
On the History of the 
Minimum Spainning 
Tree Problem 
R. L. GRAHAM AND PAVOL HELL 

It is standard practice among authors discussing the minimum spanning tree 
problem to refer to the work of Kruskal(1956) and Prim (1957) as the sources 
of the problem and its first efficient solutions, despite the citation by both of 
Borbvka (1926) as a predecessor. In fact, there are several apparently 
independent sources and algorithmic solutions of the problem. They have 
appeared in Czechoslovakia, France, and Poland, going back to the beginning 
of this century. We shall explore and compare these works and their 
motivations, and relate them to the most recent advances on the minimum 
spanning tree problem. 

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph 
Theory-trees; E. 1 [Data Structures]--trees; K.2 [History of Computing] 
-software 

General Terms: Algorithms, Theory 
Additional Key Words and Phrases: minimum spanning tree 

Introduction 

The minimum spanning tree problem (MSTP) is one 
of the most typical and well-known problems of com- 
binatorial optimization; methods for its solution, 
though simple, have generated important ideas of 
modern combinatorics and have played a central role 
in the design of computer algorithms [AhHoUl74], 
[ReNiDe77], [Chr75], [HorSah78].l The problem is 
typically stated as follows. 

Given such a weighted graph [a graph G, whose nodes 
represent cities, whose edges represent possible commu- 
nication links, and whose edge weights represent the 
costs of construction, or the lengths of the links] one 
would then wish to select for construction a set of com- 
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munication links that would connect all the cities and 
have minimum total cost or be of minimum total length. 
In either case the links selected will have to form a tree 
(assuming all weights are positive). In case this is not so, 
then the selection of links contains a cycle. Removal of 
any one of the links on this cycle will result in a link 
selection of lower cost connecting all cities. We are 
therefore interested in finding a spanning tree of G with 
minimum cost. (The cost of a spanning tree is the sum 
of the costs of the edges in that tree.) [HorSah78] 

The importance and popularity of the MSTP stem 
from several facts. It admits an efficient solution, 
which makes it practical to solve MSTPs for large 
graphs. (Graphs with thousands of vertices can be 
handled [BenFri76].) It has obvious applications in 
the design of computer and communication networks, 
power and leased-line telephone networks, wiring con- 
nections, links in a transportation network, piping 
in a flow network, etc. [ChoKer73], [DRH’IO], 
[EsaWil66], [ SaBoRu731, [LobWei57], [Pri57], 
[Bor26a], [Cho38]. It offers a method of solution to 

1 In this paper, References are shown in the preceding way in the 
text and are alphabetized by the abbreviations shown in brackets. 
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other problems to which it applies less directly, such these works and their motivations, and we shall relate 
as network reliability, surface homogeneity tests, pic- them to the most recent advances on the MSTP. 
ture processing, automatic speech recognition, cluster- We expect that the reader has seen some standard 
ing and classification problems, etc. [VanFra71], algorithm for solving the MSTP. Three of the algo- 
[VanFra72], [ Ka164], [FiKaSh81], [ OstLin741, rithms that have played a central role in the history 
[PynWar72], [DudHar73], [Zah71], [Zah74], of the problem are described below, using the termi- 
[ZGLL74], [JarSib71], [Sib73], [McQ57], [Bre82], nology of [Pri57]. It should be noted that there are 
[FLPSZ51], [GowRos69], [Sti67], [EdwCav64], several variants of the algorithms and that important 
[ClaMill. It often occurs as a subproblem in a solution differences do occur in their implementations. 
of another problem, and MSTP alogrithms are used A spanning forest of a graph G (i.e., a subgraph of 
in several exact and approximation algorithms for the G containing all vertices and no cycles of G) consists 
traveling salesman problem, the multiterminal flow of subtrees of G, each of which is called a fragment of 
problem, the matching problem, etc. [Chr76], [Chr70], G. Some fragments are just one-vertex trees; these are 
[HelKar70], [HelKar71], [Rei79], [HanKra74], called trivial fragments. In a weighted graph G, the 
[GilGom64]. (Some applications take advantage of the distance between vertices u and u, or the length of the 
fact, observed in [Pri57], that the minimum spanning edge uv, is understood to mean the weight of the edge 
tree also minimizes any increasing symmetric function uu. The distance between two fragments of G is the 
of the weights-see [Hu61], [Ka164].) On the theoret- shortest pairwise distance between a vertex of the first 
ical side, the so-called greedy method typical of all the fragment and a vertex of the second fragment. All 
MSTP solutions is an important concept that can be three algorithms begin with the spanning forest con- 
applied to various other problems and is studied in its sisting of trivial fragments and selectively add edges 
general form in the theory of matroids [Edm71], to it until it becomes a spanning tree of G. They differ 
[We168], [Ga168], [Law76], [KorLov81]. in the criterion used to select the next edge or edges 

It is standard practice among authors discussing the to be added in each iteration. 
MSTP to refer to Kruskal [Kru56] and Prim [Pri57] 
as the sources of the problem and its first efficient 

Algorithm 1 (Two Nearest Fragments) 
Add a shortest edge which joins different fragments. 

solutions, even though both of these papers refer to 
Botivka [Bor26]. In fact, there are several apparently 

Algorithm 2 (Nearest Neighbor) 

independent sources and algorithmic solutions of the 
(A vertex u is arbitrarily chosen.) Add a shortest edge 

problem. They have appeared in Czechoslovakia, 
which joins the fragment containing u to another 

France, and Poland, going back almost to the begin- 
fragment. 

ning of this century. We shall explore and compare Algorithm 3 (All Nearest Fragments) 
For every fragment add the shortest edge which joins 
it to another fragment. 

(In Algorithm 3 it is assumed that all edge weights are 
different, so that a cycle cannot occur.) 
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Algorithm 1 is attributed to M. D. McIlroy [HopU1173]. The best 
implementations of Algorithm 1 find a minimum 

Algorithm 1 can also be described as follows. Sort the spanning tree in time O(e log u); nearly O(e) time can 
edges by weight; examine each edge in the order of be achieved if the edge weights are small integers and 
increasing weight; if the edge examined does not create radix sorting can be used or if the edges are given in 
a cycle with the edges in the current forest, it is added sorted order [CheTar76]. (Here and in subsequent 
to the forest; otherwise, it is discarded. This is the discussion of complexities, u is the number of vertices 
algorithm proposed by Kruskal [Kru56]. and e the number of edges of the graph in which the 

Construction A. Perform the following step as many minimum spanning tree is sought; we say that an 
times as possible: Among the edges of G not yet chosen, algorithm is nearly time O(e), or nearly linear in e, if 
choose the shortest edge which does not form any loops its time complexity is O(e . a(e, u)), where a is the 
[cycles] with those edges already chosen. inverse of Ackermann’s function; see [Tar75].) 
Loberman and Weinberger [LobWei57] also discov- 

ered Algorithm 1, although they became aware of Algorithm 2 
[Kru56] before their paper was finalized. They in- 
cluded a footnote referencing [Kru56]. Kruskal [ Kru56] viewed his construction A as a special 

This reference was discovered by the present authors case of a more general construction. 

after their procedures had been formulated. It is seen Construction B. Let V be an arbitrary but fixed 

that the procedures presented here and Kruskal’s (nonempty) subset of the vertices of G. Then perform 

constructions are identical. However, it is felt that the the following step as many times as possible: Among the 

more detailed implementation and general proofs of the edges of G which are not yet chosen but which are 

procedures justify this paper. connected either to a vertex of V or to an edge already 
chosen, pick the shortest edge which does not form any 

They formulated Algorithm 1 as follows. loops with the edges already chosen. 

In general, the rules of procedure A for selecting the 
Kruskal remarks that when V is the set of all vertices 

necessary branches [edges] from the sorted sequence of 
of G, construction B reduces to construction A. On 

branches are as follows: Examine the branches 
the other hand, when V consists of a single vertex v, 

sequentially, beginning with the shortest branch. For construction B reduces to Algorithm 2. Indeed, Algo- 

each branch examine the two nodes [vertices] which rithm 2 may also be described as follows. Sort the 
constitute its terminals. The first branch is always used, edges by weight. Given a fragment F containing u, 
and its two nodes are recorded as belonging to a subtree examine the unused edges in order of increasing 
[nontrivial fragment]. One of four possible conditions weight until an edge is found joining a vertex in F to 
are recognized for each succeeding branch which is a vertex outside F. Add that edge of F. At the same 
considered. time, edges that are found to join two vertices of F 

Condition 1. Neither of the two nodes is present in a may be discarded. The same algorithm was proposed 
subtree. Therefore the branch is made. The two nodes in [LobWei57]. 
are recorded as constituting another new subtree. 

Condition 2. Only one of the nodes is present in a 
In general the rules of procedure B for selecting the 
necessary branches from the sorted sequence of 

subtree. Therefore the branch is made. The new node is branches are as follows: The branches are examined 
added to the subtree containing the other node of this 
branch. 

sequentially unless otherwise specified. Beginning with 

Condition 3. Each of the two nodes is present in a 
the shortest branch, the two nodes which constitute its 

different subtree. Therefore the branch is made. The 
terminals are examined. The first branch is always made 

two different subtrees, each containing one of the nodes, 
and its two nodes are recorded as belonging to the single 
subtree of nodes of procedure B. One of three possible 

are combined into a single subtree. 
Condition 4. Both nodes are present in the same 

conditions are recognized for each succeeding branch 
which is considered: 

subtree. Therefore the branch is not made. Condition 1. Neither of the two nodes is present in the 

To implement Algorithm 1 efficiently, one usually subtree. Therefore, the branch is not made at this time. 

takes advantage of efficient algorithms to sort (or The succeeding branches are then examined in 

partially sort) the edges by weight, to find the frag- sequence. After the first subsequent branch is made 

ment containing a given vertex (determining whether 
which fulfills the requirements of condition 2 (which 
follows), the examination reverts back to the first 

the two ends of the current edge lie in the same branch which has not yet been made because of 
fragment), and to merge two fragments into one (if condition 1. 
the current edge does join two different fragments). Condition 2. Only one of the two nodes is present in 
Suitable data structures for such algorithms were de- the subtree. Therefore the branch is made and the other 
veloped in [HopU1173]; their application to the MSTP node is added to the subtree. Next, it is determined 
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whether there are any branches in previous positions in I. the branches definitely assigned to the tree under 
the sequence which met condition 1 (above) and have construction (they will form a subtree); 
not yet been made. If so, the examination of the II. the branches from which the next branch to be 
branches reverts back to the first of such branches. If added to set I, will be selected; 
not, the examination of the branches proceeds in normal III. the remaining branches (rejected or not yet 
sequence. considered). 

Condition 3. Both nodes are present in the subtree. 
Therefore the branch is not made. 

The nodes are subdivided into two sets: 
A. the nodes connected by the branches of set I, 
B. the remaining nodes (one and only one branch of set 

II will lead to each of these nodes). 
We start the construction by choosing an arbitary node 
as the only member of the set A and placing all branches 
that end in this node in set II. To start with. set I is 
empty. From then onwards we perform the following two 
steps repeatedly. 

Step 1. The shortest branch of set II is removed from 
this set and added to set I. As a result one node is 
transferred from set B to set A. 

Step 2. Consider the branches leading from the node 
that has just been transferred to set A to the nodes that 
are still in set B. If the branch under consideration is 
longer than the corresponding branch in set II, it is 
rejected, if it is shorter, it replaces the corresponding 
branch in set II, and the latter is rejected. We then 
return to step 1 and repeat the process until the sets II 
and B are empty. The branches in the set I form the tree 
required. 

The approaches to Algorithm 2 taken by Dijkstra 
and Prim are similar. (Prim’s paper appeared earlier, 
but Dijkstra was apparently unaware of it.) Both Prim 
and Dijkstra were primarily concerned with storage 
requirements. 

The F and “added terminal” distance tables grow shorter 
as the number of unconnected terminals is decreased. 
This computational procedure . . . never requires access 
to more than two rows of distance data at a time-no 
matter how large the problem. [Pri57] 
The solution given here is to be preferred to the solution 
given by J. B. Kruskal [Kru56] and those given by H. 
Loberman and A. Weinberger [LobWei57]. In their 
solution all the-possibly %n( n-1)-branches are first 
of all sorted according to length. Even if the length of 
the branches is a computable function of the node 
coordinates, their methods demand that data for all 
branches are stored simultaneously. Our method only 
requires the simultaneous storing of the data for at most 
n branches, viz. the branches in sets I and II and the 
branch under consideration in step 2. [Dij59] 

It turns out that Algorithm 2 was formulated quite 
clearly over a quarter century before [Pri57], 
[Kru56], [LobWei57], and [Dij59], by V. Jarnik 
[ Jar30]. 

Definite Mno&tvi J. Jest 

J = [aI, 4, [a3, 4, . . . , [atn-3, a2n--21, 

kde al, a2, . . . jsou definovana takto: 
1. Krok. Za aI zvolme kterykoliv z prvkG 1, 2, . . . , n; 

The reader may be aware that Algorithm 2 is usually 
attributed to Prim [Pri57]. Prim formulated a general 
class of algorithms. 

Principle 1. Any isolated terminal [trivial fragment] 
can be connected to a nearest neighbor. 

Principle 2. Any isolated [nontrivial] fragment can be 
connected to a nearest neighbor by a shortest available 
link. 

Principles 1 and 2 by themselves are sufficiently flex- 
ible to incorporate all three of the preceding algo- 
rithms. Prim preferred Algorithm 2 because of com- 
putational considerations. 

When it is desired to determine a shortest connection 
network directly from the distance table 
representation-either manually, or by machine 
computation-one of the numerous practical algorithms 
obtainable by restricting the freedom of choice allowed 
by principles 1 and 2 is distinctly superior to other 
alternatives. This variant is the one in which principle 1 
is used but once to produce a single isolated fragment, 
which is then extended by repeated applications of 
principle 2. The successive steps of an efficient 
computational procedure [are illustrated in an example. 
The illustration operates on so-called F tables defined as 
follows:] The entries in the top rows of successive F 
tables are the distances from the connected [i.e., 
nontrivial] fragment to the unconnected terminals [i.e., 
trivial fragments] at each stage of fragment growth. The 
entries in parentheses in the second rows of these tables 
indicate the nearest neighbor in the fragment of the 
external terminal in question. The computation is 
started by entering the first row of the distance table 
into the F table (to start the growing fragment from 
Terminal 1). A smallest entry in the F table is then 
selected [and the corresponding edge is deleted from the 
F table and entered in the solution]. The remaining 
entries in the first stage F table are then compared with 
the corresponding entries in the [appropriate] row of the 
distance table. If any entry of this “added terminal” 
distance table is smaller than the corresponding F table 
entry, it is substituted for it, with a corresponding 
change in the parenthesized index. This process is 
repeated to yield the list of successive nearest neighbors 
to the growing fragment. 

Computational considerations also prompted Dijk- 
stra to formulate Algorithm 2 as follows [Dij59]. 

In the course of the construction that we present here, 
the branches are subdivided into three sets: 
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a2 budii definovino vztahem 

r(al, u2) = mm r(al, 1) (1 = 1, 2, . . . , n; 1 # a,). 

k-t9 Krok. Je-li ji; definovano 

aI, a% . . . , a2k-2 (2 s k < n), (5) 

definujme a2k-1, a2k vztahem 

kde i probihi viechna &la al, a2, . . . , a2k-2; j viechna 
ostatni z Eisel 1, 2, . . . , n. Pri tom budii aZk-1 jedno z 
cisel (5), takie a2k neni obsaieno mezi cisly (5). 

Je patrno ie pii tomto postupu je mezi Eisly (5) prave 
k Zisel tiznych, takie pro k < n lze k-t? krok provesti. 

Translation 

Definition of the set J. Let 

J = [aI, ad, [as, aJ, . . . , [a2n-3, azn-J, 

where a,, a?, . . . are defined as follows: 
First Step. Choose as a, any of the elements 1, 2, . . . , 

n; let az be defined by the relation 

r(a,, a2) = min r(al, 1) (1 = 1, 2, . . . , n; 1 # al). 

kth Step. Having defined 

al, a2, . . . , a2k-2 (2 s k < n), 

we define aZk-1, ask by the relation 

(5) 

r(azkmI, azk) = min r(i, j), 

where i ranges over the numbers al, a2, . . . , a2k-Z; j 
ranges over the other numbers among 1, 2, . . . , n. When 
doing this, we let a2k-i be one of the numbers in (5) so 
that a2k is not among the numbers in (5). 

It is evident that in this process exactly k of the 
numbers in (5) are different, so that for k < n the kth 
step can be performed. [J is the set of edges of a 
minimum spanning tree; r(i, j) is the weight of the edge 
joining i and j.] 

The first implementations of Algorithm 2 were im- 
plicit in [Pri57], [Dij59]. They run in time O(u*). It is 
possible to implement the algorithm to run in time 
O(e log u) [KerVan72], [Joh75]. Using general heaps 
(to store vertices adjacent to the fragment F), as in 
[Joh75], Algorithm 2 can be implemented in time O(e 
log u), where the log is to the base max(2, e/u) [Tar821 
. In dense graphs, Johnson’s implementation runs in 
time O(e) [Joh75]. (Dense graphs satisfy e 2 Cvp for 
some constants C > 0 andp > 1.) 

Algorithm 3 

Algorithm 3 is historically the most interesting. It 
dates back in its first documented full formulation 
to two 1926 papers by Otakar BorGvka [Bor26], 
[Bor26a]; it has been independently rediscovered by a 
number of other authors; and it seems to lead to the 
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most efficient implementations. In the next section 
we will follow the work of BortYrvka and relate Algo- 
rithm 3 to some recent progress on the MSTP. Here 
we trace the other early formulations of Algorithm 3. 

In 1938 Gustave Choquet published a note (com- 
municated to the Comptes Rendus by Elie Cartan) in 
which he analyzed the MSTP; while he also described 
the algorithm in the case of a general metric space 
(and considered further generalizations), the main 
statement is given in terms of n cities and their 
euclidean distances [Cho38]. 

Construction du Rbseau Minimum. On joint par un 
segment chaque ville a la ville la plus voisine. Si 
l’ensemble de tous ces segments forme un continu, celui- 
ci est le reseau cherche. Sinon, on joint chacun des 
continus form& au continu le plus voisin par un 
segment joignant les deux villes les plus voisines de ces 
deux continus. Si ensemble ainsi forme est un continu, 
celui-ci est la reseau cherche. Sinon, on recommence de 
la meme facon. Le reseau cherche sera trace apres 2n 
operations elementaires au plus, en appelant operation 
elimentaire la recherche du continu le plus voisin d’un 
continu donne. 

Translation 
Construction of the Minimum Network. One joins by a 
segment each city with the city nearest to it. If the set of 
all these segments forms a continuum [is connected], it 
is the desired network. If not, one joins each of the 
continua [connected components] with the continuum 
nearest to it by means of a segment joining the closest 
two cities of the two continua. If the set formed in this 
fashion is a continuum, it is the desired network. If not, 
one continues the same way. The desired network will 
be found after at most 2n elementary operations, where 
an elementary operation is the search for the continuum 
nearest to a given continuum. 

(Note Choquet’s concern about the number of opera- 
tions made by Algorithm 3.) 

In 1961, George Sollin in Paris prepared a manu- 
script entitled “Probleme de 1’Arbre Minimum” and 
presented the material in it at a seminar organized by 
C. Berge in Paris on February 8,196l. Sollin describes 
his MSTP algorithm as follows ([Sol 611, cf. also 
[So162]). 

On procedera par &apes en joignant un sommet 
quelconque h son voisin le plus proche, de facon a 
obtenir des arbres partiels de premier ordre. 

Puis, on considerera ces arbres partiels de premier 
ordre comme des sommets et on r&t&era l’algorithme 
jusqu’au moment oii l’arbre partiel de ki! ordre sera 
unique. 

Translation 

One proceeds in steps by joining any vertex to its 
nearest neighbor, thereby obtaining partial trees of the 
first order. 
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Then, one considers these partial trees of the first 
order as vertices and iterates the algorithm until one 
obtains a unique tree of the kth order. 

Sollin’s manuscript was never published, although 
it was carefully referenced in the book of Berge and 
Ghoula-Houri [BerGho65]. 

Another independent discovery of Algorithm 3 was 
reported in 1950 by a research group based in 
Wroclaw, Poland [FLPSZ51]. 

Travail collectif, r&dig6 par J. Lukaszewicz et contenant 
les risultats obtenus par le Groupe General des 
Applications de I’institut Mathematique de 1’Etat: K. 
Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus et S. 
Zubrzycki (Wroclaw). 

. . . Voici notre methode pour former une dendrite 
avec les points de l’ensemble 2. Unissons, par un 
segment, chacun d’eux au point le plus proche; les 
segments ainsi obtenus seront appeles Liens du Premier 
Ordre. 11s forment une ou plusieures lignes polygonales 
connexes qui sont des liaisons de points de certains 
sous-ensembles disjoints de 2. Nous appelerons ces sous- 
ensembles Groupements du Premier Ordre. Liens chacun 
d’eux avec le groupement le plus proche (par Distance 
Entre Deux Groupements on comprend evidemment la 
plus petite distance entre leurs points deux-a-deux) a 
l’aide dun segment qui realisera la distance entre eux et 
que nous appelerons maintenant Lien du Second Ordre. 
On pro&de ainsi, en employant des liens d’ordre de plus 
en plus elevd, jusqu’a ce qu’on obtienne une ligne 
polygonal connexe liant tous les points de l’ensemble 2. 

TfWLSlati0n 

A joint work, directed by J. Lukaszewicz, and containing 
results obtained by the General Applications Group of 
the State Mathematical Institute: K. Florek, J. 
Lukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki 
(Wroclaw). 

. . . Here is our method of constructing a dendrite 
[spanning tree] with the points of a [given] set 2. Let us 
join, by a segment, each point to the point nearest to it; 
these segments will be called Connections of the First 
Order. They form one or more connected polygonal lines 
[subtrees] which are the connections of the points of 
certain disjoint subsets of 2. These subsets will be 
called Groups of the First Order. Let us join each such 
group with the group nearest to it (by distance between 
groups one understands, of course, the smallest pairwise 
distance between their points), by a segment realizing 
their distance, which we shall call a Connection of the 
Second Order. We proceed this way, using connections 
of higher and higher order, until we obtain a connected 
polygonal line joining all the points of the set 2. 

Lukaszewicz et al. motivated their study of mini- 
mum spanning trees with applications in anthropol- 

Seance du 3 Novembre 1950. 
Group General des Applications de 1’Institut 
Mathematique de l’Etat, Une Methode Taxonomique et 
Ses Applications aux Sciences Naturelles (present6 par 
J. Perkal). 

Les auteurs proposent une nouvelle methode 
taxonomique qui tire parti de l’idee connue depuis 1909 
et due a J. Czekanowski, i savoir de la notion de 
distance entre les individus. Le tableau (azk) des 
distances P,Pk, ou P, (i = 1, 2, . . . , n) designe le i’eme 
objet, est point de depart. Or, au lieu de ranger les objets 
en une suite, ce qui etait le but de la methode ancienne, 
on les considere comme des points dun plan, et on les 
joint part n - 1 segments afin d’obtenir une dendrite la 
methode en question fournit la plus courte de toutes 
dendrites possibles. Les auteurs ont applique leur 
methode aux 14 villes principales de Pologne, aux 22 
cranes de Ngandong et autres 12 cranes decrits par W. 
Steslicka, et aux 42 trouvailles prehisoriques d&rites par 
J. Czekanowski. 

TEiWdati0n 

Session of November 3, 1950. 
General Applications Group of the State Mathematical 
Institute, A Method in Taxonomy and Its Applications 
to Natural Sciences (presented by J. Perkal). 

The authors propose a new method in taxonomy 
which is based on an idea known since 1909 and due to 
J. Czekanowski, namely, the notion of distance between 
individuals. One starts with the table (azkJ of distances 
P,Pk, where P, (i = 1, 2, . . . , n) denotes the ith object. 
Then, instead of ordering the objects in a sequence, 
which was the goal of the old method, we consider them 
points in a plane, and join them with n - 1 segments to 
obtain a dendrite; our method provides the shortest 
among all possible dendrites. The authors have applied 
their method to the 14 principal cities in Poland, to the 
22 skulls of Ngandong and 12 other skulls described by 
W. Steslicka, and to the 42 prehistoric finds described 
by J. Czekanowski. 

It is tempting to speculate how much the above ac- 
knowledgment of the work of J. Czekanowski was 
intended to apply to the mathematical basis of their 
method. Did Czekanowski himself come close to for- 
mulating Algorithm 3 in 1909? The same authors 
(coining the term Wroclaw taxonomy to describe their 
method) wrote in [FLPSZ5la]: 

From the English summary 
Since 1909 there has been known in anthropology J. 
Czekanowski’s method of classification and division into 
groups a collection of individuals characterized by 
metrical features. We propose a new method of 
classification and division into groups which is in some 
way an extension and improvement of Czekanowski’s 

ogy, biology, linguistics, etc. In essence it was to be a method. The starting point for both these methods is 
tool in taxonomy ([FLPSZ51, p. 3191). Czekanowski’s table of distances of individuals. 
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From the text 
1 SPY I 
2 SPY II 
3 

i---- 

KRAPINA C 
4 KRAPINA D 

5 NEANDERTAL 
6 GIBRALTAR 

PO wyrachowaniu tej tablicy wyrysowuje sic diagram 
(zmodyfikowany) Czekanowskiego, ktory powstaje z 
tablicy przez zastapienie liczb zakreskowaniem. Liczby 
najmniejsze zastepuje sic calkowitym zaczernieniem 
kratki, odleglobci coraz wieksze-coraz rzadszym 
zakreskowaniem, odleglosci wieksze od jakiejs ustalonej 
liczby zastepuje sic bialymi kratkami. Nastepnie zmienia 7 PITHECANTHROPUS 

sic uporzgdkowanie badanych indywiduow i dgiy sic do 
8 

tego, ieby ciemne pola diagramu utworzyly kwadraty 
9 GALEY HILL 

blisko glownej przekatnej diagramu. Uzyskuje sic w ten 
10 

sposob pewne liniowe uporzadkowanie indywiduow, oraz 
, , 

wyroinia sic grupy indywiduow wzajemne bliskich. Jak 
12 
13 

stad widac . . . metoda polega na odpowiednim 
uporzadkowaniu tej tablicy. Figure 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Translation 
After the computation of the table, one draws the 
(modified) Czekanowski diagram, which arises from the 
table by replacing the numbers with shades [of black]. 
The smallest numbers are replaced by completely black 
cells, distances greater and greater by shading the cells 
less and less darkly, and distances exceeding a fixed 
value are replaced by white cells. Next one changes the 
order of the individuals with the aim of having the dark 
cells form squares near the main diagonal of the 
diagram. One obtains in this way a certain linear order 
of individuals, and one can distinguish groups of 
individuals that are relatively close to each other. As can 
be seen from this . . . the method depends on a suitable 
ordering of the table. 

Czekanowski described it as follows [CzeOS]: 
Ich nehme ein Quadratennetz, in diesem Falle mit 13 
Quadraten Seitenlange, und ordne jedem Quadrate in 
der Reihenfolge der obigen Tabelle die Werte der 
durchschnittlichen Differenzen zu. Hierauf bedecke ich 
die einzelnen Quadrate mit bestimmten Farben, bzw. 
Stricharten und zwar in folgender Weise: Die drei 
kleinsten Werte jeder senkrechten Kolonne erhalten 
eine schwartze Farbung, der nachstfolgende Wert wird 
dick senkrecht, der weiterfolgende mitteldick, der 
drittfolgende dunn gestrichen. Damit sind die sechs 
niedersten Werte der Kolonne zur Darstellung 
gebracht. . . . Die Felder, die den relativ hoheren Werten 
entsprechen, bleiben Weiss. Man sieht infolgendessen in 
der graphischen Darstellung deutlich, dass die Schadel 
zwei gruppen bilden. 

Translation 

I take a square grid, in this case 13 squares on each side, 
and assign to each cell [the value of the corresponding] 
average difference. Then I equip each cell with a certain 
color-that is, a kind of shading-in the following 
manner: The three smallest values of each column will 
receive the black color, the next value will be shaded by 
thick vertical lines, the one after by semithick lines, and 
the third one by thin lines. This causes the six smallest 

differences to stand out. . . . The cells corresponding to 
relatively higher values remain white. This graphic 
depiction illustrates clearly that the skulls form two 
groups. (See Figure 1.) 

(A similar description appears in [Czell], [Cze28].) 
It appears that Czekanowski’s method of classification 
was originally intended solely as a tool to display 
graphically the table of differences in order to recog- 
nize the natural groupings. It bears a superficial re- 
semblance to Algorithm 3 in its “quasi-greedy” way-of 
selecting related objects. On the whole, however, Czek- 
anowski’s contribution, while paving the way for 
[FLPSZ51], [FLPSZ5la], cannot be linked directly to 
Algorithm 3, nor to the MSTP. 

The clustering technique [FLPSZ51], [FLPSZXila] 
that began with Czekanowski’s work is similar to 
methods developed independently in the West just a 
few years later [Sne57], [McQ57], [SokSne63], 
[Joh67], [GowRos69], [Zah71]. These methods are 
usually referred to as single-linkage cluster analysis 
and form a part of so-called numerical taxonomy 
[Sor48], [Sne57], [Joh67], [SokSne63], [JarSib71], 
[RogCar71], [Roh73], etc. To some degree these de- 
velopments are also related to independent discoveries 
of MSTP algorithms. Typically one of the Algorithms 
l-3 is embedded, without stating the MSTP or claim- 
ing optimality of the procedure, in a taxonomic or 
clustering algorithm. For example, [ArkBra67, p. 1101 
suggests a clustering algorithm that implicitly defines 
Algorithm 2; McQuitty [McQ57] applies in his tax- 
onomic method one iteration of Algorithm 3 to iden- 
tify the clusters (cf. also [Joh67]); in a similar vein 
[Sne57] is related to Algorithm 1. 

Boriivka 

In this section we examine the contribution of Otakar 
Boruvka, whose papers [Bor26], [Bor26a] appear to 

Annals of the History of Computing, Volume 7, Number 1, January 1985 l 49 



R. L. Graham & P. Hell l Minimum Spanning Tree 

have the first statement of Algorithm 3, as well as the 
first explicit formulation of the problem. 

BorGvka became aware of the problem during the 
rural electrification of Southern Moravia. He wrote in 
his recollections [Bor77]: 

Studium na ikolach technickeho smeru mni! velmi 
pribliiilo inienyrske vedy a zpusobilo, ie jsem me1 pro 
technickb a jine aplikace matematiky vidycky pine 
porozumeni. Brzy po skonceni I. svetove valky, na 
zacitku 20. let, provhdely Zapadomoravske elektrarny v 
Brnit elektrifikaci jiini Moravy. V rimci piitelskjrch 
styk& ktere jsem me1 s nektejmi jejich pracovniky, 
jsem by1 poiadan, abych z hlediska matematickeho ieiil 
otazku co nejtispornejsiho provedeni elektrovodni site. 
Podarilo se mne najit konstrukci-dnes bychom to 
vyjadiili-nejvetsiho souvisleho podgrafu minim&i 
delky, kterou jsem uveiejnil v r. 1926, tedy v dobe kdy 
teorie grafh neexistovala. 

Tram/a tion 
My studies at polytechnical schools made me feel very 
close to engineering sciences and made me fully 
appreciate technical and other applications of 
mathematics. Soon after the end of World War I, at the 
beginning of the 192Os, the Electric Power Company of 
Western Moravia, Brno, was engaged in rural 
electrification of Southern Moravia. In the framework of 
my friendly relations with some of their employees, I 
was asked to solve, from a mathematical standpoint, the 
question of the most economical construction of an 
electric power network. I succeeded in finding a 
construction-as it would be expressed today-of a 
maximal connected subgraph of minimum length, which 
I published in 1926 (i.e., at a time when the theory of 
graphs did not exist). 

In a letter to the authors, Boriivka further remin- 
isces about his discovery. 

Neni mni! znamo, ie by se nekdo piede mnou onim nebo 

about their work. Among the topics I suggested for my 
lecture was the minimal problem (MSTP), which 
Professor Coolidge chose. I gave the lecture sometime in 
the spring of 1927. I recall that among those present was 
Professor B. Segre (now Professor Emeritus at the 
University of Rome), who was also studying in Paris at 
the time. 

(Apparently Cartan was not present, or did not re- 
member the result when communicating Choquet’s 
paper [Cho38] to the Comptes Rendus.) 

BorGvka formulated the MSTP as follows [Bor26]: 
Budii dana matice M Eisel ~(r, y) (x, y = 1, 2, . . . , n; rz 
3 2), ai na podminku T(X, X) = 0, r(x, y) = r(y, x), 
kladnych a vzajemnit ruznych. Jest vybrati z ni skupinu 
cisel vzajemne a od nuly ruznych takovou aby 1. bylo 
moino, jsou-li pi, pz libovolni od sebe tizni piirozeni 
Eisla < n, vybrati z ni skupinu cistecnou tvaru 

rh, c2L r(c2, cd, rtc3, cd, . . . , 
r-t+2, c,-A rtcq4, p2) 

2. so&et jejich Elen& by1 menii nei soucet Elena 
kterekoliv jine skupiny Eisel vzajemne a od nuly 
&nych, hovici podmince 1. 

Translation 
Given a matrix A4 of numbers (x, y) (x, y = 1, 2, . . . , n; 
n 2 2), all positive and pairwise different, with the 
exception of r(x, x) = 0 and r(x, y) = r(y, x), find a 
subset of the entries, pairwise different and nonzero, 
such that 1. for any pl, p2, different natural numbers < 
n, the subset contains some 

r(pl, 4, r(c2, c:,), r(cH, 4, . . . , 

rtcy-2, c,-A rtc,-1, P2) 

2. the sum of its members is smaller than the sum of 
members of any other set of numbers pairwise different 
and nonzero satisfying condition 1, 

podobn$m problemem zabjlval. 
V r. 1926-27 jsem studoval v Paiiii u Prof. E. 

Cartana. V te dobi! konal na paiiiske universite 
piednisky (o algebraicke geometrii) Prof. Coolidge z 
U.S.A. Prof. Coolidge vedl take seminLI, jehoi ucastnici 
piedniieli o svych pracich. Z t&mat, ktera jsem Prof. 
Coolidgeovi pro svoji piednasku navrhl, vybral zmineny 
minimilni problem. PFednasku jsem proslovil nekdy na 
jai;e v r. 1927. Vzpominam si, ie t&o p;ednisce by1 
pritomem B. Segre (nyni emer. professor university v 
Rime), ktery, take tehdy v Paiiii studoval. 

Translation 
I am not aware of anyone having worked on this or a 
similar problem before me. 

In the year 1926-1927 I studied in Paris under 
Professor E. Cartan. At the time, Professor Coolidge 
from the United States was giving a series of lectures in 
algebraic geometry. In addition, Professor Coolidge 
directed a seminar, whose participants gave lectures 

Borhvka’s solution appeared in [Bor26], where he 
gives a complicated description; it nevertheless im- 
plicitly describes Algorithm 3 and begins as follows. 

fiebeni. Budii f0 libovolne z Eisel x a budii [fo fi] 
nejmensi z Eisel [fo yO] (yO # fO). Mnoistvi Eisel [fi ~11 (~1 
f f,,, fi) jest pak bud’ prazdne anebo nikoliv. V prvnim 
piipade poloime F = [fO fi 1, v pripadit druhem jest 
nejmenii z Eisel [fi yl] bud’ vetSi nei [fO fr], anebo men%. 
Je-li v&ii, poloime F = [f, fi], je-li‘menii, budii [fi f2] 
nejmensi z Eisel [fi yl]. Mnoistvi Eisel [f2 y2] (~2 # f~, fi, 
f2) je pak bud prizdne anebo nikoliv. V piipade prvnim 
poloime F = [fO fi], [fi f2], v pi.ipadi! druhem jest 
nejmenii z Eisel [f2 y2] bud’ v&i nei [fi A], anebo men%. 

Translation 

Solution. Let f0 be any of the numbers x and [fO fi] the 
smallest among the numbers [fO yO] (yo # fO). The set of 
numbers [fl yl] (yl # fO, fi) is then either empty or not. 
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In the former case we let F = [fO fi]; in the latter case 
the smallest of the numbers [ii. yl] is either greater than 
[fO fi] or smaller. If [fi yl] is greater, we let f = [fO fi]; if 
[fi yl] is smaller, let [fi A] be the smallest of the 
numbers lfi xl. The set of numbers [A ~21 (~2 Z A A, A) 
is then either empty or not. In the first case we let F = 
[f, fJt [fi fi]; in the second case the smallest of the 
numbers [fi yZ] is either greater than [fi fi] or smaller. 
[Here [x, y] = r(x, y) is the length of the edge xy.] 

Instead of giving the full five pages of Boruvka’s 
description, we will briefly summarize it in modern 
terminology. 

Choose a vertex v and the shortest incident edge 
vwl. If there exist edges wlx shorter than vwl, choose 
the shortest such edge wlw2. Continue in this way, as 
long as possible, constructing a simple path vwl, w1w2, 
. . . , r,“-lwk, where each w,w,+~ is the shortest edge 
incident with w, and is shorter than w,-1w,. Begin at a 
new vertex p and construct as above another simple 
path m, qlq2, . . . , ql-lql, with 1 as large as possible 
under the constraint that p, ql, q2, . . . , qrl are disjoint 
from the previous path or paths (as well as the con- 
straint that each q,q,+, is the shortest edge incident 
with qi and shorter than qr-lql)s Repeat until all ver- 
tices have been included on some such path. These 
paths form fragments, and it is easy to see (and is 
stated explicitly in [Bor26]) that an edge ab is in the 
resulting forest G if and only if it is the shortest edge 
at a or at b. Hence the forest G is the same as the one 
obtained by joining each vertex to its nearest neighbor. 
The subsequent description in [Bor26] is parallel to 
our description of Algorithm 3: one forms the distance 
matrix for the set of fragments of G and repeats the 
process, producing another forest Gl, then G2, and so 
on, until the forest is just one tree Gupl, the solution. 

Boruvka’s pioneering contribution to the MSTP has 
not been completely unrecognized. Kruskal [Kru56] 
attributes the formulation of the problem to [Bor26] 
and mentions that the uniqueness of the minimum 
spanning tree (if all edge lengths are different) is 
proved by 

a not unreasonable method of constructing a spanning 
tree of minimum length. 

Several other authors referring to [Kru56] have also 
included [Bor26] among their references. Because the 
description of Algorithm 3 in [Bor26] is quite compli- 
cated, the paper has been called unnecessarily elabo- 
rate. In the same year, however, Bo&vka published 
another communication [Bor26a] directed at engi- 
neers, in which he left no doubt that he had Algorithm 
3 clearly in mind. There he gave the example shown 
in Figure 2, assuming the vertices to be points in the 
plane and their distances to be euclidean distances. 

Kaidy z danjrch bode spojim s bodem nejbliiiim. Tedy 
na pf. bod 1 s bodem 2, bod 2 s bodem 3, bod 3 s bodem 
4 (bod 4 s bodem 3), bod 5 s bodem 2, bod 6 s bodem 5, 
bod 7 s bodem 6, bod 8 s bodem 9 (bod 9 s bodem 8), 
atd. Obriim iadu polygonilnich tahu 1, 2, . . . , 13 (obr. 
3). 

Kaidy z nich spojim nejkratsim zp-;isobem s tahem 
nejbliiiim. Tedy na pi. 1 s tahem 2 (tah 2 s tahem l), 
tah 3 s tahem 4 (tah 4 s tahem 3) atd. Obdriim iadu 
polygonalnich tahu 1, 2, . . . , 4 (obr. 4). 

Kaidjl z nich spojim nejkratsim zpfisobem s tahem 
nejbliiiim. Tedy tah 1 tahem 3, tah 2 s tahem 3 (tah 3 s 
tahem l), tah 4 s tahem 1. Obdriim koneE& jediny 
polygonilni tah (obr. 5), jeni i;esi danou ulohu. 

Translation 
I will join each of the given points with the point nearest 
to it. Thus, for example, point 1 with point 2, point 2 

Figure 3 Figure 5 
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with point 3, point 3 with point 4 (point 4 with point 3), Lemma 2. Let S be a connected [subgraph]; let the 
point 5 with point 2, point 6 with point 5, point 7 with vertices of S be h,, hs, . . , h,; let s < n. Let &, 12, . . . , I, 
point 6, point 8 with point 9 (point 9 with point 8), etc. I be those numbers 1, 2, . . . , n, which are not vertices of 
will obtain a sequence of polygonal strokes [i.e., S; let 
fragments] 1, 2, . . . , 13 (Figure 3). 

I will join each of these in the shortest possible way r(a, b) = min r(h,, 1,) 

with the stroke nearest to it. Thus for example, stroke 1 (i = 1, 2, . . . , s; j = 1, 2, . . . , t). 
with stroke 2 (stroke 2 with stroke l), stroke 3 with 
stroke 4 (stroke 4 with stroke 3), etc. I will obtain a Claim: Each minimum spanning tree which contains S 

sequence of polygonal strokes 1,2, . . . ,4 (Figure 4). also contains the pair [a, b]. 

I will join each of these in the shortest possible way The proofs in Jarnik’s paper are nearly identical to 
with the stroke nearest to it. Thus stroke 1 with stroke the usual textbook proofs justifying Algorithm 2. 
3, stroke 2 with stroke 3 (stroke 3 with stroke l), stroke A straightforward implementation of Algorithm 3 
4 with stroke 1. I will finally obtain a single polygonal 
stroke (Figure 5), which solves the given problem. 

would run in time O(e log u), because each time the 
rule defining Algorithm 3 is applied, the number of 

In [Bor26], BorlEvka also gave a justification of the fragments decreases by at least one-half. Yao [Yao75] 
greedy method. Similar arguments have been used has discovered an implementation of Algorithm 3 in 
since to justify any of the greedy algorithms discussed time 0( e log log u) using the linear selection algorithm 
here. Borfivka makes the following two statements to [BFPRT73]. Since then a number of other efficient 
prove the correctness of his algorithm. MSTP algorithms have been given that either directly 

V&a III. Skupina K’ obsahuje Eadu skupin G. depend on Algorithm 3 or are similar to it in spirit. 
V&a IV. Budii u > 2, u c u - 1. Obsahuje-li These include several O(e log log u) algorithms of 

skupina K’ skupiny G, G1, . . . , G,-,, obsahuje skupinu Cheriton and Tarjan [CheTar76], a linear expected 
GL. time algorithm of Karp and Tarjan [KarTar81], and 

Translation a probabilistic MSTP algorithm for coordinate 

Theorem IZ1. The set K’ [solution of the MSTP] spaces of Rohlf [Roh78]. The algorithms of [Che- 

contains [the fragments] of G. Tar761 are more practical than that of [Yao75] be- 

Theorem IV. Let u > 2, v < u - 1. If the set K’ cause they do not require a linear selection algorithm; 

contains the [forests] G, G1, . . . , G,-,, then it contains moreover, they run in time O(e) for dense graphs and 
[the forest] G,. O(u) for planar graphs. Another potential advantage 

Theorem III is proved by the usual method: each of Algorithm 3 is that it appears well suited for parallel 

edge of uv of G is the shortest edge at u or at v. Assume computation [ Ben80], [ Tar82]. 

it is the shortest edge at u, and it is not in the solution The recent interest in Algorithm 3 was apparently 

K’. Then one can insert uu in K’, deleting an appro- initiated by its rediscovery by Sollin [So161], [So162], 

priate uw, to obtain a tree of lower cost than K’. although it was not generally known that Algorithm 3 

Theorem IV is deduced from Theorem III by shrinking is actually first due to BorGvka [Bor26], [Bor26a]. See 

the fragments of GUel. also [Ben80], [RoFiHo72], [PaSa81], [Sp77], [Cha79], 

In a somewhat more modern terminology, Jarnik [ GaHuSp791. 

justified Algorithm 2 as follows [Jar30]. Other Algorithms 
1. Pomocnh Vgta. [ . . . ] kaidi mki: obsahuje dvojici 

[a,, 4. 
Although we have emphasized the history of Algo- 

2. Pomocni V&a. Budii S souvisli &t; hl hz, . . . , rithms 1, 2, and 3, several other early algorithms were 

h, bud’te viechny indexy mnoistvi S; budii s < n. proposed for the minimum spanning tree problem. For 

Bud’te 11, 12, . . . , 1, ona 2 Zisel 1, 2, . . . , n, je; nejsou the most part these algorithms have taken the dual 
indexy mnoistvi S; budii approach of greedily excluding long edges (or some 

r(a,b) = min r(h,, I,) 
combination of the original approach and this dual 
approach). 

(i = 1, 2, . . . , s; j = 1, 2, . . . , t). The first algorithm of this type, which we call 

Tvrdim: Kaidi mkE, je; obsahuje S, obsahuje i dvojici Algorithm 4, appears to be Kruskal’s construction A’ 

[a, bl. [ Kru56]. 

Construction A’. This method is in some sense dual to 
Translation A. Perform the following step as many times as possible. 

Lemma 1. [In the formulation cited above] each Among the edges not yet chosen, choose the longest edge 
minimum spanning tree contains the pair [al, aJ. whose removal will not disconnect [the graph]. Clearly 
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the set of edges not eventually chosen forms a spanning a loop is closed, we remove the longest branch of the- 
tree of G, and in fact it forms a shortest spanning tree. only!-loop before proceeding to the next branch. 

Algorithm 4 was discovered independently by A. Dijkstra makes the observation that Algorithms 1 
Kotzig [KotGl] (who then found out about [Kru56] and 2 can both be obtained as a special case of Algo- 
from a referee). rithm 5 by choosing the appropriate order on the 

Utvorme postupnost’ podgrafov grafu G: G,, G1, . . . , G, edges. 

a postupnost’ hrin z G: hl, h2, . . . , h, [m = e - u + 11 A nearly identical algorithm was suggested at about 
takto; Hrana h, je l’ubovol’ne pevne zvoleni takL hrana the same time by Kalaba [Ka160]. 
z ff(G,-l) o ktorej plati: iiadna z hrin v iz ( G,-l) nemk 
hodotu v&&u nei I( h,): graf G, vznikne z grafu G,-l ked 

Select any connecting network with precisely n - 1 
links. Add another link to this network so that a loop is 

z neho odstrinime hranu h, a je Go = G. Podgraf G, ma formed and eliminate from the loop the most costly link. 
vlastnosti (x), (y), a (2) Repeat until no further changes in the connecting 

Translation network are possible. The resulting network . . . is 

Let us form a sequence of graphs G: G,, G1, . . . , G, and 
optimal. 

a sequence of edges of G: hl, hZ, . . . , h, [m = e - u + l] A similar algorithm is also described by Guan in 
as follows: The edge h, is any [edge of maximum length [Gua78], which contains other references to the 
among edges which belong to a cycle of GLel]; the graph Chinese literature. 
G, arises from the graph G,-, by the removal of the edge Algorithm 5 depends on the simple proposition that 
h,, where Go = G. [Then G, is a solution.] a spanning tree is minimal if and only if any outside 

Another algorithm with an interesting history, edge is at least as long as any edge on the cycle it 

which we call Algorithm 5, has been viewed as a creates (cf., for example, [CuDoFi67, theorem 4.11; 

modification of Algorithm 1 [Ros67]. similarly, a minimum spanning tree is unique if and 

Don&es: Une liste des a&es de G dans un ordre only if any outside edge is longer than any other edge 

quelconque, et pour chaque arete son numero d’ordre et on the cycle it creates, cf., [KotGl]). Tarjan has used 
ses deux extrkmit&s. this idea to develop an algorithm, nearly linear in e, 

Principe: On lit la liste des arites. Toute ar8te lue est to verify whether a given spanning tree is minimal 
“retenue.” Quand l’une d’elles constitue un cycle [Tar79]. Otherwise the algorithms of this section do 
(elementaire) avec d’autres aretes “retenues,” la plus not seem to allow efficient implementation easily, An 
grande a&e de ce cycle est “rejetee” des a&es 
“retenues.” Les a&es “retenues” et non “rejetees” 

O(e log v) implementation of Algorithm 5 is possible 

constituent V*. 
[Tar821 but does not appear to offer any computa- 
tional advantage over Algorithms 1, 2, or 3. 

Translation 

Given: A list of edges of G in an arbitrary order, and 
Conclusions 

for each edge its number and its endpoints. [Instead of 
giving edge lengths [Ros67] considers the edges As far as we can determine, the MSTP was first 

numbered in the order of increasing lengths.] formulated in 1926 by Otakar Boruvka [Bor26], who 
Principle: One reads the list of edges. Each edge read was interested in the most economical layout of a 

is “retained.” When one of these forms an (elementary) power-line network. BorGvka also developed the first 
cycle with other “retained” edges, the longest edge [i.e., solution of the MSTP, using Algorithm 3, and gave 
one with the greatest number] of this cycle is “rejected” the theoretical justification of the greedy method 
from among the edges “retained.” The edges which are 
“retained” and not “rejected” form V* [a solution]. 

[Bor26], [Bor26a]. Independent discoveries of Algo- 
rithm 3 include [Cho38], [FLPSZ51], and [So1611 (see 

(Rosenstiehl formulated seven algorithms for the [BerGho65]). 
MSTP, concentrating on the duality of cycles and Before Borfivka, the anthropologist Jan Czeka- 
cocycles. Among others, he gives an algorithm ob- nowski, in his work on various classification schemes 
tained by a similar modification from Algorithm 4 and [CzeOS], [Czell], [Cze28], fell just short of acknowl- 
an algorithm “dual” to Kruskal’s procedure B in the edging the problem and describing a greedy algorithm 
same way A ’ is due to A. Kruskal wondered about the for its solution. These steps were taken by Florek et 
existence of the latter in [Kru56].) Algorithm 5 ap- al. [FLPSZ51], who built on the work of Czekanowski. 
peared earlier [DijGO]. Substantial connections between the MSTP and tax- 

We consider the given branches in an arbitrary order. onomy (and clustering) have been independently de- 
The first branch is laid down and so is the second one; veloped in the West [SokSne63], [Joh67], [Gow- 
we continue in this way until a loop is closed. As soon as Ros69], [Zah71], [JarSib71], [DudHar73]. 
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Figure 6 

Algorithm 2 appears to have been discovered by In Figure 6 we summarize the historical develop- 
Vojtech Jarnik [Jar36]. Jarnik viewed his work as a ments and motivations of the MSTP up to about 1965. 
simplification of [Bor26]; in fact, he subtitled his After 1965 there was accelerated activity surround- 
paper, “From a letter to 0. BorGvka.” Other discov- ing the MSTP. Much of it was centered around algo- 
eries of Algorithm 2 appear in [Kru56] (with a suitable rithms for MSTP in coordinate spaces [BenFri76], 
interpretation of V) [LobWei57], [Pri57], and [Dij59], [Yao82], constrained minimum spanning trees 
the last two also specifying an implementation. [ChaRus72], [ChoKer73], [GloKli75], [Ker74], com- 

Algorithm 1, perhaps conceptually the simplest puter codes for the MSTP [Obr64], [PynWar72], 
greedy algorithm, appears not to have been considered [Roh73a], [Ros69], [So160], [Van70], [Whi72], span- 
until [Kru56], despite the number of previous papers ning arborescences in directed graphs [ChuLiu65], 
dealing with the problem, At nearly the same time, it [Edm67], algorithms for the hth best spanning tree 
was formulated in [LobWei57]. [BurHaf76], [Gab77], (KaIbMi811, minimum” span- 

With the modern implementations, Algorithm 1 is ning subgraphs of higher connectivity [CulGO], 
preferred when the edges are presorted or can be sorted [KotGla], [Roy69], updating minimum spanning trees 
by radix sort in linear time. In such a case, Algorithm [ChiHou78], [ SpiPan751, and such related problems 
1 has a time bound of nearly O(e). In all other cases, as the Steiner tree problem [DreWag71], [GilPo168], 
Algorithm 2, with the use of heaps, is at least as good [ChuGra78]. (In the form of the geometric Steiner 
as Algorithm 1, and for dense graphs it has a time tree problem, minimum trees had been considered 
bound of O(e). (For complete graphs, it is preferable before the development of calculus; cf. [Fer1638], 
to use the original Prim-Dijkstra implementation [Tor1646]; cf. also [JarKos34].) We cannot give a 
without the heaps.) Algorithm 3 has a time bound of complete list of references here; good bibliographies 
O(e log log u). There are, in fact, practical algorithms may be found in [Bra75], [Pie75], and [GolMag77]. 
closely related to it with the same worst-case time 
bounds and with average-case time bounds of O(e). Acknowledgment 
These are preferable in practice to any of the preceding 
algorithms except when the graph is nearly complete We are grateful to K. Culik, Ing. L. Hell, J. Nesetril, 
or when the edges are presorted [Tar82]. Algorithm 3 R. E. Tarjan, and S. G. Taylor for their assistance in 
also appears to be well suited for parallel computation. the preparation of this paper. 
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Added in Proof 

M. L. Fredman and R. E. Tarjan [FreTar84] have 
very recently discovered an O(e log* u) MST algorithm 
(where log* u is defined to be the least integer m such 
that the m-fold iterated logarithm logcm) u is less than 
1). It is based on an ingenious use of a new data 
structure they introduce, called a Fibonacci heap. This 
has subsequently been (slightly!) improved to 0 (e log 
log* u) by H. N. Gabow, Z. Galil, and T. H. Spencer 
[GaGaSp84]. 

lFreTar841 M. L. Fredman and R. E. Tarian. Fibonacci 
heaps and their uses to improve network optimization 
algorithms. Proc. 25th Symp. on Foundations of Comp. 
Sci. IEEE Comp. Sci. Press (1984), 338-346. 

[GaGaSp84] H. N. Gabow, Z. Galil, and T. H. Spencer. 
Efficient implementation of graph algorithms using con- 
traction. Proc. 25th Symp. on Foundations of Comp. Sci. 
IEEE Comp. Sci. Press (1984), 347-357. 

Annals of the History of Computing, Volume 7, Number 1, January 1985 . 57 


