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Abstract

Erwin Schrödinger posed, and to a large extent solved in 1931/32
the problem of finding the most likely random evolution between two
continuous probability distributions. This article considers this prob-
lem in the case when only samples of the two distributions are available.
A novel iterative procedure is proposed, inspired by Fortet-Sinkhorn
type algorithms. Since only samples of the marginals are available, the
new approach features constrained maximum likelihood estimation in
place of the nonlinear boundary couplings, and importance sampling
to propagate the functions ϕ and ϕ̂ solving the Schrödinger system.
This method is well-suited to high-dimensional settings, where intro-
ducing grids leads to numerically unfeasible or unreliable methods. The
methodology is illustrated in two applications: entropic interpolation
of two-dimensional Gaussian mixtures, and the estimation of integrals
through a variation of importance sampling.

1 Introduction

This article proposes a methodology for solving the following problem: given
m and n independent samples {xi} and {yj} from two distributions with
probability densities ρ0(x) and ρ1(y) respectively, and a prior probability
p(t1, x, t2, y) that a “particle” at position x at time t1 will end up at position
y at time t2, find the most likely intermediate evolution ρ(z, t), t ∈ [0, 1]
satisfying ρ(x, 0) = ρ0(x) and ρ(y, 1) = ρ1(y). This is a data-driven version
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of the Schrödinger bridge problem, which we describe below. In addition
to the evolving density ρ(z, t), the solution provides the posterior transition
density p∗(t1, x, t2, y) most consistent with the observed initial and final
distributions, useful for model improvement.

1.1 Motivation, examples and extensions

Many problems of practical and theoretical interest can be directly formu-
lated as data-driven Schrödinger bridges. Consider the following two exam-
ples, arising in climate studies and evolutionary biology:

1. With the current knowledge of oceanic or atmospheric flows described
in terms of a velocity field v(x, t) and a diffusion operator D, the corre-
sponding Fokker-Planck evolution equation yields the prior p(t1, x, t2, y)
for the trajectories of tracers. If at any point in time a cloud of particles
is released into the fluid (a volcanic eruption, a designed experiment)
or its current concentration ρ0 is sampled, and at some other time
its distribution ρ1 is sampled again, the data-driven bridge problem
provides an estimate for the most likely intermediate evolution ρ(z, t)
of the tracer cloud and to an improved model for the currents v.

2. Given the distribution of traits (genomic or phenomic) for a species at
two points in time, and a stochastic model for their evolution, the prob-
lem asks for the most likely intermediate evolutionary stages, and pro-
vides as additional output an improved stochastic evolutionary model.

In other problems, it is not an intermediate evolution that one is after,
but the probabilistic matching π(x, y) between two distributions ρ0(x) and
ρ1(y) under a prior matching model p(y|x). In this case, both the prob-
lem and the methodology proposed for solving it proposed extend without
changes to situations where the variables x and y do not have the same
dimensions, arising frequently in practice. For instance, in applications to
the employment market, there is no reason for the number of variables char-
acterizing employers and employees to be the same.

In a third type of scenarios, there is only one data-given distribution
ρ1(y); the other distribution ρ0(x) and the prior p(t1, x, t2, y) are introduced
for convenience by the modeler, so as to perform ρ1(y)-related tasks. As an
example, in Section 5 we apply the Schrödinger bridge to develop a variation
of importance sampling where the distribution over which expected values
of a function are sought is known only through samples.
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In other applications, one has only ρ1(y) and the prior p(t1, x, t2, y),
and would like to determine ρt(z) for t < 1. Two prototypal examples are
inverse problems, such as describing the most likely previous temperature
distribution of a system given its current one, and large deviation problems:
if the stochastic process described by p has a statistically steady state ρeq,
what are the most likely paths that will lead to a ρ1 different from ρeq, such
as the one corresponding to a strong storm or a draught in applications to
weather and climate.

1.2 The methodology

The solution to the Schrödinger bridge problem can be factorized in the
form (see (18) in Section 2 below)

ρt(x) = ϕ(t, x)ϕ̂(t, x),

where ρt(x) represents the distribution at time t, and ϕ and ϕ̂ evolve from
t = 1 and t = 0 respectively, following the prior:

ϕ̂(t, y) =

∫
p(0, x, t, y)ϕ̂(0, x)dx,

ϕ(t, x) =

∫
p(t, x, 1, y)ϕ(1, y)dy.

One can therefore, starting from an arbitrary ϕ̂(0, x), propagate it into the
corresponding ϕ̂(1, y), and write

ϕ(1, y) =
ρ1(y)

ϕ̂(1, y)
.

Then, evolving ϕ(1, y) back into the corresponding ϕ(0, x), we write

ϕ̂(0, x) =
ρ0(x)

ϕ(0, x)
,

and repeat. This idea underlies iteration schemes that, under suitable
assumptions, converge to the solution of the Schrödinger bridge problem
[33, 13].

Yet this procedure assumes that the initial and final distributions ρ0 and
ρ1, as well as the transition probability p, are known explicitly, and that the
integrals propagating ϕ and ϕ̂ between t = 0 and t = 1 can be evaluated in
closed form. By contrast, in applications ρ0 and ρ1 are typically only known
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through samples. In addition, it is often the case that the transition prob-
ability p can be sampled through the integration of a stochastic differential
equation, but not evaluated, which would require solving the corresponding
Fokker-Plank equation. Moreover, even if ρ0, ρ1 and p are known, one still
needs to estimate the integrals propagating ϕ and ϕ̂ numerically.

The methodology developed in this article mimics the iterative procedure
above, but replacing each step by a sample-based equivalent. Thus the
statements that

ϕ(0, x)ϕ̂(0, x) = ρ0(x) and ϕ(1, y)ϕ̂(1, y) = ρ1(y)

are interpreted as density estimations and implemented via maximum like-
lihood, and the propagators for ϕ and ϕ̂ are estimated via importance sam-
pling. Both tasks involve elements unique to the Schrödinger bridge prob-
lem, described in Section 4.

1.3 Prior work

Schrödinger’s statistical mechanical thought experiment (large deviations
problem) was motivated by analogies with quantum mechanics. On the
other hand, since Boltzmann’s fundamental work [8], and then through
Sanov’s theorem [51], we know that finding the most likely Zustandverteilung
(macrostate) is equivalent to solving a maximum entropy problem. This con-
nection provides a second important motivation for Schrödinger bridges, as
an inference methodology that prescribes a posterior distribution making the
fewest number of assumptions beyond the available information. This ap-
proach has been developed over the years, thanks in particular to the work of
Jaynes, Burg, Dempster and Csiszár [39, 40, 9, 10, 27, 20, 21, 22]. A more
recent third motivation for studying Schrödinger bridges is that they can
be viewed as regularization of the Optimal Mass Transport (OMT) problem
[44, 45, 46, 41, 42, 12] which mitigates its computational challenges [2, 3, 50].
A large number of papers have since appeared on computational regularized
OMT (Sinkhorn-type algorithms), see e.g. [23, 4, 15, 13, 18, 43, 1, 19].
While most of the classical work concentrates on the continuous problem,
see e.g. the bibliography in [42] and Section 2 below, these papers concern
the discrete Schödinger bridge problem [48, 34]. Hardly any attention, how-
ever, has been given to the case when only samples of continuous marginals
are available (one exception is [28] which deals with using regularized opti-
mal transport for hard and soft clustering). One might think that the latter
case may be readily treated by discretizing the spatial variables through
grids. As we argue in the beginning of Section 4, such an approach is often
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numerically unfeasible and/or not reliable. Thus, in this paper we provide
what appears to be the first numerically viable approach to the data-driven
continuous Schrödinger Bridge problem.

As discussed at the end of Subsection 2.5, this approach permits finding
a map from ρ0 to ρ1, relating this work to [58] and [56] developed in the
context of optimal transport.

1.4 Organization of the article

The paper is organized as follows. In Section 2, we provide an introduction
to Schrödinger Bridges. We include a concise description of Schrödinger’s
original motivation, and elements of the connection between the large de-
viation problem and a path space maximum entropy problem, and with
Optimal Transport. We also sketch derivations of the Schrödinger system
and of the stochastic control and fluid dynamic formulations, focusing on
the case when the prior transition density is the heat kernel.

In Section 3, we outline Fortet’s iterative algorithm, dating back to 1940,
which represents a sort of guideline for the numerical methods we develop
in the rest of the paper. Section 4 features the novel methodology to at-
tack the data-driven bridge problem, motivated by numerical, statistical
and optimization considerations. First, the so-called half-bridge problem is
treated, and then the full bridge, leading to the algorithm of Subsection 4.3.
In Section 5, we illustrate the methodology in two relevant applications:
the entropic interpolation between two Gaussian mixtures on R2 and a new
application of Schrödinger Bridges to a variation of Importance Sampling.
Finally, in Section 6 we summarize the results and propose future avenues
of research.

2 Background on Schrödinger Bridges

2.1 Schrödinger’s hot gas experiment

In 1931/32, Erwin Schrödinger proposed the following Gedankenexperiment
[52, 53]. Consider the evolution of a cloud of N independent Brownian
particles in Rn. This cloud of particles has been observed having at the
initial time t = 0 an empirical distribution equal to ρ0(x)dx. At time t = 1,
an empirical distribution equal to ρ1(x)dx is observed which considerably
differs from what it should be according to the law of large numbers (N is
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large, typically of the order of Avogadro’s number), namely

ρ1(y) 6=
∫

R3

p(0, x, 1, y)ρ0(x)dx,

where

p(s, y, t, x) = [2π(t− s)]−n2 exp

[
−|x− y|

2

2(t− s)

]
, s < t (1)

is the transition density of the Wiener process. It is apparent that the
particles have been transported in an unlikely way. But of the many un-
likely ways in which this could have happened, which one is the most likely?
In modern probabilistic terms, this is a problem of large deviations of the
empirical distribution as observed by Föllmer [32].

2.2 Large deviations and maximum entropy formulation

The area of large deviations is concerned with the probabilities of very
rare events. Thanks to Sanov’s theorem [51], Schrödinger’s problem can
be turned into a maximum entropy problem for distributions on trajecto-
ries. Let Ω = C([0, 1];Rn) be the space of Rn valued continuous functions
and let X1, X2, . . . be i.i.d. Brownian evolutions on [0, 1] with values in Rn
(Xi is distributed according to the Wiener measure W on C([0, 1];Rn)). The
empirical distribution µN associated to X1, X2, . . . XN is defined by

µN (ω) :=
1

N

N∑

i=1

δXi(ω), ω ∈ Ω. (2)

Notice that (2) defines a map from Ω to the space D of probability distri-
butions on C([0, 1];Rn). Hence, if E is a subset of D, it makes sense to
consider P(ω : µN (ω) ∈ E). By the ergodic theorem, see e.g. [29, Theorem
A.9.3.], the distributions µN converge weakly 1 to W as N tends to infinity.
Hence, if W 6∈ E, we must have P(ω : µN (ω) ∈ E) ↘ 0. Large deviation
theory provides us with a much finer result: Such a decay is exponential and
the exponent may be characterized solving a maximum entropy problem. In-
deed, in our setting, let E = D(ρ0, ρ1), namely distributions on C([0, 1];Rn)
having marginal densities ρ0 and ρ1 at times t = 0 and t = 1, respectively.
Then, Sanov’s theorem, roughly asserts that if the “prior” W does not have

1Let V be a metric space and D(V) be the set of probability measures defined on B(V),
the Borel σ-field of V. We say that a sequence {PN} of elements of D(V) converges weakly
to P ∈ D(V), and write PN ⇒ P , if

∫
V fdPN →

∫
V fdP for every bounded, continuous

function f on V.
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the required marginals, the probability of observing an empirical distribu-
tion µN in D(ρ0, ρ1) decays according to

P

(
1

N

N∑

i=1

δXi ∈ D(ρ0, ρ1)

)
∼ exp [−N inf {D(P‖W );P ∈ D(ρ0, ρ1)}] ,

where

D(P‖W ) =

{
EP
(
log dP

dW

)
, if P �W

+∞ otherwise
.

is the relative entropy functional or Kullback-Leibler divergence between P
andW . Thus, the most likely random evolution between two given marginals
is the solution of the Schrödinger Bridge Problem:

Problem 1.

Minimize D(P‖W ) over P ∈ D(ρ0, ρ1). (3)

The optimal solution is called the Schrödinger bridge between ρ0 and ρ1

over W , and its marginal flow (ρt) is the entropic interpolation.
Let P ∈ D be a finite-energy diffusion, namely under P the canonical

coordinate process Xt(ω) = ω(t) has a (forward) Ito differential

dXt = βtdt+ dWt (4)

where βt is adapted to {F−t } (F−t is the σ-algebra of events observable up
to time t) and

EP
[∫ 1

0
‖βt‖2dt

]
<∞. (5)

Let

P yx = P [ · | X0 = x,X1 = y] , W y
x = W [ · | X0 = x,X1 = y]

be the disintegrations of P and W with respect to the initial and final
positions. Let also π and πW be the joint initial-final time distributions
under P and W , respectively. Then, we have the following decomposition
of the relative entropy [32]

D(P‖W ) = EP

[
log

dP

dW

]
=

∫ ∫ [
log

π(x, y)

πW (x, y)

]
π(x, y)dxdy +

∫ ∫ (
log

dP yx
dW y

x

)
dP yxπ(x, y)dxdy.

Both terms are nonnegative. We can make the second zero by choosing
P yx = W y

x . Thus, the problem reduces to the static one:
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Problem 2. Minimize over densities π on Rn × Rn the index

D(π‖πW ) =

∫ ∫ [
log

π(x, y)

πW (x, y)

]
π(x, y)dxdy (6)

subject to the (linear) constraints
∫
π(x, y)dy = ρ0(x),

∫
π(x, y)dx = ρ1(y). (7)

If π∗ solves the above problem, then

P ∗(·) =

∫

Rn×Rn
Wxy(·)π∗(x, y)dxdy,

solves Problem 1.
Consider now the case when the prior is Wγ , namely Wiener measure

with variance γ, so that

p(0, x, 1, y) = [2πγ]−
n
2 exp

[
−|x− y|

2

2γ

]
.

Let ρW0 denote the initial marginal density under Wγ . Notice now that the
quantity

∫ ∫ [
log ρW0 (x)

]
π(x, y)dxdy =

∫ [
log ρW0 (x)

]
ρ0(x)dx

is independent of π satisfying (7) (as long as the support of ρ0 is contained
in the support of ρW0 the integral is well defined). Using this fact and
πWγ (x, y) = ρW0 (x)p(0, x; 1, y), we now get

D(π‖πWγ ) = −
∫ ∫ [

log πW (x, y)
]
π(x, y)dxdy +

∫ ∫
[log π(x, y)]π(x, y)dxdy

=

∫ ∫ |x− y|2
2γ

π(x, y)dxdy − S(π) + C, (8)

where S is the differential entropy and C does not depend on π2. Thus,
Problem 2 of minimizing D(π‖πWγ ) over Π(ρ0, ρ1), namely the “couplings”
of ρ0 and ρ1

3 is equivalent to

inf
π∈Π(ρ0,ρ1)

∫ |x− y|2
2

π(x, y)dxdy + γ

∫
π(x, y) log π(x, y)dxdy, (9)

2It follows, in particular, that the initial marginal density of the prior can WLOG
always be taken equal to ρ0.

3Probability densities on Rn × Rn with marginals ρ0 and ρ1.
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namely a regularization of Optimal Mass Transport (OMT) [59] with quadratic
cost function obtained by subtracting a term proportional to the entropy.

2.3 Derivation of the Schrödinger system

We outline the derivation of the so-called Schrödinger system for the sake
of continuity in exposition. Two good surveys on Schrödinger Bridges are
[60, 42]. The Lagrangian function for Problem 2 has the form

L(π;λ, µ) =

∫ ∫ [
log

π(x, y)

πW (x, y)

]
π(x, y)dxdy

+

∫
λ(x)

[∫
π(x, y)dy − ρ0(x)

]
+

∫
µ(y)

[∫
π(x, y)− ρ1(y)

]
.

Setting the first variation with respect to π equal to zero, we get the (suffi-
cient) optimality condition

1 + log π∗(x, y)− log p(0, x, 1, y)− log ρW0 (x) + λ(x) + µ(y) = 0,

where we have used the expression πW (x, y) = ρW0 (x)p(0, x, 1, y) with p as
in (1). We get

π∗(x, y)

p(0, x, 1, y)
= exp

[
log ρW0 (x)− 1− λ(x)− µ(y)

]

= exp
[
log ρW0 (x)− 1− λ(x)

]
exp [−µ(y)] .

Hence, the ratio π∗(x, y)/p(0, x, 1, y) factors into a function of x times a
function of y. Denoting these by ϕ̂(x) and ϕ(y), respectively, we can then
write the optimal π∗(·, ·) in the form

π∗(x, y) = ϕ̂(x)p(0, x, 1, y)ϕ(y), (10)

where ϕ and ϕ̂ must satisfy

ϕ̂(x)

∫
p(0, x, 1, y)ϕ(y)dy = ρ0(x), (11)

ϕ(y)

∫
p(0, x, 1, y)ϕ̂(x)dx = ρ1(y). (12)

Let us define ϕ̂(0, x) = ϕ̂(x), ϕ(1, y) = ϕ(y) and

ϕ̂(1, y) :=

∫
p(0, x, 1, y)ϕ̂(0, x)dx, ϕ(0, x) :=

∫
p(0, x, 1, y)ϕ(1, y).
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Then, (11)-(12) can be replaced by the system

ϕ̂(1, y) =

∫
p(0, x, 1, y)ϕ̂(0, x)dx, (13)

ϕ(0, x) =

∫
p(0, x, 1, y)ϕ(1, y)dy, (14)

coupled by the boundary conditions

ϕ(0, x) · ϕ̂(0, x) = ρ0(x), ϕ(1, y) · ϕ̂(1, y) = ρ1(y). (15)

Notice that dividing both sides of (10) by ρ0(x), we get

p∗(0, x, 1, y) =
1

ϕ(0, x)
p(0, x, 1, y)ϕ(1, y), (16)

where ϕ, in Doob’s language, is space time harmonic satisfying (14) or,
equivalently,

∂ϕ

∂t
+

1

2
∆ϕ = 0. (17)

The solution is namely obtained from the prior distribution via a multi-
plicative functional transformation of the prior Markov processes [37]. The
question of existence and uniqueness of positive functions ϕ̂, ϕ satisfying
(13, 14, 15), left open by Schrödinger, is a highly nontrivial one and has
been settled in various degrees of generality by Fortet, Beurlin, Jamison and
Föllmer [33, 5, 38, 32]. The pair (ϕ, ϕ̂) is unique up to multiplication of ϕ
by a positive constant c and division of ϕ̂ by the same constant. At each
time t, the marginal ρt factorizes as

ρt(x) = ϕ(t, x) · ϕ̂(t, x). (18)

Schrödinger: “Merkwürdige Analogien zur Quantenmechanik, die mir sehr
des Hindenkens wert erscheinen”4 Indeed (18) resembles Born’s relation

ρt(x) = ψ(t, x) · ψ̄(t, x)

with ψ and ψ̄ satisfying two adjoint equations like ϕ and ϕ̂. Moreover, the
solution of Problem 1 exhibits the following remarkable reversibility property:
Swapping the two marginal densities ρ0 and ρ1 the new solution is simply
the time reversal of the previous one, cf. the title “On the reversal of natural
laws” of [52].

4Remarkable analogies to quantum mechanics which appear to me very worth of re-
flection.
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2.4 “Half bridges”

Consider the following variant of Problem 1 with prior distribution Wγ :

Problem 3.

Minimize D(P‖Wγ) over P ∈ D(ρ1), (19)

namely, we only impose the final marginal. The same argument as before
shows that Problem 3 reduces to the following variant of Problem 2:

Problem 4. Minimize over densities π on Rn × Rn the index

D(π‖πWγ ) =

∫ ∫ [
log

π(x, y)

πWγ (x, y)

]
π(x, y)dxdy (20)

subject to the (linear) constraint
∫
π(x, y)dx = ρ1(y). (21)

The same variational analysis as in Subsection 2.3, now gives the opti-
mality condition

1 + log π∗(x, y)− log p(0, x, 1, y)− log ρW0 (x) + µ(y) = 0.

We then get

π∗(x, y)

p(0, x, 1, y)
= exp

[
log ρW0 (x)− 1− µ(y)

]
= ρW0 (x) exp [−1− µ(y)] . (22)

Thus, in the previous notation, we can set ϕ̂(x) = ρW0 (x) and ϕ(y) =
exp [−1− µ(y)]. Let

ρ
Wγ

1 (y) =

∫
[2πγ]−

n
2 exp

[
−|x− y|

2

2γ

]
ρW0 (x)dx

which replaces (13) with ϕ̂(0, x) = ρW0 (x) and ϕ̂(1, y) = ρ
Wγ

1 (y).Then (12)
gives immediately

ϕ(y) =
ρ1(y)

ρ
Wγ

1 (y)
. (23)

We now get the form of the optimal initial-final joint distribution of the
half-bridge:

π∗(x, y) = ρW0 (x)p(0, x, 1, y)
ρ1(y)

ρ
Wγ

1 (y)

= ρW0 (x) [2πγ]−
n
2 exp

[
−|x− y|

2

2γ

]
ρ1(y)

ρ
Wγ

1 (y)
= πWγ (x, y)

ρ1(y)

ρ
Wγ

1 (y)
.
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Finally, let

ϕ(0, x) :=

∫
(2π)−

n
2 [2πγ]−

n
2 exp

[
−|x− y|

2

2γ

]
ϕ(y)dy. (24)

Then, the initial marginal of the solution is given by

ρ0(x) = ϕ(0, x)ρW0 (x).

Notice that here there is no delicate question about existence and uniqueness
for the Schrödinger system as ϕ̂ coincides at all times with the prior one-
time marginal. This, in turn, provides the terminal condition for the ϕ
function at time t = 1 which then only needs to be propagated backward
through (24) to provide the full solution. In the special case when ρW0 (x) =

δ(x), we have ρ
Wγ

t (x) = (2πγt)
− n

2γ exp
[
− |x|22t

]
and, in particular, ρ

Wγ

1 (y) =

(2πγ)−
n
2 exp

[
− |y|22γ

]
.

An immediate application of the half-bridge problem is the reconstruc-
tion of the past of a system given its current state and a prior model for its
evolution. The availability of a prior here is crucial, as without a prior or
other regularization such inverse problems are typically ill-posed. Another
application concerns deviations from equilibrium. Consider a stochastic sys-
tem whose dynamics p(t1, x1, t2, x2) has a statistically steady state ρeq(x),
possibly modulated in time. What is the most likely path that would take
us at time t to a state ρ1(x) away from equilibrium? For example, one may
want to anticipate the likely path of strong storms or large waves, so as to
be able to forecast them.

2.5 Stochastic control and fluid-dynamic formulations

In addition to the formulations above, there exist also dynamic versions of
the problem such as the following stochastic control formulation originating
with [24, 25, 49]: Problem 1 (when the prior has variance γ) is equivalent to

Problem 5.

Minimizeu∈U J(u) = E
[∫ 1

0

1

2γ
‖ut‖2dt

]
,

subject to dXt = utdt+
√
γdWt, X0 ∼ ρ0(x)dx, X1 ∼ ρ1(y)dy,

(25)

where the family U consists of adapted, finite-energy control functions.
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The optimal control is of the feedback type

ut = γ∇ logϕ(t,Xt), (26)

where (ϕ, ϕ̂) solve the Schrödinger system (13, 14, 15). These formulations
are particularly relevant in applications where the prior distribution on paths
is not simply the Wiener measure, but is associated to the uncontrolled
(“free”) evolution of a dynamical system, see e.g [16, 17, 14] and in image
morphing/interpolation [13, Subsection 5.3]. In the case of the half bridge,
(26) still holds with ϕ satisfying

∂ϕ

∂t
+
γ

2
∆ϕ = 0, ϕ(1, ·) =

ρ1(·)
ρ
Wγ

1 (·)
.

Problem 5 leads immediately to the following fluid dynamic problem:

Problem 6.

inf
(ρ,b)

∫

Rn

∫ 1

0

1

2
‖b(x, t)‖2ρ(t, x)dtdx, (27a)

∂ρ

∂t
+∇ · (bρ)− γ

2
∆ρ = 0, (27b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (27c)

where b(·, ·) varies over continuous functions on Rn × [0, 1].

This problem is not equivalent to Problems 1, 2 and 5 in that it only
reproduces the optimal entropic interpolating flow {ρt; 0 ≤ t ≤ 1}. In-
formation about correlations at different times and smoothness of the tra-
jectories is here lost. As γ ↘ 0, the solution to this problem converges
to the solution of the Benamou-Brenier Optimal Mass Transport problem
[3, 44, 45, 46, 42, 41]:

inf
(ρ,v)

∫

Rn

∫ 1

0

1

2
‖v(x, t)‖2ρ(t, x)dtdx, (28a)

∂ρ

∂t
+∇ · (vρ) = 0, (28b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (28c)

Let (ρ, b) be optimal for Problem 6 and define the current velocity field [47]

v(x, t) = b(x, t)− γ

2
∇ log ρt(x)

= γ∇ logϕ(t, x)− γ

2
∇ log ρt(x) =

γ

2
∇ log

ϕ(t, x)

ϕ̂(t, x)
, (29)
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where we have used (26) and (18). Assume that v guarantees existence and
uniqueness of the initial value problem on [0, 1] for any deterministic initial
condition and consider

Ẋ(t) = v(X(t), t), X(0) ∼ ρ0dx. (30)

Then the probability density ρt(x) of X(t) satisfies (weakly) the continuity
equation

∂ρ

∂t
+∇ · (vρ) = 0

as well as (27b) with the same initial condition and therefore coincides with
ρ(x, t). This suggests that an alternative fluid-dynamic problem characteriz-
ing the entropic interpolation flow {ρt; 0 ≤ t ≤ 1} may be possible. Indeed,
such time-symmetric problem was derived in [15]:

Problem 7.

inf
(ρ,v)

∫

Rn

∫ 1

0

[
1

2
‖v(x, t)‖2 +

γ

8
‖∇ log ρ‖2

]
ρ(t, x)dtdx, (31a)

∂ρ

∂t
+∇ · (vρ) = 0, (31b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (31c)

The two criteria differ by (γ/8)I(ρ) where the Fisher information functional
I is given by

I(ρ) =

∫
‖∇ log ρt‖2ρt(x)dx

while the Fokker-Planck equation (27b) has been replaced by the continuity
equation (31b). Both Problems 6 and 7 can be thought of as regularizations
of the Benamou-Brenier problem (28) and as dynamic counterparts of (9).
Also notice that, precisely as in Problem (28), the optimal current velocity
(29) in Problem 7 is of the gradient type.

Finally, consider the family of diffeomorphisms {Tt; 0 ≤ t ≤ 1} satisfying

dTt
dt

(x) = v(Tt(x), t), T0 = I, (32)

where v is defined by (29). Then, in analogy to the displacement interpo-
lation of Optimal Mass Transport, we have the following relation for the
entropic interpolation flow

ρt(x)dx = Tt#ρ0(x)dx, (33)

14



namely ρt(x)dx is the push-forward of the measure ρ0(x)dx under the map
Tt. In particular, the map Tγ = T1 pushes ρ0(x)dx onto ρ1(x)dx and rep-
resents therefore the entropic counterpart of the map solving the original
Monge problem. It may be called the Monge-Schrödinger map.

3 Fortet’s iterative algorithm

The oldest proof of existence and uniqueness for the Schrödinger system (13,
14, 15), due to Fortet [33], is algorithmic in nature, establishing convergence
of successive approximations. More explicitly, let g(x, y) be a nonnegative,
continuous function bounded from above. Suppose g(x, y) > 0 except pos-
sibly for a zero measure set for each fixed value of x or of y. Suppose that
ρ0(x) and ρ1(y) are continuous, nonnegative functions such that

∫
ρ0(x)dx =

∫
ρ1(y)dy.

Suppose, moreover, that the integral

∫
ρ1(y)∫

g(z, y)ρ0(z)dz
dy

is finite. Then, [33, Theorem 1], the system

φ(x)

∫
g(x, y)ψ(y)dy = ρ0(x), (34)

ψ(y)

∫
g(x, y)φ(x)dx = ρ1(y) (35)

admits a solution (φ(x), ψ(y)) with φ ≥ 0 continuous and ψ ≥ 0 measurable.
Moreover, φ(x) = 0 only where ρ0(x) = 0 and ψ(y) = 0 only where ρ1(y) =
0.

The result is proven by setting up a complex approximation scheme to
show that equation

h(x) = Ω(h) =

∫
g(x, y)

ρ1(y)dy
∫
g(z, y)ρ0(z)

h(z) dz
. (36)

has a positive solution. Notice that

g(x, y) = p(0, x, 1, y) = [2πγ]−
n
2 exp

[
−|x− y|

2

2γ

]
.
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satisfies all assumptions of Fortet’s theorem. Uniqueness, in the sense de-
scribed in Subsection 2.3, namely uniqueness of rays, is much easier to estab-
lish. In the recent paper [30], the bulk of Fortet’s paper has been rewritten
filling in all the missing steps and providing explanations for the rationale
behind the various articulations of his approach.

Independently, at about the same time and in the discrete setting, an
iterative proportional fitting (IPF) procedure, was proposed in the statistical
literature on contingency tables [26]. Convergence for the IPF algorithm
was first established (in a special case) by Richard Sinkhorn in 1964 [54].
The iterates were shortly afterwards shown to converge to a “minimum
discrimination information” [36, 31], namely to a minimum entropy distance.
This line of research, usually called Sinkhorn algorithms, continues to this
date, see e.g. [23, 1, 57].

It is apparent that an iterative scheme can be designed based on (36)
which, in the previous notation, reads

Ω(ϕ(0, x)) =

∫
p(0, x, 1, y)

ρ1(y)dy
∫
p(0, z, 1, y) ρ0(z)

ϕ(0,z)dz
. (37)

This was accomplished in [13], showing convergence of the iterates in a
suitable projective metric, but only for the case when both marginals have
compact support. We outline the approach below. Let S be a real Banach
space and let K ⊂ S be a closed cone with nonempty interior intK and such
that K+K ⊆ K, K∩−K = {0} as well as λK ⊆ K for all λ ≥ 0. Define the
partial order

x � y ⇔ y − x ∈ K, x < y ⇔ y − x ∈ intK

and for x, y ∈ K0 := K\{0}, define

M(x, y) := inf {λ | x � λy}
m(x, y) := sup{λ | λy � x}.

Then, the Hilbert metric is defined on K0 = K\{0} by

dH(x, y) := log

(
M(x, y)

m(x, y)

)
.

Strictly speaking, it is a projective metric since it is invariant under scaling
by positive constants, i.e., dH(x, y) = dH(λx, µy) for any λ > 0, µ > 0
and x, y ∈ intK. Thus, it is actually a distance between rays. Important
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examples in finite dimension are provided by the positive orthant of Rn and
by the cone of positive semidefinite matrices of dimension n × n. One can
then take advantage of some remarkable contractivity theorems on cones
established for suitable positive linear and nonlinear maps most noticeably
by Garret Birkhoff and P. Bushell [6, 11]. We mention that the celebrated
Perron-Frobenius theorem may be viewed as a corollary of these results [7].

Let Si ⊂ Rn, i = 0, 1 be the compact support of ρi, i = 0, 1. In order to
study the Schrödinger system (13, 14, 15) we consider the maps

E : ϕ(1, y) 7→ ϕ(0, x) =

∫

S1

p(0, x, 1, y)ϕ(1, y)dy (38a)

E† : ϕ̂(0, x) 7→ ϕ̂(1, y) =

∫

S0

p(0, x, 1, y)ϕ̂(0, x)dx (38b)

D0 : ϕ(0, x) 7→ ϕ̂(0, x) = ρ0(x)/ϕ(0, x) (38c)

D1 : ϕ̂(1, y) 7→ ϕ(1, y) = ρ1(y)/ϕ̂(1, y), (38d)

on appropriate domains. The map Ω in (37), can then be written as the
composition

Ω = E ◦ D1 ◦ E† ◦ D0.

While maps D0 and D1 can be seen to be isometries in the Hilbert metric,
the two linear maps are always non-expanding and, under suitable assump-
tions, strictly contractive. Things are complicated by the fact that certain
cones in infinite dimensions such as the nonnegative integrable functions,
have nonempty interior and the contractivity theorems do not apply. It is,
however, possible to represent the map Ω as an alternative composition of
other four maps all acting on a cone with nonempty interior so that con-
tractivity of Ω can be established, see [13, Section 3] for the details. Once
convergence of the rays is established in the projective metric, it suffices to
use the fact that both ϕ(0, x) · ϕ̂(x, 0) and ϕ(1, y) · ϕ̂(1, y) must integrate to
one to show convergence of the functions.

Setting up an iterative scheme based on (37) when only samples of the
two marginals are available is obviously much more challenging: This is
the main topic of this paper which we shall pursue starting from the next
section. This will also provide an approach to data-driven Optimal Mass
Transport alternative to [58] since, as observed at the end of Subsection 2.2,
the Schrödinger Bridge Problem may be viewed as a regularization of OMT.
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4 Numerical methodology

This section develops a sample-based numerical methodology for the so-
lution of the Schrödinger bridge problem. This is the case, ubiquitous in
applications, where the distributions ρ0 and ρ1 are only known through the
finite sample sets {xi} and {yj} of cardinality m and n respectively.

One could propose a scheme whereby one first estimates ρ0 and ρ1 from
the samples provided, and then solves the regular Schrödinger bridge prob-
lem between these two estimates. Yet there are a number of reasons why a
procedure based directly on the sample sets is preferable:

1. Density estimation adds an extra computational layer to the algorithm,
and hence a source of additional potential approximation errors.

2. In high-dimensional settings, density estimation is inherently difficult
and requires larger data sets than are customarily available.

3. Even with estimations for ρ0 and ρ1 known in closed form, the solution
to the Schrödinger bridge problem requires the calculation of integrals
that in most cases cannot be performed in closed form. Then, rather
than introducing grids, whose size grows exponentially with the di-
mension of the space, and whose local mesh-sizes are difficult to adapt
to the local distributions, it is better to resort to samples, which pro-
vide a naturally adapted discretization of the continuous problem, and
which yield a Monte-Carlo error that scales only mildly with the di-
mensionality of the space.

For conciseness, we shall denote p(y|x) the prior transition density p(0, x, 1, y),
and write ϕ̂0(x) and ϕ1(y) instead of ϕ̂(0, x) and ϕ(1, y), respectively. Then
(10) reads

π∗(x, y) = ϕ̂0(x) p(y|x) ϕ1(y).

The entropic interpolation between ρ0 and ρ1 is given by ρt(z) = ϕt(z)ϕ̂t(z),
where

ϕt(z) =

∫
p(t, z, 1, y)ϕ1(y)dy ϕ̂t(z) =

∫
p(0, x, t, z)ϕ̂0(x)dx. (39)

In particular, one needs to solve the system

ρ0(x) = ϕ0(x)ϕ̂0(x), ρ1(y) = ϕ1(y)ϕ̂1(y),

with

ϕ0(x) =

∫
p(y|x)ϕ1(y)dy ϕ̂1(y) =

∫
p(y|x)ϕ̂0(x)dx.
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To begin, we need to reformulate the problem so that it involves the distri-
butions only through their available samples.

4.1 The half-bridge problem through maximal likelihood

We develop first an algorithm for the half-bridge problem. Even though this
is much simpler than the full bridge, it includes some of its main ingredients.
The data-driven version of equation (23) for the half-bridge problem is:
given ϕ̂1(y) ≥ 0 and a set of n samples {yj} of ρ1(y), find ϕ1(y) such that
ϕ̂1(y)ϕ1(y) = ρ1(y), an equality that we interpret in the maximum likelihood
sense:

ϕ1 = arg max
ϕ1(y)≥0

∑

j

log (ϕ̂1(yj)ϕ1(yj)) , subject to

∫
(ϕ̂1(y)ϕ1(y)) dy = 1.

Consider first a situation with infinitely many samples yj , or equivalently
with ρ1(y) known. Then the problem becomes

ϕ1 = arg max
ϕ1(y)≥0

∫
log (ϕ1(y)) ρ1(y) dy,

∫
(ϕ̂1(y)ϕ1(y)) dy = 1.

We can satisfy the positivity constraint automatically by proposing an
exponential form for ϕ1:

ϕ1(y) = eg(y),

which yields

max
g

∫
g(y)ρ1(y)dx s.t.

∫
ϕ̂1(y)eg(y)dy = 1,

or, introducing a Lagrange multiplier λ for the constraint,

max
g

min
λ
L(g, λ) =

∫
g(y)ρ1(y) dx− λ

(∫
ϕ̂1(y)eg(y)dy − 1

)
.

Maximizing over g first yields

δL

δg
= ρ1(y)− λϕ̂1(y)eg(y) = 0→ g(y) = log

(
ρ1(y)

λϕ̂1(y)

)
.

Then the minimization over λ becomes

min
λ

[− log(λ) + λ]⇒ λ = 1.
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Hence the value of the optimal λ is known explicitly, and the estimation
problem becomes:

max
g
L(g) =

∫
g(y)ρ1(y) dx−

∫
ϕ̂1(y)eg(y)dy + 1. (40)

Notice that the solution to (40) is

g(y) = log

(
ρ1(y)

ϕ̂1(y)

)
⇒ ϕ1(y) =

ρ1(y)

ϕ̂1(y)
,

the exact answer to the problem. Yet in the true problem ρ1(y) is only
known through samples {yj}, so the first integral in (40) must be replaced
by its empirical counterpart:

∫
g(y)ρ1(y) dx→ 1

n

∑

j

g(yj).

Then, introducing a rough estimate ρ̃1 of ρ1 that one can sample, such as
a Gaussian, and drawing ñ samples ỹk from it, we can replace the second
integral above by its Monte Carlo simulation:

∫
ϕ̂1(y)eg(y)dy =

∫
ϕ̂1(y)eg(y)

ρ̃1(y)
ρ̃1(y)dy → 1

ñ

∑

k

ϕ̂1(ỹk)e
g(ỹk)

ρ̃1(ỹk)
.

(Notice that for ρ̃1 = ρ1 and g the true maximizer, this is an estimation
with zero variance.)

Finally, proposing a parameterization of the unknown g(y), such as

g(y) =
∑

l

βlFl(y),

where the Fl are functions externally provided, we end up with the following
algorithm for estimating ϕ1(y):

ϕ1(y) = e
∑
l βlFl(y),

where β solves

β = arg maxL =
∑

l


 1

n

∑

j

Fl(yj)


βl −

1

ñ

∑

k

ϕ̂1(ỹk)e
∑
l βlFl(ỹk)

ρ̃1(ỹk)
,
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a convex optimization problem, since the

∂2L

∂βiβj
= − 1

ñ

∑

k

ϕ̂1(ỹk)e
∑
l βlFl(ỹk)

ρ̃1(ỹk)
Fi(ỹk)Fj(ỹk)

form a negative definite matrix.
More generally, we could have adopted a form for ϕ1(y) = Φ(y, β) dif-

ferent from the exponential, while still guaranteeing positivity, such as

Φ(y, β) = g(y, β)2,

where g(y, β) is any family of real functions with parameters β. Then the
problem above would have become

β = arg maxL =
1

n

∑

j

log (Φ(yj , β)− 1

ñ

∑

k

ϕ̂1(ỹk)Φ (ỹk, β)

ρ̃1(ỹk)
.

4.2 The full bridge problem

Since the solution of the Schrödinger problem is given in (10) by

π∗(x, y) = ϕ̂0(x)p(y|x)ϕ1(y),

it is natural to parameterize in closed form only the functions ϕ̂0(x) and
ϕ1(x). As in the half-bridge problem, we guarantee the positivity of these
two functions directly through their parameterization ϕ̂0(x, β̂), ϕ1(x, β), for
instance writing them as the exponential or square of some other real func-
tions.

If ϕ̂1 were given, we would find the coefficients β defining ϕ1 by solving an
optimization problem entirely analogous to the half-bridge problem before:

β = arg maxL1 =
1

n

∑

j

log (ϕ1(yj , β))−
∫
ϕ̂1(y)ϕ1(y, β)dy.

However, at every step in the algorithm, only ϕ̂0(x) is available in closed
form; in order to find ϕ̂1(y) we need to propagate the former through

ϕ̂1(y) =

∫
p(y|x)ϕ̂0(x, β̂)dx.

Then
∫
ϕ̂1(y)ϕ1(y, β)dy =

∫ [∫
p(y|x)ϕ̂0(x, β̂)dx

]
ϕ1(y, β)dy

=

∫ [∫
p(y|x)ϕ1(y, β)dy

]
ϕ̂0(x, β̂)dx.
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Since the inner integral equals ϕ0(x), and ϕ0(x)ϕ̂0(x) = ρ0(x), we can mul-
tiply and divide by a sampleable estimator ρ̃0 of ρ0 with m̃ samples {x̃i},
and write

∫
ϕ̂1(y)ϕ1(y, β)dy ≈ 1

m̃

∑

i

[∫
p(y|x̃i)ϕ1(y, β)dy

]
ϕ̂0(x̃i, β̂)

ρ̃0(x̃i)
,

an estimation with zero variance at the exact solution if ρ̃0 = ρ0. Since the
x̃i are fixed throughout the algorithm, we can at little expense extract, for
each i, n̂ samples ŷji from the prior p(y|x̃i), and write the final estimator

∫
ϕ̂1(y)ϕ1(y, β)dy ≈ 1

m̃n̂

∑

i,j

ϕ1(ŷji , β)
ϕ̂0(x̃i, β̂)

ρ̃0(x̃i)
,

so the problem for β becomes

β = arg max
1

n

∑

j

log (ϕ1(yj , β))− 1

m̃n̂

∑

i,j

ϕ1(ŷji , β)
ϕ̂0(x̃i, β̂)

ρ̃0(x̃i)
. (41)

For the parameters β̂, we have

β̂ = arg maxL0 =
1

m

∑

i

log
(
ϕ̂0(xi, β̂)

)
−
∫
ϕ̂0(x, β̂)ϕ0(x)dx,

where

ϕ0(x) =

∫
p(y|x)ϕ1(y, β)dy.

Then
∫
ϕ̂0(x, β̂)ϕ0(x)dx =

∫ [∫
p(y|x)ϕ1(y, β)dy

]
ϕ̂0(x, β̂)dx

≈ 1

m̃n̂

∑

i,j

ϕ1(ŷji , β)
ϕ̂0(x̃i, β̂)

ρ̃0(x̃i)
.

(The fact that this is exactly the same estimation than for the integral∫
ϕ̂1(y)ϕ1(y, β)dy should not be entirely surprising, as both equal one and

involve the same parameters.) Finally,

β̂ = arg max
1

m

∑

i

log
(
ϕ0(xi, β̂)

)
− 1

m̃n̂

∑

i,j

ϕ1(ŷji , β)
ϕ̂0(x̃i, β̂)

ρ̃0(x̃i)
. (42)
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4.3 The algorithm

Summarizing the results above, we have developed the following algorithm:

1. Data: We are provided with m samples {xi} of ρ0(x), n samples {yj}
of ρ1(y), and a prior conditional probability density p(y|x). The latter
needs not be known in closed form, but one should be able to sample
it for any value of x (if the opposite is true, i.e. we know p(y|x) in
closed form but cannot sample it, an alternative algorithm presented
below should be applied.)

2. Goal: To find the most likely joint distribution π(x, y) under the prior
p(y|x) consistent with the two marginals, and the corresponding pos-
terior p∗(y|x). When p(y|x) is the end result of the prior p(t1, x, t2, y)
for a time dependent process, we also seek the more detailed posterior
p∗(t1, x, t2, y) for this process, as well as the intermediate distributions
ρt(z) for t ∈ [0, 1].

3. Preliminary work: Based on the samples {xi}, we need to produce a
first estimate ρ̃0 of ρ0(x) and m̃ independent samples {x̃i} drawn from
it. More specifically, we will need these m̃ samples and the values
ρ̃0(x̃i) of ρ̃0 on them. For instance, one can use the Gaussian kernel
density estimator

ρ̃0(x) =
1

m

∑

i

G(x− xi),

where G is an isotropic Gaussian with suitable bandwidth. In building
this estimate, we can use, in addition to the samples {xi}, any addi-
tional prior information that we may have on ρ0(x). For instance, its
support may be known to be contained within some set Ω, typically
not to include unrealistic negative values of some components of x.
One simple way to address this particular case is to multiply the un-
constrained estimator ρ̃0 by the characteristic function of Ω, reject any
sample outside of Ω, and normalize the resulting distribution through
division by the factor

m̃+mr

m̃
,

where mr is the total number of rejections that occurred.

For each sample x̃i, we need to produce n̂ samples ŷji drawn indepen-
dently from p(y|x̃i). For instance, if p is the result of a diffusive process
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between t = 0 and t = 1, with drift u(x, t) and diffusivity ν(x, t), we
would simulate the stochastic process

dx = u(x, t)dt+ ν(x, t)dW, x(0) = xi, yji = x(1).

If p(y|x) is known in closed form but is not easily sampled, one can
propose another conditional probability q(y|x) not very far from p
but sampleable, and produce weighted samples yji from q(y|x̃i), with
weights

wji =
p(yji |x̃i)
q(yji |x̃i)

,

to be included as extra factors under the second sum in problems (41)
and (42).

4. Model selection and initialization: We need to propose a para-
metric family of non-negative real functions Φ(z, β). Examples are

Φ(z, β) = e
∑
k βkFk(z) and Φ(z, β) =

(∑

k

βkFk(z)

)2

, (43)

where the Fk are a given set of functions (monomials, Legendre func-
tions, sines and cosines, splines, etc.) In high-dimensions, we may
want to use instead a low-rank tensor factorization as in [35, 55] The
final estimated joint density will adopt the form

π(x, y) = Φ(x, β̂) p(y|x) Φ(y, β),

and the estimated posterior conditional probability will be

P ∗(y|x) =
p(y|x) Φ(y, β)∫
p(z|x) Φ(z, β)dz

,

where the integral in the denominator can be estimated for each desired
value of x by simulating p(z|x). In the notation above,

ϕ̂0(x) = Φ(x, β̂) and ϕ1(y) = Φ(y, β).

We initialize the algorithm with an initial guess for β, such as the β
that yields the default ϕ1(y) = 1 (i.e. β = 0 when using the first of the
parametrizations in (43). This is typically easier than starting with a
guess for β̂ approximating the corresponding default ϕ̂0(x) = ρ0(x)).
When using the quadratic parametrization in (43), we start with a
choice of β̂ that, depending on the chosen basis functions Fl, yields to
the biggest effective support of φ(x).
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5. Main loop: We alternate between the updates (42) for β̂ and (41)
for β iteratively until a convergence criterion is met. Some choices for
the family Φ(z, β), such as

Φ(z, β) = e
∑
k βkFk(z)

yield automatically convex optimization problems for β̂ and β.

5 Numerical examples

This section illustrates the proposed methodology on two examples relevant
in applications: the interpolation of probability distributions, and a vari-
ation on importance sampling in the context of Monte Carlo estimates of
integrals.

5.1 Interpolation between two Gaussian mixtures

Figure 1 displays the two marginal distributions of a two dimensional nu-
merical example, where ρ0 and ρ1 are Gaussian mixtures given by

ρ0 =
1

3

∑
[N (µ1,Σ1) +N (µ2,Σ2) +N (µ3,Σ3)]

ρ1 =
1

3
[N (µ4,Σ4) +N (µ5,Σ5) +N (µ6,Σ6)]

with parameters

µ1 =

[
−2
1.5

]
,Σ1 =

[
0.2 0.1
0.1 0.4

]
, µ2 =

[
0.2
1.2

]
,Σ2 =

[
0.6 −0.4
−0.4 0.6

]
,

µ3 =

[
0.5
−1

]
,Σ3 =

[
0.5 0.4
0.4 0.7

]
, µ4 =

[
−1.8
1.1

]
,Σ4 =

[
0.3 0.1
0.1 0.3

]
,

µ5 =

[
−0.2
1.2

]
,Σ5 =

[
0.5 −0.3
−0.3 0.8

]
µ6 =

[
−0.5
0.9

]
,Σ6 =

[
0.6 0.2
0.2 0.6

]
. (44)

Figure 2 displays the interpolation between ρ0 and ρ1 obtained by com-
puting ρt(z) = ϕt(z)ϕ̂t(z) for each time t ∈ [0, 1] at the data points z(t)
obtained by integrating the equation (29, 30) with γ = 2. In this example,
both ϕ and ϕ̂ were represented as the square of linear combinations of the
first 10 Hermite functions.
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Figure 1: Initial and final probability density distribution from which points xi
and yj where sampled respectively. This is the only input used by the algorithm.

5.2 A variation on importance sampling

The methodology of this article turns out to be particularly well suited to
improve Monte Carlo estimates of the quantity

I =

∫
f(y)ρ1(y)dy, (45)

when ρ1(y) is only known through n sample points drawn from it. It is know
that ordinary Monte Carlo estimates suffer of a slow convergence rate as a
function of n. Moreover, when the support of f is localized in regions where
the value of ρ1 is small, we may have very few points where f is substantially
different from zero. If ρ1 where known in closed form, we could remedy these
problems though importance sampling, whereby we would rewrite (45) in
the form

I =

∫
f(y)ρ1(y)dy =

∫
f(y)ρ1(y)

µ(y)
µ(y)dy,

where µ(y) is a distribution easy to sample and such that fρ1/µ has small
variance, and then estimate I via Monte Carlo:

I ≈ 1

n

n∑

i=1

f(zi)ρ1(zi)

µ(zi)
,

where the zi are samples drawn independently from µ. Yet this procedure
requires the capacity to evaluate ρ1 at the given points. We are considering
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instead the frequently occurring situation where ρ1 is only known through
n samples {yj}.

In this case, we propose to use the sample points {yj} to solve the
Schrödinger bridge problem between ρ1(y) and a distribution ρ0(x) of our
choice. This allows us to map arbitrary points in y-space to x-space. In par-
ticular, we can chose points ỹj that resolve f well, and use them to estimate
the integral I through the following steps:

1. Select points ỹj spanning the support of f . These points do not need
to be sampled from a probability distribution, the only requirement is
that f(y) be well characterized by its values on the ỹj .

2. Compute ϕ1 and ϕ̂0 solving the Schrödinger bridge between ρ1 and
a standard normal distribution ρ0 = N (0, 1), through the procedure
described in section 4.3. Then integrate the equation of motion (29,
30) by evaluating ϕt and ϕ̂t via Monte Carlo estimates of the integrals
in (39) obtained by sampling the prior p(x, t, y, s). Let T be the one-
to-one map determined by the solution of (29, 30).

3. Integrate back in time (29, 30) in order to map the points ỹj to the
points xi = T−1(ỹi) in the domain of ρ0 .

4. Perform a rough Gaussian mixture density estimation ν(x) of the dis-
tribution underlying the points xi and sample N new points x̃i from
it.

5. Map the points x̃i back to the support of ρ1 to obtain new points
ŷj = T (x̃j).

The integral in (45) is then estimated through

∫
f(y)ρ1(y)dy =

∫
f(y(x))

ρ0(x)

ν(x)
ν(x)dx ≈ 1

N

N∑

i=1

f(T (x̃j))
ρ0(x̃j)

ν(x̃j)
. (46)

Hence in a sense we have transferred importance sampling from y to the
auxiliary x-space.

An alternative to the procedure proposed above would first estimate
ρ1 using the samples yj , and then estimate I though regular importance
sampling. However, estimating ρ1 in high dimensions is challenging, espe-
cially when few data points yj are available. Moreover, the estimation of ρ1

would be particularly poor in those areas where f is large, since ρ1 is small
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IR = 0.09894
IMC = 0.10512± 0.28865
IS = 0.09710± 0.13284

Table 1: IR indicates the reference value for I, IMC is the Monte Carlo
estimates of I and IS is the estimate of I obtained with the procedure
described above.

there, hence the number of local samples available will be small. By con-
trast, in our procedure, the points yj are used to estimate the (inverse) map
from ρ1 to a standard normal distribution instead. Because of the relation
ρ0(x) = ρ1(y(x))|detJ(x)| the map from ρ0 to ρ1 is in general smoother than
ρ1. Therefore, it is in general more robust to parametrize the map rather
than the density.

In the numerical experiment in Figure 3, we chose ρ1 to be the equal
weight mixture of the three Gaussian: N (−1.4, 0.82),N (2.2, 0.42),N (0.2, 0.12),
and f(y) a mixture of the two Gaussian N (−0.8, 0.022), N (1, 0.032), again
with equal weights. We compute the reference value IR for the integral
I =

∫
f(y)ρ1(y)dy using a uniform grid of step size h = 10−4 and compare

this value with plain MC estimates of I obtained with 1000 points sampled
from ρ1 and with our procedure. As it can be seen from Table 1, the proce-
dure described above gives a better estimates in terms of both the error with
respect the reference value and the uncertainty associated with the estimate.

6 Conclusions

In this article, we have posed the sample-based Schrödinger bridge problem
and developed a methodology for its numerical solution. Characterizing the
initial and final distributions of the bridge in terms of samples is well-suited
for applications and also natural from a theoretical perspective, since what
is a large-deviation problem for a large but finite set of particles becomes a
true impossibility as the number of particles grows unboundedly. One must
distinguish though between the sample-based formulation, where {xi} and
{yj} are regarded as samples of underlying distributions ρ0 and ρ1, from the
discrete Schrödinger problem, where the latter are replaced by the empirical
distributions 1

m

∑m
i=1 δ (x− xi) and 1

n

∑n
j=1 δ (y − yj). This article studies

the former, finding the joint distribution π∗(x, y) for all values of (x, y), not
just the sample points, and characterizing the intermediate distributions
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ρt(z) also for all z.
The methodology of this article mimics the iterative scheme developed

for the classical bridge problem, but replacing some of its key ingredients by
data analogues. Thus the boundary conditions at t = 0 and t = 1 are re-
interpreted in a maximum likelihood sense, thus giving rise to optimization
problems, and the integrals defining the propagation of the two factors of ρt
are estimated via importance sampling.

The data-based Schrödinger problem has a broad scope of applicabil-
ity. Potential applications include the estimation of atmospheric winds and
oceanic currents from tracers, the solution of inverse diffusive problems,
the reconstruction of the intermediate evolution of species between well-
documented stages, and many more. Since this article is concerned with the
development of a general methodology, we have not dwelled into any appli-
cation in particular, but just illustrated the procedure with two relatively
simple examples.
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[45] Toshio Mikami and Michèle Thieullen. Duality theorem for the stochas-
tic optimal control problem. Stochastic processes and their applications,
116(12):1815–1835, 2006.
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Figure 2: Interpolation between ρ0 and ρ1. Each image is obtained by interpolating
ρt(z) on the points z(t) representing the solution of (29, 30). Both ϕ and ϕ̂ were
represented as the square of linear combinations of the first 10 Hermite functions.
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Figure 3: Left panel: The density ρ1(y) is plotted in blue while the function f(y)
is plotted in red. Notice that the support of f(y) is substantially different from
zero where the two local minima of ρ1 are placed. The green points yj , appearing
one the x axis are points on a regular grid that were selected based on the value
of f being bigger than a certain threshold. Right panel: The green points on the
left panel have been mapped into the green points xj = T−1(yi) on the right panel,
in blue there if the histogram of the points xi and in red its (Gaussian mixture)
estimate of it.
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