFs are supported at very few sites. 

Multiscale linear programming Applicable to general costs. Fast and robust method, though truncation involved can lead to  
imprecise distances. 

Auction algorithm Applicable only when the number of particles in the source and the target is equal and all of their  
masses are the same. 

Entropy-regularized linear  
programming 

Applicable to general costs. Simple and performs very well in practice for moderately large problems.  
Difficult to obtain high accuracy. 

Fluid mechanics This approach can be adapted to generalizations of the quadratic cost, based on action along paths. 

AHT minimization Quadratic cost. Requires some smoothness and positivity of densities. Convergence is guaranteed  
only for infinitesimal step size. 

Gradient descent on the dual problem Quadratic cost. Convergence depends on the smoothness of the densities, hence a multiscale  
approach is needed for nonsmooth densities (i.e., normalized images). 

Monge–Ampère solver Quadratic cost. One in [7] is proved to be convergent. Accuracy is an issue due to the wide stencil used. 

Semidiscrete approximation An efficient way to find the map between a continuous and discrete signal [31].

AHT: Angenent, Haker, and Tannenbaum.
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( )NO 2  [14] or ( ( ))logN NO  using the convolutional 
Wasserstein distance presented in [47] (compared to ( )NO 3  of 
the linear programming methods), where N is the number of 
delta masses in each of the measures. The disadvantage is that 
it is difficult to obtain high-accuracy approximations of the 
optimal transport plan. The entropy-regularized p-Wasserstein 
distance, also known as the Sinkhorn distance, between PDFs 
I0 and I1 defined on the metric space ( , )dX  is defined as

	
( , ) ( , ) ( , )

( , ) ( ( , )) ,ln

infW I I d x y x y dxdy

x y x y dxdy

,p
p

MP
p

0 1 c

m c c

=

+

#

#

!m c
X X

X X

#
# �

(10)

where the regularizer is the negative entropy of the plan. We 
note that this is not a true metric since ( , ) .W I I 0,p

p
0 1 2m  Since 

the entropy term is strictly concave, the overall optimization 
in (10) becomes strictly convex. It is shown in [14] that the 
entropy-regularized p-Wasserstein distance in (10) can be 
reformulated as

( , ) * ( | ),infKLW I I K,p
p

0 1
MP

m c=m m
!c

where ( , ) ( ( , ) / )expx y d x yK p m= -m  and ( | )KL Kc m  is the 
Kullback–Leibler (KL) divergence between c  and .Km  In 
short, the regularizer enforces the plan to be within /1 m  radius 
in the KL-divergence sense from the transport plan 

( , ) ( ) ( ) .x y I x I y*
0 1c =3

Cuturi shows that the optimal transport plan c  in (10) is of 
the form ,D DKv wm  where Dv and Dw are diagonal matrices 
with diagonal entries ,v w RN!  [14]; therefore, the number of 
unknowns in the regularized formulation is reduced from N2 
to 2N. The new problem can then be solved through computa-
tionally efficient algorithms such as the iterative proportional 
fitting procedure, also known as the iterative proportional fit-
ting procedure algorithm, or, alternatively, through the Sink-
horn–Knopp algorithm.

Flow minimization (AHT)
Angenent, Haker, and Tannenbaum [2], proposed a flow min-
imization scheme to obtain the optimal transport map from 
the Monge problem. The method was used in several image-
registration applications [22], pattern recognition [27], [50], 
and computer vision [26]. A brief review of the method is 
provided here.

Let :I X R0 "
+ and :I Y R1 "

+ be continuous probability 
densities defined on convex domains , .X Y Rd3  To find the 
optimal transport map, ,f*  AHT starts with an initial trans-
port map, :f X Y0 "  calculated from the Knothe–Rosenblatt 
coupling [49]. Then it updates f0 to minimize the transport cost 
while constraining it to remain a transport map from I0 to I1. 
The updated equation for finding the optimal transport map in 
AHT is calculated to be

( ) ( ) ( ( ( ))),f x f x
I
Df f div f1

k k k k k1
0

1de D= + -+
-

where e  is the step size, Dfk is the Jacobian matrix, and 1D-  
is the Poisson solver with Neumann boundary conditions. 
AHT show that for infinitesimal step size, ,e  ( )f xk  converges 
to the optimal transport map. For a detailed derivation of the 
preceding equation, see [2] and [24].

The AHT method is, in essence, a gradient descent method 
on the Monge formulation of the optimal transport problem. 
Chartrand, Wohlberg, Vixie, and Bollt (CWVB) [11] proposed 
an alternative gradient-descent method based on Kantorovich’s 
dual formulation of the transport problem that updates the 
optimal potential transport field, ( ),xh  where ( ) ( ) .f x xdh=  
Figure 6 presents the iterations of the CWVB method for two 
face images taken from the YaleB face database.

Monge–Ampère equation
The Monge–Ampère PDE is defined as

( ) ( , , )det H h x Dz z z=

for some functional h and where Hz is the Hessian matrix of 
.z  The Monge–Ampère PDE is closely related to the Monge 

problem for the quadratic cost function. According to Bernier’s 
theorem (discussed in the “Basic Properties” section), when I0 
and I1 are absolutely continuous PDFs defined on sets 
, ,X Y Rn1  the optimal transport map that minimizes the 

2-Wasserstein metric is uniquely characterized as the gradi-
ent of a convex function : .X Y"z  Moreover, we showed that 
the mass-preserving constraint of the Monge problem can be 
written as ( ) ( ) .det Df I f I1 0=  Combining these results, one 
can have

	 ( ( ( )))
( )
( )

,det D x
I
I x
1

0
d

d
z

z
= � (11)

where ,D Hdz z=  and, therefore, the equation shown above 
is in the form of the Monge–Ampère PDE. Now, if z is a con-
vex function on X satisfying ( )X Ydz =  and solving (11), 
then f * dz=  is the optimal transportation map from I0 to I1. 

k = 0 k = 20 k = 40 k = 60 k = 80

φk

∇φk

Ik

Ik = det(D∇ηk)I1(∇ηk), φk(x) = 1
2 x

2 – ηk(x)

FIGURE 6. A visualization of the iterative update of the transport potential 
and correspondingly the transport displacement map through CWVB itera-
tions. (Face portraits courtesy of the public Extended Yale Face Database B.)
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The geometrical constraint on this problem is rather unusual 
in PDEs and is often referred to as the optimal transport 
boundary conditions. Several authors have proposed numeri-
cal methods to obtain the optimal transport map through solv-
ing the Monge–Ampère PDE in (11) [7], [33]. In particular, the 
scheme in [7] is monotone, has complexity O(N) (up to 
logarithms), and is provably convergent. We conclude by 
remarking that several regularity results on the optimal trans-
port maps were established through the Monge–Ampère 
equation (see [24] for references).

Semidiscrete approximation
Several works [31], [34] have considered the problem in which 
one PDF, I0, has a continuous form while the other, I1 is dis-
crete, ( ) ( ) .I y q y yi i1 d= -/  It turns out there exist weights 
wi such that the optimal transport map :f X Y"  can be 
described via a power diagram. More precisely, the set of x 
mapping to yi is the following cell of the power diagram:

( ) { : | | | | , }.PD y x x y w x y w jw i i i j j
2 2 6#= - - - -

The main observation is that the weights wi are minimizers 
of the following unconstrained convex functional:

(| | | | ) ( ) ) .q w x y w I x dxi i i i
i

2
0

( )PD yw i

- - -e o/ #

Works by Mérigot [34] and Levy [31] use Newton-based 
schemes and multiscale approaches to minimize the functional. 
The need to integrate over the power diagram makes the imple-
mentation somewhat geometrically delicate. Nevertheless, a 
recent implementation by Levy [31] gives impressive results 
in terms of speed. This approach provides the transportation 
mapping (not just the approximation of a plan).

Applications

Image retrieval
One of the earliest applications of the optimal transport prob-
lem was in image retrieval. Rubner et al. [44] employed the dis-
crete Wasserstein metric, which they denoted the Earth mover’s 
distance, to measure the dissimilarity between image signa-
tures. In image-retrieval applications, it is common practice 
first to extract features (i.e., color features, texture feature, 
shape features, and so on) and then generate high-dimensional 
histograms or signatures (histograms with dynamic/adaptive 
binning) to represent images. The retrieval task then simplifies 
to finding images with similar representations (e.g., small dis-
tance between their histograms/signatures). The Wasserstein 
metric is specifically suitable for such applications because it 
can compare histograms/signatures of different sizes (histo-
grams with different binning). This unique capability turns the 
Wasserstein metric into an attractive candidate in image-
retrieval applications [32], [44]. In [44], the Wasserstein metric 
was compared with common metrics such as Jeffrey’s diver-
gence, the 2|  statistic, the L1 distance, and the L2 distance in an 

image-retrieval task, and it was shown that the Wasserstein 
metric achieves the highest precision/recall performance 
among all.

Speed of computation is an important practical consid-
eration in image-retrieval applications. For almost a decade, 
the high computational cost of the optimal transport problem 
overshadowed its practicality in large-scale image-retrieval 
applications. Recent advancements in numerical methods, 
including the work of Merigot [34] and Cuturi [14], among 
many others, have reinvigorated optimal transport-based dis-
tances as a feasible and appealing candidate for large-scale 
image-retrieval problems.

Registration and morphing
Image registration deals with finding a common geometric 
reference frame between two or more images. It plays an 
important role in analyzing images obtained at different times 
or using different imaging modalities. Image registration and, 
more specifically, biomedical image registration are active 
areas of research. Registration methods find a transformation f 
that maximizes the similarity between two or more image rep-
resentations (e.g., image intensities and image features). 
Among the plethora of registration methods, nonrigid registra-
tion methods are especially important given their numerous 
applications in biomedical problems. They can be used to 
quantify the morphology of different organs, correct for physi-
ological motion, and allow for comparison of image intensi-
ties in a fixed coordinate space (atlas). Generally speaking, 
nonrigid registration is a nonconvex and nonsymmetric prob-
lem, with no guarantee of the existence of a globally opti-
mal transformation.

Various works in the literature deploy the Monge prob-
lem for image warping and elastic registration. Utilizing the 
Monge problem in an image-warping/registration setting has 
a number of advantages. First, the existence and uniqueness 
of the global transformation (the optimal transport map) is 
known. Second, the problem is symmetric, meaning that the 
optimal transport map for warping I0 to I1 is the inverse of 
the optimal transport map for warping I1 to I0. Last, it pro-
vides a landmark-free and parameter-free registration scheme 
with a built-in mass preservation constraint. These advan-
tages motivated several follow-up works to investigate the 
application of the Monge problem in image registration and 
warping [21], [22].

In addition to images, the optimal mass transport prob-
lem has also been used in point cloud and mesh registration 
[29] (see [24] for more references), which have various appli-
cations in shape analysis and graphics. In these applications, 
shape images (2-D or 3-D binary images) are first represented 
using either sets of weighted points (e.g., point clouds), using 
clustering techniques such as K-means or fuzzy C-means, 
or with meshes. Then a regularized variation of the optimal 
transport problem is solved to match such representations. The 
regularization on the transportation problem is often imposed 
to enforce the neighboring points (or vertices) to remain near 
each other after the transformation.
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Color transfer and texture synthesis
Texture mixing and color transfer are appealing applica-
tions of the optimal transport framework in image analysis, 
graphics, and computer vision. Here, we briefly discuss 
these applications.

Color transfer
The purpose of color transfer is to change the color palette 
of an image to impose the feel and look of another image. 
Color transfer is generally performed through finding a 
map, which morphs the color distribution of the first 
image into the second one. For grayscale images, the color-
transfer problem simplifies to a histogram-matching prob-
lem, which is solved through the 1-D optimal transport 
formulation [16]. In fact, the classic problem of histogram 
equalization is a 1-D transport problem [16]. The color-
transfer problem, on the other hand, is concerned with 
pushing the 3-D color distribution of the first image into the 
second one. This problem can also be formulated as an 
optimal transport problem, as demonstrated in [41] (see [24] 
for more references).

A complication that occurs in the color transfer on real 
images, however, is that a perfect match between color dis-

tributions of the images is often not 
satisfying, because a color-transfer 
map may not transfer the colors of 
neighboring pixels in a coherent 
manner and may introduce arti-
facts in the color-transferred image. 
Therefore, the color-transfer map 
is often regularized to make the 
transfer map spatially coherent [41]. 
Figure 7 shows a simple example of 
gray-value and color transfer via the 
optimal transport framework. It can 
be seen that the cumulative distri
bution of the gray-value and col-
or-transferred images are similar to 
that of the input image.

Texture synthesis and mixing
Texture synthesis is the problem of 
synthesizing a texture image that 
is visually similar to an exemplar 
input-texture image and has vari-
ous applications in computer graph-
ics and image processing. Many 
methods have been proposed for 
texture synthesis, such as synthesis 
by recopy and synthesis by statis
tical modeling. Texture mixing, 
however, considers the problem of 
synthesizing a texture image from 
a collection of input-texture images 
in a way that the synthesized tex-
ture provides a meaningful integra-

tion of the colors and textures of the input-texture images. 
Metamorphosis is one of the successful approaches in texture 
mixing; it performs the mixing via identifying correspon-
dences between elementary features (i.e., textons) among 
input textures and progressively morphing between the shapes 
of elements. In other approaches, texture images are first param-
etrized through a tight frame (often steerable wavelets), and sta-
tistical modeling is performed on the parameters.

Other successful approaches include random phase and 
spot noise texture modeling [18], which model textures as sta-
tionary Gaussian random fields. These models are based on 
the assumption that the visual texture perception is based on 
the spectral magnitude of the texture image. Therefore, uti-
lizing the spectral magnitude of an input image and random-
izing its phase will lead to a new synthetic texture image that 
is visually similar to the input image. Ferradans et al. [18] uti-
lized this assumption together with the Wasserstein geodesics 
to interpolate between spectral magnitude of texture images 
and provide synthetic mixed texture images. Figure 8 shows 
an example of texture missing via the Wasserstein geodesic 
between the spectral magnitudes of the input-texture images. 
The in-between images are synthetically generated using the 
random-phase technique.
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FIGURE 7. (a) Gray value and (b) color transfer via optimal transportation. RGB: red, green, blue. 
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Image denoising and restoration
The optimal transport problem has also been used in several 
image-denoising and -restoration problems [30]. The goal in 
these applications is to restore or reconstruct an image from 
noisy or incomplete observation. Lellmann et al. [30] utilized 
the Kantorovich–Rubinsten discrepancy term together with a 
total variation (TV) term in the context of image denoising. 
They called their method Kantorovich–Rubinstein-TV (KR-
TV ) denoising. Note that the KR metric is closely related to 
the 1-Wasserstein metric (for 1-D signals they are equivalent). 
The KR term in their proposed functional provides a fidelity 
term for denoising, and the TV term enforces a piecewise con-
stant reconstruction.

Transport-based morphometry
Given their suitability for comparing mass distributions, 
transport-based approaches for performing pattern recogni-
tion of morphometry encoded in image intensity values have 
also lately emerged. Recently described approaches for 
transport-based morphometry (TBM) [4], [27], [50] work by 
computing transport maps or plans between a set of images 
and a reference or template image. The transport plans/maps 
are then utilized as an invertible feature/transform onto 
which pattern recognition algorithms such as PCA or LDA 
can be applied. In effect, it utilizes the LOT framework 
described in the “The Linear Optimal Transportation 
Framework” section. These techniques have recently been 
employed to decode differences in cell and nuclear morphol-
ogy for drug screening [4], cancer detection histopathology 
[39], and cytology images, as well as applications such as the 
analysis of galaxy morphologies [27].

Deformation-based methods have long been used in ana-
lyzing biomedical images. TBM, however, is different from 

those deformation-based methods in that it has numerically 
exact, uniquely defined solutions for the transport plans or 
maps used; i.e., images can be matched with little perceptible 
error. The same is not true in methods that rely on registration 
via the computation of deformations, given the significant 
topology differences commonly found in medical images. 
Moreover, TBM allows for comparison of the entire inten-
sity information present in the images (shapes and textures), 
while deformation-based methods are usually employed to 
deal with shape differences. Figure 9 shows a schematic of 
the TBM steps applied to a cell nuclei data set. It can be seen 
that TBM is capable of modeling the variation in the data set. 
In addition, it enables one to visualize the classifier, which 
discriminates between image classes (in this case malignant 
versus benign).
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Superresolution
Superresolution is the process of reconstructing a high-
resolution image from one or several corresponding low-
resolution images. Superresolution algorithms can be broadly 
categorized into two major classes, multiframe superresolu-
tion and single-frame superresolution, based on the number of 
low-resolution images they require to reconstruct the 
corresponding high-resolution image. The TBM approach was 
used for single-frame superresolution in [26] to reconstruct 
high-resolution faces from very low-resolution-input face 
images. The authors utilized the TBM in combination with 
subspace learning techniques to learn a nonlinear model for 
the high-resolution face images in the training set.

In short, the method consists of a training and a testing 
phase. In the training phase, it uses high-resolution face 
images and morphs them to a template high-resolution face 
through optimal transport maps. Next, it learns a subspace 

for the calculated optimal transport maps. A transport map 
in this subspace can then be applied to the template image to 
synthesize a high-resolution face image. In the testing phase, 
the goal is to reconstruct a high-resolution image from the 
low-resolution input image. The method searches for a syn-
thetic high-resolution face image (generated from the trans-
port subspace) that provides a corresponding low-resolution 
image, which is similar to the input low-resolution image. 
Figure 10 shows the steps used in this method and demon-
strates reconstruction results.

Machine learning and statistics
The optimal transport framework has recently attracted ample 
attention from the machine-learning and statistics communities 
[12], [19], [25], [28], [36]. Some applications of the optimal 
transport in these arenas include various transport-based learning 
methods [19], [28], [36], [48], domain adaptation, Bayesian 
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inference [12], [13] and hypothesis testing [15], [42] among oth-
ers. Here, we provide a brief overview of the recent developments 
of transport-based methods in machine learning and statistics.

Learning
Transport-based distances have recently been used in several 
works as a loss function for regression, classification, and 
other techniques. Montavon, Müller, and Cuturi [36], for 
instance, utilized the dual formulation of the entropy-regu
larized Wasserstein distance to train restricted Boltzmann 
machines (RBMs). Boltzmann machines are probabilistic 
graphical models (Markov random fields) that can be catego-
rized as stochastic neural networks and are capable of extract-
ing hierarchical features at multiple scales. RBMs are bipartite 
graphs that are special cases of Boltzmann machines, which 
define parameterized probability distributions over a set of 
d-binary input variables (observations) whose states are repre-
sented by h binary output variables (hidden variables). The 
parameters of RBMs are often learned through information 
theoretic divergences such as KL divergence. Montavon et al. 
[36] proposed an alternative approach through a scalable 
entropy-regularized Wasserstein distance estimator for RBMs 
and showed the practical advantages of this distance over the 
commonly used information divergence-based loss functions.

In another approach, Frogner et al. [19] used the entropy-
regularized Wasserstein loss for multilabel classification. They 
proposed a relaxation of the transport problem to deal with 
unnormalized measures by replacing the equality constraints 
in (6) with soft penalties with respect to KL divergence. In 
addition, Frogner et al. [19] provided statistical bounds on 
the expected semantic distance between the prediction and 
the ground truth. In yet another approach, Kolouri et al. [28] 
utilized the sliced-Wasserstein metric and provided a family 
of positive definite kernels, denoted sliced-Wasserstein ker-
nels, and showed the advantages of learning with such kernels. 
The sliced-Wasserstein kernels were shown to be effective 
in various machine-learning tasks, including classification, 
clustering, and regression.

Solomon et al. [48] considered the problem of graph-based 
semisupervised learning, in which graph nodes are partially 
labeled and the task is to propagate the labels throughout the 
nodes. Specifically, they considered a problem in which the 
labels are histograms. This problem arises, for example, in traf-
fic density prediction, in which the traffic density is observed 
for a few stop lights over 24 h in a city and the city is interested 
in predicting the traffic density at the unobserved stop lights. 
They pose the problem as an optimization of a Dirichlet ener-
gy for distribution-valued maps based on the 2-Wasserstein 
distance and present a Wasserstein propagation scheme for 
semisupervised distribution propagation along graphs.

More recently, Arjovskly et al. [3] compared various dis-
tances, i.e., TV, KL divergence, Jenson–Shannon divergence, 
and the Wasserstein distance in training generative adversar-
ial networks (GANs). They demonstrated (theoretically and 
numerically) that the Wasserstein distance leads to a superior 
performance compared to the later dissimilarity measures. 

They specifically showed that their proposed Wasserstein 
GAN does not suffer from common issues in such networks, 
including instability and mode collapse.

Domain adaptation
Domain adaptation is one of the fundamental problems in 
machine learning that has gained proper attention from the 
machine-learning research community in the past decade. 
Domain adaptation is the task of transferring knowledge from 
classifiers trained on available labeled data to unlabeled test 
domains with data distributions that differ from that of the train-
ing data. The optimal transport framework was recently present-
ed as a potential major player in domain adaptation problems 
[12], [13]. Courty et al. [12], for instance, assumed that there 
exists a nonrigid transformation between the source and target 
distributions, and they find this transformation using an entropy-
regularized optimal transport problem. They also proposed a 
label-aware version of the problem in which the transport plan 
is regularized so a given target point (testing exemplar) is asso-
ciated only with source points (training exemplars) belonging to 
the same class. Courty et al. [12] showed that domain adaptation 
via regularized optimal transport outperforms the state-of-the-
art results in several challenging domain adaptation problems.

Bayesian inference
Another interesting and emerging application of the optimal 
transport problem is in Bayesian inference [17]. In Bayesian 
inference, one critical step is the evaluation of expectations 
with respect to a posterior probability function, which leads to 
complex multidimensional integrals. These integrals are com-
monly solved through the Monte Carlo numerical integration, 
which requires independent sampling from the posterior distri-
bution. In practice, sampling from a general posterior dis
tribution might be difficult, so, therefore, the sampling is 
performed via a Markov chain that converges to the posterior 
probability after a certain number of steps. This leads to the 
celebrated Markov chain Monte Carlo (MCMC) method. The 
downside of the MCMC method is that the samples are not 
independent, and, hence, the convergence of the empirical 
expectation is slow. El Moselhy and Marzouk [17] proposed a 
transport-based method that evades the need for Markov-chain 
simulation by allowing direct sampling from the posterior dis-
tribution. The core idea in their work is to find a transport map 
(via a regularized Monge formulation) that pushes forward the 
prior measure to the posterior measure. Then, sampling the 
prior distribution and applying the transport map to the sam-
ples will lead to a sampling scheme from the posterior distri-
bution. Figure 11 shows the basic idea behind these methods.

Hypothesis testing
The Wasserstein distance is used for goodness-of-fit testing in 
[15] and for two-sample testing in [42]. Ramdas et al. [42] pre-
sented connections between the entropy-regularized 
Wasserstein distance, multivariate Energy distance, and the 
kernel maximum mean discrepancy and provided a “distribu-
tion-free” univariate Wasserstein test statistic. These and other 
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applications of transport-related concepts show the promise of 
the mathematical modeling technique in the design of statisti-
cal data-analysis methods to tackle modern learning problems. 
Finally, note that, in the interest of brevity, a number of other 
important applications of transport-related techniques were 
not discussed above but are certainly interesting in their own 
right. For a more detailed discussion and more references please 
refer to [24].

Summary and conclusions
Transport-related methods and applications have come a long 
way. Although earlier applications focused primarily in civil 
engineering and economics problems, they have recently begun 
to be employed in a wide variety of problems related to signal 
and image analysis and pattern recognition. In this article, 
seven main areas of application were reviewed: image retrieval, 
registration and morphing, color transfer and texture analysis, 
image restoration, TBM, image superresolution, and machine 
learning and statistics. Transport and related techniques have 
gained increased interest in recent years. Overall, researchers 
have found that the application of transport-related concepts 
can be helpful in solving problems in diverse applications. 
Given recent trends, it seems safe to expect that the number of 
application areas will continue to grow.

In its most general form, the transport-related techniques 
reviewed in this article can be thought as mathematical mod-
els for signals and images and in general data distributions. 
Transport-related metrics involve calculating differences not 
only of pixel or distribution intensities but also where they are 
located in the corresponding coordinate space (a pixel coor-
dinate in an image or a particular axis in some arbitrary fea-
ture space). As such, the geometry (e.g., geodesics) induced by 
such metrics can give rise to dramatically different algorithms 
and data interpretation results. The interesting performance 
improvements recently obtained could motivate the search for 
a more rigorous mathematical understanding of transport-relat-
ed metrics and applications.

The emergence of numerically precise and efficient ways 
of computing transport-related metrics and geodesics, as pre-
sented in the “Numerical Methods” section, also serves as 
an enabling mechanism. Coupled with the fact that several 

mathematical properties of transport-based metrics have 
been extensively studied, we believe that the foundation is 
set for their increased use as tools or building blocks based 
on which complex computational systems can be built. The 
confluence of these emerging ideas may spur a significant 
amount of innovation in a world where sensor and other data 
are becoming abundant and computational intelligence to 
analyze these is in high demand. We believe transport-based 
models will become an important component of the ever-
expanding tool set available to modern signal-processing and 
data-science experts.
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