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A b s t r a c t - - T h e  spectral approach for graph vlsuahzatlon computes the layout of a graph using 
certain mgenvectors of related matmces Two important advantages of thin approach are an ablhty 
to compute optimal layouts (according to specific reqmrements) and a very rapid computation time. 
In thin paper, we explore spectral vmuahzatmn techniques and study their properties from different 
points of wew We also suggest a novel algorithm for calculating spectral layouts resultmg m an 
extremely fast computatmn by optlmmmg the layout within a small vector space (~) 2005 Elsevmr 
Ltd All rights reserved 

K e y w o r d s - - G r a p h  drawing, Laplaclan, Eigenvectors, Fledler vector, Force-directed layout, Spec- 
tral graph theory 

1. I N T R O D U C T I O N  

A graph G(V, E) is an abstract structure that is used to model a relation E over a set V of enti- 
ties. Graph drawing is a standard means for visualizing relational information, and its ultimate 
usefulness depends on the readability of the resulting layout, that is, the drawing algorithm's 
ability to convey the meaning of the diagram quickly and clearly. To date, many approaches 
to graph drawing have been developed [2,3]. There are many kinds of graph-drawing problems, 
such as drawing di-graphs, drawing planar graphs, and others. Here, we investigate the prob- 
lem of drawing undirected graphs with straight-line edges. In fact, the methods that we utilize 
are not limited to traditional graph drawing and are intended, also, for general low dimensional 
visualization of a set of objects according to their pairwise similarities (see, e.g., Figure 1). 

We have focused on spectral graph drawing methods, which construct the layout using eigen- 
vectors of certain matrices associated with the graph To get some feeling, we provide results 
for three graphs in Figure 2. This spectral approach is quite old, originating with the work of 
Hall [4] in 1970. However, since then, it has not been used much. In fact, spectral graph drawing 
algorithms are almost absent in graph-drawing literature (e.g., they are not mentioned in the 
two books [2,3] that deal with graph drawing). It seems that, in most visuahzation research, the 
spectral approach is difficult to grasp, in terms of aesthetics. Moreover, the numerical algorithms 
for computing the eigenvectors do not possess an intuitive aesthetic interpretation. 

*An early and short version of this work appeared m [1] 
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(a) A drawing usmg the eigenvectors of the Laplaclan 
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(b) A drawing using the degree-normalized eigen- 
vectors 

Figure 1. Visualization of 300 odor pat terns  as measured by an electronic nose 

(a) The 4970 graph IVI = 4,970, IEI = 7, 400. (b) The 4elt graph [10] iV I = 15,606, IEI = 
45,878. 

(c) The crack graph [10]. ]V] = 10,240, [E I = 30, 380. (d) A 100 x 100 folded grid with central horizontal 
edge removed. IV] = 10,000, ]El = 18,713. 

Figure 2 Drawings obtained from the Laplaclan elgenvectors. 
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We believe that the spectral approach has two distract advantages that make it very attractive. 
First, it provides us with a mathematically-sound formulation leading into an exact solution to 
the layout problem, whereas, almost all other formulations result in an NP-hard problem, which 
can only be approximated. The second advantage is computation speed. Spectral drawings can 
be computed extremely fast as we show in Section 7. This is very important because the amount 
of information to be visualized is constantly growing rapidly. 

Spectral methods have become standard techniques in algebraic graph theory (see, e.g., [5]). 
The most widely used techniques utilize eigenvalues and eigenvectors of the adjacency matrix of 
the graph. More recently, the interest has shifted somewhat to the spectrum of the closely related 
Laplacian. In fact, Mohar [6] claims that the Laplacian spectrum is more fundamental than this 
of the adjacency matrix 

Related areas where the spectral approach has been popularized include clustering [7], parti- 
tioning [8], and ordering [9]. However, these areas use discrete quantizations of the eigenvectors, 
unlike graph drawing, which employs the eigenvectors without any modification. Regarding this 
aspect, it is more fundamental to explore properties of graph-related eigenvectors in the frame- 
work of graph drawing. 

In this paper, we explore the properties of spectral visualization techniques, and provide dif- 
ferent explanations for their ability to draw graphs nicely. Moreover, we consider a modified 
approach that uses what we will call degree-normalzzed ezgenvectors, whmh have aesthetic ad- 
vantages in certain cases. We provide an aesthetically-motivated algorithm for computing the 
degree-normalized eigenvectors. We also introduce a novel algorithm for computing spectral lay- 
outs that facilitates a significant reduction of running time by optimizing the layout within a 
small vector space. 

2. B A S I C  N O T I O N S  

A graph is usually written G(V, E), where V = {1. . .  n)  is the set of n nodes, and E is the 
set of edges (we assume no self-]oops or parallel edges). Each edge (i,j I is associated with a 
nonnegative weight w~ 3 that reflects the similarity of nodes z and j.  Thus, more similar nodes 
are connected with "heavier" edges. For unweighted graphs, one usually takes uniform weights. 
Let us denote the neighborhood of z by, 

N(z) = {3 I (z,3) • E}.  

The degree of node z is deg(~) de___f E3EN(~ ) W~:. Throughout the paper, we have assumed, with- 
out loss of generality, that G is connected, otherwise, the problem we deal with can be solved 
independently for each connected component. 

A p-dimensional layout of the graph is defined by p vectors, 

x l ,  . . . ~ X  p E ~ n  

where 
x 1 ( ~ ) , . . . , x  p (~) 

are the coordinates of node ~. In most applications, p ~ 3, but here, we will not specify p, so as 
to keep the theory general (however, always p < n). Let us denote by d~3, the Euclidean distance 
between nodes ~ and j (in the p-D layout), so 

= - ( 3 ) )  

k = l  

The ad3acency-matrix of the graph G is the 

A G = { 
0, 

w . ,  (~,3) 
We will often omit the G in A e. 

symmetric n x n matrix A G, where 

~tE, 
~,j = 1, . . , n .  

E E, 



1870 Y KOREN 

The Laplac~an is another symmetric n x n matrix associated with the graph, denoted by L G, 
where 

deg(i) ,  ~--2,  

L~ = O, ~ ¢ 3, (~,3) q~ E, ~,3 = 1 , . . . , n .  

Again, we will often omit the G in L G. 
The Laplacian has many interesting properties (see, e.g., [6]). Here, we state some useful 

features. 

(1) L is a real symmetric and hence, its n eigenvalues are real and its eigenvectors are orthog- 
onal. 

(2) L is positive semidefinite and hence, all eigenvalues of L are nonnegative. 

(3) In ~f  (1, 1 , . . . ,  1) T E R ~ is an eigenvector of L, with the associated eigenvalue 0. 
(4) The multiplicity of the zero eigenvalue is equal to the number of connected components 

of G. In particular, if G is connected, then, In is the only eigenvector associated with 
eigenvalue 0 

The usefulness of the Laplacian stems from the fact that  the quadratic form associated with 
it is just a weighted sum of all pairwise squared edge-lengths. 

LEMMA 1. Let L be an n x n Laplaclan, and let x E •n. Then, 

x T L x =  E w , ( x ( i ) - - x ( 2 ) )  2 . 

More generally, for p vectors x l , . . . , x  p E ~n, we/]ave 

P  (xk)TLx k= 
k=l  (~,j)EE 

The proof of this lemma is direct. 
Throughout the paper, we will use the convention, 0 = )u < A2 _< -. .  _< A~, for the eigenvalues 

of L, and denote the corresponding real orthonormal eigenvectors by 

v l = ( - - ~ ) . l ~ , v 2 , . .  ,v ~. 

Let us define the degrees matmx as the n × n diagonal matrix D that  satisfies D~ -- deg(i). 
Given a degrees matrix, D, and a Laplacian, L, then, a vector u and a scalar # are termed, 
generalized eigenpairs of (L, D), if Lu = #Du. Our convention is to denote the generalized 
eigenvectors of (L,D) by u 1 = a .  in ,U2, . . .  ,u n, with corresponding generalized eigenvalues 
0 = #1 < #2 ~< "'" ~< #n. (Thus, Lu k = Iz~Du k, k = 1 , . . . , n . )  To uniquely define u l , u 2 , . . . , u  ~, 

we require them to be D-normalized, so, 

( u k ) T  D u  k .~_ l ,  k ~- i , . . .  n.  

We term these generalized eigenvectors, the degree normalized eigenvectors. 
In general, for a symmetric (positive-semidefinite) matrix A and a positive-definite matrix B, 

it can be shown that  all the generalized eigenvalues of (A, B) are real (nonnegative), and that  all 
the generalized eigenvectors are B-orthogonal. Consequently, (uk)TDu I = 0, V k ~ 1. 

2.1. M a t h e m a t i c a l  P r e l i m i n a r i e s  

Now, we develop some essential mathematical background that  is needed for subsequent deriva- 
tions. Different parts of this material can be found in standard linear algebra textbooks. The 
casual reader can make do with understanding the theorems and corollaries, and does not have 
to delve into the proofs. In the following, 6~j is the Kronecker delta (defined as 1 for z -- 3 and 
as 0, otherwise), and A k is the k th column of matrix A. 
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T H E O R E M  1. 

sponding eigenvalues Ai ~< " '  ~ An. 
min imiza tmn  problem, 

Given a s ymmet r i c  ma t r i x  An×n, denote by v i, . . . ,  v ~ i ts eigenvectors, with corre- 

Then, v i ,  . . . , v;  are an opt imal  solution o f  the constrained 

P 

min ~ (xk) S Axk, 
k=l 

s u b j e c t  to: (xk) T X l = 6kl , k , l  = 1 , . . . p .  

( i) 

Throughout  this section, we assume p < n. Before providing the proof of Theorem 1, we prove 
the following lemma. 

LEMMA 2. Let  v l ,  . . . , V p - 1  C ~n  be some vectors, and let X be an n x p ma t r i x  with orthogonM 

columns (i.e., x T  x = I ) ,  then, there is an n x p ma t r i x  with orthogonM columns Y tha t  satisfies 

the following. 

(1) For every 2 <~ k <. p: y k  is orthogonal to v l ,  . . . , v k - i .  

(2) For every n x n ma t r i x  A,  trace ( X T  A X )  = trace ( y T  A y ) .  

PROOF. Let us denote the projection of v 1 into TCange (X)  (i.e., span ( X 1 , . . , X P ) )  by 01. 
If 0 i = 0, then, we set y1  = X 1 and ]?2, ,])P = X 2, . , X  p Certainly ~ 2 , . . . , ~ p  are 

orthogonal to v 1. Otherwise, (when 0 i ¢ 0), we rotate X 1, X 2 . . . ,  X p within T~ange ( X )  ob- 
taining yi , IY2 .. . ,]Yp, such that  y i  = 0i/[[911[" Since rotations do not alter orthogonality 

relations, we still have tha t  ]Y2 . . . ,  ]?p are orthogonal to v i. We continue recursively with the 
vectors v 2 , . . . , v  p - i  and the matrix (]Y2, . ,]YP). Note tha t  the recursion performs rotations 

only within span(Y 2, . . ,  ]YP), so all resulting vectors are orthogonal to v I and to y i .  At the 
end of the process, we obtain p orthogonal vectors, y i  . . . .  YP, tha t  satisfy the first requirement 

from Y in the lemma. 
Since all rotations are performed within Tiange (X) ,  there is some p x p matrix R, such that  

Y = X R .  Moreover, since X and Y have orthogonal columns, we obtain 

I = y T y  = R T x T x R  = R T R .  

Hence, R is an orthogonal matrix implying that  also R R  T = I.  We use the fact tha t  the trace is 
cyclically-commutative to obtain the following, 

trace ( y T A y )  = trace (R T X  T A X R )  = trace ( R R  T X  T A X )  = trace ( Z  T A X ) .  I 

Now we can prove Theorem 1. 

PROOF. Let x i , . . . ,  x p be arranged column-wise in the n x p matrix X.  Now, we can rewrite (1) 

in a simpler notation, 
min trace ( X T A X ) ,  

x ( 2 )  

subject to. x T  x = I .  

Let V0 = (v~, . . .  ,v~) be the minimizer of (2). Since the eigenvectors v i , . . . , v  ~ form a basis 
of ]R n, we can decompose every v0 k as a linear combination, where v0 k -- v ' "  akvt  Lemma 2 A-~l= 1 l " 

allows us to assume, without  loss of generality, that ,  for every 2 ~< k <~ p: v0 k is orthogonal to the 
eigenvectors v l, . . ,  v k- i .  We may, therefore, take a~ = 0, for l < k, and write, 

= 

l = k  

Next, we use the constraint, (v0k)Tv~ ---- 1, to obtain an equation for the coefficients a~, 

(5 / 5 ~-- k 2 
i = (vo  = , 

\ l = k  / \ l = k  / l = k  

where the last equation stems from the orthonormaii ty of v i, v 2 , . . ,  v n. 
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Hence, ~-~Lk(a~) 2 = I (a generalization of Pythagoras'  law). Using this result, we can expand 
the quadratic form, (xk)-rAx k, 

: A 
\ l = k  / \ l = k  / 

: a v I a Av 1 
\ l = k  / \ l = k  / 

= C~ V 1 Oz ~ l V  l 

\ l = k  / \ l = k  / 

l=k  

l=k  

---- Ak. 

(3) 

Thus, the target function satisfies 

P P 

trace (X  TAX)  : E (xk) T Ax k >1 E Ak. 
k = l  k = l  

Since y~f=I(vk)TAv k = ~'~=1 Ak, we deduce that  the low eigenvectors v l , . . . ,  v p solve (1). | 

Now, we state a more general form of Theorem 1. 

THEOREM 2. Given a symmetric matrix A n x n  and a positive definite matrix B, denote by 
v l ,  . . . , V n the generalized eigenvectors of (A, B), with corresponding eigenvalues A1 ~ " "  ~ An. 
Then, v l , . . . ,  v p are an optimal solution of the constrained minimization problem, 

P 

rain Z (xk) T Axk, 
X I ,  . ,X p 

k=l 

subject to: (xk) T Bx  l = 6kl, k , l = l , . . . p .  

(4) 

PROOF. Since B is positive definite, it can be decomposed into B = c T c ,  where C is an n x n 
invertible matrix. Let us substitute in (4), x k = C - l y  k, so now, we reformulate the problem as 

P 

min E (yk) T C_ T AC_ly  k 
~l 1 ~ . . ~ y P  

k = l  

subject to: ( yk ) ry l  = 6kl, k,l  = 1 , . . . p .  

(5) 

Let y0~,..., y~ be the minimizer of (5). By Theorem 1, these are simply the p lowest eigenvectors 
of C - T A G  -1, therefore, obeying C - T A C - l y k  o = Akyko . Using this equation and transforming 

back into Xko = C- lye ,  we get 
c - T  Axko = AkCx ko . 

This implies Ax~ = AkBx~, so the solvers of (4) are nothing but the lowest generalized eigenvec- 
tors of (A, B). | 

Frequently, the following version of Theorem 2 will be the most suitable. 
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COROLLARY 1. Given a symmetr ic  matr ix  A~xn  and a positive definite matr ix  Bnxn ,  denote by 
v l , . . . ,  v ~, the generalized eigenvectors of  (A, B),  with corresponding eigenvalues A1 <. . . .  <~ AN. 
Then, vl ,  . . . , v p are an optimal solution of  the constrained minimizat ion problem, 

min 

subject to: 

PROOF. Note that the value of 

k=l  k=l  

(~)~ B~  ~ ( ~ )  ~ B (ex~) 
k=l  k=l  

Thus, we can always scale the optimal solution, so that 

(~,)T B~X = (~2)T B ~  . . . . .  (~P)~ B ~  = 1. 

This reduces the problem to the form of (4). 

P 
E (xk)~ Axk 

k=l  p , (6)  

E (zk)T B~k 
k=l  

( x l )  T B x  1 = (x2) T B x  2 . . . . .  (xP) T S z  p, (7) 

(xk) T B x  l = O ,  1 < k ¢ l < p .  (8) 

(6) is mvanant under sealing since, for any constant c ¢ O, 

It is straightforward to prove the following corollary that deals with a case in which the solution 
must be B-orthogonal to the lowest generalized eigenvectors. In this case, we just take the next 
low generalized eigenvectors. 

COROLLARY 2. Gwen a symmetr ic  matrix Anxn and a positive definite mat r i x  Bnxn~ denote by 
vl , . . . ,  V n, the generalized eigenvectors of  (A, B ), with corresponding elgenvalues A1 <<.... <~ AN. 
Then, vk+l , . . . ,  v k+p are an opt lmM solution of the constrained minimizat ion problem, 

P E (x') T ~ "  

min l=l p 
=1, ,xP E (X')  T B x '  

(9)  
subject to: (x 1)T B x  I = (x2) T B x  2 . . . . .  (xV)T BxP, 

(~')T B~: = 0, 1<<.~¢3<<.p, 

(x~)-C B v  3 = 0 ,  ~ = l , . . . , p ,  3 = 1 , . . . , k .  

3. S P E C T R A L  G R A P H  D R A W I N G  

The earliest spectral graph-drawing algorithm was that of Hall [4]; it uses the low eigenvectors 
of the Laplacian Henceforth, we will refer to this method as the e~genpro3eetwn method. Later, a 
similar idea was suggested in [11], where the results are shown to satisfy several desired aesthetic 
properties. A few other researchers utilize the top elgenvectors of the adjacency matrix instead of 
those of the Laplacian. For example, consider the work of [12], which uses the adjacency matrix 
eigenvectors to draw molecular graphs. Recently, eigenvectors of a modified Laplacian were used 
in [13] for the visualization of bibliographic networks. 

In fact, for regular graphs of uniform degree deg, the eigenvectors of the Laplacian equal 
those of the adjacency matrix, but in a reversed order, because L = deg .I - A, and adding 
the identity matrix does not change eigenvectors. However, for nonregular graphs, use of the 
Laplacian is based on a more solid theoretical basis, and in practice, also gives nicer results than 
those obtained by the adjacency matrix. Hence, we will focus on visualization using eigenvectors 
of the Laplacian. 
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3.1. E n e r g y - B a s e d  Der iva t i on  of  t he  E i g e n p r o j e c t i o n  M e t h o d  

One of the most popular approaches to graph-drawing is the force-directed strategy [2,3] that 
defines an energy function (or a force model), whose minimization determines the optimal draw- 
ing. Consequently, we will introduce the eigenprojection method as the solution of the following 
constrained minimization problem, 

E ~,J4 
min E (x 1, .. x p) de_f (*,j)~E (10) 

~1  .... ~. " ' Y ~ d , ~  ' 

subject to: Vat (x 1) = Var (x 2) . . . . .  Var (xP), (11) 

Coy (xk, x~) = 0, 1 < k # z < p. (12) 

Here, Vat(x) is the variance of x, defined as usual by, 

n 

Var(x) = 1 E (x (i) - ~)2 
n 

where ~, is the mean of x. Also, Cov(x k, x l) is the covariance of x k and x I defined as 

1 ~ (~ (~)_ ~) (x~ (i)- ~). 
n 

z = l  

Recall that 
p 

4 = ~ ( x~ ( 0 -  ~ (3)) 2 
k=l  

The energy to be minimized, E ( x l , . . .  ,xP), strives to make edge lengths short (to minimize 
the numerator) while scattering the nodes in the drawing area preventing an overcrowding of the 
nodes (to maximize the denominator). This way, we adopt a common strategy to graph drawing 
stating that adjacent nodes should be drawn closely, while, generally, nodes should not be drawn 
too close to each other; see, e.g., [14,15]. Since the sum is weighted by edge-weights, "heavy" 
edges have a stronger impact and hence, will be typically shorter. The first constraint (11) forces 
the nodes to be equally scattered along each of the axes. In this sense, the drawing has a perfectly 
balanced aspect ratio The second constraint (12) ensures that there is no correlation between 
the axes, so that each additional dimension will provide us with as much new information as 
possible 1 . 

The energy and the constraints are invariant under translation. We eliminate this degree of 
freedom by requiring that, for each 1 ~< k ~< p, the mean of x k is 0, i.e., 

n 

Ex~(~ )  = (xk) T 
~=1 

. 1 , = 0 .  

This is very convenient since now the no-correlation constraint, Cov (x k, x t) = 0, is equivalent to 
requiring the vectors to be pairwise orthogonal (xk)-Cx I = 0. Also, now Var (x k) = 1/n(xk)Tx k, 
so the uniform variance constraint can be written in a simple form, 

1The strategy to reqmre no correlation between the axes is used in other visualization techniques hke principal 
components analysis and classical multidimensional scaling [16]. 
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Using L e m m a  1, we can write ~(, ,o)eE w~ad~3 in a mat r ix  form, 

P 

Z (x~) ~ ~ .  
k = l  

Now, the desired layout can be described as the solution of the following equivalent minimization 
problem, 

P T 

E (~) L~ ~ 
mln 2 , 

x~, ,~  ~ d, 3 
*<a (13) 

subjec t to :  ( x ~ ) ~ ( ~ ) = ~ , ,  k , l = l , . . . , p ,  

( ~ k ) r .  1~ = 0, k = 1 , . . .  ,p.  

We can simplify the denommator  ~*<a d* 2 ,  using the following lemma. 

LEMMA 3. Let  x E ]R n, such that X T l n  -~ O, then, 

n 

~<3 *=1 

PROOF. 

E 1 (x (z) - x (3)) 2 1 2n x ( ~ ) 2 - 2  x ( ~ ) x ( j )  (x (,) - x (3)) 5 = ~ = 2 \ ~=1 , , , <  
z < ,  %3=1 

---- n .  x(z) 2 - x (z) x ( j )  ---- n .  x (i) 2. 
*=1 ~=1 3 = 1  *=1 

n 
The last step stems from the fact tha t  x is centered, so tha t  Y~3=1 x(3) = 0. | 

As a consequence, we get 

P P P 

Z 4 = Z Z (~ (z)- ~ o)) ~ = Z Z (~ (~)- x~ (~))~ = Z ~-(x~)~.  
*<3 *<3 k = l  k = l  *<3 k = l  

Therefore, we rewrite again the minimization problem in an equivalent form, 

P 
E (xk) T Lx k 

min k=l 
xl . . . .  z~ (xk) T xk ' 

k=l (14) 

subject  t o :  (Xk) T X z = 5kZ, k, l = 1 , . . .  ,p, 

( x k )  r • 1~ = o, k = 1 , . . .  , p .  

Let us subst i tute  A = L, B = I in Corollary 2. Using the fact tha t  the lowest eigenvector 
of L is ln, we obtain tha t  the opt imal  layout is given by the lowest positive Laplacian eigenvec- 
tots  v 2 , . . . ,  v p+I The resulting value of the energy is 

p + l  

k = 2  

the sum of the corresponding eigenvalues. 
Note tha t  an interesting proper ty  of the eigenprojection is tha t  the first p - 1 axes of the 

opt imal  p-dimensional layout are nothing but  the opt imal  (p - 1)-dimensional layout. 



1876 Y KO~EN 

4.  D R A W I N G  U S I N G  D E G R E E - N O R M A L I Z E D  E I G E N V E C T O R S  

In this section, we introduce a new, related spectral graph drawing method that associates the 
coordinates with some generalized eigenvectors of the Laplacian. 

Suppose that we weight nodes by their degrees, so the mass of node i is its degree--deg(~). 
Now, if we take the original constrained minimization problem (14) and weight sums according to 
node masses, we get the following degree-weighted constrained minimization problem (where D 
is the degrees matrix), 

p 
E (z k) T Lxk 

k = l  
m m  

~ . . . .  ~ (zk) T Dx~' 
(15) 

subject to: (xk) 7- D (x l) = 5,j, k,l = 1 , . . . , p ,  

(xk) T DI,~ = 0, k = 1 , . . . , p .  

Substitute A = L, B = D in Corollary 2 to obtain the optimal solution u2, . . .  ,u v+l, the gener- 
alized eigenvectors of (L, D). We will show that in several aspects using these degree-normalized 
eigenvectors is more natural than using the eigenvectors of the Laplacian. In fact, Shi and Ma- 
lik [7] have already shown that the degree-normalized eigenvectors are more suitable for the 
problem of image segmentation. For the visualization task, the motivation and explanation are 
very different. 

In problem (15), the denominator moderates the behavior of the numerator. The numerator 
strives to place those nodes with high degrees at the center of the drawing, so that they are in 
proximity to the other nodes. On the other hand, the denominator also emphasizes those nodes 
with high degrees, but in the reversed way; it strives to enlarge their scatter. The combination 
of these two opposing goals, helps in making the drawing more balanced, preventing a situation 
in which nodes with lower degrees are overly separated from the rest nodes. 

Another observation is that degree-normalized eigenvectors unify the two common spectral 
techniques: the approach that uses the Laplacian and the approach that uses the adjacency 
matrix. 

CLAIM The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D), 
with a reversed order. 

PROOF. Utihze the fact that L = D - A. Take u, a generalized eigenvector of (L, D). The 
vector u satisfies (D - A ) u  = #Du ,  or equivalently, by changing sides, Au  = Du  - #Du.  This 
implies that 

A u  = (1 - #) Du, 

and the claim follows. The proof in the other direction is performed similarly. Thus, A and L 
have the same D-normalized eigenvectors, although the order of eigenvalues is reversed. | 

In this way, when drawing with degree normalized eigenvectors, we can take either the low 
generahzed eigenvectors of the Laplacian, or the top generalized eigenvectors of the adjacency 
matrix, without affecting the result. (Remark: In this paper, when referring to "top" or "low" 
eigenvectors, we often neglect the topmost (or lowest) degenerate eigenvector a .  1~.) 

The degree-normalized eigenvectors are also the (nongeneralized) eigenvectors of matrix D - 1 A .  

This can be obtained by left-multiplying the generalized eigenequation, A x  = # D x ,  by D -1, 
obtaining the eigenequation, 

D - l A x  = #x.  (16) 

Note that D - 1 A  is known as the trans~twn matrix of a random walk on the graph G. Hence, the 
degree-normalized eigenprojection uses the top eigenvectors of the transition matrix to draw the 
graph. 
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Regarding drawing quality, for most unweighted graphs with which we experimented (that are 
probably close to being regular), we have observed not much difference between drawing using 
eigenvectors and drawing using degree-normalized eigenvectors. However, when there are marked 
deviations in node degrees (as is often the case when working with weighted graphs), the results 
are quite different. This can be directly seen by posing the problem as in (15). Here, we provide 
an alternative explanation based on (16). Consider the two edges el and e2. Edge el is of 
weight 1, connecting two nodes, each of which is of degree 10. Edge e 2 is of weight 10, connecting 
two nodes, each of whmh is of degree 100. In the Laplacian matrix, the entries corresponding 
to e2 are 10 times larger than those corresponding to el. Hence, we expect the drawing obtained 
by the eigenvectors of the Laplacian, to make the edge e2 much shorter than el (here, we do not 
consider the effect of other nodes that  may change the lengths of both edges). However, for the 
transition matrix in (16), the entries corresponding to these two edges are the same, hence, we 
treat  them similarly and expect to get the same length for both edges. This reflects the fact that  
the relatwe importance of these two edges is the same, i.e., 1/10. 

In many kinds of graphs numerous scales are embedded, which indicates the existence of dense 
clusters and sparse clusters. In a traditional eigenprojection drawing, dense clusters axe drawn 
extremely densely, while the whole area of the drawing is used to represent sparse clusters or 
outliers. This might be the best way to minimize the weighted sum of square edge lengths, while 
scattering the nodes as demanded. A better drawing would allocate each cluster an adequate 
area. Frequently, this is the case with the degree normalized eigenvectors that  adjust the edge 
weights in order to reflect their relative importance in the related local scale. 

For example, consider Figure 1, where we visualize 300 odors as measured by an electronic 
nose. Computation of the similarities between the odors is given in [17]. The odors are known to 
be classified into 30 groups, which determine the grayscale of each odor m the figure. Figure la  
shows the visualization of the odors by the eigenvectors of the Laplacian. As can be seen, each 
of the axes shows one outlying odor, and places all the other odors about at the same location. 
However, the odors are nicely visualized using the degree normalized eigenvectors, as shown in 
Figure lb. 

5. A D I R E C T  C H A R A C T E R I Z A T I O N  OF S P E C T R A L  L A Y O U T S  

So far, we have derived spectral methods as solutions of optimization problems. In this section, 
we characterize the eigenvectors themselves, in a rather direct manner, to clamfy the aesthetic 
properties of the spectral layout. The new derivation will show a very simple relation between 
layout aesthetics and the Laplacian (generalized) eigenvectors. Here, the degree-normalized eigen- 
vectors will appear as a more natural way for spectral graph drawing. 

The quadratic form associated with the Laplaclan, 

ZLx  : Z (x - 

m tightly related to the aesthetic criterion that calls for placing each node at the weighted centroid 
of its neighbors. To conceive this note that, for each node i differentiating xTLx with respect 
to x(i) gives 

OxTLx 
o x  ( i )  - 2 w , j  ( x  - x ( 3 ) ) .  

Equating this to zero and isolating x ( J ,  we get 

w,~x (3) 
x (~) = jcx(~) 

deg  (~) 
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Hence, when Mlowing only node ~ to move, the location of ~ that minimizes x T L x  is the weighted 
centroid of z neighbors. 

When the graph is connected, placing each node at the weighted centroid of its neighbors can be 
strictly achieved only by the degenerate solution that puts all nodes at the same location. Hence, 
to incorporate this aesthetic criterion into a graph drawing algorithm, it should be modified 
appropriately. 

Presumably, the earliest graph drawing algorithm, formulated by Tutte [18], is based on placing 
each node on the weighted centroid of its neighbors. To avoid the degenerate solution, Tutte 
arbitrarily chose a certain number of nodes to be anchors, i.e., he fixed their coordinates in 
advance. Those nodes are typically drawn on the boundary. This, of course, prevents the collapse; 
however, it raises new problems, such as which nodes should be the anchors, how to determine 
their coordinates, and why, after all, such an anchoring mechanism should generate nice drawings. 
An advantage of Tutte's method is that in certain cases, it can guarantee achieving a planar 
drawing (i.e., without edge crossings). 

Thtte treats in different ways the anchored nodes and the remaining nodes. Whereas, the 
remaining nodes are located exactly at the centrold of their neighbors, nothing can be said about 
anchored nodes. In fact, in several experiments, we have seen that the anchored nodes are located 
quite badly. 

Alternatively, we do not use different strategies for dealing with two kinds of nodes, but rather, 
we treat all the nodes similarly. The idea is to gradually increase the deviations from centroids 
of neighbors as we move away from the origin (that is the center of the drawing). This reflects 
the fact that central nodes can be placed exactly at their neighbors' centroid, whereas boundary 
nodes must be shifted outwards. 

More specifically, node i, which is located in place x(i), is shifted from the center toward the 
boundary by the amount of #. Ix(i)l, for some # > 0. Formally, we request the layout x to satisfy, 
for every 1 ~< i ~< n, 

E (3) 
X (~) --  9eY(~) 

deg  = ' "  

Note that the deviation from the centroid is always toward the boundary, i.e., toward +c~ for 
positive x(i) and toward - o o  for negative x(z). In this way, we prevent a collapse at the origin. 

We can represent all these n requests compactly in a matrix form, by writing, 

D-1Lx  = #x. 

Left-multiplying both sides by D, we obtain the familiar generalized eigenequation, 

Lx = ~Dx. 

We conclude with the following important property of degree-normalized eigenvectors. 

PROPOSITION 1. Let u be a generahzed elgenvector of (L, D), with associated eigenvalue #. 
Then, for each i, the exact deviation from the centroid of neighbors is 

deg (i) = #" u (i). 

Note that the eigenvalue # is a scale-independent measure of the amount of deviation from 
the centroids. This provides us with a fresh new interpretation of the eigenvalues that is very 
different from the one given in Section 3.1, where the eigenvalues were shown as the amount of 
energy in the drawing. 

Thus, we deduce that the second smallest degree-normalized eigenvector produces the non- 
degenerate drawing with the smallest deviations from centroids, and that the third smallest 
degree-normalized eigenvector is the next best one and so on. 

Similarly, we can obtain a related result for eigenvectors of the Laplacian. 
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PROPOSITION 2. Let v be an eigenvector of L, with associated eigenvalue A. Then, for each z, 
the exact deviation from the centroid of neighbors is 

v(~) 
w~v (3) 

deg (z) 
-- )~. deg (z)-i  - v (z). 

Hence, for eigenvectors of the Laplacian, the deviation between a node and the centrold of its 
neighbors gets larger as the node's degree decreases. 

6. A N  O P T I M I Z A T I O N  P R O C E S S  

An attractive feature of the degree-normalized eigenvectors is that  they can be computed by 
an intuitive algorithm, which is directly related to their aesthetic properties. This is unlike the 
(nongeneralized) eigenvectors, which are computed using methods that  are difficult to interpret 
in aesthetic terms. We begin by deriving an algorithm for producing a 1-D layout x E R ~, and 
then, we show how to compute more axes. 

Our algorithm is based on iteratively placing each node at the weighted centroid of its neighbors 
(simultaneously, for all nodes). The aesthetic reasoning is clear. As explained in Section 5, this 
principle unifies the Tutte layout [18] and the eigenprojection. 

A rather impressive fact is that  when initialized with a vector D-orthogonal to 1,~, such an 
iterative placement algorithm converges in the dwectzon of a nondegenerate degree-normalized 
eigenvector of L. More precisely, this algorithm converges either in the direction of u S or that  
of u '~. We can prove this fact by observing that  the action of putting each node at the weighted 
centroid of its neighbors is equivalent to multiplication by the transition ma t r ix - -D-1A.  Thus, 
the process we have described can be expressed in a compact form as the sequence, 

x0 = random vector, s.t. x~Dl~ -- 0, 

x~+l = D-1Ax~. 

This process is known as the power-iteration [19]. In general, it computes the "dominant" 
eigenvector of D-1A, which is the one associated with the largest-m-magnitude eigenvalue. In 
our case, all the eigenvectors are D-orthogonal to the "dominant" elgenvector--l~, and also the 
initial vector, x0, is D-orthogonal to ln. Thus, the series converges in the direction of the next 
dominant eigenvector, which is either u 2, which has the largest positive eigenvalue, or u n, which 
possibly has the largest negative eigenvalue. (We assume that  x0 is not D-orthogonal to u 2 or 
to u n, which is nearly always true for a randomly-chosen x0.) 

In practice, we want to ensure convergence to u S (avoiding convergence to u~). We use the 
fact that  all the eigenvalues of the transition matrix are in the range [-1,  1]. This can be proved 
directly using the Gershgorin bound on eigenvalues [19], since in D-1A,  all entries on the diagonal 
are 0, and the sum of each row is 1. Now it is possible to shift the eigenvalues by adding the value 1 
to each of them, so that  they are all positive, thus, preventing convergence to an eigenvector with 
a large negative eigenvalue. This is done by working on the matrix, 

I + D - i A ,  

instead of the matrix D-1A. In thxs way, the eigenvalues are in the range [0, 2], while elgenvectors 
are not changed. In fact, it would be more intuitive to scale the eigenvalues to the range [0, 1], 
so, we will actually work with the matrix, 

1(I  + D-1A). 
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Function Spectral  Drawing G--the input graph, p---dimension 

% Thin function computes uS,.. , u p, the top (nondegenerate) elgenvectors of D-1A. 

const e ~- 10 -8 % tolerance 

for k = 2 t o p d o  

~k .__ random % random mltlahzat]on 
~k ~k 

do 

%D-Orthogonalize against previous eigenvectors. 

f o r l = l t o k - l d o  
uk ~ u k - -  (uk) "TDuz l 

end for 

% multiply with ½(I + D-1A). 

for ~= 1 t o n d o  

end for 

*- ~ % normahzation 

while ~k u k < 1 - e % halt when direction change is negligible 

end for 
re turn  u 2, . . . ,  uP 

Figure 3 The algorithm for computing degree-normalized eigenvectors 

If we use our initial "intuitive" notions, this means a more careful process. In each iteration, we 

put each node at the average between its old place and the centroid of its neighbors. Thus, each 

node absorbs its new location not only from its neighbors, but also from its current location. 

The full algorithm for computing a multidimensional drawing is given in Figure 3. To compute 

a degree-normalized eigenvector u k, we will use the principles of the power-iteration and the D- 

orthogonality of the eigenvectors. Briefly, we pick some random x, such that x is D-orthogonal 
to ul,... ,u k-l, i.e., xTDu I -- 0,..., xTDu k-1 = 0. Then, if xTDu k ~ 0, it can be proved that 

the series, 

/) I ( I + D - 1 A )  x,  ( I + D - 1 A  x,  ( I + D - 1 A  x , . . .  
2 

converges in the  direct ion of u k. Note tha t  in theory, all the  vectors in this series are D-or thogonal  

to u ] , . . . ,  u k-1. However, to  improve numerical  stabili ty,  our implementa t ion  imposes the  D- 

or thogonal i ty  to previous eigenvectors in each i terat ion.  The  power i te ra t ion  a lgor i thm produces 

vectors of diminishing (or exploding) norms. Since we are only in teres ted in convergence in 

direction, it  is cus tomary  to  rescale the  vectors after each i terat ion.  Here, we will rescale by 

normalizing the vectors to  be of length 1. 

The convergence rate  of this a lgori thm when comput ing  u k is dependent  on the ra t io  #k /Pk+ l .  

Running t ime is significantly improved when replacing the random ini t ia l izat ion of the  vectors 

wi th  some well-designed init ial ization.  A way to obta in  such a smar t  in i t ia l izat ion is described 

in Section 7. An a l ternat ive  approach is to embed this a lgor i thm in a mult iscale construction.  
This is done by  approx imat ing  the original graph using a coarse graph abou t  half  the  size, and 
then comput ing  recurslvely the eigenvectors of the  coarse graph.  These eigenvectors are used to 

ob ta in  an ini t ial  predict ion of the eigenvectors of the  original graph.  Our  experience with  such a 
mult iscale s t ra tegy  shows an ext remely  rapid  convergence. Fur ther  detai ls  are given in [20]. 
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7. S P E C T R A L  D R A W I N G S  W I T H I N  A S U B S P A C E  

Most graph drawing methods suffer from lengthy computation times when applied to re- 
ally large graphs. Hence, a particularly challenging problem is drawing large graphs contain- 
ing 103-106 nodes, which has gained much interest recently because of the rapid growth of data 
collections. (Recent work on accelerating force-directed layout algorithms includes [21-24].) In 
general, when using standard eigensolvers the eigenprojection method is very fast compared to 
almost all other graph-drawing algorithms. However, calculating the first few eigenvectors of L is 
a difficult task that presents a real problem for standard algorithms when n becomes around 10 ~. 
Consequently, we describe an approach that significantly reduces running times, enabling the 
drawing of huge graphs in a reasonable time. 

Whereas, in eigenprojection, we chose the drawing axes as arbitrary vectors in R n, now, we 
would like to constrain the drawing axes to lie within some subspace (vector space) S c_ ~ .  
Thus, we require x l , . . . ,  x p E S. We define a subspace S by some n x m matrix X whose columns 
span S (so, S = T~ange (X)). Consequently, we can always denote the axes of the drawing by the 
vectors y l  . . . , yp E R m,  so that 

x 1 = X y  1, . . . ,  X p = X y  p.  

Clearly, constraining the drawing to lie within a subspace might result in arbitrarily bad 
layouts. However, as we are going to show, we can construct subspaces that contain reasonably 
nice layouts, so we are not losing much by working only within such subspaces. 

7.1. T h e  H igh -Dimens iona l  E m b e d d i n g  Subspace  

An appropmate subspace is based on the hxgh-dlmensional embedding (HDE) that we have 
already used in [25]. This HDE comprises m axes X1 , . . . ,  X m E R ~. In order to construct it, 
we choose m p i v o t  nodes P l , P 2 , . . .  ,pro that are uniformly distributed over the graph and link 
each of the rn axes with a unique node. The axis 2d z, which is associated with pivot node p~, 
represents the graph from the "viewpoint" of p~. This is done by assigning the 3 th component 
of X ~ to the graph-theoretical distance between nodes p~ and j (i.e., the length of the shortest 
path connecting the two nodes). Henceforth, we denote this graph-theoretical distance by :Dp~, 
so, in symbols, 

x ~ (3) = ~p~j .  

F u n c t i o n  H D E  G(V={1,...,n},E),m 
% This function finds an m-dimensional high-dimensional embedding of G 

Choose node pl randomly from V 

d[1, , n] ~-- z~ 

for  z = l t o m d o  

% Compute the i - t h  coordinate using BFS 

~p~. *- BFS (G(V, E ) , p , )  

for  e v e r y  3 E V 

db'] ~ mm{db],  XZ(9)} 

e n d  for  

% Choose next pivot 

P~+I ~-- argmax{oev}{d[J]} 

e n d  for  

r e t u r n  X 1 , 1 ~  m 

Figure 4 Constructing an m-dimensional HDE 
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F u n c t i o n  O r t h o n o r m a l i z e  {u 1, . , u m} 

% Thin  func t ion  o r t h o n o r m a h z e s  a se t  of vec tors .  

% Also, i t  o r t h o g o n a h z e s  t h e  vec to r s  aga in s t  I n  

c o n s t  u ° ~-- ~ e*-- 0.001 II1~ I1' 
f o r ~ = l t o m d o  

for j = 0 t o z -  1 do 

e n d  for  

i f  []u~[[ < e t h e n  

a hnea r ly  d e p e n d e n t  vec tor  

u z ~---0 

e l s e  

]lu~ll 
e n d  i f  

e n d  for  

F i g u r e  5. G r a m - S c h m i d t  o r t h o n o r m a h z a t l o n  

The resulting algorithm for constructing the high-dimensional embedding is given in Figure 4. 
The graph-theoretical distances are computed using breadth-first-search (BFS) [26]. The piv- 
ots Pl,P2,... ,Pm are chosen by a heuristic for the k-centers problem, as follows. The first mem- 
ber, Pl, is chosen at random. For 3 = 2 , . . . ,  m, node P3 is a node that  maximizes the shortest 
distance from {Pl,P2,. . .  ,P3-1}. This method is mentioned in [27] as a 2-approximation 2 to the 
k-center problem, where we want to choose k nodes of V, such that  the longest distance from V 
to these k centers is minimized. The time complexity of this algorithm is O(m. IEI), since we 
perform BFS in each of the m iterations. 

We have previously shown that  the HDE is a kind of m-dimensional layout of the graph and that 
PCA projections of the high-dimensional embedding typically yield race layouts; see [25]. Projec- 
tions are just a type of linear combination, so restricting the layout to lie inside span (X1 , . . . ,  A 'm) 
is plausible. In practice, we have found that  choosing m ,~ 50 serves very well for producing a 
nice layout. 

It  is important that  , ~ 1 , . . . ,  x m  are orthogonal, or at least linearly independent (so they form 
a valid basis). Of course, this characteristic can be obtained without altering span (X1 , . . . ,  xm) .  
Moreover, it will be convenient for us that  all vectors are orthogonal to 1~, in order to eliminate 
the redundant translation degree-of-freedom. We achieve all these requirements by a variant of 
the Gram-Schmidt orthonormalization procedure shown in Figure 5. Note that  vectors that  are 
(almost) linearly dependent will get the value 0 and, therefore, should be removed. The entire 
orthonormalization process takes O(m2n) time. After completing this process, we take all the 
(nonzero) vectors, and arrange them, column-wise, in matrix Af. 

7.2. E i g e n p r o j e c t i o n  in a S u b s p a c e  

As shown in Section 3.1, eigenprojection defines the axes as the minimizers of (14), 

P 

E 
min k=l 

x 1, , x p ~  ~5~' (xk)T xk ' 
k = l  

subject to'  (xk)T x/ = ~kz, k,l  = 1 , . . . , p ,  

= 0, k = 1 , . . .  , ;  

2A 5 - a p p r o x i m a t m n  a l g o m t h m  del ivers  an  a p p r o x i m a t e  so lu t ion  g u a r a n t e e d  to  be  w i t h i n  a c o n s t a n t  fac tor  5 of the  
o p t i m a l  so lu t ion  
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In our case, we want to optimize x l , . . .  ,x p within the subspace T4ange (Af), and this can be 
achieved by replacing them with Afyi,..., Afyp. Hence, (14) becomes, 

P 
E (Yk) T XTLXy k 

k=1 min p 
yl, ,ypEl~m ~ (yk) T XTXy k 

k=l 

subject to: (yk)T AfTAfyZ = 5k~, k,l = 1, . . ,p .  

Note that here, we do not impose orthogonality of the axes to ln, as it is already achieved 
by the fact that 1,~ ~ ~ange (X). We can further simplify the problem by utilizing the fact 
that xTAf ---- I, obtaining the equivalent problem, 

P 
E (yk) T XTLAfy k 

rain k=l 
p 

yi, 22 (yk)s yk 
k = l  

subject to: (yk)m yl = (~kl, ]g, l = 1 , . . . , p .  

By Corollary 1, the minimizers of (17), are the lowest eigenvectors of AfTLAf. 
To summarize, let us be restricted to a subspace spanned by the columns of the orthogonal 

matrix Af. The drawing can be obtained by first computing the p lowest eigenvectors of AfTLAf, 
denoted by y i , . . . ,  yp and then, taking the coordinates to be Afyi,..., Afyp. 

Computation of the product XTLAf is done in two steps. First, we compute LX in time 
O(mlE[) utilizing the sparsity of L, and then, we compute AfT(LAf) in time O(m2n). Note 
that AfTLAf is an m x m matrix, where typically m ~ 50, so the eigenvectors' calculation takes 
negligible time (about a millisecond). This is, of course, a significant benefit of optimizing within 
a subspace. We recommend that a very accurate calculation be performed. This improves the 
layout quality with an insignificant affect on running time. In practice, we invert the order of the 
eigenvectors by using matrix, 

B = # . I - X T L X ,  

and compute the highest eigenvectors of B using the power-iteration [19]. The scalar tt is the 
highest eigenvalue of Af T LAf that can be computed directly by the power-iteration. Alternatively, 
one can set tt to the Gershgorin bound [19], which is a theoretical upper bound for (the absolute 
value of) the largest eigenvalue of a matrix. Specifically, for our matrix, this bound is given by 

REMARKS. 

(i) In a case that we want to use the notion of "degree-normalized" generalized eigenvectors 
(i.e., to optimize within the HDE subspace), all we have to do is to D-orthonormalize Af's 

columns, instead of orthonormalizing them (this is a slight change to the Gram-Schmidt 
process). 

(2) When the nodes represent multidimensional points, we can take the original coordinates 
as the subspace within which we optimize. One of the benefits is that the resulting layout 
is a linear combination of the original multidimensional data. For more details see [28]. 
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7.3. Results  of Subspace-Constrained Optimizat ion 

We have validated the performance of optimization within the HDE subspace by experimenting 
with many graphs. The results are very encouraging. We obtained quality layouts in a very rapid 

time. For example, we provide in Figure 6 the layouts of the four graphs that  were previously 

shown in Figure 2. 
Here, we would like to mention some general comments about  the nature of drawings produced 

by the eigenprojection. On the one hand, we are assured to be in a global minimum of the energy, 
thus, we might expect the global layout of the drawing to faithfully represent the structure of the 
graph. On the other hand, there is nothing that  prevents nodes from being very close. Hence, the 

drawing might show dense local arrangement. These general claims are nicely demonstrated in the 
examples drawn in Figure 2. Comparing the layouts in Figure 2 with those in Figure 6, it is clear 

(a) The 4970 graph IV] = 4, 970, ]El = 7,400. (b) The 4elt graph [10]. IV] = 15, 606, ]E] = 
45,878. 

(c) The Crack graph [10] IV I = 10, 240, IEl = 30,380 (d) A 100 × 100 folded grid wlth central horizontal 
edge removed. IV[ = 10, 000, [El = 18,713 

Figure 6 Drawings obtained by HDE-constramed eigenprojectlon 
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(a) (b) 

(c) (d) 

Figure 7 Comparison of eigenprojectlon (left) and elgenprojection optimized m 
HDE subspace (right) The results are given for the two graphs. Top: the Bfw782a 
graph [29] (IVI--782, IE1=3,394). Bottom the Fman512 graph [10] (IYl -- 74,752, 
IEI -= 261,120). 

that  when optimizing within the HDE subspace the layouts are somewhat less globally-optimal 
and the symmetries are not perfectly shown. However, an aesthetical advantage of working within 
the HDE subspace is that  the undesirable locally dense regions are less common, and the nodes 
are more evenly distributed over the layout. This can be observed by comparing the boundaries 
of the layouts in the two figures or by observing the folded part  of the grid in layout (d). 

The ability of the HDE-constrained optimization to show delicate details that  are often hidden 
in eigenprojection layouts stems from the fact that  all coordinates in the HDE subspace are inte- 
gral (up to translation and orthogonalization). We further demonstrate this ability in Figure 7, 
where we compared, side-by-side, the results of constrained and unconstrained eigenprojeetion. 
Clearly, the new method agrees with the eigenprojection regarding the global structure of the 
layout, but provides additional finer details. 
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An interesting issue is whether eigenprojection always produces cross-free layouts of planar 
graphs. In general, the answer is no. For example, consider the 4elt graph, which is planar as 
mentioned in [24]. The eigenprojection layout of this graph, which is displayed in Figure 2b, 
contains clear crossings in its top-right portion. An easier example is obtained by connecting two 
corners of a squared grid. The resulting graph m planar, but eigenprojection will draw it with 
edge crossings. An open question is whether can we define a family of planar graphs for which 
eigenprojection produces crossing-free layouts. 

t~UNNING TIME. A distract advantage of optimization within the HDE subspace is the sub- 
stantial reduction of running time thanks to replacing the n × n eigenequation with an m × rn 
eigenequation. We cannot provide a recipe for the value of m, but in all our experiments m = 50 
served us well, regardless of the graph's size. Note that unlike all iterative eigensolvers (including 
the rapid algebraic-multigrid implementation in [20]), for which the number of iterations depends 
on the structure of the matrix, the running time of our algorithm depends only on the graph's 
size and is 

O ( m 2 n + m l S l ) .  

Moreover, the dimensionality of the drawing has virtually no effect on the running time, whereas 
for (unconstrained) eigenprojeetion running time is linear in the dimensionality of the layout 
(e.g., time for drawing a graph in 3-D will grow by ~50% relative to drawing it in 2-D). 

Table I provides the actual running time of the various components of the subspace-constrained 
algorithm, as measured on a single-processor Pentium IV 2 GHz PC. In addition to the total 
running time, we also provide the time needed for computing and orthogonalizing the HDE 
subspace (in the HDE-titled column), and the time needed for calculating the matrix XTLX (in 
the last column). 

Table 1 Running time (m seconds) of the various components of the algorithm. 

running time (sec.) 
graph IV[ tel 

total HDE xTLx  
516 [10] 516 729 0.02 0.00 0.00 

Bfw782a [29] 782 3,394 0.06 0.02 0.00 

Fldap006 [29] 1651 23,914 0 06 0.03 0 02 

4970 [10] 4970 7400 0.77 0.09 0.64 

3elt [10] 4720 13,722 0.77 0.09 0 64 

Crack [10] 10,240 30,380 1.80 0.25 1.45 

4elt2 [10] 11,143 32,818 1.84 0.28 1.52 

4elt [10] 15,606 45,878 2.59 0.44 2.13 

Sphere [10] 16,386 49,152 2.91 0.55 2 33 

Fldap011 [29] 16,614 537,374 3.28 0.73 2.52 

Fman512 [10] 74,752 261,120 8.17 2.83 5.30 

Smrpinski (depth 10) 88,575 177,147 13.89 3.19 10 56 

grid 317 x 317 100,489 200,344 7.59 3.28 4.24 

Ocean [10] 143,437 400,593 25.73 8 00 17 50 

8. D I S C U S S I O N  

In this paper, we have presented a spectral approach for graph drawing, and justified it by 
studying three different viewpoints for the problem. The first viewpoint is based on solving 
a constrained energy minimization problem. We shaped the problem so that it shares much 
resemblance with force directed graph drawing algorithms (for a survey refer to [2,3]). Compared 
with other force-directed methods, the spectral approach has two major advantages. 

(1) Its global optimum can be computed efficiently. 
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(2) The energy function contains only O(]EI) terms, unlike the O(n 2) terms appearing in 
almost all the other force-directed methods. 

A second viewpoint shows that spectral methods place each node at the centroid of its neighbors 
with some well defined deviation. This new interpretation provides an accurate description of 
the aesthetic properties of spectral drawing and also explains the relation between "nice" layouts 
and eigenvectors in a very direct manner. 

We have also introduced a third viewpoint, showing that a kind of spectral drawing is the 
limit of an iterative process, in which each node is placed at the centroid of its neighbors. This 
viewpoint does not only sharpen the nature of spectral drawing, but also provides us with an 
aesthetically-motivated algorithm This is unlike other algorithms for computing eigenvectors, 
which are rather complicated and far from having an aesthetic interpretation. 

In addition to the theoretical analysis of spectral layouts, we suggested a novel practical al- 
gorithm that significantly accelerates the layout computation based on the notion of optimizing 
within a subspace. To this end, we described how to construct an appropriate subspace with a 
relatively low dimensionality that captures the "nice" layouts of the graph. This way, each axis 
of the drawing is a linear combination of a few basis vectors, instead of being an arbitrary vector 
in R n (n is the number of nodes). The resulting layout might be the final result of serve as a 
smart initialization for an iterative eigensolver. 
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