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ABSTRACT

We describe signal processing tools to extract structure and information from arbitrary digital data sets. In
particular heterogeneous multi-sensor measurements which involve corrupt data, either noisy or with missing
entries present formidable challenges. We sketch methodologies for using the network of inferences and similarities
between the data points to create robust nonlinear estimators for missing or noisy entries. These methods enable
coherent fusion of data from a multiplicity of sources, generalizing signal processing to a non linear setting. Since
they provide empirical data models they could also potentially extend analog to digital conversion schemes like
“sigma delta”.
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1. FEATURE BASED FILTERING, DIFFUSIONS AND SIGNAL PROCESSING ON
GRAPHS

A simple way to understand the effect of introducing similarity based diffusions on data1–6 is provided by
considering a regular gray level image in which we associate with each pixel p a vector ν(p) of features.7, 8 For
example, a multi-band electromagnetic spectrum or the 5×5 sub-image centered at the pixel, or any combination
of features. Define a Markov filter

Ap,q =
exp− ||ν(p)−ν(q)||2

ε∑
q exp −||ν(p)−ν(q)||2

ε

, (1)

where ε > 0 is a small parameter comparable to the smallest distances between two feature vectors ν(p) and
ν(q). Clearly the map ν is a bijection between pixels in the image and patches (or features). In particular every
function on the pixels, such as the original image I itself, is also a function on the set of patches. With this
identification, one can let the Markov filter Ap,q act on an image.

The image I in figure 1 was filtered using the (nonlinear in the features) procedure described above where
the feature vector ν(p) is the 5× 5 patch around a pixel p:

I(p) =
∑

q

Ap,qI(q) =
∑

q

exp− ||ν(p)−ν(q)||2
ε∑

q exp −||ν(p)−ν(q)||2
ε

I(q) . (2)

Observe that the edges are well preserved as patches translated parallel to an edge are similar and contribute
more to the averaging procedure.7, 8 We should also observe that if we were to repeat the procedure on the
filtered image we would get a numerical implementation of various nonlinear heat diffusions for image processing
similar to those in PDE methods, such as those by Osher and Rudin.

It is useful to replace A by a bi-Markovian version of the form

Ap,q =
exp −||ν(p)−ν(q)||2

ε

ω(p)ω(q)
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Figure 1. Left: original noisy image. Right: image denoised by application of the Markov matrix as in (1)

Figure 2. Left: original noisy image. Right: image denoised by application of the Markov matrix as in (1), but where
features are local variances rather than pixel values in a patch around each pixel.

where the weights ω(·) are selected so that A is Markov in p and q.

The noisy IR image in Figure 2 was filtered by N. Coult using a vector of 25 statistical features associated
with each pixel.

The Markov matrix used for filtering, defines a diffusion on the graph of patches or features viewed as a subset
of 25 dimensional Euclidean space. The eigenvectors of this diffusion permit us to compute all of its powers and
to define a diffusion geometry and signal processing on this “image graph”.7

For the next example consider 3 noisy sensors measuring the x, y, z coordinates of a trajectory in three
dimensions. We could try to denoise each coordinate separately. Or use the position vector as as a feature vector
as we did for the images above. See Figure 1.

The construction above should be viewed as signal processing on the data graph. We view all points of the
trajectory as a data graph,ie data points p and q are vertices and Ap,q is the weight of the edge connecting them



Figure 3. The green, red and blue curves are respectively the coefficients of the x, y, z coordinates , as filtered above,
using less than 10 eigenvectors of the Markov matrix. These simple examples indicate that diffusion geometries are an
efficient tool for sensor fusion ,and coherent signal processing for nonlinearly correlated data streams.

measuring their similarity or affinity at scale 1. We consider the eigenvectors of the Markov matrix Ap,q defined
above as a basis for all functions on this Graph. We can then expand each coordinate as a function on that
graph, and restrict the expansion to the first few low frequency eigenfunctions, ie filter it and use the filtered
coordinates as a clean trajectory.1 This generalizes the simple filtering obtained above (see Figure 1).

2. DIFFUSION GEOMETRIES

These simple examples indicate that diffusion and harmonic analysis are useful for coherent sensor integration
and fusion, enabling signal processing for nonlinearly correlated data streams. Diffusion geometries enable
the definition of affinities and related scales between any digital data points in (provided of course that the
infinitesimal proximity in the coordinates corresponds to true affinity between data points). Moreover it enables
the organization of the population of sensor output into affinity folders or subsets with a high level of affinity
among their responses . In particular we claim that the eigenfunctions of the diffusion operator or equivalently
a Laplacian on a graph provide useful empirical coordinates, which enable an embedding of the data to low
dimensional spaces so that the diffusion distance at time t on the original data becomes Euclidean distance in
the embedding, in effect providing a nonlinear version of the SVD.1 Moreover we indicate how the diffusion at
different times leads to a multiscale analysis generalizing wavelets and similar scaling mechanisms.4, 6, 9

To be specific,1, 10 let the bi-Markov matrix A defined above be represented in terms of its eigenvectors:

Ap,q =
∑

l

λ2
l ϕl(Xp)ϕl(Xq)



Figure 4. Left: standard position of electrodes in EEG. Middle: diffusion map of the responses to 4 electrodes, showing
the nonlinear correlations and manifold-like structure of these responses. Right: diffusion map of the responses to all
electrodes, exhibiting similar nonlinear correlations. In fact, the manifold structure obtained from measuring from all
electrodes is very close to that obtained from 4 electrodes, suggesting that exploiting the nonlinear correlations would
allow to use only 4 electrodes.

and define the diffusion map Φ(t)
m at time t into m dimensional Euclidean space by

Xp 7→ Φ(t)
m (Xp) := (λt

1ϕ1(Xp), λt
2(Xp), . . . , λt

mϕm(Xp)) (3)

For a given t we determine m so that λt
m+1 is negligible. The diffusion distance1 at time t between X

(t)
p and

X
(t)
q is given as

d2
t (p, q) = Ap,p + Aq,q − 2Ap,q =

∑

l

λ2t
l (ϕl(Xp)− ϕl(Xq))2 = ||Φ(t)

m (Xp)− Φ(t)
m (Xq)||2 .

This map enables us to represent geometrically an abstract set of measurements on a sensor array (measure-
ment space) as we illustrate on the following EEG example.11

The 20 electrodes measure coherent electrical activity in the brain. Mapping the configuration space of
the measurements of 4 electrodes leads to the same configuration as for all 20. In the linear case this will be
obtained by de-correlating the outputs , here however different locations of sources result in a different attenuation
vectors ,or linear de-correlations. Here the first three nontrivial eigenvectors are used to map the data to three
dimensions (diffusion map), see Figure 4. The implications are obvious 4 electrodes suffice to get essentially the
same measurements , redundancy is useful to obtain a clean version.11

3. MULTISCALE STRUCTURES AND THE EMERGENCE OF ABSTRACT
SENSOR FEATURES

It is possible to build a multiscale decomposition of a data graph simply by organizing the data into affinity
folders where the affinity is measured through the diffusion distance at different time scales A simple algorithm9

is obtained as follows Let xl+1
j be a maximal sub-collection of points in {x1

j} (key-points at scale 1) such that
dtl

(xl+1
j , xl+1

i ) ≥ 1
2 , where x0

j are the original points, and tl = a2l, l = 0, 1, 2, . . . . Then clearly each point is at
distance less than a half at scale l from one of the selected key-points allowing us to create a folder labeled by
the key-point. It is easy to modify to obtain a tree of disjoint folders by viewing each key point as the folder of
points nearest to it, and reinterpret the distance as distance between folders.

When applied to text documents (equipped with semantic coordinates), this construction builds an automatic
folder structure with corresponding keywords characterizing the folders.4, 7 While for text documents folders
are just collection of related documents, and abstractions are collection of words in a given class, the situation is



Figure 5. Organization of the set of patches from an image. Top left: original image; bottom right: diffusion map of the
set of patches from the image; top right: the patches from image.

even more interesting for sensor outputs where the language occurs through self organization of data into affinity
folders.

To illustrate this point consider Figure 5

To organize the black and white image in Figure 5 we have considered all 8 × 8 patches as our primitive
data set forming the graph.1, 7, 9 The first 2 eigenfunctions map them to the top right image,the first three
to the image at the bottom left ,we see that only two parameters emerge, the orientation and the number of
black pixels. If we now pick a little diffusion neighborhood say red patch on the 3d graph, it corresponds exactly
to a little curved edge on the boundary of the original black spot on the image . While simple, observe that
the organization is automatic requiring no a priori geometric information, and a rudimentary visual cortex has
emerged only through observation of 8× 8 patch data TODO.

One can modify this basic construction of a hierarchical scale decomposition in order to build scaling functions
and wavelets on the graph/manifold,4, 12, 13 which provide filters restricting the frequency content of a function
to bands of eigenfunctions of the diffusion or Laplace operator on the graph.

4. SENSOR FUSION

For a heterogeneous sensor system each category of sensors can be parametrized and normalized in its intrinsic
diffusion coordinates. A new graph is then created combining the relevant diffusion coordinates emanating from



Figure 6. Classification results for the diffusion spelling scheme combining both channels, over 50 random trials.

different species of sensors as coordinates. As an example of integration of audio and video sensors we recorded
several grayscale movies depicting the lips of a subject reading a text in English and retained both the video
sequence and the audio track. Each video frame was cropped into a rectangle of size 140× 110 around the lips
and was viewed as a point in R140×110. We took the log of the power spectrum of the window between two
frames as the audio vectors. We used a small vocabulary of ten words, zero, one, two, ... nine for training and
testing a simple classifier. To each spoken digit corresponded a small trajectory, i.e. “spelling” in the diffusion
geometry of the combined model. The combined graph was built from a feature representation of the data
based on appending the first 5 dimensional diffusion embedding of the audio channel with the first 5 dimensional
embedding of the video stream. A new graph is constructed from this collection of points in 10 dimensions ,
this graph is then embedded in lower dimensions and the trajectories of words on it (diffusion spelling) gives a
classification (see Figure 6) substantially superior to either audio or video alone.

Observe that the goal here is to do ab initio learning with no a priori assumptions or knowledge.

5. ANALYSIS OF NOISY OR CORRUPT DIGITAL DATA IN MATRICES

As seen above an affinity structure on a collection of points in Euclidean space leads to diffusion geometries.
More generally this data-driven geometric self organization also enables to analyze any data matrix according
to its intrinsic row or column structure. This procedure is useful even for purposes of achieving more efficient
numerical analysis, an analysis which generalizes the singular value decomposition, the fast multipole methods
and various other numerical compression methods. We claim that it is useful to view a data matrix as a function
on the tensor product of the graph build from the columns of the data with the graph of the rows of the data
In other words the original data matrix becomes a function of the joint inference structure (Tensor Graph), and
can be expanded in terms of any basis functions on this joint structure.

As is well known any basis on the column graph can be tensored with a basis on the row graph, but other
combined wavelet bases can also be obtained. As seen above we can use the rows as well as the columns of
the data to build two graphs which are then merged to a single combined structure (this procedure was done
above for any two graphs permitting a fusion of two different structures). A simple matrix processing or filtering
scheme is provided below: given data entries d(q, r) where, for illustration we can think of the rows q as sensors
and the columns r as responses:

D(q, r) =
∑

α,β

δα,βϕα(q)ϕβ(r) , (4)



where ϕα is a (e.g. wavelet) basis on Q, and ϕβ(r) is a (wavelet) basis on R. In the formula above

δα,β =
∑
q,r

d(q, r)ϕα(q)ϕβ(r) ,

where we accept this sum (as validated) only if various randomized averages using subsamples of our data lead
to the same value of δα,β . In the calculation of D we only use accepted estimates for δα,β .

The wavelet basis can of course be replaced by tensor products of scaling functions or any other approximation
method in the tensor product space, including other pairs of bases, one for q the other for r, including graph
Laplacian eigenfunctions (we observe in passing that the singular value decomposition is a particular case of this
construction ). A direct method for filtering d or estimating D without the need to build basis functions can be
implemented as at the beginning of this paper.

Define a Markov matrix A = a[(r, q), (r′, q′)] (corresponding to diffusion on Q×R) as

a[(r, q), (r′, q′)] =
exp

(
||ν(r)−ν(r′)||2

ε + ||µ(q)−µ(q′)||2
δ

)

∑
r,q exp

(
||ν(r)−ν(r′)||2

ε + ||µ(q)−µ(q′)||2
δ

) (5)

Where the vector ν(r) is response column vector corresponding to the column r, and µ(r) is a sensor row vector.

The parameters epsilon, delta are chosen after randomized validation as described above. We can have an
alternate definition of D as follows.

D(r, q) =
∑
r,q

a[(r, q), (r′, q′)]d(r, q) .

Observe that the distances occurring in the exponent can be replaced by any convenient notion of distance or
dissimilarities, and that any polynomial in A can be used to obtain a better filtering operation on the raw data.

A new combined graph can also be formed by embedding the graph Q×R into Euclidean space ,say by the
diffusion embedding , followed by an expansion of the data d(q, r) on this new structure, or by filtering as above
on the new structure.

5.1. Markov Decision Processes

In the papers14, 15 the multiscale analysis construction of diffusion wavelets is applied to Markov Decision Pro-
cesses. Informally, and in a simplified version, one or more agents explore a given state space S by taking actions
in each state from a set of actions A, and collect different rewards R, that we assume, to simplify the presenta-
tion, to depend only on the location and not on the action. Suppose we can model the state space as a finite
graph (S,E, W ) (the uncountable or continuous case can be handled as well), with edges E and weights W , and
that the agent(s) explore the state space randomly accordingly to the Markov process Pπ, parametrized by a
(policy) π, which maps each state to a probability distribution of actions for that state. The reward function
R is a real-valued function on S. The expected long term sum of discounted rewards when the agent follows
the policy π is a function V π on S, called (state) value function. It satisfies the so-called Bellman equation
V π = R + γPπV π, γ ∈ (0, 1] being the discount factor, and hence V π = (I − γPπ)−1R. In terms of potential
theory, (I − Pπ)−1 is the Green’s function (or fundamental matrix) of the “Laplacian” I − Pπ, and V π is the
potential generated by the “charge” R under the diffusion Pπ. Suppose for simplicity that Pπ is reversible: it
is then similar to a symmetric matrix Tπ that generates a Markov diffusion semigroup {(Tπ)t}. The diffusion
multiscale analysis allows to efficiently compute (Pπ)t(x, y) for arbitrary t, medium and large, for one or multiple
agents; it allows to effectively approximate the value function V π, which is often piecewise smooth, performing
a very useful dimensionality reduction,14 where ad hoc basis functions were previously constructed by hand and
were only available in particularly simple geometries. Finally, it allows to solve Bellman’s equation directly, to
high precision, in an efficient way. In15 this method is compared with classical direct methods (often unfeasible
because of their computational complexity of O(|S|3)), and with optimized iterative solvers.
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Figure 7. Left: continuous state space for a MDP, the actions are movements in the four cardinal directions, blue points
represent positive rewards. Right: after a random exploration by the agent, multiscale bases functions are constructed
on the state space: the color is proportional to the value of various scaling functions, which are automatically adapted
to the state space. The value function can be projected onto this basis, in fact if the value function is piecewise smooth,
only few elements of the basis (a number independent of the number of samples!) will be required to approximate the
value function to a given precision.

6. CONCLUSIONS AND DISCUSSION

It is quite clear from the preceding descriptions that the data graph can be equipped with informative geometric
structures which coherently integrate data and enable inference and interpolation. One of our main goals is to
efficiently regress empirical functions on a data set, we have indicated various methods to build and approxi-
mate empirical functions, admitting natural extensions (generalization) off the known measured data. We also
indicated that signal processing on data could be achieved without any knowledge of the data model, by letting
the intrinsic data geometry emerge through a natural process of affinity diffusion. Modern sensor systems such
as radar, hyperspectral, MRI and others actually do not measure images but much more elaborate vectors, the
images are built to allow understanding and further processing, in reality we should let the intrinsic geometry of
the measurements participate in the information extraction. Such an approach has been developed by our team
for hyperspectral imaging.

We also observe that in the context of compressed sensing where the sensor inputs are randomly encoded.
The projection into a random coded subspace while maintaining the relative affinity of the original data points
permits rebuilding the data geometry by tools described above.
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