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Abstract

We describe a simple scheme, based on the Nyström method, for extending empirical functions f defined on a set X to a larger
set X̄. The extension process that we describe involves the construction of a specific family of functions that we term geometric
harmonics. These functions constitute a generalization of the prolate spheroidal wave functions of Slepian in the sense that they are
optimally concentrated on X. We study the case when X is a submanifold of R

n in greater detail. In this situation, any empirical
function f on X can be characterized by its decomposition over the intrinsic Fourier modes, i.e., the eigenfunctions of the Laplace–
Beltrami operator, and we show that this intrinsic frequency spectrum determines the largest domain of extension of f to the entire
space R

n. Our analysis relates the complexity of the function on the training set to the scale of extension off this set. This approach
allows us to present a novel multiscale extension scheme for empirical functions.
© 2006 Published by Elsevier Inc.
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1. Introduction

In applications where a large amount of data is involved, the only way to perform certain tasks like clustering,
regression and classification is to subsample the data set X̄ in order to reduce the size of the problem, process the new
set X, and then extend the result to the original data X̄. If in addition, the data are embedded in a high-dimensional
space, then kernel methods like those based on radial functions constitute an interesting alternative to grid-based
methods (which are unusable in high dimension).

In this paper, we describe a scheme for extending empirical functions defined on X to X̄. This technique is inspired
from the Nyström method, widely used in partial differential solvers, and recently employed in machine learning and
in spectral graph theory as a way to subsample large data sets [3,9,13]. For instance, in order to perform an efficient
(fast) image segmentation, it was noticed that one could subsample the pixels of an image, do the segmentation in this
subgrid, and then extend the results to the entire image. More recently, Belkin et al. [4] presented the idea of manifold
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regularization, introducing an out-of-sample extension scheme that is closely related to the Nyström extension. Our
work is also highly related to the Kriging technique widely employed in geostatistics [5]. However, with all these
techniques, the critical question of the choice of a scale of extension remains unanswered.

The contribution of this article is threefold. First, we show how the Nyström method naturally leads to the con-
struction of a particular set of functions that we term geometric harmonics. We show that these functions are solution
of an eigenproblem and generalize the prolate spheroidal wave functions introduced in [11,12]. In particular, they are
maximally concentrated on X. Secondly, our analysis relates the complexity of the empirical function, measured in
terms of frequency content over the training set, to the distance to which it can be extended off this set. Indeed, in the
case where X is a submanifold of R

n, any function f can decomposed as a sum of intrinsic Fourier modes, namely,
the eigenfunctions of the Laplace–Beltrami operator. This allows us to define a notion of intrinsic bandwidth, and we
show how the geometric harmonics relate the intrinsic oscillations of functions on X to the extrinsic frequencies of
their extensions in the ambient space R

n. More precisely, we show that the restriction and extension operations de-
fined via the geometric harmonics preserve the bandwidth of signals, modulo a multiplicative constant quantifying the
complexity of the embedding of X into R

n. Last, we prove that, following some version of the Heisenberg principle, a
function f with intrinsic bandlimit ν on X can be extended as a function with the same extrinsic bandlimit on R

n and
is numerically supported in a tubular neighborhood of radius O

( 1
ν

)
around X. This allows us to define a multiscale

extension scheme for empirical functions in which each function is decomposed as a superposition of atoms with
specific time–frequency localization.

The paper is organized as follows. In Section 2, we introduce the notation and explain the construction of the
geometric harmonics and their properties. We also describe the associated extension algorithm of empirical functions.
In Section 3, we give examples of geometric harmonics, and in particular we show that they generalize the prolate
spheroidal wave functions of Slepian and Pollak [11,12]. Last, in Section 4, we focus on the case when X is a
submanifold of R

n and we relate the intrinsic and extrinsic Fourier analyses of empirical functions. This allows us to
present a novel multiscale extension algorithm.

2. Geometric harmonics

2.1. Construction

Let X and X̄ be two sets such that X ⊂ X̄. Let μ be a finite measure on X, i.e., μ(X) < +∞. Our goal is to be
able to extend a function f defined on X to the set X̄ and for that to be done, we construct a set of functions, the
geometric harmonics, that allow us to perform this extension. Notation: functions defined on X̄ will be denoted using
capital letters, whereas functions on X will be represented using lower case letters. In this section, arbitrary points in
X̄ will be denote with a bar, for instance x̄.

Our main ingredient is a “kernel” k : X̄ × X̄ → R satisfying

• k is symmetric: k(x̄, ȳ) = k(ȳ, x̄) for all x̄ and ȳ in X̄.
• k is positive semi-definite, i.e., for any m � 1 and any choice of real numbers α1, . . . , αm, and of points x̄1, . . . , x̄m

in X̄, we have

m∑
i=1

m∑
j=1

αiαj k(x̄i , x̄j ) � 0.

This property is not necessary to be able to define geometric harmonics and extensions. However, it allows us to
interpret the geometric harmonics as maximizing some concentration measure over X.

• k is bounded on X̄ × X̄ by a number M > 0. Although this assumption can be weakened, it is very convenient for
the simplicity of the exposition.

Since k is positive semi-definite, there exists a unique reproducing kernel Hilbert space H of functions defined on
X̄ for which k is the reproducing kernel (see Appendix A). Let 〈·, ·〉X̄ and ‖ · ‖X̄ denote the inner product and norm
of this space. In contrast, we use 〈·, ·〉X and ‖ · ‖X to represent the inner product and norm in L2(X,dμ).
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The kernel k can be restricted to X and employed to define a linear operator K : L2(X,dμ) →H:

Kf (x̄) =
∫
X

k(x̄, x)f (x)dμ(x), where x̄ ∈ X̄.

We have the following lemma:

Lemma 1. The adjoint K∗ :H → L2(X,dμ) is the restriction operator on X: for all F ∈H and x ∈ X,

K∗F(x) = F(x).

Moreover, K∗K :L2(X,dμ) → L2(X,dμ) is compact.

Proof. First, it can be checked that

〈F,Kg〉X̄ =
〈
F(·),

∫
X

k(·, .x)g(x)dμ(x)

〉
X̄

=
∫
X

〈
F(·), k(·, x)

〉
X̄
g(x)dμ(x)

=
∫
X

F(x)g(x)dμ(x) by identity (A.1)

= 〈f,g〉X.

This proves that K∗F = f . We now show that K∗K is Hilbert–Schmidt, which implies compactness:∫
X

∫
X

∣∣k(x, y)
∣∣2 dμ(y)dμ(x) < +∞.

Indeed, we have∫
X

∫
X

∣∣k(x, y)
∣∣2 dμ(y)dμ(x) � M2μ(X)2 < +∞. �

Since this operator is self-adjoint and compact on L2(X,dμ), it has a discrete sequence of eigenvalues {λj } (in
nonincreasing order) and eigenvectors {ψj } defined on X: for dμ-almost all x ∈ X,

λjψj (x) =
∫
X

k(x, y)ψj (y)dμ(y).

Note that, because the operator is positive semi-definite, for all j , λj � 0. Also, by the result of this lemma, ψj is
obtained by diagonalizing the kernel k(x, y) with x and y restricted to X.

The eigenfunction ψj is defined on X, but provided λj 
= 0, it can be extended to the set X̄ via a technique known
as the Nyström method (see [10]). This technique consists in observing that k(x, y) is also defined for x ∈ X̄, and
therefore so is the right-hand side of the above equation, and that it can be used for the definition ψj outside X.

Definition 2. When λj 
= 0, the eigenfunction ψj can be extended to x̄ ∈ X̄ by

Ψj (x̄) = 1

λj

∫
X

k(x̄, y)ψj (y)dμ(y).

This extension is called geometric harmonic.
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The term “geometric harmonics” is inspired from the fact that ψj is extended as an average of its values on the
set X, and thus can be thought of as verifying a certain form of mean value theorem.

Numerically, this extension procedure is extremely ill-conditioned as one divides by the eigenvalues of a compact
operator (λj → 0 as j → +∞). Consequently, we introduce the following notations.

Definition 3. For any δ > 0, let

Sδ = {j such that λj � δλ0}
and define the following finite-dimensional vector spaces:

L2
δ = Span{ψj , j ∈ Sδ}

and

Hδ = Span{Ψj , j ∈ Sδ}.

The extension procedure from L2
δ to Hδ has a condition number bounded from above by 1

δ
. We summarize the

algebraic relation between K,K∗,Ψj and ψj :

Kψj = λjΨj (extension),

K∗Ψj = ψj (restriction).

We conclude this section with two remarks. First, an important class of positive kernels is generated by covariance
kernels, i.e., by kernels of the form

k(x, y) =
∫

ξ∈I

eξ (x)eξ (y)p(ξ)dξ,

where {eξ }ξ∈I is a family of functions defined on X̄ and p(ξ) � 0. Each function eξ , restricted to X, is interpreted as
a vector whose coordinates are indexed by x ∈ X, and the kernel k represents the covariance of the cloud of points
generated by the mass distribution p(ξ)dξ . Finding the eigenfunctions and eigenvalues associated with this kernel is
equivalent to computing the axes and moments of inertia of this cloud of points, which is also referred to principal
component analysis.

The other remark concerns a variational interpretation of k. Let B represent the orthogonal projector onto H,
defined by BF(x) = 〈F,k(x, ·)〉H and let D be the restriction operator to X defined by DF(x̄) = F(x̄) if x̄ ∈ X, and
DF(x̄) = 0 otherwise. Then it can be checked that K = BD and if x ∈ X,

K∗Kf (x) = DBDf (x).

This decomposition of K∗K as a product of orthogonal projection leads to a variational interpretation of the geometric
harmonics that motivated Slepian and Pollak into introducing the prolate spheroidal wave functions [11,12].

2.2. Properties

The geometric harmonics feature two interesting properties: they are orthogonal on X and on X̄, and among all
functions of H, they have maximum concentration on X.

Proposition 4. The system {Ψj }j∈Sδ forms an orthogonal basis of Hδ , and their restrictions {ψj }j∈Sδ to X forms an
orthogonal basis of L2

δ .

Proof. By definition, the ψj ’s are obtained as the eigenfunctions of a self-adjoint operator, therefore they are orthog-
onal on X. In addition,

〈Ψi,Ψj 〉X̄ = 1

λj

〈Ψi,KK∗Ψj 〉X̄ = 1

λj

〈K∗Ψi,K∗Ψj 〉X̄ = 1

λj

〈ψi,ψj 〉X. �
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Definition 5. For a function F ∈ H, with restriction f ∈ L2(X,dμ), we define the concentration of F over X to be
the Rayleigh quotient

cX(F ) = ‖f ‖X

‖F‖X̄

,

where f = K∗F is the restriction of F to X.

The geometric harmonics are also the function of H that have maximum concentration on the set X:

Proposition 6. The function Ψj is a solution to the problem

max
F∈H

cX(F ),

under the constraint that F ⊥ {Ψ0,Ψ1, . . . ,Ψj−1}. In particular, Ψ0 is the element of H that is the most concentrated
on X.

Proof. By homogeneity of the ratio, we can restrict our attention to all F ∈H with norm 1. Thus we need to maximize

〈f,f 〉X = 〈K∗F,K∗F 〉X = 〈F,KK∗F 〉X̄,

under the constraints 〈F,F 〉X̄ = 0, 〈F,Ψ0〉X̄ = 0, . . . , 〈F,Ψj−1〉X̄ = 0. Using the Lagrange multipliers technique, we
conclude that there exist numbers λ and α0, . . . , αj−1 such that

KK∗F = λF + α0Ψ0 + · · · + αj−1Ψj−1.

Taking the inner product with Ψi for i = 0, . . . , j − 1, and invoking the constraints and the orthogonality of the
geometric harmonics (see previous proposition), we obtain that

αi‖Ψi‖2
X̄

= 〈KK∗F,Ψi〉X̄ = 〈F,KK∗Ψi〉X̄ = λi〈F,Ψi〉X̄ = 0.

As a consequence, αi = 0, and F is a geometric harmonic associated with the eigenvalue λ and the functional to be
minimized now takes the form

〈f,f 〉X = λ.

The maximum is therefore achieved for F = Ψj . �
2.3. Extension algorithm

We now describe the natural extension algorithm associated with the geometric harmonics obtained from a ker-
nel k. This scheme only considers one scale of extension, namely that defined by the kernel k. Note that this scale is
essentially arbitrary as it is a priori unrelated to the function f that one tries to extend.

We assume that ψj is normalized so that it has norm 1 on X.

Algorithm 1 (Extension scheme). Given a function f ∈ L2(X,dμ),

• project f onto the space L2
δ spanned by the orthonormal system {ψj }j∈Sδ :

f �→ Pδf =
∑
j∈Sδ

〈f,ψj 〉Xψj ,

• use the extension Ψj of ψj to extend Pδf on X̄ as

Ef (x̄) =
∑
j∈Sδ

〈f,ψj 〉XΨj (x̄),

with x̄ ∈ X̄.
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This algorithm computes a truncated pseudo-inverse for K∗ and is consistent in the sense that the restriction of Ef

to X is, again, extended as Ef by the algorithm.
We now make three comments on this algorithm. First, this technique does not provide an extension for f but rather

for a filtered version of it, namely, its orthogonal projection Pδf onto L2
δ . This space is precisely that of functions that

can be numerically extended to X̄, since the condition number of the operator E is bounded by 1
δ
. Therefore, in order

to be able to speak of an extension for f , the residual ‖f − Pδf ‖X on X must be smaller than a prescribed error,
which leads to the definition:

Definition 7. A function f defined on X is said to be (η, δ)-extendable if

‖Pδf ‖X =
∑
j∈Sδ

∣∣〈f,ψj 〉X
∣∣2 � (1 − η)‖f ‖2

X.

The obvious consequence is that not all functions f can be extended at a given precision and this is where the scale
of the kernel k comes into play. By scale, we mean the size of the numerical support of k in R

n. A function that cannot
be extended via a kernel k will eventually be extendable with a fine enough kernel. Indeed, as we reduce the scale
of a kernel, the spectrum of the corresponding operator tend to be flatter (another form of the Heisenberg principle),
making it possible to extend more geometric harmonics. Equivalently, if the kernel has a small scale, it is able to
capture finer details of a function over the set X and to transcribe them in the extension process. This observation is
crucial for the multiscale analysis that we develop later in this article. This fact can be used to relate the oscillations of
f on X to the scale of extension. We develop this idea in Section 4, when we consider families of kernels parametrized
by a scale parameter.

Another interesting aspect of the scheme is the relation to the manifold regularization framework introduced in [4].
Their work involves solving the following regularization problem:

min
F∈H

‖f − K∗F‖2
L2(X)

+ γ ‖F‖2
X̄
,

where γ is a regularization parameter. This problem can be viewed as an instance of Ridge regression and is solved
via

Fγ = (KK∗ + γ Id)−1Kf.

Therefore, as γ → 0, and if f = ψj , one recovers the Nyström extension procedure.
It is also interesting to underline the similarity of our approach with the so-called Kriging technique [5]. The zeroth-

order Kriging model is based upon extending f into fK = P0f , that is with δ = 0. The Kriging model therefore
computes the inverse of K (provided it is invertible), whereas our approach is based on a regularized pseudo-inverse.
For the Kriging model, k(·, ·) is usually a Gaussian kernel whose covariance is being optimized to maximize the fit
on the training set. This optimization is global and so is the scale of extension. As we point out later in this paper, our
technique also allows to work with multiple scales and to locally adapt the scale of extension.

The last point we wish to discuss concerns the interpretation of the extension. As we shall see in the next section,
for a given f defined on X, there generally exist infinitely many possible extensions F ∈ H as functions in H might
not be determined by their values on X. However, according to Proposition 6, Ef is the extension that has maximal
concentration over X. From the point of view of Statistics, where extension means regression, this is related to the
predictive power of Nyström extensions. For instance, it is known that if a random variable (U,V ) ∈ R

m+n has the
following covariance matrix:

C(U,V ) =
(

A B

BT C

)
,

then the covariance of V given U is

C(V |U) =
(

A B

BT C − BT A−1B

)
,
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while the Nyström extension method (taking X to be the set of first m indices, and X̄ being the set of m + n indices)
implicitly approximates C(U,V ) as

C(U,V ) 

(

A B

BT BT A−1B

)
.

Therefore, the norm of the Schur complement ‖C − BT A−1B‖ is a measure of the average randomness of V that is
left when one knows U . If the Nyström approximation is accurate, then the predictive power of U over V is large.

3. Examples of geometric harmonics

In this section we give some examples of geometric harmonics.

3.1. The prolate spheroidal wave functions—bandlimited extension

In [11], Slepian and Pollak introduce the prolate spheroidal wave functions as the solution of finding functions
optimally concentrated in time and frequency. By construction, the prolates are bandlimited functions of unit energy
that have maximum energy within an interval of the time domain. They also generalize their result to higher dimension
[12] by defining HB to be the space of functions of L2(Rn) whose Fourier is supported in the ball centered at the
origin and of radius B . This space is a reproducing kernel Hilbert space with kernel (see Appendix B)

k
(n)
B (x, y) =

(
B

2

) n
2 Jn

2
(πB‖x − y‖)
‖x − y‖ n

2
,

where Jν is the Bessel function of the first kind and of order ν. Such a kernel is referred to as a Bessel kernel. The
prolate spheroidal wave functions are defined as the eigenfunctions of the integral operator of kernel kB restricted
to a certain space domain X ⊂ X̄ = R

n. In the prolate setting, X is a set of positive measure (and the kernel is
nonintegrable) and functions of HB are determined by their values on X. On the contrary, we are mainly interested in
the case where X is singular in R

n. In this situation, there are infinitely many bandlimited extensions for a function f

defined on X, as two such extensions differ by a (nonzero) bandlimited function that vanishes on X. However, among
all these extensions, the operator E produces an extension with maximum concentration on X, or equivalently, that
has minimal energy outside X.

From now on, we will refer to EB as the Bessel kernel with bandlimit B > 0 (we drop the dimension n in the
notation); this operator computes the bandlimited extension of band B that is maximally concentrated on X. In Fig. 1,
we show examples of bandlimited extensions (at a fixed band) of the functions cos(jθ) for j = 1,2,4,8, from the
unit circle to the plane. The Bessel kernel tends to generate a large amount of oscillations outside the circle, whereas
inside the circle the oscillation seem to cancel out.

3.2. Gaussian extension

Widely used in the Machine Learning community, the Gaussian kernel exp(−B2‖x − y‖2) also arises as a limiting
case of the Bessel kernels. Indeed, as proven in [6],

lim
n→+∞

k
(n)
B

(√
n
π
‖x − y‖)

VB,n

= e−B2‖x−y‖2
,

where VB,n is the volume of the unit ball of radius B in R
n. This seems to suggest that in high dimension, Bessel

and Gaussian kernels are equivalent. In lower dimension, unlike Bessel kernels, Gaussian kernels do not exhibit
oscillations.

3.3. Harmonic extension

Another example comes from potential theory. Consider the single-layer Newtonian potential in X̄ = R
n,

k(x, y) =
{− log(‖x − y‖) if n = 2,

1
n−2 if n � 3.
‖x−y‖
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Fig. 1. Bandlimited extensions of the functions cos(jθ) for j = 1,2,4,8, from the unit circle to the plane.

By definition, this kernel is the Green’s function for the Laplace operator on R
n, and as a consequence, the potential is

positive semi-definite. Assuming that n = 3 and that X is a Lipschitz surface in R
3, then H is the space of potentials

F(x) =
∫
X

dρ(y)

‖x − y‖ ,

where ρ is a signed measure supported on X, representing a distribution of charges. In this space, the inner product is
the electrostatic energy of interaction between two distributions of charges:

〈F1,F2〉X̄ =
∫
X

∫
X

dρ1(y)dρ2(x)

‖x − y‖ .

Note that all elements of H are harmonic and that the geometric harmonics are harmonic functions that minimize their
electrostatic self-energy. The operator E allows one to construct harmonic extensions for empirical functions defined
on X.

An interesting feature of the harmonic extension is that, unlike the bandlimited extension, it does not involve
a scale (or bandwidth) parameter. In fact, the size of the numerical support of the extension of f depends on the
oscillations of f on X. Indeed, suppose that X is a closed curve in R

3, and that f oscillates p times along X. Then
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Fig. 2. Harmonic extensions of the functions f (θ) = cos(jθ) for j = 1,2,4,8, from the unit circle to the plane. When the number of the oscillations
increases, so does the order of the multipole extending f , and the extension decays faster.

since f is extended as a sum of elementary potentials generated by charges along X, it is roughly extended as the
potential generated by a multipole of order p and therefore will decay as 1

rp , where r is the distance from the curve X.
This relation between the intrinsic frequencies of f and its domain of extension is illustrate in Fig. 2 and is further
investigated in Section 4.

3.4. Wavelet extension

Let {Vj }j∈Z be a multiresolution analysis in R
n and let H be the space of scaling functions Vj at a fixed scale 2−j .

Let X be a subset of R
n. One can define geometric harmonics corresponding to this space and use them to construct

scaling functions adapted to the geometry of X and to compute extensions at a given scale.
We illustrate this idea in the simple case of the Haar multiresolution. Let Φ be the indicator function of the unit

cube in R
n and let X be a finite length curve. Therefore, for H = Vj , the reproducing kernel is given by∑
n

2−njΦ
(
2j x − m

)
Φ

(
2j y − m

)

m∈Z
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Fig. 3. Extension of the function f (θ) = θ using the Haar scaling function at different scales.

and when one restricts it to the curve X,

k(x, y) =
∑

m∈QX

2−njΦ
(
2j x − m

)
Φ

(
2j y − m

)
,

where QX is the set of indices in Z
n associated with unit cubes intersecting X. This formula allows to conclude that

the geometric harmonics are the indicator of the dyadic cubes at scale 2−j that intersect the curve X and it can be
checked that the eigenvalues are given by the quantities 2−nj |Q ∩ X|, where |Q ∩ X| is the length of the piece of X

that intersect a given dyadic cube Q at scale 2−j . As an illustration, in Fig. 3 we show the extension of the function
f (θ) = θ from the circle to the plane, at different scales.

The Haar case was simple as these scaling functions, when restricted to any curve, remain orthogonal. For more
general scaling functions, the geometric harmonics provide scaling functions adapted to the geometry of X. Note that
the same kind of construction can be done with wavelet spaces Wj .

4. Multiscale extension

We now restrict our attention to the case when X̄ = R
n and X is a C∞ and compact submanifold of dimension d .

To simplify the exposition, we assume that the measure dμ is now the Riemannian measure dx on X. In this case,
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two different Fourier (or Paley–Littlewood) analyses can be performed on a function f defined on X. The first one is
purely intrinsic and is obtained by using the eigenfunctions of the Laplace–Beltrami operator Δ on X. We recall that
these eigenfunctions are the analogue of the Fourier basis to arbitrary submanifolds. The spectrum of Δ is discrete (as
X is compact) and corresponds to pure frequency modes. The other frequency analysis is that of the classical Fourier
transform in R

n and that can be applied to the various extensions of f .
In this section, we investigate the relation between these two analyses by exploring the action of the restriction

and extension operators. In particular, we ask the question of whether the intrinsic diffusion of heat is equivalent
to the extrinsic diffusion. We show that this is true, provided the embedding of the manifold X into R

n is not too
“complicated.” We also develop a multiscale extension scheme for functions defined on X. The key point that we will
introduce is to consider several kernels, i.e., several scales for the extension. Finding the optimal scale is obtained by
adapting the analyzing the frequency content of the function over the training set.

4.1. Restriction operator

Since the set X is a smooth submanifold, the restriction of a function F to X is a well-behaved operation, in the
sense that if F is smooth, then so is its restriction f .

We can give a precise meaning of this statement using a space characterization of smoothness: suppose that F is
differentiable with a bounded derivative, then f is obviously differentiable as a map from X into R and its (intrinsic)
gradient at a point x ∈ X is nothing else but the orthogonal projection of gradient of F onto the tangent plane at that
same point x.

The same idea can be characterized by a frequency argument. Consider plane waves in R
n:

Fξ (x) = e2iπ〈ξ,x〉.
Let Δ be the Laplace–Beltrami operator on X that we can assume to be a curve for the sake of simplicity. Let {ν2

j }
and {φj } be its eigenfunctions (in nondecreasing order) and eigenvalues:

Δφj = ν2
j φj .

Definition 8 (Intrinsic bandwidth). A function f ∈ L2(X,dx) defined on X is said to be intrinsically bandlimited if it
can be written as

f =
m∑

j=0

cjφj

for some m � 0, with cm 
= 0. The largest pure frequency νm in this decomposition is called intrinsic bandwidth of f .

To relate the extrinsic bandwidth ξ to the intrinsic one, we have the following result.

Proposition 9. Suppose that the curvature of X is bounded by a number M > 0. Then if ‖ξ‖ > M
π

, the intrinsic
spectrum of fξ decays exponentially according to

∣∣〈φj ,fξ 〉
∣∣ �

√
μ(X)

(
4π2‖ξ‖2

ν2
j

)m

for all m � 0. As a conclusion, a function with only low extrinsic frequencies is also a function with low intrinsic
frequencies when restricted to X, with approximately the same band.

Proof. Locally, on the curve around x ∈ X, the function Fξ has the form

fξ (y) = Fξ (y) = exp
(
2iπ

(〈ξ, x〉 + uξT + a(x)u2ξN

))
,

where u is the local coordinate in the tangent plane of the point y, a(x) is the scalar curvature at x, and ξT and ξN are
the tangent and normal projections of ξ in the osculatory plane at x (see configuration in Fig. 4). A Taylor expansion
yields:

fξ (y) = e2iπ〈ξ,x〉(1 + 2iπξT u + 2iπ
(
a(x)ξN + iπξ2)

u2 + · · ·).
T



42 R.R. Coifman, S. Lafon / Appl. Comput. Harmon. Anal. 21 (2006) 31–52
Fig. 4. Geometric configuration.

Now, since for any function f defined on X, we have the Taylor expansion

f (y) = f (x) + u
df

ds
(x) + 1

2
u2 d2f

ds2
(x) + · · ·

and since Δ = d2

ds2 , we identify

Δfξ (x) = 4iπ
(
a(x)ξN + iπξ2

T

)
fξ (x).

Therefore, if the curvature is bounded by M > 0, we have the trivial estimate for ‖ξ‖ > M
π

,

‖Δfξ‖X � 4π2‖ξ‖2‖fξ‖X.

In fact it is easily seen that for all m � 0,∥∥Δmfξ

∥∥
X

�
(
4π2‖ξ‖2)m‖fξ‖X.

Since

Δmfξ (x) =
∑
j�0

ν2m
j 〈φj ,f 〉φj (x)

and

‖fξ‖2
X � μ(X),

we must have, by Parseval,∑
j�0

ν4m
j

∣∣〈φj ,fξ 〉
∣∣2 � μ(X)

(
4π2‖ξ‖2)2m

.

In particular,

∣∣〈φj ,fξ 〉
∣∣ �

√
μ(X)

(
4π2‖ξ‖2

ν2
j

)m

for all m � 0. Therefore the coefficients of expansions in the eigenfunctions of the Laplace–Beltrami operator are
negligible, except for finitely many, namely those for which the eigenvalue ν2

j is less than 4π2‖ξ‖2. �
4.2. Extension operator

The extension algorithm described in Section 2.3 is a two-step procedure

• the function f on the data is first prefiltered by a projection on the geometric harmonics that numerically admit
an extension,

• then the extension is computed.

However, we know that not all functions f defined on X are (η, δ)-extendable. This means that some functions
cannot be extended to some bandwidth, but for a given (η, δ) and any function f , if we choose the band B sufficiently
large, f will be (η, δ)-extendable as a B-bandlimited function. This leads to the natural definition for the notion of
extrinsic bandwidth as the infimum over all such B > 0. However, we prefer the following alternate definition which
is easier to deal with:
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Fig. 5. Plot of rx as a function of x, and a fixed value of j = 10 and t = 2. In regions where the embedding is “complicated,” the domain of
extension is thinner.

Definition 10 (Extrinsic bandwidth). For a fixed value of ε > 0, the extrinsic bandwidth of a function f defined on X

is the infimum of all B > 0 such that there exists a function F defined on R
n satisfying:

• F is an extension of f , i.e.,

F(x) = f (x) for all x ∈ X,

• F can be approximated to relative precision ε by a B-bandlimited function G on R
n:

(
∫

Rn |F(x) − G(x)|2 dx)
1
2

(
∫

Rn |F(x)|2 dx)
1
2

� ε.

For the study of the restriction operator, we looked at the restriction of the Fourier modes in R
n, namely the plane

waves. For the extension problem, it is natural to extend the Fourier modes on X, i.e., the set of eigenfunctions of
the Laplace–Beltrami operator on X. In order to relate the intrinsic frequencies that these functions represent to the
extrinsic spectrum (provided by the Fourier analysis in R

n), it can be instructive to compute the extrinsic bandwidth
of φj , or equivalently how far φj can be extended away from the set.

A simple example displayed in Fig. 5 shows that if the embedding of the set X in R
n is complicated, then the ex-

trinsic bandwidth can be very different from the intrinsic bandwidth. The curve X was chosen to have low frequencies
on the left part and steep variations on the right part. We considered the following intrinsic wave packets:

wt
j,x(y) = wx,t (y)φj (y),

where wx,t is a window function centered at x and of width
√

t . For instance,

wx,t (y) = exp
(−d2(x, y)/t

)
is a Gaussian window along the curve, where d(x, y) is the geodesic distance between x and y. In some sense, wt

j,x

defines an intrinsic local cosine waveform: x represents the time location parameter, j is the intrinsic frequency
location, and

√
t is the time–width. The function wt

j,x can be extended to a distance rx that depends on the intrinsic
frequency j as well as the local complexity of the embedding of X around x. Figure 5 shows rx as a function of x,
where x is located on the manifold (for fixed value of j = 10 and t = 2). This plot shows that in regions where the
embedding is “complicated,” the domain of extension is thinner. In the following, we prove that rx = Cxj , where Cx

measures the complexity of the embedding of X around x.
Clearly, this elementary example shows that the extrinsic bandwidth can be much larger than the intrinsic one,

especially at locations where the curve has wild oscillations. In the following proposition, we show that a function f
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with intrinsic bandlimit B on X admits an approximate extension that is a bandlimited function with band CB , where
C is some universal constant that depends on the geometry of X. In order to adopt a broader point of view, instead of
considering the eigenfunctions of the Laplace–Beltrami operator Δ, we will study the extension of eigenfunctions of
the following elliptic operator:

Δ = Δ + Q,

where Q is a bounded potential function. In [7], the authors show that this type of differential operator arises naturally
as the small-scale limit of several families of kernel operators. We keep the same notations for the eigenfunctions and
eigenvalues, namely,

Δφj = ν2
j φj .

We assume that the curvature of X is bounded by a number M .

Proposition 11. Let ε > 0 be a preset accuracy. There exists a constant C > 0 such that for all j � 0, one can
construct a function Fj defined on R

n satisfying:

• Fj is an extension of φj , i.e.,

Fj (x) = φj (x) for all x ∈ X,

• Fj can be approximated to relative precision ε by a bandlimited function Gj of band Cνj :

(
∫

Rn |Fj (x) − Gj(x)|2 dx)
1
2

(
∫

Rn |Fj (x)|2 dx)
1
2

� ε.

In particular, this proposition asserts that the extrinsic bandwidth is less than or equal to the intrinsic bandwidth
times a constant C that depends on the precision ε and on the geometry of X. In some way, it is a measure of the
complexity of the embedding of X into R

n. For instance, in the example of Fig. 5, C can be quite large because of the
oscillations of the curve.

Proof. If νj = 0, then the result is trivial. We now assume that νj > 0.
For any x ∈ R

n, let x′ ∈ X be any point in R
n such that

‖x − x′‖ = inf
y∈X

‖x − y‖.

The point x′ is not necessarily uniquely defined, which makes this definition ambiguous. However, since X is assumed
to be C∞ and with bounded curvature, in a tubular neighborhood X̃ of X, x �→ x′ is an actual C∞ function. For
u ∈ X, let r(u) > 0 be the radius of the corresponding slice of X̃ that is orthogonal to X. The maximum radius
R = maxu∈X r(u) of X̃ will be later adjusted (decreased) in order to account for the curvature bound M .

Let W : Rn → R be a C∞ window function localized around X, that is, W(x) = 1 if x ∈ X, W(x) = 0 if x /∈ X̃ and
0 � W(x) � 1 for all x ∈ R

n. Define Fj by

Fj (x) = W(x)e
−ν2

j ‖x−x′‖2
φj (x

′).

The function Fj is a C∞ extension of φj to R
n that numerically vanishes at a distance proportional to min(1/νj ,R).

To estimate the decay of its spectrum, we need to bound its extrinsic derivatives ∇mFj (x) (tensor of order m). The
Leibnitz formula implies that

∥∥∇mFj (x)
∥∥ �

m∑
q=0

(
m

q

)∥∥∇m−qW(x)
∥∥ · ∥∥∇q

(
e
−ν2

j ‖x−x′‖2
φj (x

′)
)∥∥

�
m∑

Km,q

∥∥∇q
(
e
−ν2

j ‖x−x′‖2
φj (x

′)
)∥∥ · 1{x∈X̃},
q=0
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where the last inequality was obtained by noting that W and its derivatives are uniformly bounded and are supported
on X̃.

The triangle inequality yields( ∫
Rn

∥∥∇mFj (x)
∥∥2 dx

) 1
2

�
m∑

q=0

Km,q

(∫
X̃

∥∥∇q
(
e
−ν2

j ‖x−x′‖2
φj (x

′)
)∥∥2 dx

) 1
2

. (1)

Another application of the Leibnitz formula gives, for x ∈ X̃,

∥∥∇q
(
e
−ν2

j ‖x−x′‖2
φj (x

′)
)∥∥ �

q∑
i=0

(
q

i

)∥∥∇ i
(
e
−ν2

j ‖x−x′‖2)∥∥ · ∥∥∇q−i
(
φj (x

′)
)∥∥.

Therefore, by the triangle inequality(∫
X̃

∥∥∇q
(
e
−ν2

j ‖x−x′‖2
φj (x

′)
)∥∥2 dx

) 1
2

is bounded from above by

q∑
i=0

(
q

i

)(∫
X̃

∥∥∇ i
(
e
−ν2

j ‖x−x′‖2)∥∥2 ·∥∥∇q−i
(
φj (x

′)
)∥∥2

dx

) 1
2

. (2)

To evaluate each term of this bound, we use the following lemma:

Lemma 12. Let fν be a function on X̃ of the form

fν(x) = g
(
ν‖x − x′‖)hν(x

′),

where g : [0,+∞) → R has an exponential decay. Again, let M > 0 be a bound on the curvature of X. Then, as
ν → +∞,

∫
X̃

∣∣f (x)
∣∣dx � ν−(n−d)

+∞∫
0

∣∣g(r)
∣∣rn−d−1 dr

∫
X

∣∣hν(u)
∣∣du.

Proof. The proof of this lemma relies on a change of variable obtained by reparametrizing X̃ as follows: the slice of
X̃ that is orthogonal to X at u ∈ X is a ball of radius r(u) in the subspace orthogonal to the tangent space of X at u.
Therefore any point in this slice can be parameterized by the ball of radius r(u) in R

n−d . In addition, the collection
of slices is parametrized by u ∈ X. Therefore we apply the change of variable x �→ (u, t) from X̃ to X × R

n−d .
Let J (u, t) denote the Jacobian of the change of variable (u, t) �→ x. The lemma follows from the fact that J is

bounded from below and above for all x ∈ X̃, provided that R = maxu∈X r(u) be chosen small enough. Indeed, first,
a variation dt of t entails the same variation of x. Second, a variation du in the tangent plane at u entails a variation of
x of order (1 ± 2α(u)‖t‖)du in the tangent direction (where α(u) is the curvature of X at u), and of order ‖t‖du2 in
the normal direction. To conclude, since ‖t‖ < r(u) � R and |α(u)| < M , it suffices to choose R so that 2RM < 1

2 ,
and we obtain that 1 − 2α(u)‖t‖ > 1 − 1

2 and 1 + 2α(u)‖t‖ < 1 + 1
2 . Finally,

1

2
< J(u, t) <

3

2
.

Therefore, with the same constants,∫
˜

∣∣fν(x)
∣∣dx �

∫
X

∣∣hν(u)
∣∣ ∫

n−d

g
(
ν‖t‖)dt du.
X t∈R ,‖t‖�r(u)
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By going to polar coordinates r = ν‖t‖, we obtain

∫
X̃

∣∣fν(x)
∣∣dx � ν−(n−d)

∫
X

∣∣hν(u)
∣∣ νr(u)∫

0

g(r)rn−d−1 dr du.

Last, due to the decay of g and the fact that ν → +∞, up to exponentially small terms, the inner integral can be
computed on the half-line [0,+∞), which ends the proof of the lemma. �

Going back to the proof of the proposition, the lemma implies that∫
X̃

∥∥∇ i
(
e
−ν2

j ‖x−x′‖2)∥∥2 · ∥∥∇q−i
(
φj (x

′)
)∥∥2 dx � K ′

q,iν
2i−(n−d)
j

∫
X

∥∥∇q−iφj (u)
∥∥2 du. (3)

What remains to be done is to bound the L2(X)-norm of the ambient derivatives of φj . To do so, we start by bounding
the norm of the intrinsic derivatives:

Lemma 13. For all s � 0, there exists C′
s such that

‖φj‖s =
( ∑

|α|�s

∫
X

∣∣∂αφj (u)
∣∣2 du

) 1
2

� C′
sν

i
j .

This lemma follows from the classical theory of elliptic operators, which says that since we can bound the norm of
Δkφj , we have a bound on all derivatives of order less than or equal to 2k.

Let

CQ = sup
u∈X

∣∣Q(u)
∣∣.

For s = 0, the lemma is trivial, and for s = 1, it results from an integration by parts as

‖∇φj‖2
X = 〈Δφj ,φj 〉X by the Stokes formula

= 〈Δφj ,φj 〉X − 〈Qφj ,φj 〉X
� ν2

j + CQ

and therefore

‖φj‖2
1 = ‖φj‖2

X + ‖∇φj‖2
X = 1 + ν2

j + CQ � C′2
1 ν2

j .

In [8, p. 262], it is shown that if L is an elliptic operator of order k, then for all i � k and all f defined on X, we
have

‖f ‖i � C′(‖Lf ‖i−k + ‖f ‖i−1
)
. (4)

We can now proceed by induction:

• for i = k = 2s and L = Δs , identity (4) yields

‖φj‖2s � C′(∥∥Δsφj

∥∥
X

+ ‖φj‖2s−1
)
� C′(ν2s

j + C′
2s−1ν

2s−1
j

)
� C′

2sν
2s
j ,

• for i = 2s + 1, k = 2s and L = Δs , identity (4) becomes

‖φj‖2s+1 � C′(∥∥Δsφj

∥∥
1 + ‖φj‖2s

)
.

We have
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∥∥Δsφj

∥∥2
1 = ∥∥Δsφj

∥∥2
X

+ ∥∥∇Δsφj

∥∥2
X

by definition

= ν4s
j + 〈

ΔΔsφj ,Δ
sφj

〉
X

by the Stokes formula

= ν4s
j + 〈

Δs+1φj ,Δ
sφj

〉
X

− 〈
QΔsφj ,Δ

sφj

〉
X

� ν4s
j + ν

2(2s+1)
j + CQν4s

j

and finally,

‖φj‖2s+1 � C′(√
(1 + CQ)ν4s

j + ν
2(2s+1)
j + C′

2sν
2s
j

)
� C′

2s+1ν
2s+1
j .

The lemma is now proven, and to finish the proof of the proposition, we need to bound the extrinsic (ambient) gradient
of x �→ φj (x

′) on X using the intrinsic (covariant) derivatives of φj . Note that this function is constant in directions
orthogonal to X. Applying the chain rule, we see that the extrinsic derivatives of this function can be expressed as
a sum of products of derivatives of x �→ x′ and intrinsic derivatives of φj . The first type of derivative is uniformly
bounded since the curvature of X is itself bounded, and as a consequence,( ∫

Rn

∥∥∇q−iφj (u)
∥∥2 du

) 1
2

� Cq,i‖φj‖q−i � C′
q,iν

q−i
j .

Combining this equation with Eqs. (1), (2) and (3), we obtain( ∫
Rn

∥∥∇mFj (x)
∥∥2 dx

) 1
2

� Cmν
m− n−d

2
j .

Now for a fixed value of m, define

Ĝj (ξ) =
{

F̂j (ξ) if ‖ξ‖ < Cνj ,

0 otherwise,

then, by the Parseval identity, we have∫
Rn

∣∣Fj (x) − Gj(x)
∣∣2 dx =

∫
‖ξ‖>Cνj

∣∣F̂j (ξ)
∣∣2 dξ �

∫
‖ξ‖>Cνj

∣∣F̂j (ξ)
∣∣2 ‖ξ‖2m

(Cνj )2m
dξ � 1

(Cνj )2m

∫
Rn

∥∥∇mFj (x)
∥∥2 dx

� C2
m

C2m
ν

−(n−d)
j .

Last, one can check that there exists a constant K ′ such that∫
Rn

∣∣Fj (x)
∣∣2 dx � K ′

∫
X̃

∣∣e−ν2
j ‖x−x′‖2

φj (x
′)
∣∣2 dx

and thus, from Lemma 12, we have∫
Rn

∣∣Fj (x)
∣∣2 dx � K2ν

−(n−d)
j

for some K > 0, and we merely have to pick C so that

Cm

KCm
< ε. �

Recall that EB is the bandlimited extension operator corresponding to band B . From now on, we set Bj = Cνj .
The consequence of this proposition is that, because of its optimal property, the extension provided by EBj

must have
an energy on R

n that is less than or equal to that of the extension that we constructed in the proof above. This means
that the numerical support of EBj

φj will be included in a tube of radius proportional to 1
νj

around X. Theoretically, it
could be much thinner, but because of the Heisenberg principle, then the support cannot really be smaller:
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Lemma 14. The standard deviation of the extension EBj
φj along any normal direction to X is at least equal to C′

νj

for some C′ > 0 independent of νj .

Proof. Let f be the restriction of EBj
φj on a line that is normal to X. Then f is a univariate bandlimited function of

band C
√

dνj . Let

Var(f ) =
∫

R
(x − x̄)2|f (x)|2 dx∫

R
|f (x)|2 dx

and

Var(f̂ ) =
∫

R
(ξ − ξ̄ )2|f̂ (ξ)|2 dξ∫

R
|f̂ (ξ)|2 dξ

be the variances of f in the space and frequency domains, x̄ and ξ̄ being the corresponding means. Then since f is
bandlimited,∫

R

ξ2
∣∣f̂ (ξ)

∣∣2 dξ �
(
C

√
dνj

)2
∫
R

∣∣f̂ (ξ)
∣∣2 dξ,

and consequently, Var(f̂ ) � (C
√

dνj )
2 (the variance is always smaller than the second moment). The Heisenberg

uncertainty principle implies that Var(f ) � C′2ν−2
j . �

As a conclusion, the extension operation satisfies a certain version of the Heisenberg principle relating the spectrum
of the operator Δ to the space and frequency localizations of the extensions of its eigenfunctions φj . This principle
says that if Δφj = ν2

j φj , then the operator EBj
extends φj to a bandlimited function of band O(νj ) and localized in a

tube of radius O
( 1

νj

)
around X. It is worthy to mention that similar results can be obtained for, say, Gaussian kernels.

4.3. Multiscale extension scheme

As a consequence of the previous section, where we have related the intrinsic and extrinsic Fourier analysis of a
function on X, the size of the domain of extension and the bandwidth to which a given function f can be extended
depends on int intrinsic spectrum. In particular, we know that each eigenfunction φj of Δ can be extended as a
bandlimited function with bandwidth Cν2

j , at distance proportional to 1
νj

from X. This observation gives rise to a
natural multiscale extension technique that we now describe.

Algorithm 2 (Multiscale extension scheme). Fix a precision η and a condition number 1
δ
.

• Precomputation phase: for each eigenfunction φj of Δ, compute the minimal frequency band Bj to which it
can be extended using EBj

. This step can also be done by grouping the eigenfunctions in dyadic packets and by
computing a band for each packet.

• Extension phase: for any function f defined on X, compute its decomposition over {φj } and retain enough
coefficients so that the relative error is of order η:

f =
∑
j∈S

〈f,φj 〉Xφj +O
(
η‖f ‖X

)
and use the precomputed extensions of φj to extend f as

F =
∑
j∈S

〈f,φj 〉XEBj
φj .

This algorithm extends f as a linear combination of “atoms” with different localizations in time and frequency.
More precisely, F is a sum of functions that oscillate at intrinsic frequency ν2

j on X and that vanish at distance 1
ν2

j
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Fig. 6. Gaussian extensions of the functions cos(jθ) for j = 1,2,4,8, from the unit circle to the plane. Unlike the bandlimited extensions, these
ones are much more localized in the plane and they do not oscillate off the circle. These plots also illustrate the Heisenberg principle as functions
with high frequencies are extended as functions with a small support.

from this set. From the implementation point of view, it is to be noted that in [7], the authors provide an efficient way
to compute the eigenfunctions of Δ on a submanifold X.

We illustrate the space–frequency localization principle in Fig. 6 where different Fourier modes of the unit circle
are extended to the plane using Gaussian kernels with a scale adapted to intrinsic frequencies.

5. Conclusion

We have described the construction and properties of the geometric harmonics and we have shown how they can be
used to perform out-of-sample extension of empirical function. The study of the case of submanifolds shows that these
functions can be viewed as a simple yet powerful tool for relating the intrinsic and extrinsic Fourier analyses. The key
point is to consider a multiscale approach and to adapt the scale of extension to the frequency content of the empirical
function. This provides an answer to the problem of determining the scale of extension of empirical functions. In
addition, there is no reason to consider a global scale of extension as the local complexity of the embedding of X may
vary a lot along the manifold. A local version of our approach can be easily developed by using local windows.
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Appendix A. Reproducing kernel Hilbert spaces

In this section, we provide the basic background concerning reproducing kernel Hilbert spaces, and their connection
to positive semi-definite kernels. A classical reference concerning this topic is [2].

Definition 15 (Reproducing kernel Hilbert space). A space Hilbert H of functions defined on a set X̄ is said to be a
reproducing kernel Hilbert space if there exists a function (“kernel”) k : X̄ × X̄ → R

n such that

• for almost every x ∈ X̄, k(x, ·) ∈ H,
• if 〈·, ·〉X̄ is the inner product in H, then for all function f ∈H and almost all x ∈ X̄,〈

f, k(x, ·)〉
X̄

= f (x). (A.1)

In [2], it is shown that the concepts of reproducing kernels and positive kernels are identical in the following sense:
any reproducing kernel is positive semi-definite and to any positive kernel k there corresponds a reproducing kernel
Hilbert space H for which k is the reproducing kernel. The construction is given in [2, pp. 150–151].

In the particular case when X̄ = R
n and k(x, y) = h(x − y), then more can be said. By Bochner’s theorem, we

know that the Fourier transform ĥ of h is a finite positive measure. Assuming that this measure has the form ĥ(ξ)dξ ,
then it can be checked that H is the space of functions f defined on R

n such that∫
ĥ(ξ)>0

∣∣f̂ (ξ)
∣∣2 dξ

ĥ(ξ)
< +∞

and such that f̂ (ξ) = 0 if ĥ(ξ) = 0. Consequently, this space is the Fourier transform of a weighted L2 space, where
the weight penalizes high frequencies since ĥ is integrable.

In the case of the Bessel kernel, the function ĥ is the indicator of a ball, and therefore H is imply a space bandlimited
of bandlimited functions endowed with the classical inner product of L2(Rn,dx).

Appendix B. Expression of the Bessel kernel

In what follows, we derive the form of the kernel corresponding to functions whose Fourier transform is the
indicator function of the ball of radius B

2 centered at the origin, namely:

k
(n)
B (x, y) =

∫
‖ξ‖< B

2

e2iπ〈ξ,x−y〉 dξ =
(

B

2

) n
2 Jn

2
(πB‖x − y‖)
‖x − y‖ n

2
,

where Jν is the Bessel function of the first kind of order ν. This kernel will be termed “Bessel kernel.”
Since the kernel is really a function of ‖x −y‖, we are looking for the form of the Fourier transform of the indicator

of the unit ball in dimension n. To do so, we make use of a result known under the name of the Bochner–Coifman–
Howe periodicity relations:

Lemma 16. Let f be a radial function, and let Fnf (ξ) = hn(‖ξ‖2) be its Fourier transform in dimension n. Then the
Fourier transforms of f in dimension n and n + 2 are related in the following manner:

hn+2(u) = − 1

π
h′

n(u).
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In other words, to compute the Fourier transform hn+2(‖ξ‖2) of f in R
n+2, one can start from the Fourier transform

hn(‖ξ‖2) in dimension n, view this function as a function of ‖ξ‖2 and compute its derivative in this variable.

Proof. Since any radial function or tempered distribution can be approximated as a sum of Gaussians, one merely
needs to verify the relation for f (x) = e−αr2

. In this case,

Fnf (ξ) =
(

π

α

) n
2

e− π2ξ2

α .

Thus

hn(u) =
(

π

α

) n
2

e− π2u
α

and the identity is satisfied. �
Using this lemma we can now conclude:

Proposition 17. In dimension n, the Bessel kernel has the following form:

k
(n)
B (x, y) =

(
B

2

) n
2 Jn

2
(πB‖x − y‖)
‖x − y‖ n

2
.

Moreover, if n is odd, then the simpler formula can be used:

k
(n)
B (x, y) = MB,n

(
1

r

d

dr

) n−1
2

sinc(Br),

where r = ‖x − y‖ and

MB,n =
(

B

2

) n
2 √

2B(−1)
n−1

2 .

Proof. By a trivial scaling argument, we may assume that B = 2.
Then if n = 1, then

k
(1)
2 (x, y) =

1∫
−1

e2iξπ(x−y) dξ = 2sinc
(
2‖x − y‖) =

J 1
2
(2π‖x − y‖)
‖x − y‖ 1

2

,

where the third equality is obtained using 10.1.1 and 10.1.11 in [1].
If n = 2, then in polar coordinates (ρ, θ):

∫
‖ξ‖<1

e2iπ〈ξ,x−y〉 dξ =
1∫

0

2π∫
0

e2iπrρ cos θ dθρ dρ

= 2π

1∫
0

J0(2πrρ)ρ dρ by 9.1.21 in [1]

= 1

2πr2

2πr∫
0

uJ0(u)du

= −1

r
J ′

0(2πr) since by 9.1 in [1]
(
uJ0(u)

)′ = −uJ0(u)

= J1(2πr)
by 9.1.28 in [1].
r
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For higher orders we proceed by induction on n, noting that if

h(u) =
Jn−2

2
(2π

√
u )

u
n−2

4

,

then

h′(u) =
J ′

n−2
2

(2π
√

(u) ) π√
(u)

u
n−2

4 − Jn−2
2

(2π
√

u )n−2
4 u

n−2
4 −1

u
n−2

2

=
2π

√
uJ ′

n−2
2

(2π
√

u ) − n−2
2 Jn−2

2
(2π

√
u )

2u
n−2

4 +1

= −π
√

uJn
2
(2π

√
u )

u
n−2

4 +1
according 9.1.27 in [1]

= −πJn
2
(2π

√
u )

u
n
2

.

Now invoking Lemma 16 yields the result. Finally, to obtain a formula in terms of the variable r instead of r2, notice
that d(r2) = r dr , and this implies that for odd values of n

k
(n)
2 (x, y) = 2(−1)

n−1
2

(
1

r

d

dr

) n−1
2

sinc(2r). �
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