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Abstract We propose a new algorithm to approximate the Earth Mover’s distance (EMD).
Our main idea is motivated by the theory of optimal transport, in which EMD can be refor-
mulated as a familiar L1 type minimization. We use a regularization which gives us a unique
solution for this L1 type problem. The new regularized minimization is very similar to prob-
lems which have been solved in the fields of compressed sensing and image processing,
where several fast methods are available. In this paper, we adopt a primal-dual algorithm
designed there, which uses very simple updates at each iteration and is shown to converge
very rapidly. Several numerical examples are provided.
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1 Introduction

The earth mover’s distance (EMD) has been used extensively in fields such as image pro-
cessing, computer vision and statistics [11,13,15,22]. E.g., EMD has been widely used in
image retrieval problems [18]. In this paper, we present a new method to approximate the
EMD. This method is simple to implement and simple to parallelize.

We begin by reviewing the definitions and basic results relating to EMD. Let � ⊂ R
d be

convex and compact and let c : �×� → [0,∞) be a distance function in �. For any pair of
non-negative measures ρ0, ρ1 on � with equal mass, EMD is defined by the minimization
problem

EMD(ρ0, ρ1) =
⎛
⎝
minimize

∫
�×�

c(x1, x2)π(x1, x2) dx1dx2
subject to

∫
�

π(x1, x2) dx2 = ρ0(x1)∫
�

π(x1, x2) dx1 = ρ1(x2)

⎞
⎠ , (1)

where π ≥ 0, a joint measure (transport plan) on � × �, is the optimization variable. Note
that π(x1, x2) is constrained to have ρ0(x1) and ρ1(x2) as its marginals.

We call the distance function c the ground metric. The domain � and the ground metric c
define the EMD. In this paper, we use the Euclidean distance (L2) [3,4] and the Manhattan
distance (L1) [12] for the ground metric. They correspond to, respectively, c(x1, x2) =
‖x1 − x2‖2 and c(x1, x2) = ‖x1 − x2‖1. We call (1) with the L1, L2 ground metric the
EMD-L1 and EMD-L2 problems, respectively.

In recent years, the optimization problem (1) has been studied extensively in the field of
optimal transport [7,21,23].Many interestingmetrics, including theEuclidean andManhattan
distances, can be represented in the variational form

c(x1, x2) =
(
minimize

∫ 1
0 L(v(t)) dt

subject to d
dt x = v , x(0) = x1 , x(1) = x2

)
,

where the infimum is taken among all continuous differentiable path γ (t) ∈ � and the
Lagrangian, L(v), is homogeneous of degree 1 and convex in v. For example, L(v) = ‖v‖2
yields the Euclidean distance, and L(v) = ‖v‖1 the Manhattan distance. When this is the
case, remarkably, EMD can be equivalently written as

EMD(ρ0, ρ1) =

⎛
⎜⎜⎜⎝

minimize
∫
�
L(m(x)) dx

subject to ∇ · m(x) + ρ1(x) − ρ0(x) = 0

m(x) · n(x) = 0, for all

{
x ∈ ∂�,

n(x) normal to ∂�

⎞
⎟⎟⎟⎠ (2)

where the optimization variablem : � → R
d is a flux vector satisfying the zero flux boundary

condition [1,4]. The connection between (1) and (2) is briefly explained in Sect. 2.
The formulation (2) has huge computational benefits. First, the size of the optimization

variable in (2) is much smaller than that of (1), when solving a discrete approximation; when
using a discretized grid with N points, the variable size is reduced from N 2 to N . Second,
(2) is an L1-type minimization problem, which shares its structure with many problems in
compressed sensing and image processing, and therefore we can take advantage of well-
established fast and simple algorithms [8,19,24].
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In this paper, we propose a new algorithm to compute the EMD that leverages the structure
of the formulation (2), which, roughly speaking, has the form

mk+1 = shrink
(
mk + μ∇�k

)

�k+1 = �k + τ
(
div

(
2mk+1 − mk

)
+ ρ1 − ρ0

)
.

Here μ, τ > 0 are the algorithm’s parameters, ∇, div are discrete gradient, divergence
operators respectively, and the shrink operator shrink(·) is a simple function that depends
on the ground metric. Under appropriate conditions, mk converge to a solution, and �k

converge to a Lagrange multiplier. The algorithm discretizes the domain � with a finite
volume approximation and then applies the first-order primal-dual method of Chambolle
and Pock for the optimization [6,16]. This method is very simple to implement and, as we
discuss, very easy to parallelize.

To compute the EMD, algorithms based on linear programming [9,12] and the alternating
direction method of multipliers (ADMM) [3,4,22] have been proposed. Compared to these
existing methods, our method has a much lower computational cost per iteration (though
it can take more iterations to converge) because no linear system (in particular, no elliptic
problem) is solved at each iteration. Our method is very simple, and this simplicity makes
the method easy to parallelize. We implemented our algorithm with CUDA C++ and run it
on a GPU. Its performance is presented in Sect. 5.

Besides, proximal splitting methods have also been applied to some optimal transport
related minimization problems [5,14], in which the Lagrangian L is not homogeneous of
degree 1 and the formulation (2) is time dependent. One of the hardest problem there is to
handle the non-negativity of density functions in each time level. However, there is not such
an issue in EMD-L1 or EMD-L2 computation. This is because the optimization problem is
static and the shrink operator is simple. The proposed algorithm is also robust, in the sense
of handling various measures. It is especially true for ρ0, ρ1 being sparse, such as delta
measures.

The rest of this paper is organized as follows.We provide a short review on EMD in Sect. 2
and describe the proposed algorithm in Sect. 3. Several parallel computational considerations
and numerical examples are discussed in Sects. 4 and 5, respectively. We make conclusions
in Sect. 6.

2 Review of Optimal Transport

For the reader’s convenience, we provide a short review on the equivalence between (1) and
(2). The connection can be derived in two ways. In the first way, (2) is derived as the bi-dual
(dual of the dual) to the linear program (1); see [1,4,23] for details. The other way is based
on an optimal control viewpoint, which we discuss. Along with this, we briefly summarize
the history of optimal transport.

In 1781, Monge first proposed the problem of optimal transport:

minimize
∫
�
c(x1, T (x1))ρ0(x1) dx1

subject to ρ1(T (x1))det(∇T (x1)) = ρ0(x1),
(3)

where theminimization variable is the map T , a one-to-one smoothmapping that transfers ρ0

to ρ1. Because T is possibly nonlinear, the optimization problem (3) is generally nonlinear.
In the 1940s Kantorovich identified that (3) can be solved with the linear program (1). Today,
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it is known that under suitable conditions on ρ0 and ρ1, the minimal values of (3) and (1)
are identical and the minimizing joint measure π of (1) exists. From its support, one can find
the optimal map T .

(3) has an important reformation, which connects to optimal control [1–3]. By writing c
in a variational form, i.e.,

c(x1, T (x1)) =
(
minimize

∫ 1
0 L(v) dt

subject to d
dt x = v , x(0) = x1 , x(1) = T (x1) ,

)

we can reformulate (3) as

minimize
∫
�

∫ 1
0 L(v)ρ(t, x) dtdx

subject to ∂ρ
∂t + ∇ · (ρv) = 0
ρ(0, x) = ρ0 , ρ(1, x) = ρ1,

(4)

where the minimum is taken among all Borel vector fields v(t, x) (satisfying the zero flux
condition on ∂�) and density function ρ(t, x) that transports ρ0 to ρ1 continuously in time.
The minimization problem (4) is just the dynamical version of (3), and the optimal map can
be obtained through

T (x1) = x(1),

where x(t) solves the following initial value ordinary differential equation (ODE) [7]:

d

dt
x = v(t, x(t)) , x(0) = x1. (5)

If L is homogeneous degree 1 and convex in v (think, for example, L(x, v) = ‖v‖2) [23],
then (4) is equivalent to the time independent (static) minimization problem (2). Given anm
feasible for (2), define ρ(t, x) = tρ1(x) + (1 − t)ρ0(x) and v(t, x) = m(x)/ρ(t, x). Then
v(t, x) is feasible for (4) and has the same objective value asm did for (2). So

inf
v

∫
�

∫ 1

0
L(v)ρ(t, x) dtdx ≤ inf

m

∫
�

L(m(x)) dx,

The other direction follows from Jensen’s inequality:

∫ 1

0
L(v)ρ(t, x) dt ≥ L

(∫ 1

0
vρ(t, x) dt

)
= L(m(x)),

where

m(x) =
∫ 1

0
ρ(t, x)v(t, x) dt.

So

inf
v

∫
�

∫ 1

0
L(v)ρ(t, x) dxdt ≥ inf

m

∫
�

L(m(x)) dx,

and we conclude (4) and (2) have the same optimal value.
In conclusion, the four minimization problems (1), (2), (3), and (4) are equivalent, and

they share the same minimal value. In this paper, we focus on (2) for efficient computation.
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3 Proposed Algorithm

The EMD problem, as presented in (2), has similar structures to many homogeneous degree
one regularized problems. In this section we use a finite volume discretization to approximate
(2). The discretized problem becomes an L1-type optimization with linear constraints, which
allows us to apply the hybrid primal-dual method designed in [6,16].

3.1 Discretization

For notational simplicity, we will consider the case where � ⊂ R
2 and � is square. The fol-

lowing discussion does immediately generalize to higher dimensions and more complicated
domains.

Also, we will use the same symbol to denote the discretizations and their continuous
counterparts. Whether we are referring to the continuous variable or its discretization should
be clear from the context.

Consider a n × n discretization of � with finite difference 	x in both x and y directions.
Write the x and y coordinates of the points as x1, . . . , xn and y1, . . . , yn . So we are approxi-
mating the domain � with {x1, . . . , xn}× {y1, . . . , yn}. Write C(x, y) be the 	x ×	x cube
centered at (x, y), i.e.,

C(x, y) = {(x ′, y′) ∈ R
2 | |x ′ − x | ≤ 	x/2, |y′ − y| ≤ 	x/2}.

We use a finite volume approximation for ρ0 and ρ1. Specifically, we write ρ0 ∈ R
n×n

with

ρ0
i j ≈

∫
C(xi ,y j )

ρ0(x, y) dxdy,

for i, j = 1, . . . , n. The discretization ρ1 ∈ R
n×n is defined the same way.

Write m = (mx ,my) for both the continuous variable and its discretization. To be clear,
the subscripts of mx and my do not denote differentiation. We use the discretization mx ∈
R

(n−1)×n and my ∈ R
n×(n−1). For i = 1, . . . , n − 1 and j = 1, . . . , n

mx,i j ≈
∫
C(xi+	x/2,y j )

mx (x, y) dxdy,

and for i = 1, . . . , n and j = 1, . . . , n − 1

my,i j ≈
∫
C(xi ,y j+	x/2)

my(x, y) dxdy.

In defining mx and my , the center points are placed between the n × n grid points to make
the finite difference operator symmetric.

Define the discrete divergence operator div(m) ∈ R
n×n as

div(m)i j = 1

	x

(
mx,i j − mx,(i−1) j + my,i j − my,i( j−1)

)
,

for i, j = 1, . . . , n, where we mean mx,0 j = mx,nj = 0 for j = 1, . . . , n and my,i0 =
my,in = 0 for i = 1, . . . , n. This definition of div(m) makes the discrete approximation be
consistent with the zero-flux boundary condition.
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For � ∈ R
n×n , define the discrete gradient operator ∇� = ((∇�)x , (∇�)y) as

(∇�)x,i j = (1/	x)
(
�i+1, j − �i, j

)
for i = 1, . . . , n − 1, j = 1, . . . , n

(∇�)y,i j = (1/	x)
(
�i, j+1 − �i, j

)
for i = 1, . . . , n, j = 1, . . . , n − 1 .

So (∇�)x ∈ R
(n−1)×n and (∇�)y ∈ R

n×(n−1), and the ∇ is the adjoint of −div.
Wewill soon see that using ghost cells is convenient for both describing and implementing

the method. So we define the variable m̃ = (m̃x , m̃ y) ∈ R
2×n×n where

m̃x,i j =
{
mx,i j for i < n
0 for i = n

m̃y,i j =
{
my,i j for j < n
0 for j = n ,

for i, j = 1, . . . , n. We also define ∇̃� = ((∇̃�)x , (∇̃�)y) ∈ R
2×n×n , where

(∇̃�)x,i j =
{

(∇�)x,i j for i < n
0 for i = n

(∇̃�)y,i j =
{

(∇�)y,i j for j < n
0 for j = n ,

for i, j = 1, . . . , n. Finally, we write m̃ = (m̃x , m̃ y) and m̃i j = (m̃x,i j , m̃ y,i j ) and (∇�)i j =
((∇�)x,i j , (∇�)y,i j ) for i, j = 1, . . . , n.

3.2 EMD with L2 Ground Metric

Using this notation, we write the discretization of (2) as

minimize
m

‖m‖1,2
subject to div(m) + ρ1 − ρ0 = 0 ,

(6)

where mx ∈ R
(n−1)×n and my ∈ R

n×(n−1) are the optimization variables. The boundary
conditions implicitly handled by the discretization. The objective is

‖m‖1,2 =
n∑

i=1

n∑
j=1

‖mi j‖2 =
n∑

i=1

n∑
j=1

√
m2

x,i j + m2
y,i j ,

where we mean mx,nj = 0 for j = 1, . . . , n and my,in = 0 for i = 1, . . . , n.
Define the Lagrangian

L(m,�) = ‖m‖1,2 + 〈
�, div(m) + ρ1 − ρ0〉 ,

where � ∈ R
n×n is the Lagrange multiplier corresponding to the equality constraint of (6).

Here 〈·, ·〉 denotes the inner product between n × n matrices treated as vectors, i.e.,

〈A, B〉 =
n∑

i=1

n∑
j=1

Ai j Bi j .

Standard convex analysis states thatm
 is a solution to (6) if and only if there is a�
 such
that (m
,�
) is a saddle point of L(m,�) [17]. In other words, we can solve (6) by solving
the minimax problem

min
m

max
�

L(m,�). (7)
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Saddle point problems, such as (7), can be solved with the first-order primal-dual method
of Chambolle and Pock [6,16]:

mk+1 = argminm

{
‖m‖1,2 + 〈�k, div(m)〉 + 1

2μ
‖m − mk‖22

}

�k+1 = argmax�

{〈
�, div(2mk+1 − mk) + ρ1 − ρ0

〉
− 1

2τ
‖� − �k‖22

}
(8)

where μ, τ > 0 are step sizes. The meaning of ‖ · ‖22 is standard:

‖m − mk‖22 =
n−1∑
i=1

n∑
j=1

(mx,i j − mk
x,i j )

2 +
n∑

i=1

n−1∑
j=1

(my,i j − mk
y,i j )

2

and

‖� − �k‖22 =
n∑

i=1

n∑
j=1

(�i j − �k
i j )

2 .

These steps can be interpreted as a gradient descent in the primal variable m and a gradient
ascent in the dual variable �.

It turns out the optimization problems that define (8) have explicit formulas that are
separable over the indices i, j .

argminm

{
‖m‖1,2 + 〈�k,∇ · m〉 + 1

2μ
‖m − mk‖22

}

= argminm

⎧⎨
⎩

∑
i j

(
‖mi j‖1,2 + 1

	x
�k

i j (mx,i j − mx,(i−1) j

+my,i j − my,i( j−1)) + 1

2μ
‖mi j − mk

i j‖22
) ⎫⎬

⎭

= argminm

⎧⎨
⎩

∑
i j

(
‖mi j‖1,2 − (∇�k)Ti jmi j + 1

2μ
‖mi j − mk

i j‖22
)⎫⎬

⎭ ,

where again, all out of bounds indicies are interpreted as zeros. This minimization has a
closed form solution, which can be written concisely with m̃ and ∇̃:

m̃k+1
i j = shrink2

(
m̃k

i j + μ
(
∇̃�k

)
i j

, μ

)

for i, j = 1, . . . , n. The shrink operator shrink2 is defined as

shrink2(v, μ) =
{

(1 − μ/‖v‖2)v for ‖v‖2 ≥ μ

0 for ‖v‖2 < μ .

Note that shrink2 maps from R
2 to R

2, given a fixed μ.
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Likewise, we have

argmax�

{〈
�, div(2mk+1 − mk) + ρ1 − ρ0

〉
− 1

2τ
‖� − �k‖22

}

= argmax�

⎧⎨
⎩

∑
i j

(
�i j ((div(2mk+1 − mk))i j + ρ1

i j − ρ0
i j ) − 1

2τ
(�i j − �k

i j )
2
)⎫⎬

⎭ ,

and second line of (8) simplifies to

�k+1
i j = �k

i j + τ((div(2mk+1 − mk))i j + ρ1
i j − ρ0

i j )

for i, j = 1, . . . , n.
We are now ready to state our algorithm.

Primal-Dual for EMD-L2
Input: Discrete probabilities ρ0, ρ1

Initial guess ofm0, step size μ, τ
Output:m and EMD value ‖m‖1,2

1. for k = 1, 2, · · · (Iterate until convergence)
2. m̃k+1

i j = shrink2(m̃k
i j + μ(∇̃�k)i j , μ) for i, j = 1, . . . , n

3. �k+1
i j = �k

i j + τ((div(2mk+1 − mk))i j + ρ1
i j − ρ0

i j ) for i, j = 1, . . . , n
4. end

Again, m̃ and ∇̃� correspond tom and∇� paddedwith ghost cells, as discussed in Sect. 3.1.

3.3 EMD with L1 Ground Metric

We next consider EMD-L1. The arguments and notation are similar as before, so we only
outline the difference.

We write the discretization of (2) as

minimize
m

‖m‖1,1
subject to div(m) + ρ1 − ρ0 = 0 .

(9)

The objective is

‖m‖1,1 =
n∑

i=1

n∑
j=1

‖mi j‖1 =
n∑

i=1

n∑
j=1

|mx,i j | + |my,i j | ,

where we mean mx,nj = 0 for j = 1, . . . , n and my,in = 0 for i = 1, . . . , n.
(9) is an L1 optimization problem with a convex objective function and linear constraints.

However, (9) can have multiple minimizers as the objective function is not strictly convex.
To remedy this issue, we add quadratic regularization with a small ε > 0,

minimize
m

‖m‖1,1 + (ε/2)‖m‖22
subject to div(m) + ρ1 − ρ0 = 0 .

(10)
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Since its objective function is strictly convex, (10) does have a unique solution. It is worth
mentioning our algorithm can still solve (2) without the regularization term and obtain one
of its possibly many solutions.

As before, define the Lagrangian

L(m,�) = ‖m‖1,1 + (ε/2)‖m‖22 + 〈�, div(m) + ρ1 − ρ0〉 .

Again, we can solve (10) by solving

min
m

max
�

L(m,�) . (11)

Again, we find a saddle point of (11) by the first order primal-dual algorithm [6,16]

mk+1 = argminm

{
‖m‖1,1 + (ε/2)‖m‖22 + 〈�k,∇ · m〉 + 1

2μ
‖m − mk‖22

}

�k+1 = argmax�

{〈
�, div(2mk+1 − mk) + ρ1 − ρ0

〉
− 1

2τ
‖� − �k‖22

}
. (12)

As in the EMD-L2 setting, we have explicit formulas that are separable over the indices
i, j for (12). The � update is the same as before, and the m update is

m̃k+1
x,i j = 1/(1 + εμ)shrink1(m̃

k
x,i j + μ(∇̃�k)x,i j , μ)

m̃k+1
y,i j = 1/(1 + εμ)shrink1(m̃

k
y,i j + μ(∇̃�k)y,i j , μ)

for i, j = 1, . . . , n, where shrink1 operation is the shrink operator

shrink1(v, μ) =
{

(1 − μ/|v|)v for |v| ≥ μ

0 for |v| < μ .

Note that shrink1 maps from R to R, given a fixed μ. The update for �k+1 is the same as
before. Now we can write

Primal-dual method for EMD − L1
Input: Discrete probabilities ρ0, ρ1;

Initial guess ofm0, parameter ε > 0, step size μ, τ .
Output:m and EMD value ‖m‖1,1.

1. for k = 1, 2, · · · (Iterate until convergence)
2. m̃k+1

c,i j =1/(1 + εμ)shrink1(m̃k
c,i j+μ(∇̃�k)c,i j , μ) for i, j = 1, . . . , n and c = x, y

3. �k+1
i j = �k

i j + τ((div(2mk+1 − mk))i j + ρ1
i j − ρ0

i j ) for i, j = 1, . . . , n
4. end

Again, m̃ and ∇̃� correspond tom and∇� paddedwith ghost cells, as discussed in Sect. 3.1.

3.4 Convergence Analysis

We now show that the proposed primal-dual algorithm converges to the minimizer of (6) and
(10).

Define the discrete Laplacian operator as ∇2 = div · ∇.
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Theorem 1 Assume τμ < 1/λmax(∇2), where λmax(∇2) denotes the largest eigenvalue of
the discrete Laplacian operator ∇2. Then with iterations (8) and (12)

(mk,�k) → (m
,�
) ,

where (m
,�
) is a saddle point of L in (7) or (11). Define

Rk = (1/μ)‖mk+1 − mk‖22 + (1/τ)‖�k+1 − �k‖22 − 2〈�k+1 − �k, div(mk+1 − mk)〉 .

Then Rk ≥ 0 and Rk = 0 if and only if (mk,�k) is a saddle point of of (7) or (11). Rk

monotonically converges to 0.

Proof We check the conditions required in [6]. Let us rewrite L by

L(m,�) = G(m) + �T Km − F(�) ,

where G(m) = ‖m‖1,2 or G(m) = ‖m‖1,1 + (ε/2)‖m‖22, K = div, and F(�) =∑
i j �i j (ρ

0
i j − ρ1

i j ). Observe that G, F are convex functions and K is a linear operator.

Since ∇2 = KKT , the algorithm converges for μτ‖∇2‖22 < 1.
The Chambolle-Pock methods can be interpreted as a proximal point method under a

certain metric [10]. Rk is the fixed-point residual of the non-expansive mapping defined by
the proximal point method and thus decreases monotonically to 0, c.f., review paper [20]. ��

4 Computational Considerations

Parallelizing the methods for EMD-L2 and EMD-L1 is simple. We can split the computation
over the indices (i, j) as follows:

m_temp[i,j] = m[i,j]

m[i,j] = shrink(m[i,j]+mu/dx*(Phi[i+1,j]-Phi[i+1,j],Phi[i,j+1]-Phi[i+1,j]))

m_temp[i,j] = 2*m[i,j]-m_temp[i,j]

---------------------------------------------------------------------------

Synchronize over all i,j

---------------------------------------------------------------------------

divm[i,j] = m_temp_x[i,j]-m_temp_x[i-1,j]+m_temp_y[i,j]-m_temp_y[i,j-1]

Phi[i,j] = Phi[i,j] + tau*(divm[i,j]/dx+rho1[i,j]-rho0[i,j]);

---------------------------------------------------------------------------

Synchronize over all i,j

---------------------------------------------------------------------------

(This pseudo-code ignores the consideration at the boundary.) In particular, this algorith-
mic structure can effectively utilize the parallel computing capabilities of GPUs (and even
more so when with the use of ghost cells).

We can use Rk , defined in Sect. 3.4, as a termination criterion. However, computing Rk

can be costly as it requires information from all indices (i, j). So it is best not to compute
Rk every iteration.

In choosing the parameters μ and τ Theorem 1 provides an upper bound for the product
μτ , but does not provide any guidance for their individual values. As they represent the step
sizes for the primal and dual variables, quantities of different scales, μ and τ should not be
constrained to be equal. Indeed, we have empirically observed that the values ofμ and τ must
be different by orders of magnitude to get the best convergence rate for both the EMD-L2 and
EMD-L1 methods and that a poor choice of μ and τ can slow down the rate of convergence
significantly. In Sect. 5, we report the values of μ and τ we used.
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Fig. 1 ρ0 is the blue circle and ρ1 is the yellow circle. We ran the method with n = 128, μ = 6 × 10−6,
τ = 6, and 30,000 iterations. a EMD-L2 solution has value 2.84 and took 1.31s to compute. b EMD-L1
solution with ε = 0.001 has value 4.00 and took 1.39s to compute (Color figure online)

Fig. 2 ρ0 is the blue circle and ρ1 is the yellow circles. We ran the method with n = 128, μ = 6 × 10−6,
τ = 6. and 30,000 iterations. a EMD-L2 solution has value 1.24 and took 1.33s to compute. b EMD-L1
solution with ε = 0.001 has value 1.74 and took 1.38s to compute (Color figure online)

5 Examples

In this section,we demonstrate several numerical results on� = [−2, 2]×[−2, 2]with an n×
n discretization. The initial values form0 and�0 are chosen as all zeros.We implemented the
methodwith CUDAC++ and ran it on the graphics cardNvidia GTX580 (which costs around
$100 as of 2017).We show the fluxm in Figs. 1, 2, and 3.We describe the problem description
and parameters in the figures’ captions. For simplicity, we did not use the termination criterion
Rk in these experiments; we simply ran the method up to a fixed iteration count. Rather, we
demonstrate the convergence of Rk separately in Fig. 4.
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Fig. 3 ρ0 is the blue standing cat and ρ1 is the yellow crouching cat. We ran the method with n = 256,
μ = 3× 10−6, τ = 3, and 100,000 iterations. a EMD-L2 solution has value 0.66 and took 16.0s to compute.
b EMD-L1 solution with ε = 0.001 has value 0.85 and took 16.0s to compute (Color figure online)

Iteration 104
0 1 2 3 4 5 6 7 8 9 10

R
k

10-8

10-7

10-6

10-5

10-4

10-3
Termination Criterion

Fig. 4 Termination criterion Rk for the setup of Fig. 3

We empirically observe that the methods need roughly O(n) iterations to “converge”,
where again n × n is the discretization grid size. This is not surprising as, loosely speaking,
information propagates at a rate of one grid point per iteration.

However, this observation is somewhat tricky to objectively quantify, as different grid
sizes warrant different values of μ and τ . As the definition of the termination criterion Rk

depends on the values of μ and τ , a direct comparison of Rk for setups with different μ and
τ provides little information.

So we present a somewhat subjective test to demonstrate this point. The setup is shown in
Fig. 5. The circles of ρ0 and ρ1 are centered at (−1, 1) and (1,−1), respectively, so EMD-L2

should be roughly 2
√
2 ≈ 2.83. We roughly tuned the parameters μ and τ to get the best

performance for each grid size. Finally, we ran the method until the computed EMD-L2
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Fig. 5 Testing the number of iterations as a function of grid size. a n = 32, 1000 iterations. b n = 64, 2000
iterations. c n = 128, 4000 iterations. d n = 256, 8000 iterations (Color figure online)

was close enough to 2.83 and the flux looked good enough. The quantitative results are
summarized in Table 1.

In Table 2, we compare the wall-clock runtime of the parallel EMD algorithm with other
methods. The 4 tested methods are, the presented method run on a GPU (as described at the
beginning of this section), the same method implemented in C++ and run serially on an Intel
i7 990x CPU, Ling’s method [12] run on the same CPU, and Pele’s method of [15] run on
the same CPU. Pele’s method was not able to compute the EMD between inputs larger than
32 × 32 within a few minutes. We used the 2 cats of Fig. 3 (appropriately scaled) for ρ0

and ρ1. We also document the number of iterations required until we deemed the method
converged.

Finally, we mention that the solution to (10) is unique only when ε > 0. We demonstrate
this in Fig. 6. Thus quadratic perturbation is necessary to establish a sense in which the
discretized approximations of (10) approximate the true continuous solution as n → ∞.
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Table 1 Testing the number of iterations as a function of grid size

Grids size Iteration count μ τ Computed EMD-L2

32 × 32 1000 0.0003 3.0 2.876

64 × 64 2000 0.00007 3.0 2.914

128 × 128 4000 0.00003 3.0 2.845

256 × 256 8000 0.000007 3.0 2.752

Table 2 Runtime of algorithms

Grids size EMD CUDA EMD CPU Ling Pele

32 × 32 0.012s (1000 iter) 0.08s (1000 iter) 0.007s (600 iter) 2.74s

64 × 64 0.063s (3000 iter) 0.9s (3000 iter) 0.009s (3000 iter) N/A

128 × 128 0.336s (10,000 iter) 12.9s (10,000 iter) 2.3s (30,000 iter) N/A

256 × 256 6.8s (50,000 iter) 245.5s (50,000 iter) 80.8s (200,000 iter) N/A

Fig. 6 Two different solutions for EMD-L1 when ε = 0

6 Conclusion

To summarize, we applied a primal-dual algorithm to solve EMD-L2 and EMD-L1. The
algorithm inherits both key ideas in optimal transport theory and homogeneous degree one
regularized optimization problems.

Compared to existing methods, the advantages of proposed algorithm are as follows.
First, it leverages the structure of optimal transport, which transfers EMD into a L1-type
minimization, in which the number of variables is much less than the original linear pro-
gramming problem. Second, it uses simple and parallelizable exact formulas at each iteration
(including the shrink operator).

The novel perturbed minimization (10) is computationally useful and deserves attention
in future work. In particular, the quadratic regularized term brings some new insights to
the original EMD problem. By a direct calculation, one can show that its Euler-Lagrange
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equation satisfies a pair of partial differential equations:

m(x) = 1

ε

(
∇�(x) − ∇�(x)

|∇�(x)|
)

1

ε

(
	�(x) − ∇ · ∇�(x)

|∇�(x)|
)

= ρ0(x) − ρ1(x) ,

where the second equation holdswhen |∇�| ≥ 1. Interestingly, the term∇· ∇�(x)
|∇�(x)| represents

the mean curvature of the level contours of φ. Another interesting future direction is studying
theoretical properties of (10), especially the relationship between minimizers mε and m0

when ε goes to 0.
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