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Abstract. This article is aimed at presenting the Schrödinger problem and
some of its connections with optimal transport. We hope that it can be used

as a basic user’s guide to Schrödinger problem. We also give a survey of the

related literature. In addition, some new results are proved.

1. Introduction. This article is aimed at presenting the Schrödinger problem and
some of its connections with optimal transport. We hope that it can be used as
a basic user’s guide to Schrödinger problem. We also give a survey of the related
literature. In addition, some new results are proved.

We denote by P(Y ) and M+(Y ) the sets of all probability and positive measures
on a space Y.

In 1931, Schrödinger [65, 66] addressed a problem which is translated in modern
terms1 as follows. Let X = Rn or more generally a complete connected Riemannian
manifold without boundary, Ω = C([0, 1],X ) be the space of all continuous X -valued
paths on the unit time interval [0, 1] and denote R ∈ M+(Ω) the law of the reversible
Brownian motion on X , i.e. the Brownian motion with the volume measure as its
initial distribution. Remark that R is an unbounded measure on Ω whenever the
manifold X is not compact. Define the relative entropy of any probability measure
P with respect to R by

H(P |R) =

∫
Ω

log

(
dP

dR

)
dP ∈ (−∞,∞], P ∈ P(Ω)

if P is absolutely continuous with respect to R and the above integral is meaningful,
and H(P |R) = ∞ otherwise. A precise definition of the relative entropy with
respect to an unbounded measure R is presented at the Appendix. The dynamical
Schrödinger problem is

H(P |R)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1, (Sdyn)

where µ0, µ1 ∈ P(X ) are prescribed values of the initial and final time marginals
P0 := P (X0 ∈ ·) and P1 := P (X1 ∈ ·) of P. Here (Xt)0≤t≤1 is the canonical process
on Ω.
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This is a convex minimization problem since H(·|R) is a convex function and the
constraint set {P ∈ P(Ω) : P0 = µ0, P1 = µ1} = {P ∈ M(Ω) : P ≥ 0, P0 = µ0, P1 =
µ1} is a convex subset of the vector space M(Ω) of all bounded measures on Ω.
Furthermore, as H(·|R) is strictly convex, if (Sdyn) admits a solution, it must be

unique. Let P̂ ∈ P(Ω) be this solution (if it exists). We shall see at Proposition 1
that it disintegrates as

P̂ (·) =

∫
X 2

Rxy(·) π̂(dxdy) (1)

where for all x, y ∈ X , Rxy := R(· | X0 = x,X1 = y) is the Brownian bridge from
x to y and π̂ ∈ P(X ×X ) is the unique solution to the following static Schrödinger
problem

H(π|R01)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1. (S)

Here,

R01(dxdy) := R((X0, X1) ∈ dxdy) ∝ exp(−d(x, y)2/2) vol(dx)vol(dy) (2)

is the joint law of the initial and final positions of the reversible Brownian motion
R, d is the Riemannian distance and π0 := π(·×X ) and π1 := π(X ×·) are the first
and second marginals of π ∈ P(X 2).

The disintegration formula (1) means that P̂ shares its bridges with R, that is:

P̂ xy = Rxy for almost all x, y, and that this mixture of bridges is governed by the
unique solution π̂ to the static Schrödinger problem (S). It also follows from (1)
that the values of the dynamical and static problems are equal: inf (Sdyn) = inf (S).

The structure of problem (S) is similar to Monge-Kantorovich problem’s one:∫
X 2

c(x, y)π(dxdy)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (MK)

where c : X 2 → [0,∞) represents the cost for transporting a unit mass from the
initial location x to the final location y. Both are convex optimization problems,
but unlike (S), the linear program (MK) might admit infinitely many solutions.
Since (2) writes as R01(dxdy) ∝ exp

(
− c(x, y)

)
vol(dx)vol(dy) with

c(x, y) = d2(x, y)/2, x, y ∈ X ,
it happens that the Schrödinger problem (S) is connected to the quadratic Monge-
Kantorovich optimal transport problem (MK) which is specified by this quadratic
cost function. The natural dynamical version of (MK) is∫

Ω

C dP → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (MKdyn)

with

C(ω) =

∫
[0,1]

|ω̇t|2ωt/2 dt ∈ [0,∞], ω ∈ Ω, (3)

where we put C(ω) =∞ when ω is not absolutely continuous.
Let us comment on the choice of this dynamical version of (MK). For all x, y ∈ X ,

we have
c(x, y) = inf{C(ω);ω ∈ Ω : ω0 = x, ω1 = y} (4)

and this infimum is attained at the constant speed geodesic path γxy between x
and y, which is assumed to be unique for any (x, y), for simplicity. Therefore, the
solutions of (MK) and (MKdyn) are in one-one correspondence:

• If P̂ solves (MKdyn), then P̂01 := P̂ ((X0, X1) ∈ ·) solves (MK);
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• If π̂ solves (MK), then the solution of (MKdyn) is

P̂ (·) =

∫
X 2

δγxy (·) π̂(dxdy) (5)

where δa denotes the Dirac measure at a.

Furthermore, we have equality of the values of the problems: inf (MK) = inf
(MKdyn) ∈ [0,∞].

Again, the dynamical Schrödinger problem (Sdyn) and the dynamical Monge-
Kantorovich problem (MKdyn) are similar. Comparing their respective solutions
(1) and (5), we see that the π̂’s solve their respective static problem (S) and (MK),
while for each (x, y) the bridge Rxy ∈ P(Ω) in (1) plays the role of δγxy ∈ P(Ω) in
(5).

All the notions pertaining to the Monge-Kantorovich optimal transport problems
(MK) and (MKdyn) which are going to be invoked below are discussed in great detail
in C. Villani’s textbook [72].

1.1. Displacement interpolations in P2(X ). Let P(X ) denote the set of all
probability measures on X and P2(X ) :=

{
p ∈ P(X ) :

∫
X d

2(x0, y) p(dy) <∞
}
. If

µ0, µ1 are in P2(X ), then (MK) and (MKdyn) admit a solution. Let P̂ be a solution
of (MKdyn). We consider

µt := P̂ (Xt ∈ ·) ∈ P2(X ), t ∈ [0, 1] (6)

the time-marginal flow of P̂ . The P2(X )-valued path [µ0, µ1] = (µt)0≤t≤1 is called
a displacement interpolation between µ0 and µ1. These interpolations were discov-
ered by R. McCann in his PhD thesis [44]. They encode geometric properties of the
manifold X : although P2(X ) is not endowed with a Riemannian metric, [µ0, µ1] is
a minimizing constant speed geodesic path on P2(X ), in the length space sense. In
particular, (5) shows that for each x, y, [δx, δy] = (δγxyt )0≤t≤1. Therefore, displace-
ment interpolations lift the notion of minimizing constant speed geodesic paths from
the state space X up to P2(X ). Based on this property, Otto [30, 60] discovered that
the heat equation can be seen as the gradient flow of the Boltzmann entropy with
respect to the Riemannian-like distance W2 on P2(X ) which is defined as follows:
the common value of the Monge-Kantorovich problems

W 2
2 (µ0, µ1)/2 := inf (MK) = inf (MKdyn)

allows to define the Wasserstein distance W2(µ0, µ1) between µ0 and µ1. Saying
that γxy has a constant speed means that for all 0 ≤ s ≤ t ≤ 1, d(γxys , γxyt ) =
(t − s)d(x, y). With (5), we see that [µ0, µ1] inherits this constant speed property:
for all 0 ≤ s ≤ t ≤ 1, W2(µs, µt) = (t − s)W2(µ0, µ1). It is a remarkable fact that
W2(µ0, µ1) also admits the following Benamou-Brenier representation [1]:

W 2
2 (µ0, µ1) = inf

(ν,v)

{∫
[0,1]×X

|vt(x)|2x νt(dx)dt

}
=

∫
[0,1]×X

|∇ψt(x)|2x µt(dx)dt (7)

where the infimum is taken over all (ν, v) such that ν = (νt)0≤t≤1 ∈ C([0, 1],P2(X )),
v is a smooth vector field and these quantities are linked by the following current
equation (in a weak sense) with boundary values:{

∂tν +∇·(ν v) = 0, t ∈ (0, 1)
ν0 = µ0, ν1 = µ1.
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The last equality in (7) states that the infimum is attained at ν = µ: the displace-
ment interpolation (6), and some gradient vector field v = ∇ψ which might not be
smooth. The optimal couple (µ,∇ψ) solves the forward-backward coupled system

(a)

{
∂tµ+∇·(µ∇ψ) = 0, t ∈ (0, 1]
µ0, t = 0

(b)

{
∂tψ + 1

2 |∇ψ|
2 = 0, t ∈ [0, 1)

ψ1, t = 1
(8)

for some measurable function ψ1 which is designed for obtaining µ1 at time 1. The
potential ψ is the unique viscosity solution of the Hamilton-Jacobi equation (8)-(b);
it admits the Hopf-Lax representation

ψt(z) = inf
y

{
d2(z, y)

2(1− t)
+ ψ1(y)

}
, 0 ≤ t < 1, y ∈ X . (9)

In particular, if ψ1 is bounded, ψ is locally Lipschitz continuous and almost every-
where differentiable.

Based on these properties of the displacement interpolations, F. Otto [30, 60]
developed an informal theory aimed at considering the metric space (P2(X ),W2) as
a Riemannian manifold. This informal approach relies on the idea that, in view of
the current equation (8)-(a), ∂tµ|t=0 = −∇·(µ∇ψ0) is a candidate to be a tangent
vector at µ0. Second order calculus necessitates to take also (8)-(b) into account.

The analogue of displacement interpolation exists with (MKdyn) replaced by
(Sdyn). This entropic interpolation also enjoys properties which are similar to (7)
and (8). They are discussed below.

1.2. The Monge-Kantorovich problem is a limit of Schrödinger problems.
It is well-known that taking Rk to be the reversible Brownian motion with variance
1/k, i.e. the Markov measure associated to the Markov generator

Lk = ∆/(2k)

with the volume measure as its initial distribution, the bridges of Rk converge: for
each (x, y), we have

lim
k→∞

Rk,xy = δγxy ∈ P(Ω) (10)

with respect to the usual narrow topology σ(P(Ω), Cb(Ω)). This result is an easy
consequence of Schilder’s theorem which is a large deviation result (as k tends to
infinity) whose rate function is precisely the dynamical cost function C given at (3),
see [16].

In fact, the dynamical and static Monge-Kantorovich problems are respectively
the Γ-limits of sequences of dynamical and static Schrödinger problems associated
to the sequence (Rk)k≥1 in M+(Ω) of reference path measures [49, 40]. More pre-
cisely (but still informally), considering the sequence of re-normalized Schrödinger
problems

H(P |Rk)/k → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1, (Skdyn)

we have

Γ- lim
k→∞

(Skdyn) = (MKdyn) (11)

and similarly the re-normalized static version

H(π|Rk01)/k → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1, (Sk)

satisfies Γ- limk→∞ (Sk) = (MK). Recall that this implies that under some com-
pactness requirements, the values converge: limk→∞ inf (Skdyn) = inf (MKdyn) and
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any limit point of the sequence of minimizers (P̂ k)k≥1 of (Skdyn) solves (MKdyn). A
similar statement holds with the static problems.

In particular, the time-marginal flow

µkt := P̂ kt , t ∈ [0, 1],

of the solution to (Skdyn) converges as k tends to infinity to the displacement inter-

polation [µ0, µ1] when (MK) admits a unique solution, for instance when both µ0

and µ1 are absolutely continuous. Denoting and calling the entropic interpolation
[µ0, µ1]k := (µkt )t∈[0,1] of order k, we have

lim
k→∞

[µ0, µ1]k = [µ0, µ1], (12)

with respect to the topology of uniform convergence on C([0, 1],P2(X )) where P2(X )
is equipped with W2.

1.3. The Schrödinger problem is a regular approximation of the Monge-
Kantorovich problem. Now, we explain informally why in some sense, (Skdyn)

is a regularization of its limiting Monge-Kantorovich problem (MKdyn). Unlike

(MKdyn), for each k ≥ 1, (Skdyn) admits a unique solution P̂ k ∈ P(Ω). It can be

proved that P̂ k is a Markov diffusion whose semigroup generator (Akt )0≤t≤1 is of
the following form

Akt = ∇ψkt ·∇+ ∆/(2k), 0 ≤ t < 1,

with ψk the smooth function on [0, 1)×X which is the unique classical solution of
the Hamilton-Jacobi-Bellman equation{

∂tψ
k + 1

2 |∇ψ
k|2 + ∆ψk/(2k) = 0, t ∈ [0, 1)

ψk1 , t = 1

for some measurable function ψk1 designed for recovering2 µk1 = µ1 as the final
distribution of the weak solution to{ ∫

[0,1]×X (∂t +Akt )u(t, x)µkt (dx)dt = 0, ∀u ∈ C∞o ((0, 1)×X )

µk0 = µ0, t = 0.

which is the evolution equation of the entropic interpolation [µ0, µ1]k of order k.

Remark that the current equation (8)-(a):

{
∂tµ+∇·(µ∇ψ) = 0, t ∈ (0, 1]
µ0, t = 0

signifies { ∫
[0,1]×X (∂t +At)u(t, x)µt(dx)dt = 0, ∀u ∈ C∞o ((0, 1)×X )

µ0, t = 0

with

At = ∇ψt ·∇, 0 ≤ t < 1,

to be compared with the second order operator Akt above. We see that, as a conse-
quence of the smoothing and positivity-improving effects of the Laplace operator,
the entropic interpolation of order k: [µ0, µ1]k, is positive and regular on (0, 1)×X .
This is in contrast with the limiting displacement interpolation [µ0, µ1].

2In fact, one can recover exactly µ1 if it has a regular density. Otherwise, one can build a
sequence µk1 such that limk→∞ µk1 = µ1.
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Extension of the framework. We have chosen Rk to be attached to the Brown-
ian motion, but taking Rk to be any Markov measure on a Polish state space X
satisfying a large deviation principle with some rate function C leads to limiting
Monge-Kantorovich problems associated to alternate cost functions C and c which
are still linked by the contraction formula (4). Such extensions based on continuous
random paths are considered in [40]. Extensions where the reference measure R is
a random walk on a discrete graph are investigated in [33], see also Sections 4 and
5 below.

1.4. New results. Although this article is mainly a survey, we have obtained some
new results. Theorem 2.5 recollects several sufficient conditions on the reference
path measure R and the prescribed marginal measures µ0 and µ1, for the unique

solution P̂ of (Sdyn) to admit the following product-shaped Radon-Nikodym deriv-
ative

P̂ = f0(X0)g1(X1)R ∈ P(Ω), (13)

where f0 and g1 are measurable positive functions on X . The slight innovation is due
to the possibility that R might have an infinite mass, e.g. the reversible Brownian
motion on Rn. Theorem 2.6 is a significant improvement of Theorem 2.5 in the
special important case where R is assumed to be Markov. Under some additional
requirement on R, it states that (13) holds where f0 and g1 may vanish on some
sets.

Proposition 5 simply states that, if R is Markov, then the solution P̂ of (Sdyn)
is also Markov. Although this is intuitively clear, the author couldn’t find in the
literature any proof of this result. Finally, the Benamou-Brenier type formulas that
are stated at Propositions 6 and 7, are new results.

1.5. Outline of the paper. In Section 2, the dynamical and static Schrödinger
problems are rigorously stated, their main properties of existence and uniqueness
are discussed and the shape of their minimizers is described. This specific shape,
given by (13), suggests to introduce at Section 3 the notion of (f, g)-transform of
a Markov measure R which is a time-symmetric version of Doob’s h-transform.
In particular, the classical analogue of Born’s formula, which was Schrödinger’s
motivation in [65, 66], is derived at Theorem 3.3. Then we illustrate at Section
4 the general results of Sections 2 and 3. First, we revisit the case where R is
the reversible Brownian motion. Then, we consider a discrete setting where the
reference measure is a reversible random walk on a graph. At Section 5, we see that
slowing the reference Markov process down to a complete absence of motion, is the
right asymptotic to consider for recovering optimal transport from minimal entropy.
Technically, this is expressed in terms of Γ-convergence results in the spirit of (11).
In Section 6, by means of basic large deviation results, we present the motivation for
addressing the entropy minimization problem (Sdyn). This leads us naturally to the
lazy gas experiment, a starting point to the Lott-Sturm-Villani theory. Literature
is discussed at Section 7.

2. Schrödinger’s problem. We begin fixing some notation and describing the
general framework. Then, Schrödinger’s problem is stated and its main properties
are discussed in a general setting.
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2.1. Path measures. Depending on the context, we denote by the same letter the
set Ω = C([0, 1],X ) of all continuous paths from the unit time interval [0, 1] to the
topological state space X , or Ω = D([0, 1],X ) the set of all càdlàg (right-continuous
and left-limited) paths. We furnish X with its Borel σ-field and Ω with the canonical
σ-field σ(Xt; 0 ≤ t ≤ 1) which is generated by the time projections

Xt(ω) := ωt ∈ X , ω = (ωs)0≤s≤1 ∈ Ω, t ∈ [0, 1].

The mapping X = (Xt)0≤t≤1 : Ω→ Ω which is the identity on Ω, is usually called
the canonical process. We call a path measure, any positive measure Q ∈ M+(Ω)
on Ω. Its time-marginals are the push-forward measures

Qt := (Xt)#Q ∈ M+(X ), t ∈ [0, 1].

This means that for any Borel subset A ⊂ X , Qt(A) = Q(Xt ∈ A). If Q de-
scribes the behaviour of the random path (Xt)0≤t≤1 of some particle, then Qt
describes the behaviour of the random position Xt of the particle at time t. Re-
mark that the flow (Qt)0≤t≤1 ∈ M+(X )[0,1] contains less information than the path
measure Q ∈ M+(Ω). In particular, (Qt)0≤t≤1 doesn’t tell us anything about the
correlations between two positions at different times s and t which are encoded in
Qst := (Xs, Xt)#Q ∈ M+(X 2). We shall be primarily concerned with the endpoint
marginal measure

Q01 := (X0, X1)#Q ∈ M+(X 2),

meaning that for any Borel subsets B ⊂ X 2, Q01(B) = Q((X0, X1) ∈ B). We also
denote

Qxy = Q(· | X0 = x,X1 = y) ∈ P(Ω),

the bridge of Q between x and y. For each Q ∈ M+(Ω), the disintegration formula
(71) with φ = (X0, X1) writes as follows:

Q(·) =

∫
X 2

Qxy(·)Q01(dxdy) ∈ M+(Ω).

We assume that the topological state space X is a Polish (separable and complete
metric) space and equip Ω = D([0, 1],X ) with the corresponding Skorokhod topol-
ogy. It is well-known [4] that this topology turns Ω into a Polish space and that
the corresponding Borel σ-field is precisely the canonical one: σ(Xt; 0 ≤ t ≤ 1).
Moreover, in restriction to C([0, 1],X ), the Skorokod topology is the topology of
uniform convergence which also turns C([0, 1],X ) into a Polish space. We still have
the coincidence of the Borel σ-field and the canonical one.

The path space Ω is furnished with this topology.

2.2. Why unbounded path measures. One may wonder why a random be-
haviour should be described by an unbounded measure rather than a probabil-
ity measure. We have in mind as a particular but important application, the re-
versible Brownian motion on X = Rn. It is the Brownian motion whose forward
dynamics is driven by the heat semigroup as usual, but its random initial posi-
tion X0 is uniformly distributed on Rn. Denoting R ∈ M+(Ω) the corresponding
path measure on Ω = C([0, 1],Rn), R0(dx) = dx is the Lebesgue measure3 on Rn

3Although this paper is not concerned with the interpretation of such a description, one should
note that a “frequencist” interpretation fails unless one introduces an infinite system of independent
particles initially distributed according to a Poisson point process with a uniform spatial frequency.

An alternate information viewpoint is also relevant: the Lebesgue measure (or any of its positive
multiples) is the less informative a priori measure for modelling our complete lack of knowledge
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and R(·) =
∫
X Wx(·) dx where Wx is the Wiener probability measure with initial

marginal δx. Clearly, R has the same infinite mass as R0.
Similarly, the simple random walk on a countably infinite graph X admits an un-

bounded reversing measure R0 so that the corresponding reversible simple random
walk is described by an unbounded measure R ∈ M+(Ω) with Ω = D([0, 1],X ).

Considering such reversible path measures R ∈ M+(Ω) as reference measures
usually simplifies computations.

2.3. Relative entropy. Let r be some σ-finite positive measure on some space
Y . The relative entropy of the probability measure p with respect to r is loosely
defined by

H(p|r) :=

∫
Y

log(dp/dr) dp ∈ (−∞,∞], p ∈ P(Y ) (14)

if p� r and H(p|r) =∞ otherwise. The rigorous definition of the relative entropy
and its basic properties are recalled at the appendix section A.

2.4. Statement of Schrödinger’s problem. The main data is a given reference
path measure R ∈ M+(Ω). In this section any (non-zero) σ-finite path measure in
M+(Ω) can serve as a reference measure.

We first state a dynamical version (Sdyn) of Schrödinger’s problem which is as-
sociated to R. Then, we define Schrödinger’s problem (S) as a static projection of
(Sdyn) and the connections between the solutions of (S) and (Sdyn) are described
at Proposition 1.

Definition 2.1 (Dynamical Schrödinger problem). The dynamical Schrödinger
problem associated with the reference path measure R ∈ M+(Ω) is the following
entropy minimization problem

H(P |R)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (Sdyn)

where µ0, µ1 ∈ P(X ) are prescribed initial and final marginals.

Considering the projection R01 = (X0, X1)#R ∈ M+(X 2) of R on the product
space X 2 as a reference measure, leads us to Schrödinger’s (static) problem.

Definition 2.2 (Schrödinger’s problem). The (static) Schrödinger problem associ-
ated with the reference measure R01 ∈ M+(X 2) is the following entropy minimiza-
tion problem

H(π|R01)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (S)

where π0 := π(· × X ) and π1 := π(X × ·) ∈ P(X ) denote respectively the first and
second marginals of π ∈ P(X 2) and µ0, µ1 ∈ P(X ) are prescribed marginals.

These optimization problems are highly connected. This is the content of next
proposition.

Proposition 1 (Föllmer, [24]). The Schrödinger problems (Sdyn) and (S) admit

respectively at most one solution P̂ ∈ P(Ω) and π̂ ∈ P(X 2).

If (Sdyn) admits the solution P̂ , then π̂ = P̂01 is the solution of (S).

about the initial position. Indeed, it is invariant under isometries and translations, and the entropic
problems to be considered below are insensitive to homotheties (up to an additive constant).
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Conversely, if π̂ solves (S), then (Sdyn) admits the solution

P̂ (·) =

∫
X 2

Rxy(·) π̂(dxdy) ∈ P(Ω) (15)

which means that

P̂01 = π̂ ∈ P(X 2)

and that P̂ shares its bridges with R :

P̂ xy = Rxy, ∀(x, y) π̂-a.e.

Proof. Being strictly convex problems, (Sdyn) and (S) admit respectively at most
one solution.

Let us particularize the consequences of the additive property formula (72) to
r = R, p = P and φ = (X0, X1). We have for all P ∈ P(Ω),

H(P |R) = H(P01|R01) +

∫
X 2

H(P xy|Rxy)P01(dxdy)

which implies that H(P01|R01) ≤ H(P |R) with equality (when H(P |R) < ∞) if
and only if P xy = Rxy for P01-almost every (x, y) ∈ X 2, see (73) and (74). Note
that this additive property formula is available since both X 2 and Ω are Polish

spaces. Therefore P̂ is the (unique) solution of (Sdyn) if and only if it disintegrates
as (15).

2.5. Existence results. We present below at Proposition 2 a simple criterion for
(S) and (Sdyn) to have a solution. We first need a preliminary result.

Lemma 2.3. We have: inf (Sdyn) = inf (S) ∈ (−∞,∞].
Let B : X → [0,∞) be a measurable function such that∫

X 2

e−B(x)−B(y)R01(dxdy) <∞ (16)

and take µ0, µ1 ∈ P(X ) such that∫
X
B dµ0,

∫
X
B dµ1 <∞. (17)

The static and dynamical Schrödinger problems (S) and (Sdyn) admit a (unique)
solution if and only if inf (Sdyn) = inf (S) < ∞ or equivalently if and only if the
prescribed marginals µ0 and µ1 are such that

there exists some πo ∈ P(X 2) such that πo0 = µ0, π
o
1 = µ1 and H(πo|R01) <∞.

(18)

Proof. The first identity comes from the proof of Proposition 1.
Since X is Polish, the probability measures µ0 and µ1 are tight measures on

X and it follows with the Prokhorov criterion on X 2 that the closed constraint
set Π(µ0, µ1) :=

{
π ∈ P(X 2) : π0 = µ0, π1 = µ1

}
is uniformly tight and therefore

compact in P(X 2).
Taking (16) into account, (67) and (68) give usH(π|R01) = H(π|RB01)−

∫
X 2 Wdπ−

zB , π ∈ P(X 2) with W (x, y) = B(x) + B(y), x, y ∈ X , zB :=
∫
X 2 e

−B(x)−B(y)R01

(dxdy) < ∞ and RB01 := z−1
B e−B⊕BR01 ∈ P(X 2). In restriction to Π(µ0, µ1), we

obtain

H(π|R01) = H(π|RB01)−
∫
X
B dµ0 −

∫
X
B dµ1 − zB , π ∈ Π(µ0, µ1). (19)
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Together with (17), this implies that H(·|R01) is lower bounded and lower semi-
continuous on the compact set Π(µ0, µ1). Hence, (S) admits a solution if and only
inf (S) <∞. We already remarked that (Sdyn) has a solution if and only (S) has a
solution that is: inf (S) <∞, or equivalently if and only (18) is satisfied.

Proposition 2. Suppose that R0 = R1 = m ∈ M+(X ) (this is satisfied in particular
when R is reversible with m as its reversing measure).

(a) For (Sdyn) and (S) to have a solution, it is necessary that H(µ0|m), H(µ1|m) <
∞.

(b) Let us give a set of sufficient conditions for an existence result. Suppose that
there exist some nonnegative measurable functions A and B on X such that
(i) R01(dxdy) ≥ e−A(x)−A(y)m(dx)m(dy);

(ii)
∫
X 2 e

−B(x)−B(y)R01(dxdy) <∞
Let µ0 and µ1 satisfy

(iii)
∫
X (A+B) dµ0,

∫
X (A+B) dµ1 <∞

(iv) H(µ0|m), H(µ1|m) <∞
Then, (Sdyn) and (S) admit a unique solution.

(c) If we have (iv) and
(v)

∫
X e

α(A+B) dm <∞ for some α > 0,
then (iii) is satisfied.

Remark that for (v) to be satisfied, it is necessary that m is a bounded measure.

Proof. Statement (a) follows directly from Lemma 2.3 and H(µ0|m), H(µ1|m) ≤
H(πo|R01) <∞, see (73).

Let us look at statement (b). Testing (18) with πo = µ0⊗µ1, one easily observes
that when (i) and (iii) are satisfied, it suffices that H(µ0|m), H(µ1|m) <∞ for (18)
to hold true, and consequently by Lemma 2.3, for (Sdyn) and (S) to have a (unique)
solution.

Let us look at statement (c). With the variational representation formula (69),
one sees that (iv) and (v) imply (iii).

2.6. The dual problem. Take a measurable function B : X → [1,∞) that satisfies
(16). Define CB(X ) to be the space of all continuous functions u : X → R such that
sup |u|/B <∞ and PB(X ) :=

{
µ ∈ P(X );

∫
X B dµ <∞

}
. Based on the variational

representation of the relative entropy (70) and on the observation that for each
π ∈ P(X 2), (π0, π1) = (µ0, µ1) if and only if

∫
X 2 [ϕ(x) +ψ(y)]π(dxdy) =

∫
X ϕdµ0 +∫

X ψ dµ1, for all ϕ,ψ ∈ Cb(X ) (the space of all bounded continuous numerical
functions on X ), it can be proved that a dual problem to the Schrödinger problem
(S) is∫

X
ϕdµ0 +

∫
X
ψ dµ1 − log

∫
X 2

eϕ⊕ψ dR01 → max; ϕ,ψ ∈ CB(X ) (D)

where ϕ⊕ψ : (x, y) ∈ X 2 7→ ϕ(x) +ψ(y) ∈ R and it is assumed that the prescribed
marginals satisfy µ0, µ1 ∈ PB(X ).

In particular, the dual equality inf (S) = sup (D) ∈ (−∞,∞] is satisfied. This is
proved, for instance, in [37] when the reference measure is a probability measure.
In the general case, take (19) into account to get back to a reference measure with a
finite mass. Of course, there is no reason for the dual attainment to hold in general
in a space of regular functions such as CB(X )2. Suppose however that µ0 and µ1
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are such that (D) is attained at (ϕ̂, ψ̂). Then, the dual equality:
∫
X 2 ϕ̂ ⊕ ψ̂ dπ̂ −

log
∫
X 2 e

ϕ̂⊕ψ̂ dR01 = H(π̂|R01) and the case of equality in (70) lead us to

dπ̂/dR01 = exp(ϕ̂⊕ ψ̂), (20)

at least when dπ̂/dR01 > 0. The shape of the minimizer π̂ of (S) will be discussed
further in next subsection.

Similarly, a dual problem to the dynamical version (Sdyn) of (S) is∫
X
ϕdµ0 +

∫
X
ψ dµ1 − log

∫
Ω

eϕ(X0)+ψ(X1) dR→ max; ϕ,ψ ∈ CB(X ) (Ddyn)

We observe that (D)=(Ddyn).

2.7. Some properties of the minimizer π̂ of (S). We give some detail about the
structure of the unique minimizer π̂ of (S) which is assumed to exist; for instance
under the hypotheses of Proposition 2.

It is proved in [38, Thm. 5.1 & (5.9)]4 that there exist two functions ϕ,ψ : X → R
such that

(i) dπ̂/dR01 = exp(ϕ⊕ ψ), π̂-a.e.
(ii) ϕ⊕ ψ : X 2 → R is R01-measurable.

It is tempting to write that π̂ has the following shape

π̂(dxdy) = f(x)g(y)R01(dxdy)

where f = eϕ and g = eψ are such that the marginal constraints{
f(x)ER[g(X1) | X0 = x] = dµ0/dR0(x), R0-a.e.
g(y)ER[f(X0) | X1 = y] = dµ1/dR1(y), R1-a.e.

(21)

are satisfied. This was already suggested by (20). But this is not allowed in the
general case. Indeed, two obstacles have to be avoided. Some comments are neces-
sary.

Obstacle (i). Firstly, the identity (i) is only valid π̂-almost everywhere and it might
happen that it doesn’t hold true R01-almost everywhere. Otherwise stated, there
exists some measurable subset S ⊂ X 2 such that:

(i)’ π̂ = 1S exp(ϕ⊕ ψ)R01

and it is not true in general that the set S ⊂ X 2 is the product S = S0 × S1 of two
measurable subsets of X , see [25, §2] or [38, §5].

Obstacle (ii). Secondly, statement (ii) does not imply that ϕ and ψ are respectively
R0 and R1-measurable on X . Only the tensor sum ϕ⊕ψ is R01-measurable on the
product space X 2. Hence, one is not allowed to consider the conditional expectations
in (21).

4 The assumptions of [38] require that R01 is a probability measure. In the general case where
R01 is unbounded, use (19) to go back to the unit mass setting.
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Avoiding obstacle (i). To avoid the obstacle (i), it is enough to slightly modify the
prescribed marginals µ0 and µ1 as follows. It is shown in [38] that (i) is satisfied
R01-a.e. (rather than π̂-a.e.) if (µ0, µ1) is in the intrinsic core: icor C, of the set of
all admissible constraints

C := {(µ0, µ1) ∈ P(X )2; inf (S)(µ0,µ1) <∞}.
Recall that for any convex set C, its intrinsic core is defined as icorC :=
{y ∈ C;∃x, z ∈ C : y ∈]x, z[} where ]x, z[:= {(1− t)x+ tz; 0 < t < 1} ⊂ C. It is also
shown in [38] that C = {Λ∗ < ∞} where Λ∗ is the convex conjugate of the ex-
tended real valued function Λ which is defined for any measurable functions ϕ,ψ by
Λ(ϕ,ψ) = log

∫
X 2 e

ϕ⊕ψ dR01 ∈ (−∞,∞]. Therefore C is a convex subset of P(X )2.
In particular, considering {

µε0 := (1− ε)µ0 + εRw0
µε1 := (1− ε)µ1 + εRw1

(22)

with Rw0 , R
w
1 ∈ P(X ) the marginals of Rw01 = z−1

w e−w R01 ∈ P(X 2) where the
function w is chosen5 such that

∫
X 2 we

−w dR01 < ∞ for H(Rw01|R01) < ∞ to

be satisfied with
∫
X 2 w dR

w
01 < ∞, see (68), we observe that for any admissible

(µ0, µ1) ∈ C, for any arbitrarily small ε > 0, (µε0, µ
ε
1) ∈ icor C. Therefore, (µε0, µ

ε
1) is

arbitrarily close to (µ0, µ1) in total variation norm and the corresponding solution
π̂ε of (S)(µε0,µ

ε
1) satisfies

π̂ε = exp(ϕε ⊕ ψε)R01

for some functions ϕε and ψε such that ϕε ⊕ ψε is jointly R01-measurable.

Proposition 3. We say that the constraint (µ0, µ1) is internal if it is in the in-
trinsic core of the set of all admissible constraints: (µ0, µ1) ∈ icor C. In this case,
we have

π̂ = exp(ϕ⊕ ψ)R01

for some jointly R01-measurable function ϕ⊕ ψ on X 2.

Overcoming obstacle (ii). To overcome the measurability obstacle (ii), it is neces-
sary to impose some restriction on the reference measure R01. It is proved in [5,
Proposition 6.1] that when the function ϕ ⊕ ψ is measurable with respect to some
product measure α⊗β on the product space X 2, the functions ϕ and ψ are respec-
tively α-measurable and β-measurable. Therefore, if it is assumed that

R0 ⊗R1 � R01,

any R01-measurable function is R0 ⊗R1-measurable. As ϕ⊕ ψ is R01-measurable,
ϕ and ψ are respectively R0 and R1-measurable.

Choosing another way, it is also possible to obtain the desired measurability
property when assuming

R01 � R0 ⊗R1.

To see this, let π̂, ϕ and ψ satisfy (i). It is proved in [11] that ϕ⊕ ψ stands in the
L1(π̂)-closure of L1(µ0)⊕L1(µ1), denoted by Λπ̂. In addition, with [63, Proposition
2], we know that when π ∈ P(X 2) with first and second marginals π0 = µ0 and
π1 = µ1, is such that π � π0 ⊗ π1 = µ0 ⊗ µ1, then for any θ ∈ Λπ, there exist two
measurable functions θ0 and θ1 such that θ = θ0 ⊕ θ1, π-a.s. Therefore, if

π̂ � µ0 ⊗ µ1,

5In the important special case where R is a probability measure, just take w = 0 in order that
Rw

01 = R01.
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then ϕ and ψ are respectively µ0 and µ1-measurable functions.
But this implicit criterion is not easy to check. The following result is more

practical.

Proposition 4. [63, Thm. 3] If R01 � R0 ⊗ R1, then ϕ and ψ in (i): dπ̂/dR01 =
exp(ϕ⊕ ψ), π̂-a.e., can be chosen respectively as µ0 and µ1-measurable functions.

Proof. By assumption π̂ � R01 � R0 ⊗ R1. But π̂ � R0 ⊗ R1 implies that
π̂ � π̂0 ⊗ π̂1 = µ0 ⊗ µ1 and we conclude as above.

Extending the functions ϕ and ψ to their R0 and R1-measurable versions:
1{dµ0/dR0>0}ϕ and 1{dµ1/dR1>0}ψ, we see that ϕ and ψ can be taken respectively
R0 and R1-measurable.

Summing up. Putting Propositions 2, 3 and the above considerations together with
(21), we obtain the following

Theorem 2.4. Suppose that R satisfies

(i) R0 = R1 = m ∈ M+(X );
(ii) R01(dxdy) ≥ e−A(x)−A(y)m(dx)m(dy) for some nonnegative measurable func-

tion A on X ;
(iii)

∫
X 2 e

−B(x)−B(y)R01(dxdy) <∞ for some nonnegative measurable function B
on X ;

(iv) m⊗2 � R01 or R01 � m⊗2.

Suppose also that the constraint (µ0, µ1) satisfies

(v) H(µ0|m), H(µ1|m) <∞;
(vi)

∫
X (A + B) dµ0,

∫
X (A + B) dµ1 < ∞ where A and B appear at (ii) and (iii)

above;
(vii) (µ0, µ1) is internal, see the statement of Proposition 3.

This is the case for instance when m is a probability measure and µ0, µ1 ≥ εm,
for some ε > 0.

Then, (S) admits a unique solution π̂ and

π̂(dxdy) = f0(x)g1(y)R01(dxdy) (23)

where the positive functions f0 and g1 are m-measurable and solve :{
f0(x)ER[g1(X1) | X0 = x] = dµ0/dm(x), m-a.e.
g1(y)ER[f0(X0) | X1 = y] = dµ1/dm(y), m-a.e.

(24)

which is called the Schrödinger system6.

• It is not necessary for ER[g1(X1) | X0] and ER[f0(X0) | X1] to be well-
defined that f0(X0) and g1(X1) are R-integrable, since f0 and g1 are positive
measurable functions. Only a notion of integration of nonnegative functions
is required, see [35].

• The assumption (vii) is here to make sure that dπ̂/dR01 > 0. If it is not
satisfied, dπ̂/dR01 may not have a product form and its structure may be
quite complex. The complete description of dπ̂/dR01 in this case is given in
[38].

6The article [63] refers to (24) as the Schrödinger equation, but this is misleading. After Fortet
and Beurling [26, 3], we prefer calling (24) the Schrödinger system.
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• In view of (22), for the assumption (vii) to hold, it is enough that{
µ0 ≥ εRw0
µ1 ≥ εRw1

,

for some ε > 0, and we can choose w = 0 when m is a probability measure.

2.8. The solution P̂ of (Sdyn). We deduce from this theorem the characterization

of P̂ .

Theorem 2.5. Suppose that the hypotheses of Theorem 2.4 are satisfied. Then,
(Sdyn) admits the unique solution

P̂ = f0(X0)g1(X1)R ∈ P(Ω) (25)

where f0 and g1 are the measurable positive functions which appear at (23) and
solve (24).

Proof. The existence of the solution P̂ and its representation by the Radon-Nikodym
formula (25) are direct consequences of Proposition 1, Theorem 2.4, (15) and (23).

2.9. The special case where R is Markov. We are going to assume that the
reference path measure R is Markov. Under this restriction, we obtain at Theorem
2.6 below a more efficient version of Theorem 2.4. Let us recall the time-symmetric
definition of the Markov property.

Markov property. One says that R ∈ M+(Ω) is Markov if its time marginal R0 (or
any other time marginal Rto with 0 ≤ to ≤ 1) is σ-finite7 and for each 0 ≤ t ≤ 1,

R(X[0,t] ∈ ·, X[t,1] ∈ ·· | Xt) = R(X[0,t] ∈ · | Xt)R(X[t,1] ∈ ·· | Xt)

signifying that under R, for any t, conditionally on the present state Xt at time
t, past and future are independent. This is equivalent to the usual forward time-
oriented Markov property

R(X[t,1] ∈ ·|X[0,t]) = R(X[t,1] ∈ ·|Xt), ∀t ∈ [0, 1].

Proposition 5. Suppose that the reference measure R ∈ M+(Ω) is Markov. If it

exists, the solution P̂ of (Sdyn) is also Markov.

Proof. We need some notation. For each 0 ≤ t ≤ 1, we set Ω[0,t] :=
{
ω|[0,t];ω ∈ Ω

}
and Ω[t,1] :=

{
ω|[t,1];ω ∈ Ω

}
the set of all paths on [0, t] and [t, 1] respectively. For

any Q ∈ M+(Ω), Qt,z := Q(·|Xt = z) ∈ P(Ω), Qt,z[0,t] := Q(X[0,t] ∈ ·|Xt = z) ∈
P(Ω[0,t]) and Qt,z[t,1] := Q(X[t,1] ∈ ·|Xt = z) ∈ P(Ω[t,1]).

Claim 1. We fix 0 ≤ t ≤ 1. Among all the P ∈ P(Ω) such that Pt = µ, P tz[0,t] =

Qtz< and P tz[t,1] = Qtz> , z ∈ X , where µ ∈ P(X ), Qtz< ∈ P(Ω[0,t] ∩ {Xt = z}) and

Qtz> ∈ P(Ω[t,1] ∩ {Xt = z}) are prescribed, the relative entropy H(·|R) attains its

unique minimum at P ∗(·) =
∫
X Q

tz
< ⊗ Qtz> (·)µ(dz). In particular, P ∗[t,1](·|X[0,t]) =

P ∗[t,1](·|Xt).

7This assumption is necessary for defining conditional versions of R, such as R(· | Xt) or
R(· | X[0,t]), see [35].
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Accept this claim for a while and suppose, ad absurdum, that P̂ is not Markov.

Then, there exists some 0 ≤ t ≤ 1 such that P̂ (·|Xt) 6= P̂[0,t](·|Xt) ⊗ P̂[t,1](·|Xt).

Choosing µ = P̂t, Q
tz
< = P̂ tz[0,t] and Qtz> = P̂ tz[t,1] in the above claim, we see that

the time marginals are unchanged: P ∗s = P̂s, for all s ∈ [0, 1] and that H(P ∗|R) <

H(P̂ |R) : P̂ is not the solution to (Sdyn), a contradiction.
It remains to prove the claim. With (72), we see that

H(P |R) = H(µ|Rt) +

∫
X
H(P tz|Rtz)µ(dz)

and

H(P tz|Rtz) = H(Qtz< |Rtz[0,t]) +

∫
Ω[0,t]

H(P tz[t,1](·|X[0,t])|Rtz[t,1](·|X[0,t])) dQ
tz
< .

Noting that Rtz[t,1](·|X[0,t]) = Rtz[t,1] and Qtz> =
∫

Ω[0,t]
P tz[t,1](·|X[0,t]) dQ

tz
< , we obtain

with Jensen’s inequality that

H
(
Qtz>
∣∣Rtz[t,1]

)
= H

(∫
Ω[0,t]

P tz[t,1](·|X[0,t]) dQ
tz
<

∣∣∣Rtz[t,1](·|X[0,t])
)

≤
∫

Ω[0,t]

H(P tz[t,1](·|X[0,t])|Rtz[t,1](·|X[0,t])) dQ
tz
<

with equality if and only if P tz[t,1](·|X[0,t]) = Qtz> , Qtz< -a.e. Since this holds for µ-

almost every z, this amounts to say that P (·) =
∫
X Q

tz
< ⊗Qtz> (·)Pt(dz) and it also

means that P tz[t,1](·|X[0,t]) = P tz[t,1], P
tz
[0,t]-a.e. which is the desired forward Markov

property at time t. This completes the proofs of the claim and the proposition.

Reversibility. A path measure R ∈ M+(Ω) is said to be reversible with m ∈ M+(X )
as its reversing measure (m-reversible for short), if R0 = m and for any 0 ≤ u ≤
v ≤ 1, R is invariant with respect to the time reversal mapping revuv defined by:
revuvt := X(u+v−t)+ , u ≤ t ≤ v, meaning that (revuv)#R = (X[u,v])#R.

Clearly, this implies that Ru = Rv for any u, v. In other words, R is m-stationary
i.e. Rt = m, for all 0 ≤ t ≤ 1.

This notion is invoked at statement (c) of the following result.

Theorem 2.6 (The Markov case).
Suppose that the reference measure R ∈ M+(Ω) satisfies

(i) R is Markov;
(ii) there exist some 0 < to < 1 and some measurable Xo ⊂ X such that Rto(Xo) >

0 and

R01 � R
(
(X0, X1) ∈ ·|Xto = z

)
, ∀z ∈ Xo.

(iii) R0 = R1 = m ∈ M+(X );
(iv) R01(dxdy) ≥ e−A(x)−A(y)m(dx)m(dy) for some nonnegative measurable func-

tion A on X ;
(v)

∫
X 2 e

−B(x)−B(y)R01(dxdy) <∞ for some nonnegative measurable function B
on X ;

Suppose also that the constraint (µ0, µ1) satisfies

(vi) H(µ0|m), H(µ1|m) <∞;
(vii)

∫
X (A + B) dµ0,

∫
X (A + B) dµ1 < ∞ where A and B appear at (iv) and (v)

above.
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(a) Then, the unique solution P̂ of (Sdyn) is also Markov and

P̂ = f0(X0)g1(X1)R ∈ P(Ω) (26)

where f0 and g1 are the m-measurable nonnegative functions which appear at
(23) and solve the Schrödinger system (24).

(b) Conversely, let P̂ be defined by (26) with f0 and g1 two m-measurable nonneg-

ative functions solving the Schrödinger system (24). Then, P̂ is Markov and it
is the unique solution of (Sdyn).

(c) For the properties (i), (ii) and (iii) to hold, it is enough that R is a m-reversible
Markov measure which admits a regenerative set in the following sense: There
exists a measurable subset Xo ⊂ X with m(Xo) > 0 such that for each 0 < h < 1
and all measurable subset A ⊂ X with m(A) > 0, we have: R(Xh ∈ A|X0 =
x) > 0, for all x ∈ Xo.

Proof. • Proof of (a). By Proposition 2, the properties (iii)–(vii) ensure the exis-

tence of the unique solution P̂ of (Sdyn).

With Proposition 1, we have P̂ xy = Rxy, for all (x, y), π̂-a.e. This means that

dP̂

dR
=

dπ̂

dR01
(X0, X1).

On the other hand, we have just seen at Proposition 5 that P̂ is Markov. But, it
is proved in [42] that under the assumptions (i) and (ii), if P ∈ P(Ω) is a Markov
measure such that dP/dR = h(X0, X1) for some measurable function h, then there
exist two measurable nonnegative functions f and g such that P = f(X0)g(X1)R.
This proves statement (a).

• Proof of (b). The fact that P̂ is the solution of (Sdyn) is proved in [11] by a
geometric approach or in [38] by a functional analytic approach. We easily see that

P̂ inherits the Markov property of R using the time-symmetric definition of the
Markov property together with the product shape of (26).

• Proof of (c). Statement (c) is an easy exercise.

Remark that, unlike Theorem 2.4, Theorem 2.6 does not require that the con-
straint (µ0, µ1) is internal. Also remark that the functions f0 and g1 are nonnegative
(in contrast with Theorem 2.4 where they are positive) and that it may happen that
R0(f0 = 0) or R1(g1 = 0) is positive.

Theorem 2.6 extends a similar result by Föllmer and Gantert in [25], where it is

required for the product shape formula (26) to hold, that R� P̂ and also that Xo
has full measure.

3. (f, g)-transform of a Markov measure. Motivated by Theorems 2.5 and 2.6,
we introduce the transform f0(X0)g1(X1)R of a Markov measure R and call it an
(f, g)-transform. It was already noticed by Föllmer [24, 25] and Nagasawa [56], that
it is a time symmetric version of Doob’s usual h-transform [19, 20].

3.1. (f, g)-transform of a reversible Markov measure. Let us first state an
assumption for simplicity which will hold for the remainder of the paper.

Assumption 1. The reference path measure R ∈ M+(Ω) is Markov and m-reversible
with m ∈ M+(X ).
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The Markov property of the reference measure will turn out to be crucial for the

description of the dynamics of the solution P̂ of (Sdyn). Indeed, we have already

seen at Proposition 5 that P̂ inherits the Markov property from R. It follows that
its dynamics is characterized by its stochastic derivatives. On the other hand,
reversibility is only assumed for simplicity.

Definition 3.1 ((f, g)-transform). Let f0, g1 : X → [0,∞) be two nonnegative
measurable functions such that ER(f0(X0)g1(X1)) = 1. The path measure

P := f0(X0)g1(X1)R ∈ P(Ω) (27)

is called an (f, g)-transform of R.

This definition is motivated by Theorems 2.5 and 2.6 which assert that the so-

lution P̂ of (Sdyn) is an (f, g)-transform of R. Note that under Theorem 2.5’s
assumptions, f0 and g1 are positive, while they are allowed to vanish under Theo-
rem 2.6’s assumptions, as in Definition 3.1.

Let us introduce for each t ∈ [0, 1], the functions ft, gt : X → [0,∞) defined by{
ft(z) := ER(f0(X0) | Xt = z)
gt(z) := ER(g1(X1) | Xt = z)

, for Pt-a.e. z ∈ X . (28)

Remark that although we have ER(f0(X0)g1(X1)) < ∞, this does not ensure that
f0(X0) and g1(X1) are integrable. We have to use positive integration to give a
meaning to the conditional expectations ER(f0(X0) | Xt), ER(g1(X1) | Xt) ∈ [0,∞],
see [35].

Next result is a kind of converse of Theorems 2.5 and 2.6.

Theorem 3.2. If the functions f0 and g1 entering the definition of the (f, g)-
transform P of R given at (27) satisfy{ ∫

X g0f0 log f0 dm <∞∫
X f1g1 log g1 dm <∞

(as a convention 0 log 0 = 0), then P01 and P are the unique solutions of (S) and
(Sdyn) respectively, where the prescribed constraints µ0, µ1 ∈ P(X ) are chosen to
satisfy (24), i.e. using notation (28){

µ0 = f0g0m,
µ1 = f1g1m.

(29)

Proof. The pair of finite integrals is equivalent to H(P |R) < ∞. Hence, the state-
ment about (S) is a direct consequence of [38, Thm. 5.1]. Its corollary about (Sdyn)
follows as for Theorem 2.5.

Note that there may exist solutions of (Sdyn) which are not (f, g)-transforms
of R. This happens when the support of the solution is not a rectangle (i.e. the
product of Borel subsets), see [25, §2] or [38, §5].

Next result extends the product formulas (29) to all t ∈ [0, 1].

Theorem 3.3 (Euclidean analogue of Born’s formula). The path measure P =
f0(X0)g1(X1)R is Markov and for each 0 ≤ t ≤ 1, its time marginal Pt ∈ P(X ) is
given by

Pt = ftgtm. (30)

Remark 1. It follows with (30) that for all t ∈ [0, 1], 0 < ER(f0(X0) | Xt), ER(g1

(X1) | Xt) <∞, P -a.e., but not R-a.e. in general.
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Proof of Theorem 3.3. The Markov property of P is a direct consequence of Theo-
rem 3.2 and Proposition 5.

We propose an alternate simple proof. To prove that P is Markov, we show
that for each 0 ≤ t ≤ 1 and any bounded measurable functions a ∈ σ(X[0,t]),
b ∈ σ(X[t,1]), we have

EP (ab | Xt) = EP (a | Xt)EP (b | Xt).

Indeed, we have

EP (ab | Xt)
(i)
=

ER(f0(X0)abg1(X1) | Xt)

ER(f0(X0)g1(X1) | Xt)

(ii)
=

ER(f0(X0)a | Xt)ER(bg1(X1) | Xt)

ER(f0(X0) | Xt)ER(g1(X1) | Xt)

(iii)
= EP (a | Xt)EP (b | Xt), P -a.e.,

which is the desired result. Equality (i) is a general result about conditioning; note
that we do not divide by zero P -a.s. Equality (ii) uses crucially the assumed Markov
property of R and one obtains (iii) by considering separately the cases when b ≡ 1

and a ≡ 1 in the just obtained identity to see that EP (a | Xt) = ER(f0(X0)a|Xt)
ER(f0(X0)|Xt) and

EP (b | Xt) = ER(bg1(X1)|Xt)
ER(g1(X1)|Xt) .

Finally, to prove (30), remark that

dPt
dm

(Xt) =
dPt
dRt

(Xt) = ER

(
dP

dR
| Xt

)
= ER(f0(X0)g1(X1) | Xt)

X
= ER(f0(X0) | Xt)ER(g1(X1) | Xt) =: ft(Xt)gt(Xt)

where we used the Markov property of R at the marked equality.

3.2. Forward and backward generators. Let Q ∈ M+(Ω) be a Markov measure.

Its forward stochastic derivative ∂ +
−→
LQ is defined by

[∂t +
−→
LQ
t ](u)(t, x) := lim

h↓0
h−1EQ

(
u(t+ h,Xt+h)− u(t,Xt) | Xt = x

)
for any measurable function u : [0, 1]×X → R in the set dom

−→
LQ for which this

limit exists Qt-a.e. for all 0 ≤ t < 1. In fact this definition is only approximate, we
give it here as a support for understanding the relations between the forward and
backward generators. For a precise statement see [36, §2]. Since the time reversed

Q∗ of Q is still Markov, Q admits a backward stochastic derivative −∂+
←−
LQ which

is defined by

[−∂t +
←−
LQ
t ]u(t, x) := lim

h↓0
h−1EQ

(
u(t− h,Xt−h)− u(t,Xt) | Xt = x

)
for any measurable function u : [0, 1]×X → R in the set dom

←−
LQ for which this

limit exists Qt-a.e. for all 0 < t ≤ 1. Remark that
←−
LQ
t =

−→
LQ∗

1−t, 0 ≤ t ≤ 1.
It is proved in [36, §2] that these stochastic derivatives are extensions of the

extended forward and backward generators of Q in the sense of semimartingales.
In particular, they offer us a natural way for computing generators. Later on, we

shall call
−→
LQ and

←−
LQ generators, rather than stochastic derivatives.
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For simplicity, we denote
−→
LR =

←−
LR = L without the superscript R and without

the time arrows, since R is assumed to be reversible. We also write
−→
A =

−→
L P and←−

A =
←−
L P the generators of the (f0, g1)-transform P defined by (27).

Stochastic derivatives have been introduced by E. Nelson in [58] while studying
the dynamical properties of the Brownian motion. The above definition (more
precisely the one of [36]), which is an extension of Nelson’s one, is necessary for
technical reasons.

3.3. The dynamics of the (f, g)-transform. To give the expressions of the gen-

erators
−→
A and

←−
A, we need to introduce the carré du champ of R. It is defined for

any functions u, v on X such that u, v and uv are in domL, by

Γ(u, v) := L(uv)− uLv − vLu.

In general, the forward and backward generators (∂t+
−→
A t)0≤t≤1 and (−∂t+

←−
A t)0≤t≤1

of P depend explicitly on t. The following informal statement is known for long in
specific situations. In the important examples which are discussed below at Section
4, these claims are easy consequences of Itô’s formula (for instance see [62, Ch. 8,§ 3]
in the continuous diffusion case).

Informal statement 1. Under some hypotheses on R, the forward and backward
generators of P are given for any function u : [0, 1]×X → R belonging to some
class UR of regular functions, by

−→
A tu(x) = Lu(x) +

Γ(gt, u)(x)

gt(x)
, (t, x) ∈ [0, 1)×X

←−
A tu(x) = Lu(x) +

Γ(ft, u)(x)

ft(x)
, (t, x) ∈ (0, 1]×X

(31)

where ft, gt are defined at (28).
Because of (30), for any t no division by zero occurs Pt-a.e.

Rigorous statement and proof are given in [36] for instance.

Idea of proof of Statement 1. To obtain the forward generator of P , we are going

to compute the stochastic derivative
−→
A tu(x) := limh↓0 h

−1EP [u(Xt+h) − u(Xt) |
Xt = x]. Let us denote for simplicity F0 = f0(X0), Gt = gt(Xt) and Ut = u(Xt).
We have

EP [Ut+h − Ut | Xt = x] =
ER[F0(Ut+h − Ut)G1 | Xt = x]

ER[F0G1 | Xt = x]

=
ER[F0 | Xt = x]ER[(Ut+h − Ut)G1 | Xt = x]

ER[F0 | Xt = x]ER[G1 | Xt = x]

=
ER[(Ut+h − Ut)G1 | Xt = x]

gt(x)
,

where the Markov property of R is used at second identity. But,

ER[(Ut+h − Ut)G1 | Xt = x]

= ER[(Ut+h − Ut)Gt+h | Xt = x]

= gt(x)ER[(Ut+h − Ut) | Xt = x] + ER[(Ut+h − Ut)(Gt+h −Gt) | Xt = x],

where the first equality is a martingale identity. We conclude by means of the
definition of L: limh↓0 h

−1ER[(Ut+h−Ut) | Xt = x] =: Lu(x), and with the following
identity limh↓0 h

−1ER[(Ut+h − Ut)(Gt+h −Gt) | Xt = x] = Γ(u, gt)(x).
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One sees that it is necessary that the functions ft and gt are regular enough
to be in the domains of the carré du champ operators. For instance, choosing
f0, g1 ∈ domL insures that f ∈ dom(−∂ + L) and g ∈ dom(∂ + L) and also that f
and g are classical solutions of the following parabolic PDEs{

(−∂t + L)f(t, x) = 0, 0 < t ≤ 1,
f0, t = 0,

{
(∂t + L)g(t, x) = 0, 0 ≤ t < 1,
g1, t = 1.

(32)
Even better, since R is assumed to be m-reversible, its Markov generator L is
self-adjoint on L2(m) and for any f0, g1 in L2(m) we have f ∈ dom(−∂ + L) and
g ∈ dom(∂ + L).

It is worthwhile describing the dynamics (31) in terms of{
ϕ := log f,
ψ := log g.

(33)

Remark that because of (30), for any 0 ≤ t ≤ 1, ϕt and ψt are well defined Pt-a.e.
In analogy with the Kantorovich potentials which appear in the optimal transport
theory, we call ϕ and ψ the Schrödinger potentials. They are solutions of the “second
order”8 Hamilton-Jacobi-Bellman equations{

(−∂t +B)ϕ(t, x) = 0, 0 < t ≤ 1, Pt-a.e.
ϕ0 = log f0, t = 0,

(34)

and {
(∂t +B)ψ(t, x) = 0, 0 ≤ t < 1, Pt-a.e.
ψ1 = log g1, t = 1,

(35)

where the non-linear operator B is defined by

Bu := e−uLeu

for any function u such that eu ∈ domL.

4. Standard examples. We present two well-known reference processes: the re-
versible Brownian motion and a reversible random walk on a graph. We also apply
the above general results to these important examples.

4.1. Reversible Brownian motion. The reversible Brownian motion R on X =
Rn is specified by {

L = ∆/2,
R0(dx) = m(dx) = dx

(36)

where the Markov generator L = ∆/2 is defined on C2(Rn). It is easily checked
that R is m-reversible.

Let P = f0(X0)g1(X1)R ∈ P(Ω) be any (f, g)-transform of R. By the regularity
improving property of the heat kernel, (f0, g1) is such that f ∈ dom(−∂t + ∆/2)
for t ∈ (0, 1] and g ∈ dom(∂t + ∆/2) for t ∈ [0, 1). We have Bu = ∆u/2 + |∇u|2/2,
Γ(u, v) = ∇u · ∇v for any u, v ∈ C2(X ). The expressions (31){ −→

A t = ∆/2 +∇ψt · ∇←−
A t = ∆/2 +∇ϕt · ∇

(37)

8When R is a random walk on a discrete space for instance, then the term “second order” is
only justified in analogy with the continuous case, see (48).
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of the forward and backward generators tell us that the density µt(x) := dPt/dx
solves the following parabolic PDEs{

(∂t −∆/2)µt(x) +∇ · (µt∇ψt)(x) = 0, (t, x) ∈ (0, 1]×X
µ0, t = 0,

where ψ solves (35):{
(∂t + ∆/2)ψt(x) + |∇ψt(x)|2/2 = 0, (t, x) ∈ [0, 1)×X
ψ1 = log g1, t = 1,

(38)

and in the reversed sense of time{
(−∂t −∆/2)µt(x) +∇ · (µt∇ϕt)(x) = 0, (t, x) ∈ [0, 1)×X
µ1, t = 1,

where ϕ solves (34):{
(−∂t + ∆/2)ϕt(x) + |∇ϕt(x)|2/2 = 0, (t, x) ∈ (0, 1]×X
ϕ0 = log f0, t = 0.

It is important to note the smoothing effect of the semigroup of R which allows us
to define the classical gradients ∇ψt and ∇ϕt for all t in [0, 1) and (0, 1] respectively.
They are the forward and backward drift vector fields of the canonical process under
P. Also recall that, as a direct consequence of (30), no logarithm of zero is taken,
Pt-almost surely, i.e. almost everywhere, and we have the time-reversal formula

∇ψt +∇ϕt = ∇ logµt, 0 < t < 1.

Back to Schrödinger problem. Under the assumption of Theorem 3.2, P = f0(X0)g1

(X1)R solves (Sdyn) with the prescribed marginals given at (29). It is a (f, g)-
transform of R, and we have just seen that there exist ϕ and ψ such that its forward
and backward generators are given by (37).

Minimal action. We derive the analogue of Benamou-Brenier formula (7). Consider
the problem of minimizing the average kinetic action∫

[0,1]×Rn

|vt(x)|2

2
νt(dx)dt→ min (39)

among all (ν, v) where ν = (νt)0≤t≤1 is a measurable path in P(Rn),(
vt(x)

)
(t,x)∈[0,1]×Rn is a measurable Rn-valued vector field and the following con-

straints are satisfied:{
(∂t −∆/2)ν +∇·

(
νv
)

= 0, on (0, 1)×Rn
ν0 = µ0, ν1 = µ1

(40)

where this evolution equation is meant in the following weak sense: for any function
u ∈ C1,2

o ((0, 1)× Rn), we have
∫

(0,1)×Rn(∂t + ∆/2 + v · ∇)u(t, x) νt(dx)dt = 0.

Proposition 6. Let µ0, µ1 ∈ P2(Rn) be such that H(µ0|Leb), H(µ1|Leb) < ∞.
Then, (Sdyn) has a unique solution P̂ ∈ P(Ω) and the unique solution to the minimal
action problem (39) is ((µt)t∈[0,1],∇ψ) where

µt = P̂t, t ∈ [0, 1],

and

ψt(x) = logER[g1(X1) | Xt = x], (t, x) ∈ [0, 1)×Rn
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with g1 a solution of (24). Moreover, ψ is the unique classical solution of the
Hamilton-Jacobi-Bellman equation (38) and

inf
{
H(π|R01);π ∈ P(X 2) : π0 = µ0, π1 = µ1

}
−H(µ0|m)

= inf

{∫
X
H(πx | Rx1)µ0(dx); (πx)x∈X :

∫
X
πx(·)µ0(dx) = µ1

}
=

∫
[0,1]×Rn

|∇ψt(x)|2

2
µt(dx)dt (41)

= inf

{∫
[0,1]×Rn

|vt(x)|2

2
νt(dx)dt; (ν, v) : (ν, v) satisfies (40)

}
.

where Rx1 := R(X1 ∈ ·|X0 = x) ∈ P(X ) and (πx)x∈X ∈ P(X )X is a measurable
Markov kernel.

Proof. The integrability assumptions on µ0 and µ1 ensure that the hypotheses of
Proposition 2 are satisfied. Therefore, (Sdyn) admits a unique solution.

As a consequence of Girsanov’s theory, for any Q ∈ P(Ω) such that H(Q|R) <∞,
there exists some predictable Rn-valued drift field β such that

(i) EQ
∫

[0,1]
|βt|2 dt <∞,

(ii) Q solves the martingale problem associated with the forward generator(∂t
+ ∆/2 + βt · ∇)0≤t≤1

(iii) and H(Q|R) is given by

H(Q|R) = H(Q0|m) + EQ

∫
[0,1]

|βt|2

2
dt. (42)

For a proof with an analytic flavour, see for instance [41].
It is proved in [6] (see also [46] for a related result) that when (ν, v) satisfies

(∂t−∆/2)ν+∇·
(
νv
)

= 0 on (0, 1)×Rn, and
∫

[0,1]×Rn |vt(x)|2/2 νt(dx)dt <∞, then

there exists a path measure Q ∈ P(Ω) such that

Qt = νt, ∀0 ≤ t ≤ 1, (43)

Q solves the martingale problem associated with the forward stochastic derivative
(∂t + ∆/2 + vt · ∇)0≤t≤1 and, by (42)

H(Q|R) = H(µ0|m) +

∫
[0,1]×Rn

|vt(x)|2

2
νt(dx)dt <∞ (44)

with Q0 = µ0 and Q1 = µ1. Therefore, to any (ν, v) which satisfies
∫

[0,1]×Rn |vt(x)|2

/2 νt(dx)dt <∞ and (40), one can associate some Q ∈ P(Ω) which verifies (43) and
(44). Since

inf (S) = inf (Sdyn) = H(P̂ |R) = H(µ0|m) +

∫
[0,1]×X

|∇ψt(x)|2

2
µt(dx)dt

with µt := P̂t and ψ given at (37), and since P̂ is the unique solution to (Sdyn),
we have proved that identity (41) holds true, (µ,∇ψ) solves (39) and µ is unique
in the sense that if (ν, v) and (ν′, v′) are solutions, then ν = ν′ = µ. It remains to
check that ∇ψ is also unique. The following property of µ holds with v = ∇ψ :∫

(0,1)×Rn
(∂t + ∆/2 + v · ∇)u dµtdt = 0, ∀u ∈ C∞o ((0, 1)× Rn).
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Suppose that it is also verified with v′. Subtracting, we obtain
∫

(0,1)×Rn(v′ −∇ψ) ·
∇u dµtdt = 0, ∀u ∈ C∞o ((0, 1) × Rn), meaning that v′ − ∇ψ is orthogonal in
L2
Rn((0, 1) × Rn, dµtdt) to ∇C∞o ((0, 1) × Rn). It follows that the squared norm
‖v′‖2 :=

∫
[0,1]×Rn |v

′
t(x)|2 µt(dx)dt in L2

Rn((0, 1) × Rn, dµtdt) is minimal at the or-

thogonal projection of ∇ψ on the closure of ∇C∞o ((0, 1) × Rn). Of course, this
projection is ∇ψ itself.

Clearly, there is also a backward version of Proposition 6.

4.2. Reversible random walk on a graph. Let R be a random walk on a count-
able connected graph (X ,∼) where x ∼ y means that x and y are next neighbours.
Its generator is given for any finitely supported function u by

Lu(x) =
∑
y:y∼x

[u(y)− u(x)] Jx(y), x ∈ X (45)

where Jx(y) > 0 for all x ∼ y is interpreted as the average frequency of jumps from
x to y. Its dual formulation is the current equation

∂tρt(x) =
∑
y:y∼x

[ρt(y)Jy(x)− ρt(x)Jx(y)], x ∈ X , 0 < t < 1

where ρt(x) := R(Xt = x). Clearly, the path measure R admits the stationary
measure m ∈ M+(X ) if and only if

∑
y:y∼x[myJy(x)−mxJx(y)] = 0, for all x ∈ X .

It admits m as a reversing measure if this global equilibrium property is reinforced
into the following detailed one:

mxJx(y) = myJy(x), ∀x, y ∈ X , x ∼ y.

The special case where the jump measure

Jx :=
∑
y:y∼x

Jx(y) δy ∈ M+(X )

is equal to Jox = 1
nx

∑
y:y∼x δy where

nx := # {y : y ∼ x} <∞

is the number of neighbours of x which is assumed to be finite for all x, corresponds
to the simple random walk on the graph (X ,∼). It is easily checked that its reversing
measure is mo =

∑
x∈X nxδx ∈ M+(X ) which is unbounded when X is infinite.

For simplicity we assume in the general case that

sup
x∈X

Jx(X ) <∞

where Jx(X ) :=
∑
y:y∼x Jx(y) is the global average frequency of jumps at x. This

ensures that for any initial marginal R0 ∈ M+(X ), there exists a Markov measure
R ∈ M+(Ω) with generator L. Moreover, any bounded function u : X → R is in the
domain of L.

Viewing L = (Lxy)x,y∈X as a matrix with Lxy =

 Jx(y), if x ∼ y;
−Jx(X ), if x = y;
0, otherwise

and

the functions as column vectors indexed by X , we observe that the solutions of the
heat equations (32) are

ft = etLf0 and gt = e(1−t)Lg1, 0 ≤ t ≤ 1. (46)
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It follows that for any couple (f0, g1) of nonnegative functions and any 0 ≤ t ≤ 1,
ft ∈ dom(−∂t + L) and gt ∈ dom(∂t + L).

We have Bu(x) = Lu(x) +
∑
y:y∼x θ(u(y)− u(x)) Jx(y) with

θ(a) := ea − a− 1, a ∈ R, (47)

Γ(u, v)(x) =
∑
y:y∼x[u(y)− u(x)][v(y)− v(x)] Jx(y), for any bounded functions u, v

and any x ∈ X . Let P = f0(X0)g1(X1)R be any (f, g)-transform of the random
walk R. Applying (31), the forward and backward generators of P turn out to be
the jump generators associated respectively with the jump measures

−→
J x =

∑
y:y∼x

gt(y)

gt(x)
Jx(y) δy =

∑
y:y∼x

exp
(
ψt(y)− ψt(x)

)
Jx(y) δy

←−
J x =

∑
y:y∼x

ft(y)

ft(x)
Jx(y) δy =

∑
y:y∼x

exp
(
ϕt(y)− ϕt(x)

)
Jx(y) δy

Again, no division by zero occurs Pt-a.e. for every 0 ≤ t ≤ 1, i.e. everywhere for
each 0 < t < 1. The functions f and g satisfy (46) and the Schrödinger potentials
ψ and ϕ satisfy (35):{

(∂t + L)ψt(x) +
∑
y:y∼x θ

(
ψt(y)− ψt(x)

)
Jx(y) = 0, (t, x) ∈ [0, 1)×X

ψ1 = log g1, t = 1,
(48)

and (34):{
(−∂t + L)ϕt(x) +

∑
y:y∼x θ

(
ϕt(y)− ϕt(x)

)
Jx(y) = 0, (t, x) ∈ (0, 1]×X

ϕ0 = log f0, t = 0.

Minimal action. Let θ∗ be the convex conjugate of θ defined at (47), i.e.

θ∗(b) =

 (b+ 1) log(b+ 1)− b, if b > −1
1, if b = −1
+∞, if b < −1.

Consider the problem of minimizing∫
[0,1]×X 2

θ∗
(
j(t, x; y)− 1

)
νt(dx)Jx(dy)dt→ min (49)

among all (ν, j) where ν = (νt)0≤t≤1 is a measurable path in P(X ), j : [0, 1] ×
X 2 → [0,∞) is a measurable nonnegative function and the following constraints are
satisfied:{

∂tνt(x) =
∑
y:y∼x

{
νt(y)j(t, y;x)Jy(x)− νt(x)j(t, x; y)Jx(y)

}
= 0, on (0, 1)×X

ν0 = µ0, ν1 = µ1

(50)
where we write νt =

∑
x∈X νt(x) δx.

Proposition 7. Let µ0, µ1 ∈ P(Rn) be such that inf (S) < ∞, for instance when
the assumptions of Proposition 2 are satisfied.

The unique solution to the minimal action problem (49) is (µ, jψ) where µ =
(µt)t∈[0,1] with

µt = P̂t, t ∈ [0, 1],

and P̂ ∈ P(Ω) is the unique solution of (Sdyn), and

jψ(t, x; y) = exp(ψt(y)− ψt(x))
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with

ψt(x) = logER[g1(X1) | Xt = x], (t, x) ∈ [0, 1)× Rn

with g1 a solution of (24). Moreover, ψ is the unique classical solution of the
Hamilton-Jacobi-Bellman equation (48) and

inf
{
H(π|R01);π ∈ P(X 2) : π0 = µ0, π1 = µ1

}
−H(µ0|m)

= inf

{∫
X
H(πx | Rx1)µ0(dx); (πx)x∈X :

∫
X
πx(·)µ0(dx) = µ1

}
=

∫
[0,1]×X 2

θ∗
(
jψ(t, x; y)− 1

)
µt(dx)Jx(dy)dt (51)

= inf

{∫
[0,1]×X 2

θ∗
(
j(t, x; y)− 1

)
νt(dx)Jx(dy)dt; (ν, j) : (ν, j) satisfies (50)

}
where Rx1 := R(X1 ∈ ·|X0 = x) ∈ P(X ) and (πx)x∈X ∈ P(X )X is any measurable
Markov kernel.

Remark that θ∗
(
jψ(t, x; y) − 1

)
= θ∗

( gt(y)−gt(x)
gt(x)

)
where gt(y)−gt(x)

gt(x) looks like a

discrete logarithmic derivative which is analogous to ∇ψt(x) = ∇ log gt(x).

Proof. The proof follows the same line as Proposition 6’s one.

5. Slowing down. In this section, we describe an efficient way to recover optimal
transport as a limit of Schrödinger problems. The main idea consists in slowing the
reference process down to a no-motion process. In the following lines, we present
some heuristics and refer the reader to [40] for a rigorous treatment in the case
where X is a real vector space and [33] in the alternate case where X is a discrete
graph. The specific case of the reversible Brownian motion has been investigated
by T. Mikami in [49] with a stochastic control approach which differs from what is
presented below.

Let R be Markov with generator L. The slowed down process is represented by
the sequence (Rk)k≥1 in M+(Ω) of Markov measures associated with the generators

Lk := L/k, k ≥ 1.

Remark that slowing the process down doesn’t modify its reversible measure m;
one converges more slowly towards the same equilibrium. Suppose also that the
sequence (Rk)k≥1 in M+(Ω) obeys the large deviation principle in Ω with speed αk
and rate function C, meaning approximately that for a “large class” of measurable
subsets A of Ω, we have

Rk(A) �
k→∞

exp

[
−αk inf

ω∈A
C(ω)

]
. (52)

For instance, in the case (36) when R is the reversible Brownian motion on Rn,
Schilder’s theorem tells us that C is the kinetic action (3) and αk = k. In the case
(45) when R is a reversible random walk, it is proved in [33] that αk = log k and
the rate function is

C(ω) :=
∑

0≤t≤1

1{ωt− 6=ωt}, ω ∈ Ω, (53)

where in this situation Ω is the space of all right-continuous paths with finitely
many jumps. Remark that C is simply the total number of jumps of the path.
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At a heuristic level, the Γ-convergence of

H(P |Rk)/αk → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (Skdyn)

as k tends to infinity to∫
Ω

C dP → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (MKdyn)

is best seen with the dual problems. Without getting into detail, to show this Γ-
convergence, it is enough to prove that the objective functions of the dual problems
converge pointwise, see [40] for detail. Let us check this pointwise convergence.
Recall that the dual problem of (S) is

∆R(ϕ0, ψ1)→ max; ϕ0, ψ1 ∈ Cb(X ) (D)

with ∆R(ϕ0, ψ1) :=
∫
X ϕ0 dµ0 +

∫
X ψ1 dµ1− log

∫
Ω
eϕ0(X0)+ψ1(X1) dR. Consequently,

for each k ≥ 1, the dual problem of (Skdyn) consists in maximizing α−1
k ∆Rk(ϕ0, ψ1)

or equivalently: α−1
k ∆Rk(αkϕ0, αkψ1). This leads us to∫

X
ϕ0 dµ0+

∫
X
ψ1 dµ1−α−1

k log

∫
Ω

eαk[ϕ0(X0)+ψ1(X1)] dRk → max; ϕ0, ψ1 ∈ Cb(X )

(Dk)
The pointwise limit, as k tends to infinity, of α−1

k ∆Rk(αkϕ0, αkψ1) is a direct con-
sequence of the large deviation principle (52) and the Laplace-Varadhan integral
lemma [16, Thm. 4.3.1], which provide us with

lim
k→∞

α−1
k log

∫
Ω

eαk[ϕ0(X0)+ψ1(X1)] dRk = sup
Ω
{ϕ0(X0) + ψ1(X1)− C} .

Here, we took advantage of ϕ0(X0) + ψ1(X1) ∈ Cb(Ω) to apply the Laplace-
Varadhan lemma. We see that the pointwise limit of the objective function of
(Dk) is

lim
k→∞

α−1
k ∆Rk(αkϕ0, αkψ1) =

∫
X
ϕ0 dµ0 +

∫
X
ψ1 dµ1 − sup

Ω
{ϕ0(X0) + ψ1(X1)− C}

and the limit dual problem is (this is informal)∫
X
ϕ0 dµ0 +

∫
X
ψ1 dµ1 − sup

Ω
{ϕ0(X0) + ψ1(X1)− C} → max; ϕ0, ψ1 ∈ Cb(X ).

But this problem is equivalent to∫
X
ϕ0 dµ0 +

∫
X
ψ1 dµ1 → max; ϕ0, ψ1 ∈ Cb(X ) : ϕ0 ⊕ ψ1 ≤ c (D∞)

where

c(x, y) := inf {C(ω);ω ∈ Ω : ω0 = x, ω1 = y} , (54)

recall (4). To see this, first remark that for any λ ∈ R, transforming ϕ0⊕ψ1 into ϕ0⊕
ψ1 +λ doesn’t modify the value of

∫
X ϕ0 dµ0 +

∫
X ψ1 dµ1− supΩ {ϕ0(X0) + ψ1(X1)

−C}. Hence, when supΩ {ϕ0(X0) + ψ1(X1)− C} < ∞, we can normalize ϕ0 ⊕ ψ1

so that supΩ {ϕ0(X0) + ψ1(X1)− C} = 0 and we obtain the equivalent problem∫
X
ϕ0 dµ0 +

∫
X
ψ1 dµ1 → max; ϕ0, ψ1 ∈ Cb(X ) : ϕ0(X0) + ψ1(X1)− C ≤ 0.

But, ϕ0(X0) + ψ1(X1)− C ≤ 0 on Ω if and only if ϕ0 ⊕ ψ1 ≤ c on X 2.
We have informally shown that limk→∞ (Dk) = (D∞) (in some insufficiently spec-

ified sense) which is the usual Kantorovich problem, dual to (MK). Consequently,
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we must have limk→∞ (Skdyn) = (MK) in some sense. Similarly, the static analogue

of (Skdyn) which is

H(π|Rk01)/αk → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (Sk)

converges to ∫
X 2

c dπ → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (MK)

with c as above.
It happens that this convergence is in terms of Γ-convergence.

Informal statement 2 (See [40, 33]). Suppose that the slowed down Markov mea-
sure Rk ∈ M+(Ω) associated with the generator Lk := L/k satisfies the large devi-
ation principle (52) with speed αk and rate function C in Ω. Then,

Γ- lim
k→∞

(Skdyn) = (MKdyn) and Γ- lim
k→∞

(Sk) = (MK).

In particular:

1. In the reversible Brownian motion case (36) in X = Rn, we have:
αk = k, C(ω) =

∫
[0,1]
|ω̇t|2/2 dt, c(x, y) = |y − x|2/2 and we recover (11).

2. In the case of a random walk on a graph (45), we have:
αk = log k, C(ω) =

∑
0≤t≤1 1{ωt 6=ωt−} and c = d∼ : the graph distance on

(X ,∼).

The diffusion case is treated in detail in [40]. In the specific Brownian case (1),
the Schrödinger problem converges to the quadratic Monge-Kantorovich problem
and, as already remarked at (10), the bridges converge as follows:

lim
k→∞

Rk,xy = δγxy ∈ P(Ω)

where γxyt = (1 − t)x + ty, 0 ≤ t ≤ 1 is the constant speed geodesic path between

x and y. In case (MKdyn) has a unique solution P̂ , we also have limk→∞ P̂ k = P̂ ∈
P(Ω).

Since the rigorous version of the Informal Statement 2 is simpler to state in
the second case (2) of a random walk on a graph, we refer the reader to [40] for
detail about (1) and we restrict our attention to (2). In this random walk case, the
rigorous version of the Informal Statement 2 is stated below at Theorem 5.1. Some
preparation is needed. In particular, let us recall basic facts about Γ-convergence.

Γ-convergence. Recall that Γ- limk→∞ fk = f on the metric space Y if and only if
for any y ∈ Y,
(a) lim infk→∞ fk(yk) ≥ f(y) for any convergent sequence yk → y,
(b) limk→∞ fk(yok) = f(y) for some sequence yok → y.

A function f is said to be coercive if for any a ≥ inf f, {f ≤ a} is a compact set.
The sequence (fk)k≥1 is said to be equi-coercive if for any real a, there exists

some compact set Ka such that ∪k
{
fk ≤ a

}
⊂ Ka.

If in addition to Γ- limk→∞ fk = f , the sequence (fk)k≥1 is equi-coercive, then:

• limk→∞ inf fk = inf f,
• if inf f < ∞, any limit point y∗ of a sequence (y∗k)k≥1 of approximate mini-

mizers i.e.: fk(y∗k) ≤ inf fk + εk with εk ≥ 0 and limk→∞ εk = 0, minimizes f
i.e.: f(y∗) = inf f.
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For more detail about Γ-convergence, see [13] for instance.
The convex indicator ιA of any subset A, is defined to be equal to 0 on A and

to ∞ outside A. We denote for each k ≥ 2, (we drop k = 1 not to divide by log(1)
below),

Ik(P ) := H(P |Rk)/ log k + ι{P :P0=µ0,P1=µ1}, P ∈ P(Ω),

so that (Skdyn) is simply: (Ik → min). We also define

I(P ) = EPC + ι{P :P0=µ0,P1=µ1}, P ∈ P(Ω)

with C given at (53). The dynamical Monge-Kantorovich problem (MKdyn) rewrites
as (I → min).

Similarly, we denote for each k ≥ 2,

Jk(π) := H(π|Rk01)/ log k + ι{π:π0=µ0,π1=µ1}, π ∈ P(X 2),

so that (Sk) is simply: (Jk → min). We also define

J(π) =

∫
X 2

c dπ + ι{π:π0=µ0,π1=µ1}, π ∈ P(X 2)

with c given at (54). The Monge-Kantorovich problem (MK) rewrites as (J → min).
The spaces P(Ω) and P(X 2) are equipped with the topologies of narrow conver-

gence: weakened by the spaces of all numerical continuous and bounded functions.
The Γ-convergences on P(Ω) and P(X 2) are related to these topologies.

Theorem 5.1 ([33]). Assume that the random walk R and the prescribed marginal
measures µ0, µ1 ∈ P(X ) satisfy the hypotheses of Theorem 2.6.

For each k ≥ 2, let P̂ k ∈ P(Ω) and π̂k ∈ P(X 2) be the respective solutions of
(Skdyn) and (Sk).

1. The sequence (Ik)k≥2 is equi-coercive and Γ- limk→∞ Ik = I in P(Ω).
In particular, limk→∞ inf (Skdyn) = inf (MKdyn) and any limit point of

(P̂ k)k≥2 is a solution of (MKdyn).

A more careful study allows to show that there is a unique limit point P̂ , so

that limk→∞ P̂ k = P̂ ∈ P(Ω), and that P̂ is the only solution of the auxiliary

entropy minimization (S̃dyn) which is stated below.
2. The sequence (Jk)k≥2 is equi-coercive and Γ- limk→∞ Jk = J in P(X 2).

In particular, limk→∞ inf (Sk) = inf (MK) and any limit point of (π̂k)k≥2 is
a solution of (MK) which is the Monge-Kantorovich problem associated with
the metric cost c = d∼ : the usual graph distance .

Furthermore, this sequence admits the unique limit point P̂01, so that

limk→∞ π̂k = P̂01 ∈ P(X 2).

It is also proved in [33] that for any distinct x, y ∈ X ,

lim
k→∞

Rk,xy = R̃xy ∈ P(Ω)

where R̃xy is the (x, y)-bridge of

R̃ := 1G exp

(∫
[0,1]

JXt(X ) dt

)
R ∈ M+(Ω)

with G the set of all geodesic paths on (X , d∼). Remark that the set Gxy of all
geodesic paths between any two distinct states x and y is infinite since the instants
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of jump are not specified: only the ordered enumeration of the visited states is
relevant. Let us denote M(µ0, µ1) ⊂ P(X 2) the set of all solutions of the Monge-
Kantorovich problem (MK) with c = d∼, and introduce the subsequent auxiliary
entropic minimization problem

H(P |R̃)→ min; P01 ∈M(µ0, µ1) (S̃dyn)

The set of all solutions of (MKdyn) consists of all P ∈ P(Ω) concentrated on G,
i.e. P (G) = 1, and such that the endpoint marginal P01 ∈ P(X 2) solves (MK).
Although (MKdyn) has always infinitely many solutions (for any distinct x, y, Gxy

is infinite), the sequence of Schrödinger problems (Skdyn) selects a unique limit point:

lim
k→∞

P̂ k = P̂ ∈ P(Ω)

where P̂ is the unique solution of (S̃dyn). We obtain the corresponding results
about the static problems (Sk) and (MK) by considering the push-forward mapping
P ∈ P(Ω)→ P01 ∈ P(X 2).

6. The statistical physics motivation of Schrödinger’s problem. We con-
sider a large number n of independent (non-interacting) moving random particles
in the state space X . They are described by the independent stochastic processes
Y 1, . . . , Y n taking their random values in Ω with the laws

Law(Y i) = R(· | X0 = yi0) ∈ P(Ω), 1 ≤ i ≤ n (55)

where R ∈ M+(Ω) is a path measure and yi0 ∈ X is the deterministic initial posi-
tion of the i-th particle. It is also assumed that the particles are indistinguishable.
Therefore, one doesn’t loose information considering the empirical probability mea-
sure

Ln :=
1

n

∑
1≤i≤n

δY i

which is a random element of P(Ω). At each time t, the empirical measure of the
particle system is the following random element of P(X ),

Lnt :=
1

n

∑
1≤i≤n

δY it , 0 ≤ t ≤ 1.

Suppose that the initial positions are close to a profile µ0 ∈ P(X ), i.e.

Ln0 =
1

n

∑
1≤i≤n

δyi0 →
n→∞

µ0 ∈ P(X )

with respect to the narrow topology σ(P(X ), Cb(X )). The law of large numbers
tells us that, as n tends to infinity, Ln converges in law to the deterministic limit
µ0R :=

∫
X R(· | X0 = x)µ0(dx) in P(Ω) and in particular that at time t = 1,

Ln1 (dy) →
n→∞

(µ0R)1(dy) :=

∫
X
R(X1 ∈ dy | X0 = x)µ0(dx).

Schrödinger addressed the following problem. Suppose that at the final time t = 1,
you observe the system in a profile Ln1 far away from the expected profile (µ0R)1 :
for all large enough n, Ln1 is in a very small neighbourhood of some µ1 ∈ P(X ) which
doesn’t contain (µ0R)1. This may happen since n is finite, but this is a very rare
event, i.e. with an exponentially small probability, see (59) below. Nevertheless,
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conditionally on this rare event, what is the most likely dynamical behaviour of the
whole random system described by Ln?

Before stating this rigorously at Problem 6 below, take a distance d on P(X )
compatible with the narrow topology and denote B(µ, ε) = {ν ∈ P(X ); d(ν, µ) < ε}
the open ball centred at µ with radius ε > 0.

Problem (Schrödinger’s question [66]). Let µ0, µ1 ∈ P(X ) be given. What is the
limit

lim
ε↓0

lim
n→∞

Prob(Ln ∈ ·|Ln1 ∈ B(µ1, ε)) (56)

in P(P(Ω))?

6.1. Solving the problem without getting into detail. Schrödinger’s approx-
imate proof contains the main ideas. It is based on a statistical physics approach.
The main tool for obtaining the limiting behavior as n tends to infinity of the com-
binatoric terms is Stirling’s formula. As pointed out by Föllmer in [24], its modern
counterpart, which is available in a much more general setting, is Sanov’s theorem.

Informal statement 3 (Informal statement of Sanov’s theorem). Let Y 1, . . . , Y n,
. . . be a sequence of independent identically distributed Ω-valued random variables
with common law R ∈ P(Ω)9. Define Ln := 1

n

∑n
i=1 δY i its empirical measure.

Then, for a “large class” of measurable subsets A of P(Ω), we have

Prob(Ln ∈ A) �
n→∞

exp

[
−n inf

P∈A
H(P |R)

]
. (57)

The rigorous statement of this result is in terms of a large deviation principle. It
is valid for a general class of spaces Ω, not necessarily a path space. For a compre-
hensive introduction to the theory of large deviations including Sanov’s theorem,
a good textbook is [16]. One says that H(·|R) is the rate function of the large
deviations of {Ln}n≥1 as n tends to infinity.

Idea of proof (a hint to agree with this statement). We consider informally the situ-
ation where Ω is replaced by a three-point set. Take Ω = {a, b, c}, R = αδa+βδb+γδc
and P = pδa+ qδb+ rδc with α, β, γ, p, q, r > 0 and α+β+γ = p+ q+ r = 1. Then,

Prob(Ln ≈ P )

=Prob(Ln(a) ≈ p, Ln(b) ≈ q, Ln(c) ≈ r)

≈ n!

(np)!(nq)!(nr)!
αnpβnqγnr

≈ exp[n log n− np log(np)− nq log(nq)− nr log(nr) + np logα+ nq log β + nr log γ]

= exp[−n(p log(p/α) + q log(q/β) + r log(r/γ))]

= exp[−nH(P |R)]

where we used Stirling’s formula: k! ≈ exp[k log k − k] as k tends to infinity.

This hint is very much in the spirit of Schrödinger’s derivation in [66].
Since P 7→ H(P |R) ∈ [0,∞] is strictly convex and H(P |R) = 0 if and only if

P = R, see (66), one observes that if R ∈ A, (57) leads to the law of large numbers:
limn→∞ Ln = R, with an exponential rate of convergence.

We need a slight modification of Sanov’s theorem.

9We take a probability measure, rather than R ∈ M+(Ω), for the simplicity of exposition.
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Informal statement 4 (Informal statement of Sanov’s modified theorem). Let
Y 1, . . . , Y n, . . . be the sequence of independent Ω-valued random variables specified
by (55). Define Ln := 1

n

∑n
i=1 δY i its empirical measure. Then, for a “large class”

of measurable subsets A of P(Ω), we have

Prob(Ln ∈ A) �
n→∞

exp

[
−n inf

P∈A:P0=µ0

{
H(P |R)−H(µ0|R0)

}]
. (58)

This statement is proved by D. Dawson and J. Gärtner in [15, Thm. 3.5] where
the Schrödinger problem, when R is a diffusion process, is re-discovered10 and in-
vestigated by means of large deviations of large non-interacting particle systems.
More precisely, [15, Thm. 3.5] only states a variational formula in the spirit of (70)
for the rate function. An alternate proof is given in [6, Thm. 2.1] which states that

the rate function is H(P |µ0R) + ι{P :P0=µ0}, where µ0R := dµ0

dR0
(X0)R(·|X0). But it

is easily seen with the additive property (72) of the relative entropy that for any P
such that P0 = µ0, we have H(P |µ0R) =

∫
X H

(
P (·|X0 = x)|R(·|X0 = x)

)
µ0(dx)

and H(P |R) = H(µ0|R0) +
∫
X H

(
P (·|X0 = x)|R(·|X0 = x)

)
µ0(dx), which implies

that H(P |µ0R) = H(P |R)−H(µ0|R0), the desired result.
The conditional probability in (56) has the form Prob(Ln ∈ A|Ln ∈ Cε) where

Cε = {P ∈ P(Ω);P0 = µ0, P1 ∈ B(µ1, ε)}
and ε > 0 is introduced to guarantee that Prob(Ln ∈ Cε) doesn’t vanish. With (58)
one sees that for each ε > 0 and “all” A ∈ P(Ω),

Prob(Ln ∈ A|Ln ∈ Cε) �
n→∞

exp

[
−n
{

inf
P∈A∩Cε

H(P |R)− inf
P∈Cε

H(P |R)
}]

Some analytical work (formally, think of A as an arbitrarily small neighbourhood
of a generic P ∈ P(Ω)) allows us to show that this implies that limn→∞ Prob(Ln ∈
·|Ln ∈ Cε) = δP̂ε where P̂ε is the solution of the convex minimization problem

H(P |R)→ min; P ∈ Cε.
Note that this problem admits a unique solution since H(·|R) is a strictly convex
function on the convex set Cε. Existence is obtained as usual showing that H(·|R)
has compact sublevel sets. Finally, as ε decreases to zero, Cε decreases to C =
{P ∈ P(Ω);P0 = µ0, P1 = µ1} and the objective functions of the minimization

problems on Cε : H(P |R) + ιCε(P ) where ιCε(P ) =

{
0 if P ∈ Cε
∞ otherwise

increase

towardsH(P |R)+ιC(P ). Together with some compactness, this monotonicity allows

to prove easily that limε→0 P̂ε = P̂ where P̂ is the unique solution to the limiting
minimization problem:

H(P |R)→ min; P ∈ C.
Therefore, we have informally obtained the answer to Schrödinger’s question.

Informal statement 5 (The answer to Schrödinger’s question). The limit (56) is

lim
ε↓0

lim
n→∞

Prob(Ln ∈ ·|Ln1 ∈ B(µ1, ε)) = δP̂ ∈ P(P(Ω))

where P̂ is the unique solution to the entropy minimization problem

H(P |R)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1. (Sdyn)

10No reference to the original papers by Schrödinger is given in [15].
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Loosely speaking, this means that conditionally on Ln0 ≈ µ0 and Ln1 ≈ µ1, the

whole system Ln tends in law as n tends to infinity towards P̂ . In fact, the rigorous
proof of this theorem [39, Thm. 7.3] uses large deviation principles and shows that
this convergence is exponentially fast. Therefore, Borel-Cantelli lemma allows us to
state an almost sure version of this conditional law of large numbers.

The same line of reasoning leads to the following evaluation of the probability
that the system evolves spontaneously from the prepared initial profile µ0 to the
unexpected profile final profile µ1 :

lim
ε↓0

lim
n→∞

1

n
log Prob(Ln1 ∈ B(µ1, ε)|Ln0 ∈ B(µ0, ε)) = −

{
inf (Sdyn)−H(µ0|m)

}
.

(59)
These considerations show that solving Schrödinger’s problem amounts to solve

the convex minimization problem (Sdyn) which, in statistical physics, enters the
class of Boltzmann-Gibbs conditioning principles.

For a variation on this theme, with killed particles, see [14].

6.2. The lazy gas experiment. In his textbook [72, pp. 445-446], C. Villani writes
in a section entitled “A fluid mechanics feeling for Ricci curvature - The lazy gas
experiment”, the following sentences.

Take a perfect gas in which particles do not interact, and ask him to move from
a certain prescribed density field at time t = 0, to another prescribed density field
at time t = 1. Since the gas is lazy, he will find a way to do so that needs a
minimal amount of work (least action principle). Measure the entropy11 of the gas
at each time, and check that it always lies above the line joining the final and initial
entropies. If such is the case, then we know that we live in a nonnegatively curved
space.

This is clearly Schrödinger’s thought experiment. As [72] is only concerned with
optimal transport, this lazy gas experiment must be understood at the level of the
displacement interpolations. It refers to the important discovery by R. McCann
[44, 45] that entropy along displacement interpolations enjoys convexity properties.
Further developments by Cordero Erausquin, McCann, Schmuckenschläger, Otto,
Villani, Sturm and von Renesse [45, 61, 8, 69] have put in light the tight connec-
tion between these convexity properties and Ricci curvature lower bounds. Indeed,
Otto’s heuristic calculus (see [30, 60] and [72, Ch. 15]) allows us to guess that, along
the displacement interpolations [µ0, µ1] with respect to quadratic optimal transport
on a Riemannian manifold X , the second derivative of the entropy as a function of
time: t ∈ [0, 1] 7→ h[µ0,µ1](t) := H(µt|vol) satisfies

h′′[µ0,µ1](t) = 〈Γ2(ψt), µt〉, 0 ≤ t ≤ 1, (60)

where ψ solves (8) and Γ2(ψ) := LΓ(ψ)−2Γ(ψ,Lψ) is the iterated carré du champ,
with L = ∆/2. Bochner’s formula, relates Γ2 and the Ricci curvature:

Γ2(ψ) = ‖∇ψ‖2HS + Ric(∇ψ).

This is the starting point of the Lott-Sturm-Villani theory [67, 68, 43].
Schrödinger problem suggests a slight (more realistic :-) variant of this thought

experiment where displacement interpolations are replaced with entropic interpola-
tions, see (12). This is really a lazy gas experiment, while in some sense, the above
mentioned lazy gas experiment in [72] is a very lazy gas experiment. Indeed, in the

11Here, the entropy is standard Boltzmann’s one: p 7→ −H(p|vol), which is a concave function.
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displacement interpolation setting, not only the particles need to find a cooperative
lazy behaviour (the transport mapping x 7→ y) but also each individual particle
must find an economic way to travel (the minimizing geodesic path) as a result of
its intrinsic laziness: it is very slow and at the limit k → ∞, it doesn’t want to
move at all, recall Statement 2.

It is interesting to know that, without slowing down, along the entropic interpo-
lation [µ0, µ1],

h′′[µ0,µ1](t) =
1

2
〈Γ2(ϕt) + Γ2(ψt), µt〉, 0 ≤ t ≤ 1, (61)

where the functions ϕ and ψ are given at (33): ϕt(z) = logER(f0(X0) | Xt = z),
ψt(z) = logER(g1(X1) | Xt = z) with f0, g1 such that µt = (f0(X0)g1(X1)R)t.
This is proved by the author in [34]. Remark that (61) is an extension of (60) where
ψ = −ϕ. Unlike this asymptotic case (k =∞) where the convexity estimate (60) is
obtained informally by means of Otto’s heuristic calculus, the entropic interpolation
formula (61) is rigorous since h[µ0,µ1] is genuinely second differentiable on (0, 1) and
the stochastic calculus result (31) is rigorous.

In the general setting of a reference reversible measure R, and in particular with
a reversible random walk on a graph, it is shown in [34] that stochastic calculus for
the (f, g)-transforms as developed at Statement 1 leads us to the following rigorous
formula

h′′[µ0,µ1](t) = 〈Θ2(ϕt) + Θ2(ψt), µt〉, 0 < t < 1, (62)

where

Θ2ψ := LΘψ + e−ψΓ
(
eψ,Θψ

)
+ e−ψΓ(eψ, ψ)Bψ − e−ψΓ(eψBψ,ψ) (63)

with
Θψ := e−ψΓ(eψ, ψ)−Bψ + Lψ.

In the special case where L is a diffusion operator, then Θ = Γ/2 and Θ2 = Γ2/2.
One may expect that formulae (62) and (63) could lead to some results about
the curvature of graphs, in the same spirit as (61), which is related to curvature
via Bochner’s formula, carries information about the curvature of the underlying
Riemannian manifold.

7. A short history of Schrödinger’s problem and related literature. Schrö-
dinger’s problem was first addressed by E. Schrödinger in a German written article
[65] which was published in 1931 and entitled “Über die Umkehrung der Naturge-
setze” 12, then in a French written article [66] which was published in 1932 and
entitled “Sur la théorie relativiste de l’électron et l’interprétation de la mécanique
quantique”13. The entropy minimization problem appears at the last section VII
of the 1932 article which can be read independently of the preceding sections and
is entitled: “Une analogie entre la mécanique ondulatoire et quelques problèmes de
probabilités en physique classique”14.

Let us quote Schrödinger’s introduction to this section.
Il s’agit d’un problème classique : problème de probabilités dans la théorie du

mouvement brownien. Mais en fin de compte, il ressortira une analogie avec la
mécanique ondulatoire, qui fut si frappante pour moi lorsque je l’eus trouvée, qu’il
m’est difficile de la croire purement accidentelle.

12On the reversibility of the laws of nature.
13On the relativistic theory of the electron and the interpretation of quantum mechanics.
14An analogy between wave mechanics and some probabilistic problems in classical physics.
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À titre d’introduction, je voudrais citer une remarque que j’ai trouvée dans les
“Glifford lectures” de A.S. Eddington (Cambridge, 1928, p. 216 et sqq). Eddington,
en parlant de l’interprétation de la mécanique ondulatoire, fait dans une note en
bas de page la remarque suivante : 15

“The whole interpretation is very obscure, but it seems to depend on wether you
are considering the probability after you know what has happened or the probability
for the purposes of prediction. The ψψ̄ is obtained by introducing two symmetrical
systems of ψ waves travelling in opposite directions in time; one of these must
presumably correspond to probable inference from what is known (or is stated) to
have been the condition at a later time.”

In 1931, wave mechanics is newly born and many physicists are puzzled by its
possible interpretations. Based on Eddington’s remark, one may wonder at first
sight if in the quantum world knowledge from the far future is available. Of course,
this is not so, but why? In his 1931-32 papers, Schrödinger solves this paradox by
providing an amazingly close analogue of the quantum wave function propagation
in the classical world, by means of the entropy minimization problem (Sdyn). In
particular, formula (30) in Theorem 3.3: Pt(dx) = ft(x)gt(x)m(dx), must be inter-
preted as the classical analogue of Born’s formula: Pt(dx) = ψt(x)ψ̄t(x) dx. Let us
quote [66] again (this quotation also appears in [24]) to emphasize that, although
derived in a heuristic manner in [65, 66], the system (24) and Born’s formula (30)
are motivated by the following question of large deviations in the framework of the
lazy gas experiment: Imaginez que vous observez un système de particules en dif-
fusion, qui soient en équilibre thermodynamique. Admettons qu’à un instant donné
t0 vous les ayez trouvées en répartition à peu près uniforme et qu’à t1 > t0 vous
ayez trouvé un écart spontané et considérable par rapport à cette uniformité. On
vous demande de quelle manière cet écart s’est produit. Quelle en est la manière la
plus probable ? 16

As a concluding comment in his 1932 article, Schrödinger writes : La fonction
[d’onde] complexe ψ correspond à deux fonctions réelles, de sorte qu’il suffit de
définir les conditions aux limites en se donnant la valeur de ψ à un seul instant
déterminé ; c’est la façon de voir généralement admise en mécanique quantique. Est-
elle la seule admissible ? Dans notre problème, cela reviendrait à regarder comme
données les valeurs de f et g17 à un instant déterminé (au lieu des valeurs de leur
produit à deux instants différents), chose inadmissible et absolument dénuée de sens.

Doit-on interpréter la remarque d’Eddington, citée plus haut, comme signalant
la nécessité de modifier cette manière de voir en mécanique ondulatoire et prendre
comme conditions aux limites les valeurs d’une seule probabilité réelle à deux ins-
tants différents ? 18

15This is a classical problem: a probability problem in the theory of Brownian motion. But
eventually an analogy with the wave mechanics will appear. This analogy stroke me so hard once

I discovered it, that it is difficult for me to believe that it is purely accidental.

As an introduction, let me quote a remark that I found in the “Glifford lectures” of A. S. Edding-
ton (Cambridge, 1928, p. 216 et sqq). Discussing the interpretation of wave mechanics, Eddington

writes in a footnote the following remark: “The whole interpretation is very obscure, . . . ”
16Imagine that you observe a system of diffusing particles which is in thermal equilibrium.

Suppose that at a given time t0 you see that their repartition is almost uniform and that at
t1 > t0 you find a spontaneous and significant deviation from this uniformity. You are asked to

explain how this deviation occurred. What is its most likely behaviour?
17With the notation of the present article.
18 The complex [wave] function ψ corresponds to two real functions. Therefore, it is enough

to define the limit conditions by prescribing the value of ψ at a unique given time. This is the
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This has been performed in 1942 by R. Feynman in his PhD thesis [22], without
knowing Schrödinger’s contribution. Feynman’s thesis is entitled: The principle
of least action in quantum mechanics. Based on a seminal article by Dirac [17],
entitled The Lagrangian in quantum mechanics (also reproduced in [22]), and in
contrast with the regular Hamiltonian approach, Feynman’s thesis proposes a La-
grangian approach to quantum mechanics which will be further developed in several
directions, see [23].

Föllmer’s contribution. Although Schrödinger obtains the classical Born formula
(30), he does not write explicitly the problems (Sdyn) and (S). Their explicit for-
mulation is due to H. Föllmer in his Saint-Flour lecture notes [24, pp. 154-167].
Proposition 1 which is based on the additive property of the relative entropy (72),
also appears in [24].

7.1. Early mathematical developments. Although this part of Schrödinger’s
work has been forgotten for some decades, it had influenced leading mathematicians
soon after its publishing.

Reciprocal processes, 1932. Very soon after Schrödinger’s 1931 article, S. Bernstein
published in 1932 an article [2] about the general problem of deriving limit theorems
for sequences of dependent random variables. Among other notions, he explored the
Markov property and, motivated by [65], proposed a type of time-correlation which
is less restrictive than the Markov property and is still symmetric with respect
to time reversal19. He suggested that such stochastic processes could be called
reciprocal process. While a Markov measure Q ∈ M+(Ω) satisfies for any 0 ≤ s ≤
t ≤ 1,

Q(X[0,s] ∈ ·, X[t,1] ∈ ·· | X[s,t]) = Q(X[0,s] ∈ · | Xs)Q(X[t,1] ∈ ·· | Xt),

a path measure Q ∈ M+(Ω) is reciprocal if for any 0 ≤ s ≤ t ≤ 1,

Q(X[s,t] ∈ · | X[0,s], X[t,1]) = Q(X[s,t] ∈ · | Xs, Xt).

Any Markov measure is reciprocal, but the converse is false.
The theory of reciprocal processes has been forgotten for a while after Bernstein’s

article and was eventually developed by B. Jamison in 1974, [28, 29]. A significant
contribution of Jamison to the theory of Schrödinger problem was that its solution

P̂ is not only reciprocal, but also Markov and it is indeed an h-transform of the
Markov reference process. This is performed without any entropy, but solely by
means of reciprocal transitions. Föllmer recovered these results in [24] using the
entropy minimization problem (Sdyn). For more information about the relations
between reciprocal and Markov measures, see [42].

Time-reversal, 1936. In the very first lines of his celebrated paper [32] about Markov
processes and time-reversal, A. Kolmogorov quotes Schrödinger’s 1931 paper as a
motivation. This has been surprisingly forgotten afterwards.

regular practice in quantum mechanics. Is it the only admissible one? In our problem, this would

correspond to considering that the values of f and g [with the notation of the present article] are
prescribed at a given time (instead of the values of their product at two distinct times). This is
inadmissible and meaningless.

Should one interpret the previously quoted remark of Eddington, as a hint for the necessity

of modifying our usual way of looking at quantum mechanics by defining the limit conditions in
terms of the values of a single real probability at two distinct times?

19It is not clear that Bernstein was aware of the time-symmetry of the Markov property. This
symmetry has clearly been identified twenty years later by J.L. Doob in his textbook [18].
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Schrödinger system, 1940. Schrödinger had left open the problem of finding criteria
for the system (24) to have a solution (f0, g1). In 1940, R. Fortet [26] proposed a
partial solution and in 1960, A. Beurling [3] gave a solution close to the statement
of Theorem 2.4. Beurling’s proof also relies upon an entropy argument. Beurling’s
result was improved by Jamison in [29] who obtained the complete solution of
Schrödinger’s system.

7.2. Stochastic deformations of mechanics. The aim of Euclidean quantum
mechanics (EQM), which is mainly developed by J.-C. Zambrini since 1986 [73,
10, 9, 7], is to transfer by analogy, known results from quantum mechanics to the
theory of stochastic processes and the other way round20. The starting paper [73] of
this program relies on Schrödinger’s discovery and adapts Jamison’s results for an
appropriate class of reciprocal processes (unlike Zambrini, Jamison doesn’t use the
time-reversed filtration in his construction of reciprocal processes). Then the EQM
program was extended to the derivation of rigorous results about various kinds of
stochastic processes which are suggested by the textbook Quantum mechanics and
path integrals by Feynman and Hibbs [23]. This textbook presents, indeed, a time-
symmetric (Lagrangian) approach to quantum mechanics which extends Feynman’s
early works and in particular his PhD thesis [22].

Feynman’s approach is an enlightening, efficient and intuitive guideline for physi-
cists, but unfortunately it is impossible to put it on a rigorous mathematical ground:
it is proved that Feynman’s integral is an oddly defined object. However, replac-
ing Feynman’s integration by stochastic calculus suggests interesting results about
diffusion processes. The first of these results was the celebrated Feynman-Kac’s
formula [31]. EQM viewpoint, however, is that there is much more in Feynman’s
method than this time-asymmetric measure theoretic perturbative formula. EQM
uses Kac’s strategy in a systematic manner and its basic program is to obtain rig-
orous stochastic analogues of several intuitive statements from [23]; intuitive, but
highly efficient since they are corroborated by experiments. In EQM, the natu-
ral stochastic processes to work with are reciprocal processes. However, in several
important situations, it appears that the critical (solving some variational prob-
lem) reciprocal processes are Markov. In this case, it is sufficient to work with
(f, g)-transforms of Markov reference processes (see [29, 24] for an h-transform

representation) and their extensions: f0(X0) exp
( ∫ 1

0
U(Xt) dt

)
g1(X1)R with the

additional Feynman-Kac integral term (x, y) 7→ exp
( ∫ 1

0
U(Xt) dt

)
Rxy which is the

classical analogue of Feynman’s propagator. These extensions of h-transforms are
also used by M. Nagasawa in [56, 57] who also explores connections between sto-
chastic processes and quantum physics which are highly inspired by the Schrödinger
problem.

It is also possible to stochastically deform all the mathematical tools of clas-
sical mechanics to derive new results about diffusion processes. For instance,
M. Thieullen designed a second order calculus for reciprocal processes in [70] and
without referring to (Sdyn) or entropy in general, M. Thieullen and J.-C. Zambrini
have obtained a stochastic deformation of Noether theorem [71].

An interesting problem. This suggests that it would be also interesting to derive a
type of Noether theorem for the Monge-Kantorovich dynamical problem. Let us

20Unlike Nelson’s stochastic mechanics [59] or Nagasawa’s interpretation of quantum mechanics
[57], EQM is not aimed at giving a stochastic interpretation of quantum mechanics. Such a project

still remains an open problem eighty years after the advent of this theory.
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give some hint of what is meant. In the Euclidean case, the displacement interpola-
tion [µ0, µ1] is a solution of (MKdyn) with C = Ckin :=

∫
[0,1]
|Ẋt|2/2 dt, the kinetic

action. It has a constant speed; this means that twice the average kinetic energy∫
Ω
|Ẋt|2 dP̂ =

∫
X |∇ψt(x)|2 µt(dx), with the notation of the Benamou-Brenier for-

mula (7), doesn’t depend on time t. What happens when considering, instead of

Ckin, the action functional C =
∫

[0,1]

(
|Ẋt|2/2 + U(Xt)

)
dt which should be con-

nected with some Newton equation? What are the quantities that are conserved
along the minimizer [µ0, µ1], in terms of the symmetries of the potential U?

7.3. Stochastic optimal control. Optimal transport can be deformed into a sto-
chastic optimal control problem. This is mainly the contribution of T. Mikami, see
[52] for an overview of this approach and some of its main developments. With (42),
one obtains that the Brownian Schrödinger problem (Sdyn), i.e. taking R to be the
reversible Brownian motion, is also expressed as follows:

EPu

∫ 1

0

L(ut) dt→ min; u ∈ A : Pu0 = µ0, P
u
1 = µ1 (64)

where A is the set (of admissible controls) which consists of all the Rn-valued
progressively measurable processes u and Pu (if it exists) is the law of the semi-
martingale

Xu
t = Xu

0 +

∫ t

0

us ds+Wt, 0 ≤ t ≤ 1

where W is a standard Brownian motion starting from 0 and

L(u) = |u|2/2, u ∈ Rn.

This is a stochastic version of the quadratic Monge-Kantorovich problem (MKdyn):

EPu

∫ 1

0

L(ut) dt→ min; u ∈ AMK : Pu0 = µ0, P
u
1 = µ1

which is obtained by replacing A with AMK, the set of all controls u ∈ L1
Rn([0, 1])

and taking Pu to be the law of

Xu
t = Xu

0 +

∫ t

0

us ds, 0 ≤ t ≤ 1,

a process with a random initial position and a deterministic evolution.
This theory extends naturally to the case where L is strictly convex, regular

and coercive enough: lim|u|→∞ L(u)/|u|p = ∞, for some p > 1. But results close
to optimal transport are obtained with L admitting a quadratic growth, i.e. in
harmony with the Brownian motion W.

When L is quadratic, if the Brownian motionW is replaced with
√
εW and ε tends

to zero, then Mikami shows in [49] that (Sdyn) tends to (MKdyn). Unfortunately, this
type of convergence remains unclear unless L is quadratic, i.e. unless the stochastic
optimal control problem corresponds to (Sdyn).

T. Mikami and M. Thieullen have proved a Kantorovich-type dual equality in
[54] for (64) and recovered related optimal transport results in [55]. T. Mikami has
intensively studied the connections between stochastic control and optimal trans-
port. In particular, soon after the discovery by Jordan, Kinderlehrer and Otto
[30] of the relation between gradient flows, Wasserstein distance and dissipative
evolution equations, he proposed in [47] a stochastic approach to the JKO approx-
imation scheme. In addition to the already cited articles by Mikami, several other
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works by the same author are related to a probabilistic approach to optimal trans-
port: [48, 50, 51, 53]. Let us also quote the early contributions of Mikami [46] and
P. Dai Pra [12] where the Schrödinger problem is translated in terms of stochastic
control.

7.4. Penalized Monge-Kantorovich problem. The connection between the
Monge-Kantorovich and the Schrödinger problems is also exploited implicitly in
some works where (MK) is penalized by a relative entropy, leading to the minimiza-
tion problem∫

X 2

c dπ +
1

k
H(π|ρ)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1

where ρ ∈ P(X 2) is a fixed reference probability measure on X 2, for instance ρ =
µ0 ⊗ µ1. Putting ρk(dxdy) = Z−1

k e−kc(x,y) ρ(dxdy) with Zk =
∫
X 2 e

−kc dρ <∞, up

to the additive constant log(Zk)/k, this minimization problem rewrites as (Sk) with
ρk instead of Rk01. See for instance the papers by Rüschendorf and Thomsen [63, 64]
and the references therein. Also interesting are the papers by Dupuy, Galichon and
Salanie [27, 21] with an applied point of view.

Appendix A. Relative entropy with respect to an unbounded measure.
This appendix section is a short version of [35, § 2] which we refer to for more detail.
Let r be some σ-finite positive measure on some space Y . The relative entropy of
the probability measure p with respect to r is loosely defined by

H(p|r) :=

∫
Y

log(dp/dr) dp ∈ (−∞,∞], p ∈ P(Y ) (65)

if p� r and H(p|r) =∞ otherwise.
More precisely, when r is a probability measure, we have

H(p|r) =

∫
Y

h(dp/dr) dr ∈ [0,∞], p, r ∈ P(Y )

with h(a) = a log a− a+ 1 ≥ 0 for all a ≥ 0, (take h(0) = 1). Hence, the definition
(65) is meaningful. It follows from the strict convexity of h that H(·|r) is also
strictly convex. In addition, since h(a) = inf h = 0 ⇐⇒ a = 1, we also have for
any p ∈ P(Y ),

H(p|r) = inf H(·|r) = 0 ⇐⇒ p = r. (66)

If r is unbounded, one must restrict the definition of H(·|r) to some subset of
P(Y ) as follows. As r is assumed to be σ-finite, there exist measurable functions
W : Y → [1,∞) such that

zW :=

∫
Y

e−W dr <∞. (67)

Define the probability measure rW := z−1
W e−W r so that log(dp/dr) = log(dp/drW )−

W − log zW . It follows that for any p ∈ P(Y ) satisfying
∫
Y
W dp <∞, the formula

H(p|r) := H(p|rW )−
∫
Y

W dp− log zW ∈ (−∞,∞] (68)

is a meaningful definition of the relative entropy which is coherent in the following
sense. If

∫
Y
W ′ dp <∞ for another measurable function W ′ : Y → [0,∞) such that

zW ′ < ∞, then H(p|rW ) −
∫
Y
W dp − log zW = H(p|rW ′) −

∫
Y
W ′ dp − log zW ′ ∈

(−∞,∞].
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Therefore, H(p|r) is well-defined for any p ∈ P(Y ) such that
∫
Y
W dp < ∞ for

some measurable nonnegative function W verifying (67). It can be proved that

H(p|r) (i)
= sup

{∫
Y

u dp− log

∫
Y

eu dr;u : Y → [−∞,∞),

∫
Y

eu dr <∞
}

(69)

(ii)
= sup

{∫
Y

u dp− log

∫
Y

eu dr;u ∈ CW (Y )

}
, (70)

where

(i) identity (i) is valid when p is assumed to be absolutely continuous with respect
to r;

(ii) identity (ii) is meaningful when Y is a topological space equipped with its Borel
σ-field since we have set CW (Y ) to be the space of all continuous functions
u : Y → R such that sup |u|/W < ∞, where W is any nonnegative function
satisfying (67). In this case, it follows that, being the supremum of affine
continuous functions, H(·|r) is a convex lower semi-continuous function with
respect to the weak topology σ({p ∈ P(Y );

∫
Y
W dp <∞}, CW (Y )).

Clearly, identity (i) entails that H(p|r) = ∞ whenever p ∈ P(Y ) is such that∫
Y
W dp =∞
It follows from the strict convexity of H(·|rW ) and (68) that H(·|r) is also strictly

convex.
Let Y and Z be two Polish spaces equipped with their Borel σ-fields. For any

measurable function φ : Y → Z and any measure q ∈ M+(Y ) we have the disinte-
gration formula

q(dy) =

∫
Z

q(dy|φ = z)φ#q(dz) (71)

where z ∈ Z 7→ q(·|φ = z) ∈ P(Y ) is measurable, and the following additive
property

H(p|r) = H(φ#p|φ#r) +

∫
Z

H
(
p(· | φ = z)|r(· | φ = z)

)
φ#p(dz), (72)

is valid for any p ∈ P(Y ) and any σ-finite r ∈ M+(Y ). In particular, as r(· | φ = z)
is a probability measure for each z, with (66) we see that

H(φ#p|φ#r) ≤ H(p|r), ∀p ∈ P(Y ) (73)

with equality if and only if

p(· | φ = z) = r(· | φ = z), ∀z, φ#p-a.s. (74)
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Zürich, (1932), no. Band I.
[3] A. Beurling, An automormhism of product measures, Ann. Math., 72 (1960), 189–200.
[4] P. Billingsley, “Convergence of Probability Measures,” John Wiley & Sons, Inc., New York-

London-Sydney 1968 xii+253 pp.
[5] J. M. Borwein and A. S. Lewis, Decomposition of multivariate functions, Can. J. Math., 44

(1992), 463–482.

http://www.ams.org/mathscinet-getitem?mr=MR1738163&return=pdf
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1007/s002110050002
http://www.ams.org/mathscinet-getitem?mr=MR0125424&return=pdf
http://dx.doi.org/10.2307/1970151
http://www.ams.org/mathscinet-getitem?mr=MR0233396&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1176365&return=pdf
http://dx.doi.org/10.4153/CJM-1992-030-9


1572 CHRISTIAN LÉONARD
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[42] C. Léonard, S. Rœlly and J.-C. Zambrini, On the time symmetry of some stochastic processes,

Preprint.
[43] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport , Ann.

of Math., 169 (2009), 903–991.

[44] R. McCann, “A Convexity Theory for Interacting Gases and Equilibrium Crystals,” PhD
thesis, Princeton Univ., 1994.

[45] R. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153–179.

[46] T. Mikami, Variational processes from the weak forward equation, Comm. Math. Phys., 135
(1990), 19–40.

[47] T. Mikami, Dynamical systems in the variational formulation of the Fokker-Planck equation

by the Wasserstein metric, Appl. Math. Optim., 42 (2000), 203–227.
[48] T. Mikami, Optimal control for absolutely continuous stochastic processes and the mass trans-

portation problem, Electron. Comm. Probab., 7 (2002), 199–213.
[49] T. Mikami, Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes,

Probab. Theory Relat. Fields, 129 (2004), 245–260.

[50] T. Mikami, A simple proof of duality theorem for Monge-Kantorovich problem, Kodai Math.
J., 29 (2006), 1–4.

[51] T. Mikami, Marginal problem for semimartingales via duality, International Conference for

the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sci-
ences and Applications, vol. 30, 2008, pp. 133–152.

[52] T. Mikami, Optimal transportation problem as stochastic mechanics, Selected papers on prob-

ability and statistics, 75–94, Amer. Math. Soc. Transl. Ser. 2, 227, Amer. Math. Soc., Provi-
dence, RI, 2009.

[53] T. Mikami, A characterization of the Knothe-Rosenblatt processes by a convergence result ,

SIAM J. Control and Optim., 50 (2012), 1903–1920.
[54] T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem,

Stoch. Proc. Appl., 116 (2006), 1815–1835.

[55] T. Mikami and M. Thieullen, Optimal transportation problem by stochastic optimal control ,
SIAM J. Control Optim., 47 (2008), 1127–1139.

[56] M. Nagasawa, Transformations of diffusion and Schrödinger processes, Probab. Theory Re-
lated Fields, 82 (1989), 109–136.

[57] M. Nagasawa, “Stochastic Processes in Quantum Physics,” Monographs in Mathematics,
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