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Abstract. We note that building a magnetic Laplacian from the Markov transition
matrix, rather than the graph adjacency matrix, yields several benefits for the magnetic
eigenmaps algorithm. The two largest benefits are that the embedding becomes more
stable as a function of the rotation parameter g, and the principal eigenvector of the
magnetic Laplacian now converges to the page rank of the network as a function of
diffusion time. We show empirically that this normalization improves the phase and
real/imaginary embeddings of the low-frequency eigenvectors of the magnetic Laplacian.

1. Introduction

We consider the problem of building a diffusion operator on directed networks and graphs
with adjacency matrix W ∈ RN×N that parallels Diffusion Maps on undirected networks
[1]. A natural approach to this is to build the Magnetic Eigenmaps Laplacian [2],

L = D − T ◦W (s),

where (T ◦W (s))i,j = e2πig(Wj,i−Wi,j)Wi,j+Wj,i

2 and Di,i =
∑

jW
(s)
i,j . This method assigns a

complex rotation to asymmetric links. This approach generalizes the notion of building a
diffusion map or graph embedding to work on directed graphs.

In this note, we observe that Markov normalization of the adjacency matrix,

P (x, y) =
W (x, y)∑
yW (x, y)

,

allows us to introduce the notion of diffusion time steps, which is capable of capturing
the evolution of the process. Markov normalization of the graph adjacency matrix yields
several benefits:

(1) normalizing the complex rotation matrix e2πig(Pj,i−Pi,j) by the density of the node,
which emphasizes absorbing states and converges to the stationary distribution of
the process,

(2) stabilizing the phase embedding with respect to choice of the rotation parameter
g,

(3) separating the long time trend of the process into the first eigenvector and recurrent
states into subsequent eigenvectors, and

(4) introducing diffusion time, which allows for the study of multi-step neighborhoods.

We further note that it is possible to augment the adjacency matrix by a transportation
factor, as is done in the PageRank algorithm , when there exists an absorbing state [3].
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For a small α > 0, we replace P → (1 − α)P + α11ᵀ. This creates a small probability of
jumping from any node to any other node, and thus escaping a sink in the process and
making the process ergodic.

For the rest of the paper we will assume that the adjacency matrix P is ergodic, under
the pretense that if there is an absorbing state, we simply add a transportation factor.

2. Markov Property and Diffusion Time

An important aspect of diffusion maps is the ability to separate the statistics of the sam-
pling distribution from the geometry of the underlying manifold [4]. This is accomplished
by normalizing the affinity between points by the overall transition probability,

P = T−1W, where Tx,y =

{∑
yW (x, y), x = y

0, x 6= y
.

This also allows us to consider the properties of the multiple time step diffusion process
P t for t ∈ R+. For a symmetric process (i.e. undirected graph), the embedding of this
process remains stable. This is because, if the eigendecomposition is P = ΦΛΦ∗, then

P t = (ΦΛΦ∗)t = ΦΛtΦ∗.

However, for a non-symmetric graph, this property no longer holds. Thus the eigenvectors
of P t will exhibit time dependence beyond a simple multiplicity factor.

The markov normalized magnetic Laplacian then takes the form of

L
(t)
i,j = Di,j − e2πig(P

t
j,i−P t

i,j)
P ti,j + P tj,i

2
, where Di,i =

1

2

∑
j

(
P ti,j + P tj,i

)
.

Adjusting the weight matrix to be Markov normalized has several implications on the
magnetic Laplacian. In diffusion on a symmetric graph, normalizing by the node density
causes the principal eigenvector φ0 to be a constant across all nodes and is thus trivial.
However, when the network is not symmetric, the principal eigenvector takes on a much
more important role. Namely, the principal eigenvector recovers the degree of asymmetry
between nodes. This implies that, as t increases, the phase of the eigenvectors converges
to the page rank of the network.

Theorem 1. Suppose there exists T such that P Ti,j > 0 for all i, j. Let Lnorm = D−1/2LD−1/2

be the normalized magnetic Laplacian. Then in the limit as t → ∞, the principal eigen-

vector of the normalized Laplacian Lnorm = limt L
(t)
norm (denoted φ) converge to

φ
(g)
i = c · e2πghi

(
1 +

∑
j Pj,i

2

)1/2

,

where h = pagerank(P ) (i.e. the stationary distribution of P ), and c ∈ C.

Proof. From Theorem 1 in [2], we know that the magnetic Laplacian L has a zero eigenvalue

iff ∃h such that ai,j = hj − hi. Furthermore, we know that, in this case, φ
(g)
k,i = e2πighiφ

(0)
k,i .
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We also know that, since P is ergodic by assumption, P ti,· = h as t → ∞, where h =

pagerank(P ). That means ai,j = P ti,j − P tj,i = hj − hi.
Let v be the principal eigenvector of I −D−1/2PsymD−1/2, where Psym =

(
P+P ∗

2

)
and

Dxx =
∑

y(Psym)xy =
1+

∑
x Pxy

2 . Then(
I −D−1/2PsymD−1/2

)
v = 0 =⇒

(
D1/2 − PsymD−1/2

)
v = 0

=⇒ (D − Psym)x = 0

=⇒
(
I −D−1Psym

)
x = 0,

where x = D−1/2v. Because D−1Psym is row stochastic, we know x = 1, so v = D1/2
1.

Since φ
(g)
k,i = e2πighiφ

(0)
k,i , we know

φ
(g)
i = e2πighi(c ·D1/2

i )

= c · e2πighi
(

1 +
∑

j Pj,i

2

)1/2

.

�

This only applies in the limit as t → ∞. The embeddings of L(t) for small t, and even
t = 1, yield valuable properties due to the Markov normalization. We show this empirically
in Section 3.

3. Examples

In all examples of the Markov normalized process, we will refer to a value of g ∈ [0, 1/2)
that is on the same scale as for the unnormalized Laplacian. However, due to the weights
being normalized to sum to 1, they are actually on a different scale than the unnormalized
weights matrix. For that reason, we set g ← g/max(max(P )) for the Markov normalized
weights so that the degree of rotation is on the same order of magnitude for both methods.

3.1. Three Cluster Example. We begin with the three cluster example from [2]. This
example is particularly simple given that the complex rotation of three clusters will, more
often than not, keep the clusters separated. However, for small values of g, rotation of
the unnormalized asymmetric weights matrix yields insufficient separation between the
clusters, as shown in Figure 1. In fact, Figure 2 shows the percentage of points that cluster
correctly across 100 uniform random small values of g (g < 0.25), where clustering was
done by k-means with k = 3.

By incorporating the notion of diffusion time, we are also able to observe the time
dynamics of this process. Figure 8 in the appendix shows the embedding for each t ∈
{1, 2, ..., 9}. Notice that after 3 and 4 time steps, the clusters become momentarily blurred.
This is because, by that time, most of the energy from cluster 1 will have moved to clusters 2
and 3, etc. However, after that momentary blurring, the process stabilizes and we continue
to see the three clusters rotating about each other for larger t. This tells us that there is
a global mixing time of t > 1 for the process to satisfy Pi,j > ε for all i, j.



A NOTE ON MARKOV NORMALIZED MAGNETIC EIGENMAPS 4

Unnormalized Embedding Unnormalized Phase Unnormalized Phase vs Page Rank

Markov Normalized Embedding Markov Normalized Phase Markov Normalized Phase vs Page Rank

Figure 1. Three clusters with P (inCluster) = 0.5, P (outCluster) = 0.5,
P (rotateClockwise) = 0.9, and with parameter g = 0.04. The markov
normalized embeddings are with t = 1, though the bottom right page rank
plot is for t = 4 to allow sufficient time to converge.

Unnormalized Embedding Hist Markov Normalized Embedding Hist

Figure 2. Three clusters with P (inCluster) = 0.5, P (outCluster) = 0.5,
P (rotateClockwise) = 0.9, and with random parameter g < 0.25. The
markov normalized embeddings are with t = 1.

3.2. Circle with Drift. We consider data distributed on a unit circle, with drift in the
counterclockwise direction. This is an interesting process as it has a very large mixing
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time. We define the affinity between points to be

k(x, y) =

{
e−‖x−y‖

2/5σ2
, ]xy ≥ 0

e−‖x−y‖
2/σ2

, ]xy < 0
,

where ]xy measures the angle between the points. The affinity matrix is seen in Figure 9
in the appendix.

Figure 3 compares the different normalizations and eigenvectors for the circle with drift.
By normalizing the weights matrix, the first eigenvector is once again the trivial eigenvector.
Subsequent eigenvectors recover the geometry of the circle.

Unnormalized Embedding Unnormalized Phase

Markov Normalized Embedding Markov Normalized Phase

Figure 3. Circle with drift, colored by angle in original data. Top: Un-
normalized and leading two eigenvectors, Bottom: Markov normalized and
first two non-trivial eigenvectors. g = 0.04

The higher order eigenvectors also contain useful information, as in diffusion maps.
They mimic the sins and cosines of the angle around the circle, as the Fourier functions
{einx} are eigenfunctions of the Laplacian on the circle. We wish to recover these functions
independent of the sampling density on the circle. Figure 10 in the appendix shows that
the Markov normalized weights matrix gives a closer approximation of the sin multiples
on the circle that comes from the unnormalized weights matrix. Note that the data used
here is not uniformly sampled across the circle.

3.3. Bow Tie Example. Another issue with not including a diffusion time is the need for
g to implicitly assume the number of clusters. By setting g to be 1/k for k clusters as the
authors suggest [2], the complex rotation can lose valuable information about transitions
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that aren’t k periodic. We demonstrate this with an example similar to the three cluster
example from Section 3.1. We build a three cluster cycle among clusters 1,2, and 3, and a 5
cluster cycle among clusters 1, 4, 5, 6, and 7. By normalizing the weights, we see in Figure
4 that the non-principal eigenvectors capture the geometry of the process. Moreover, we
discount the fact that cluster 1 appears in both cycles, and will end with twice the energy
of the other clusters for large t.

Unnormalized Embedding Unnormalized Phase

Markov Normalized Embedding Markov Normalized Phase

Figure 4. Bow tie clusters with P (inCluster) = 0.5, P (outCluster) = 0.5,
P (rotateClockwise) = 0.9, and with g = 0.04. For Markov normalization,
we take t = 1.

We are also able to observe the time dynamics of this process. Figure 11 in the appendix
shows the embedding for each t ∈ {1, 2, ..., 9}. Notice that after 7 and 8 time steps, the
clusters become momentarily blurred. This is because, by that time, most of the energy
from one end of the bow tie has moved to the other. However, after that momentary
blurring, the process stabilizes and we continue to see the three clusters rotating about
each other for larger t. This tells us that there is a global mixing time of t > 6 for the
process to satisfy Pi,j > ε for all i, j. We can also see these dynamics in the affinity matrix
in Figure 12. And finally, we see in Figure 12 that after a large t, the phase of the leading
eigenvector converges to the page rank of the process.

3.4. Hidden Circle. As a different example, we consider a mix of absorbing and recurrent
states. The data we consider is a unit square with drift from left to right via

k(x, y) =

{
e−‖x−y‖

2/3σ2
, x1 < y1

e−‖x−y‖
2/σ2

, x1 ≥ y1
.
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On top of that, we add an annulus in the middle of the unit square with counterclockwise
flow. The results of the phase and embedding are in Figure 5.

Unnormalized Phase V0 Unnormalized Phase V1 Unnormalized Embedding

Markov Normalized Phase V0 Markov Normalized Phase V1 Markov Normalized Embedding

Figure 5. g = 0.24, t = 4

Also, by not normalizing the phase rotation, low density points become separated in the
phase space (see Figure 6). This leads to discontinuity in the torus projection of the phase,
because the top and bottom edges of the square do not have much energy coming in.

Unnormalized Phase Torus Markov Normalized Phase Torus

Figure 6. g = 0.24, t = 1

3.5. Absorbing States. As a final example, we return to the three cluster example from
Section 3.1. We change this by removing one node’s out going edges, making that node
an absorbing state. We augment the weights matrix for the normalized weights matrix by
adding a teleportation parameter of α = 0.1.
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Unnormalized Phase Unnormalized Embedding

Normalized Phase t = 1 Normalized Embedding t = 1

Normalized Phase t = 5 Normalized Embedding t = 5

Figure 7. Three cluster data with absorbing state from orange cluster.
Absorbing state in red. Top: diffusion time of 1, Bottom: diffusion time of
5. g = 0.04

We see in Figure 7 that, as time progresses, the state becomes more central to the Markov
normalized process while still maintaining the geometry of the three clusters. Moreover,
the phase of the principal eigenvector converges to the page rank of the process, correctly
placing the absorbing state in middling importance as in Figure 13 in the appendix. This
is compared to the unnormalized magnetic Laplacian, which captures the absorbing nature
of the red node, but loses the geometry of the other clusters or the relationship between
the absorbing state and cluster 3.

4. Conclusion

We note that Markov normalization of the graph adjacency matrix yields several benefits.
Normalization of the complex rotation matrix T converges to the page rank of the graph
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for a large time, as in Section 3.1. The Markov normalization also stabilizes the phase
embedding over a larger choice of g, as in most examples in Section 3. By emphasizing the
absorbing states in the first eigenvector, this normalization separates the recurrent states
into subsequent eigenvectors as in Section 3.4. And finally, we can introduce diffusion time
into the process and observe the multi-step neighborhood dynamics of the graph, as in
most examples in Section 3.
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Appendix

t=1 t=2 t=3

t=4 t=5 t=6

t=7 t=8 t=9

Figure 8. Three clusters with P (inCluster) = 0.5, P (outCluster) = 0.5,
P (rotateClockwise) = 0.9, and with g = 1/4. Evolve cluster from t ∈
{1, ..., 9}.
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Figure 9. Affinity matrix for circle with drift

Normalized real(φ1) Normalized real(φ3) Normalized real(φ5)

Unnormalized real(φ1) Unnormalized real(φ3) Unnormalized real(φ5)

Figure 10. Circle with drift, colored by corresponding real part of real(φi).
Top: Markov normalized, Bottom: Unnormalized. The eigenvectors corre-
spond to multiples of sinusoids, the eigenvectors of the DFT matrix.
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t=1 t=2 t=3

t=4 t=5 t=6

t=7 t=8 t=9

Figure 11. Bow tie clusters with P (inCluster) = 0.5, P (outCluster) =
0.5, P (rotateClockwise) = 0.9, and with g = 1/4. Evolve cluster from
t ∈ {1, ..., 9}.

Figure 12. Bow tie clusters affinity at t = 7 (left), and bow tie clusters
phase(V0) at t = 10 (right).
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Figure 13. Absorbing state principal eigenvector phase compared to the
page rank of the process.
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