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Abstract

Independent component analysis (ICA) of a mixed signal into a linear combination of its independent components, is one of
the main problems in statistics, with wide range of applications. The un-mixing is usually performed by finding a rotation that
optimizes a functional closely related to the differential entropy. In this paper we solve the linear ICA problem by analyzing the
spectrum and eigenspaces of the graph Laplacian of the data. The spectral ICA algorithm is based on two observations. First,
independence of random variables is equivalent to having the eigenfunctions of the limiting continuous operator of the graph
Laplacian in a separation of variables form. Second, the first non-trivial Neumann function of any Sturm–Liouville operator is
monotonic. Both the degenerate and non-degenerate spectrums corresponding to identical and non-identical sources are studied.
We provide successful numerical experiments of the algorithm.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Independent component analysis (ICA) is an important problem in statistics [1–3]. The need for ICA is encountered
often in signal processing [4], where the signal must be decomposed into its independent components; this process
is also known as blind source separation, or the cocktail party problem. Medical and biological applications include
separating the EEG and MEG into different source signals [5], and analyzing DNA microarray data [6], to name just
a few.

The linear ICA problem is formulated mathematically as follows. Let the sources S1, S2, . . . , Sn be n unknown
independent random variables, and A be an m × n unknown constant mixing matrix. The task is to find the mixing
matrix, and thus also the sources, from N different observations of the m-vector X

X(i) = AS(i), i = 1,2, . . . ,N. (1.1)

It is well known that A may be assumed to be an orthogonal square matrix (m = n), and all sources to have zero mean
and unit variance (ESj = 0,ES2

j = 1). This is achieved by first subtracting the mean value of X and then applying the
principal component analysis (PCA) algorithm ([3,7] among others) to the original data, which basically diagonalizes
the covariance matrix of X.

E-mail address: amit.singer@yale.edu.
1063-5203/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.acha.2006.03.003



136 A. Singer / Appl. Comput. Harmon. Anal. 21 (2006) 135–144
The starting point of most linear ICA algorithms is casting it as an optimization problem ([1,2] and references
therein). For example, the joint differential entropy H(S) of n random variables S = (S1, . . . , Sn) equals the sum
of their marginal entropies

∑n
j=1 H(Sj ) iff the random variables are independent. Furthermore, the joint entropy is

invariant to orthogonal transformations, i.e., H(AX) = H(X), for A orthogonal. Therefore, one tries to find an orthog-
onal transformation A that maximizes the sum of the projected marginal entropies, i.e., maxA

∑n
j=1 H [(A−1X)j ]. The

global search is usually done iteratively by a Newton or a gradient method. However, it suffers from two drawbacks.
First, the marginal entropy functional is a non-linear function of the density. Therefore, the calculation of the gradient
is complicated. Several approximation schemes have been cleverly devised for this task alone. Second, as usually is
the case with global gradient searches, the iterative scheme may find a local maximum instead of the global one. The
severity of this problem increases with the number of dimensions n.

In this paper we adapt a different approach to the linear ICA problem that is not based on differential entropy. Our
method is based on the graph Laplacian of the data. The eigenvectors of the discrete graph Laplacian are approxima-
tions of the continuous backward Fokker–Planck operator, which is the Laplacian operator and a potential term that
is a function of the density of the data points. For data originating from an orthogonal transformation of independent
sources, the eigenfunctions of the backward Fokker–Planck operator have a separation of variables form, because
both the Laplacian operator and the potential are separated. The backward Fokker–Planck operator is separated to
n one-dimensional Sturm–Liouville operators, with Neumann boundary conditions. The classical Sturm–Liouville
theory guarantees that the first non-trivial eigenfunction of these one-dimensional operators is monotonic. Therefore,
exploring the spectrum and eigenvectors of the graph Laplacian enables us to find the orthogonal transformation A.

The paper is organized as follows. Section 2 contains a brief review of the graph Laplacian method and the way it
gives rise to the limiting continuous backward Fokker–Planck operator. In Section 3 we show that for the linear ICA
problem the Fokker–Planck operator separates to many one-dimensional Sturm–Liouville problems. In Section 4 we
make use of the monotonic property of the first non-trivial eigenfunction of any Sturm–Liouville problem to derive a
statistic that reveals the lowest frequency independent component. The degenerate case arises when two components
have the same distribution, so we look deeper into the spectrum to recover the independent components. In Section 5
we describe how to extract all components, explain the capability of the algorithm to cope with noise, and discuss its
limitations in high dimensions. Finally, in Section 6 we provide numerical examples of both the non-degenerate and
degenerate cases.

2. The graph Laplacian and the backward Fokker–Planck operator

In this section we briefly review the graph Laplacian method and its connection to the backward Fokker–Planck
operator. Graph Laplacians are widely used in machine learning for dimensionality reduction, semi-supervised learn-
ing and spectral clustering ([8–15] and references therein). In these setups one is usually given a set of N data points
X(1),X(2), . . . ,X(N) ∈ M, where M ⊂ R

n is a Riemannian manifold with dimM = d � n. The points are given as
vectors in the ambient space R

n and the task is to find the unknown underlying manifold M, its geometry and its
low-dimensional representation.

The starting point of spectral methods is to extract an N ×N weight matrix W from a suitable semi-positive kernel
k as follows

Wij = k
(∥∥X(i) − X(j)

∥∥2
/2ε

)
, (2.1)

where ‖ · ‖ is the Euclidean distance in the ambient space R
n and ε1/2 > 0 is the bandwidth of the kernel. A popular

choice of kernel is the exponential kernel k(x) = e−x , though other choices are also possible.
The weight matrix W is then normalized to be row stochastic, by dividing it by a diagonal matrix D whose elements

are the row sums of W

Dii =
N∑

j=1

Wij (2.2)

and the (negative defined) graph Laplacian L is given by

L = D−1W − I, (2.3)
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where I is a N × N identity matrix. Next, the top few eigenvalues and eigenvectors of D−1W are computed, to be
used for data analysis problems such as dimensionality reduction and clustering.

In the case where the data points {X(i)}Ni=1 are independently and uniformly distributed over the manifold M
the graph Laplacian converges to the continuous Laplace–Beltrami operator ΔM of the manifold [8,11,12,16]. The
manifestation of the last statement is that for a smooth function f :M → R we have [17]

1

ε

N∑
j=1

Lijf
(
X(j)

) = 1

2
ΔMf

(
X(i)

) + O

(
1

N1/2ε1/2+d/4
, ε

)
. (2.4)

Therefore, the eigenvectors of L are approximations of the eigenfunctions of the Laplace–Beltrami operator ΔM

ΔMf (X) = −λf (X), X ∈ M, (2.5)

with the Neumann boundary conditions

∇Mf (X) · ν(X) = 0, X ∈ ∂M, (2.6)

where ν(X) is an outer normal unit vector to the boundary of the manifold ∂M.
If the data points are independent identical multivariate random variables, but not necessarily uniformly distributed,

then the graph Laplacian converges to a backward Fokker–Planck operator [12,13]. Suppose p(X) is the probability
density function of the data points over the manifold, and U(X) = −2 logp(X). Then,

1

ε

N∑
j=1

Lijf
(
X(j)

) ≈ 1

2

[
ΔMf

(
X(i)

) − ∇MU
(
X(i)

) · ∇Mf
(
X(i)

)]
, (2.7)

with the same error estimation as in (2.4), and the eigenvectors of L are approximations of the eigenfunctions of the
backward Fokker–Planck operator

ΔMf (X) − ∇MU(X) · ∇Mf (X) = −λf (X), X ∈ M, (2.8)

satisfying the Neumann boundary conditions (2.6).

3. Separation of variables

In the linear ICA problem (1.1), the manifold is “planar,” that is, M = R
n, and its dimension is d = n. More

importantly, the density is a product of n one-dimensional densities

p(X) =
n∏

j=1

pj (Sj ), (3.1)

where Sj are the components of S = A−1X and pj is the density of Sj . Therefore, the potential U(X) is a sum of n

one-dimensional potentials

U(X) =
n∑

j=1

Uj (Sj ), (3.2)

where Uj (Sj ) = −2 logpj (Sj ). The Laplacian operator Δ is invariant under orthogonal transformations

Δ =
n∑

j=1

∂2

∂X2
j

=
n∑

j=1

∂2

∂S2
j

. (3.3)

Therefore, the graph Laplacian 2
ε
L approximates the continuous backward Fokker–Planck operator L

L=
n∑ ∂2

∂S2
j

− ∂Uj (Sj )

∂Sj

∂

∂Sj

. (3.4)

j=1
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Clearly, the operator L is separable and can be written as

L =
n∑

j=1

Lj , (3.5)

where each of the Lj ’s is a one-dimensional backward Fokker–Planck operator in the interval aj < Sj < bj (the
endpoints aj , bj may be finite or infinite) with Neumann boundary conditions

Lj = d2

dS2
j

− dUj (Sj )

dSj

d

dSj

. (3.6)

The eigenvalue problem of Lj is formulated as a Sturm–Liouville problem

d

dSj

(
e−Uj

dφj

dSj

)
+ λje

−Uj φj = 0, Sj ∈ (aj , bj ). (3.7)

Therefore, the operator Lj has an infinite set of eigenfunctions and eigenvalues

−Ljφ
(k)
j = λ

(k)
j φ

(k)
j , k = 0,1,2, . . . , (3.8)

with 0 = λ
(0)
j � λ

(1)
j � · · · , and λ

(k)
j → ∞.

The eigenfunctions of L, denoted

φ(k1,k2,...,kn), kj = 0,1,2, . . . , j = 1,2, . . . , n, (3.9)

are the tensor products of the one-dimensional eigenfunctions

−Lφ(k)(S1, . . . , Sn) = λ(k)φ(k)(S1, . . . , Sn), k = (k1, k2, . . . , kn), (3.10)

φ(k)(S1, . . . , Sn) =
n∏

j=1

φ
(kj )

j (Sj ), (3.11)

λ(k) =
n∑

j=1

λ
(kj )

j . (3.12)

In particular, φ
(0)
j = 1 and λ

(0)
j = 0 for all j = 1,2, . . . , n. Therefore, the first eigenfunction of L is φ(0) = 1 with

λ(0) = 0 (here 0 = (0,0, . . . ,0)), which is not of great interest.

4. The second eigenfunction and the first independent component

4.1. The non-degenerate case

More interesting is the second eigenfunction of L. Suppose that the second eigenvalue is non-degenerate. In
such a case, there is a unique j = arg minj=1,...,n λ

(1)
j , for which the second eigenvalue is minimal. Denote ej =

(0, . . . ,0,1,0, . . . ,0) the standard unit vector with a single 1 at the j th place. Then, the second eigenfunction of L is

φej (S1, S2, . . . , Sn) = φ
(1)
j (Sj ), λej = λ

(1)
j . (4.1)

That is, the second eigenfunction is a function of a single coordinate and this coordinate is exactly one of the indepen-
dent component sources Sj .

Moreover, we are guaranteed by the Sturm–Liouville theory1 that the second eigenfunction of a Sturm–Liouville
problem with Neumann boundary conditions, such as (3.7), is strictly monotonic, and w.l.o.g., monotonic increasing.
In other words,

dφ
(1)
j (Sj )

dSj

> 0 for Sj ∈ (aj , bj ). (4.2)

1 The proof is based on the Prüfer transformation.
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The monotonic property motivates us to consider the following vector statistics:

Z = 1

N

N∑
i=1

φej
(
X(i)

)
X(i) = 1

N

n∑
l=1

N∑
i=1

φ
(1)
j

(
S

(i)
j

)
S

(i)
l Al, (4.3)

where Al , l = 1, . . . , n, are the columns of the mixing matrix

A =
( | |

A1 . . . An

| |

)
.

It is convenient to represent Z in the basis corresponding the orthogonal matrix A

Z = (Z1,Z2, . . . ,Zn), (4.4)

where

Zl = 1

N

N∑
i=1

φ
(1)
j

(
S

(i)
j

)
S

(i)
l for l = 1,2, . . . , n. (4.5)

The independence of the sources and their zero mean property E[Sj ] = 0 (for all j = 1, . . . , n) imply

EZl = E
[
φ

(1)
j (Sj )Sl

] = E
[
φ

(1)
j (Sj )

]
E[Sl] = 0 for l 	= j. (4.6)

Therefore, the vector EZ lies in the Aj direction

EZ =
n∑

l=1

EZlAl = EZjAj = E
[
φ

(1)
j (Sj )Sj

]
Aj . (4.7)

The Z-statistics enable us to recover the j th column Aj of the mixing matrix A, and the corresponding independent

component Sj = AT
j X provided E[φ(1)

j (Sj )Sj ] does not vanish.

We therefore now prove E[φ(1)
j (Sj )Sj ] > 0. We evaluate

E
[
φ

(1)
j (Sj )Sj

] =
bj∫

aj

φ
(1)
j (Sj )Sjpj (Sj )dSj (4.8)

by integration by parts. To this end, consider the indefinite integral

I (Sj ) =
Sj∫

aj

tpj (t)dt, (4.9)

which satisfies

I (aj ) = 0, I (bj ) = E(Sj ) = 0,

d

dSj

I (Sj ) < 0 for Sj < 0,
d

dSj

I (Sj ) > 0 for Sj > 0.

Therefore,

I (Sj ) < 0 for Sj ∈ (aj , bj ). (4.10)

Integration by parts of (4.8) gives

E
[
φ

(1)
j (Sj )Sj

] = −
bj∫

a

I (Sj )
dφ

(1)
j (Sj )

dSj

dSj , (4.11)
j
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because I vanishes at the end points, I (aj ) = I (bj ) = 0. The monotonic property of the second eigenfunction (4.2)
together with the negativity of I (4.10) yield the required inequality

E
[
φ

(1)
j (Sj )Sj

]
> 0. (4.12)

The convergence rate of Z → EZ as the number of data points N → ∞ is 1/
√

N . Indeed, consider the covariance
matrix of Z. First, for l1 	= l2 at least one of the two indices, say l2, differs from j , and Sl2 is independent of both Sl1

and Sj . Combining with (4.5) and (4.6) gives

E[Zl1Zl2 ] = 0 for l1 	= l2. (4.13)

As EZl2 = 0 (4.6) we conclude that the covariance matrix of Z is diagonal

Cov(Zl1 ,Zl2) = 0 for l1 	= l2, (4.14)

that is, the components of the vector Z are uncorrelated.
We proceed to calculate the variance terms. Each component Zl is a sum of N i.i.d. variables (4.5). Therefore,

Cov(Zl,Zl) = VarZl = 1

N
Var

[
φ

(1)
j (Sj )Sl

]
(4.15)

and the standard deviation of each component is proportional to 1/
√

N as asserted.
The observable second eigenvector of the graph Laplacian L, denoted ϕ2, approximates the unobservable second

eigenfunction φej of the backward Fokker–Planck operator L. Thus, computing

Z̃ = 1

N

N∑
i=1

ϕ2
(
X(i)

)
X(i) (4.16)

gives an approximation for the j th column of the mixing matrix A.
Note that two approximation errors are involved here. The first is the approximation error of the eigenvectors of L

and L, leading to a difference between Z and Z̃. The second approximation error is due to the difference between Z

and EZ. Both approximation errors tend to zero as 1/
√

N as the number of data points N → ∞.

4.2. The degenerate case

The second eigenvalue of L may be degenerate. This happens when minλ
(1)
j is attained for two or more j indices,

say j1 and j2. This will always be the case when there are only two identically independently distributed (i.i.d.)
components. Hereafter we assume that the degeneracy is exactly two; the cases of higher degeneracy are treated in
the same spirit. In particular, we suspect that the eigenvalues are degenerate when the numeric values of the first two
non-trivial eigenvalues of 2

ε
L are close.

Ideally, motivated by the previous non-degenerate case, one would expect the corresponding two eigenfunctions
φej1 , φej2 to reveal the two independent components Sj1, Sj2 and the corresponding columns Aj1 ,Aj2 of the mixing
matrix. However, any linear combination of φej1 and φej2 is also an eigenfunction.

Luckily, the spectrum of L contains more information that can be used. Specifically, the eigenfunction

φej1+ej2 (S) = φ
(1)
j1

(Sj1)φ
(1)
j2

(Sj2), (4.17)

becomes very helpful. We assume that the corresponding eigenvalue λej1+ej2 = λ
(1)
j1

+ λ
(1)
j2

= 2λ
(1)
j1

= 2λ
(1)
j2

is non-
degenerate. This assumption usually holds, except in some special cases. For example, it fails in the case of two
normally distributed sources, where the eigenfunctions are the Hermite polynomials and the spectrum is Z (the har-
monic quantum oscillator). In such a case the degeneracy is 3 (0 + 2 = 1 + 1 = 2 + 0) instead of 1. We expect two
normally distributed variables to be exceptional, as separation is impossible.

Suppose φ(1), φ(2) are the first two degenerate non-trivial eigenfunctions. We may assume they are orthonormal
(φ(i)T φ(j) = δij , i, j = 1,2) by applying the Gram–Schmidt procedure. We seek a two-dimensional rotation angle θ

that gives the separated eigenfunctions
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φej1 = cos θφ(1) − sin θφ(2), (4.18)

φej2 = sin θφ(1) + cos θφ(2). (4.19)

Therefore, their tensor product is

φej1 ⊗ φej2 = 1

2
sin 2θ

(
φ(1) ⊗ φ(1) − φ(2) ⊗ φ(2)

) + cos 2θφ(1) ⊗ φ(2). (4.20)

The dot product of φej1+ej2 and φej1 ⊗ φej2 is

φej1+ej2 · (φej1 ⊗ φej2
) = 1

2
sin 2θφej1+ej2 · (φ(1) ⊗ φ(1) − φ(2) ⊗ φ(2)

) + cos 2θφej1+ej2 · (φ(1) ⊗ φ(2)
)
.

(4.21)

This dot product is extremal for the correct value of rotation angle θ , because the two eigenfunctions point along the
same direction (or the opposite directions). Therefore, setting the derivative of (4.21) to zero gives θ

tan 2θ = 1

2

φej1+ej2 · (φ(1) ⊗ φ(1) − φ(2) ⊗ φ(2))

φej1+ej2 · (φ(1) ⊗ φ(2))
. (4.22)

In practice we observe the N -element eigenvectors of L which are approximations of the unobservable eigenfunc-
tions of L. However, we do not know which eigenvector is actually ϕej1+ej2 , the one that approximates φej1+ej2 . It
can be decided according to the expected relation between the approximated eigenvalues, but it may not be of great
statistical significance.

Two random vectors in a high-dimensional space are approximately perpendicular. The law of large numbers
indicates that the angle α between two random vector satisfies cosα = O(1/

√
N). Therefore, the statistical test based

on (4.21) enables us to find both the eigenvector ϕej1+ej2 and the rotation angle θ . The statistical significance of this
test improves as

√
N as the number of data points N increases. Once the angle θ is recovered, Eqs. (4.18) and (4.19)

give ϕ
(1)
j1

and ϕ
(1)
j2

and we proceed as in the non-degenerate case to find the columns Aj1,Aj2 of the mixing matrix,
and the corresponding independent components Sj1, Sj2 .

5. The next independent components, Noise and the Curse of dimensionality

We proceed to find the next independent components. For the sake of clarity of exposition alone, we assume
the non-degenerate case. Obviously, only the first n − 1 components actually need to be recovered, because the last
component is orthogonal to them. Therefore, for n = 2 we are done after recovering the first component, so the case
n � 3 is considered next.

The component Sj2 that we recover next is the one with the second lowest non-trivial eigenvalue j2 =
arg minj 	=j1

λ
(1)
j . However, in the spectrum of L the corresponding eigenvalue λ

(1)
j2

need not be the second non-trivial

eigenvalue. It could happen that other eigenvalues of Lj1 are smaller than λ
(1)
j2

, that is, λ
(r)
j1

< λ
(1)
j2

with r > 1. Still,

we are able to find the corresponding eigenvector φej2 by using the fact that φej1+ej2 = φej1 φej2 . This enables us to
identify φej2 and φej1 by the same method elaborated for the degenerate case. Moreover, the problem is even simpler
than that of the degenerate case, because there is no rotational degree of freedom, so a comparison of only a few
eigenvectors is needed.

Once the second component is revealed then our job is done if there are only three independent components (n = 3),
or we may proceed in the same manner to find the other components (n > 3). Throughout this process we identify the
origin of eigenvectors and eigenvalues in the spectrum. Note that the components with smaller eigenvalues, in the low
frequency part of the spectrum, are recovered before those with high frequencies. In practice, this property enables us
to solve the noisy linear ICA problem

X = AS + μ, (5.1)

where μ is the noise. The noise can be treated as another independent component (or components). However, the
noise is expected to have a much higher frequency compared to the actual signal S. Therefore, we expect the noise
to appear further in the spectrum, so we identify the actual sources before we hit its corresponding eigenvectors. We
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refer to this feature as de-noising. It is known that the graph Laplacian method is quite robust to noise, and in fact is
being used for de-noising in various applications.

The spectral ICA method presented in this paper has its limitations. First, for the graph Laplacian to approximate
the Fokker–Planck operator the number of data points needs to be large, especially in high dimensions, for the error
term in (2.4) to be small. Second, the number of eigenvectors that need to be well approximated for our method to
succeed increases with the dimension. Numerically, the lower eigenvectors are better approximated than the higher
ones. Therefore, in high dimensions, we might be able to find only the first few independent components. Finally we
remark that the output of the spectral ICA method may be used as an initial guess or input for the classical iterative
ICA methods, as it is expected to find an orthogonal matrix nearby the global maximum of the specific functional to
be optimized.

6. Numerical examples

6.1. The non-degenerate case

Suppose one independent component is uniformly distributed, while the other is a standard normal variable

S1 ∼ U [−√
3,

√
3 ], (6.1)

S2 ∼ N (0,1). (6.2)

Clearly, ESj = 0 and ES2
j = 1 for j = 1,2.

The Neumann eigenfunctions of L1 = d2

dx2 satisfy

φ′′ = −λφ, φ′(−√
3) = φ′(

√
3) = 0 (6.3)

and are given by

φ
(k)
1 = coskπ

(
x

2
√

3
+ 1

2

)
, λ

(k)
1 = π2k2

12
, k = 0,1,2, . . . . (6.4)

The standard normal density p(x) = 1√
2π

e−x2/2 gives rise to the potential U(x) = −2 logp(x) = x2 + log 2π . The

corresponding backward Fokker–Planck operator is L2 = d2

dx2 − 2x d
dx

. Its Neumann eigenfunctions satisfy

φ′′ − 2xφ′ + λφ = 0, e−x2
φ′(x) → 0 as x → ±∞. (6.5)

The eigenfunctions are the Hermite polynomials [18]

φ
(k)
2 = Hk(x), λ

(k)
2 = 2k, k = 0,1,2, . . . . (6.6)

The first few Hermite polynomials are

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, . . . . (6.7)

Note that both φ
(1)
1 (x) and φ

(1)
2 (x) are monotonic functions as predicted by the Sturm–Liouville theory. The first

non-trivial eigenvalue of L is due to L1, λe1 = λ
(1)
1 = π2

12 = 0.82 . . . . Therefore, we expect to recover first the uniform
distributed component S1.

The following numerical experiment was performed. We randomly generated N = 1000 points (S
(i)
1 , S

(i)
2 ),

i = 1,2, . . . ,1000, according to (6.1) and (6.2). The points were then rotated by π/4 = 45◦

X
(i)
1 = (

S
(i)
1 + S

(i)
2

)/√
2, (6.8)

X
(i)
2 = (

S
(i)
1 − S

(i)
2

)/√
2. (6.9)

Figure 1 is a scatter plot of the observed points (X
(i)
1 ,X

(i)
2 ). The graph Laplacian method was applied with ε = 0.2

after the removal of isolated points. The origin of the isolated points is the tail of the normal distribution. It is difficult
to obtain a good approximation of the Laplacian at those points, because the density is too small. Therefore, we omit
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Fig. 1. A scatter plot of N = 1000 points (X
(i)
1 ,X

(i)
2 ) drawn at random according to (6.1)–(6.2) and (6.8)–(6.9).

Fig. 2. A scattered plot of N = 1000 points (X
(i)
1 ,X

(i)
2 ) uniformly distributed in a 45◦ rotated square.

the isolated points by setting a threshold for the empirical density. The first non-trivial eigenvalue of 2
ε
L was found to

be λ = 0.90, which is O(ε) from the anticipated π2/12 ≈ 0.82. Computation of Z̃N (4.16) resulted in that the rotation
angle θ satisfied cos θ = 0.66 or θ ≈ 49◦. We repeated this numerical experiment several times just to find that the
computed rotation angles approximate the real rotation angles quite well.

6.2. The degenerate case

Suppose both sources are uniformly distributed

S1, S2 ∼ U [−√
3,

√
3 ] (6.10)

and the same rotation of (6.8) and (6.9) is applied. The first two non-trivial eigenfunctions are degenerate with λe1 =
λe2 = π2

12 . The third non-trivial eigenfunction is their tensor product with λe1+e2 = π2

6 .
We randomly generated N = 1000 points uniformly distributed in the square (6.10) and rotated it by α = 45◦ (see

Fig. 2). We computed the first three non-trivial eigenvectors of the graph Laplacian. The rotation angle θ of the two
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degenerated eigenvectors with respect to the separated eigenvectors was computed according to the tensor product
property (4.22). Then, the separated eigenvectors were calculated according to (4.18) and (4.19) and the ZN -statistics
(4.16) was used to find the rotation angle α. This gave an estimate of α = 47◦. We repeated the experiment several
times to find the predicted rotation angles in good agreement with their actual values.
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