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In the companion article, a framework for structural multiscale
geometric organization of subsets of �n and of graphs was intro-
duced. Here, diffusion semigroups are used to generate multiscale
analyses in order to organize and represent complex structures. We
emphasize the multiscale nature of these problems and build
scaling functions of Markov matrices (describing local transitions)
that lead to macroscopic descriptions at different scales. The
process of iterating or diffusing the Markov matrix is seen as a
generalization of some aspects of the Newtonian paradigm, in
which local infinitesimal transitions of a system lead to global
macroscopic descriptions by integration. This article deals with the
construction of fast-order N algorithms for data representation and
for homogenization of heterogeneous structures.

In the companion article (1), it is shown that the eigenfunctions
of a diffusion operator, A, can be used to perform global

analysis of the set and of functions on a set. Here, we present a
construction of a multiresolution analysis of functions on the set
related to the diffusion operator A. This allows one to perform
a local analysis at different diffusion scales.

This is motivated by the fact that in many situations one is
interested not in the data themselves but in functions on the data,
and in general these functions exhibit different behaviors at
different scales. This is the case in many problems in learning, in
analysis on graphs, in dynamical systems, etc. The analysis
through the eigenfunctions of Laplacian considered in the
companion article (1) are global and are affected by global
characteristics of the space. It can be thought of as global Fourier
analysis. The multiscale analysis proposed here is in the spirit of
wavelet analysis.

We refer the reader to (2–4) for further details and applica-
tions of this construction, as well as a discussion of the many
relationships between this work and the work of many other
researchers in several branches of mathematics and applied
mathematics. Here, we would like to at least mention the
relationship with fast multiple methods (5, 6), algebraic multi-
grid (7), and lifting (8, 9).

Multiscale Analysis of Diffusion
Construction of the Multiresolution Analysis. Suppose we are given
a self-adjoint diffusion operator A as in ref. 1 acting on L2 of a
metric measure space (X, d, �). We interpret A as a dilation
operator and use it to define a multiresolution analysis. It is
natural to discretize the semigroup {At}t�0 of the powers of A
at a logarithmic scale, for example at the times

tj � 1 � 2 � 22 � · · · � 2j � 2j�1 � 1. [1]

For a fixed � � (0,1), we define the approximation spaces by

Vj � ���i : �i
tj � ���, [2]

where the �is are the eigenvectors of A, ordered by decreasing
eigenvalue. We will denote by Pj the orthogonal projection onto
Vj. The set of subspaces {Vj}j�� is a multiresolution analysis in
the sense that it satisfies the following properties:

1. limj3�� Vj � L2(X, �), limj3�� Vj � �{�i: �i � 1}�.
2. Vj�1 � Vj for every j � �.
3. {�i: �i

tj � �} is an orthonormal basis for Vj.

We can also define the detail subspaces Wj as the orthogonal
complement of Vj in Vj�1, so that we have the familiar relation
between approximation and detail subspaces as in the classical
wavelet multiresolution constructions:

Vj�1 � Vj Q
� Wj.

This is very much in the spirit of a Littlewood–Paley decompo-
sition induced by the diffusion semigroup (10). However, in each
subspace Vj and Wj we have the orthonormal basis of eigenfunc-
tions, but we would like to replace them with localized orthonormal
bases of scaling functions as in wavelet theory. Generalized Heisen-
berg principles (see Extension of Empirical Functions of the Data Set)
put a lower bound on how much localization can be achieved at each
scale j, depending on the spectrum of the operator A and on the
space on which it acts. We would like to have basis elements as much
localized as allowed by the Heisenberg principle at each scale, and
spanning (approximately) Vj. We do all this while avoiding com-
putation of the eigenfunctions.

We start by fixing a precision � 	 0 and assume that A is
represented on the basis 
0 � {	k}k�X. We consider the
columns of A, which can be interpreted as the set of functions

̃1 � {A	k}k�X on X. We use a local multiscale Gram–Schmidt
procedure, described below, to carefully but efficiently orthonor-
malize these columns into a basis 
1 � {
1,k}k�X1

(X1 is defined
as this index set) for the range of A up to precision �. This is a
linear transformation we represent by a matrix G0. This yields a
subspace that is �-close to V1. Essentially, 
1 is a basis for a
subspace that is �-close to the range of A, the basis elements that
are well localized and orthogonal. Obviously, �X1� � �X�, but the
inequality may already be strict since part of the range of A may
be below the precision �. Whether this is the case or not, we have
then a map M0 from X to X1, which is the composition of A with
the orthonormalization by G0. We can also represent A in the
basis 
1: We denote this matrix by A1 and compute A1

2. See the
diagram in Fig. 1.

We now proceed by looking at the columns of A1
2, which are


̃2 � {A1
2	k}k�X1

� {A2
1,k}k�X1
up to precision �, by unrav-

eling the bases on which the various elements are represented.
Again we can apply a local Gram–Schmidt procedure to
orthonormalize this set: This yields a matrix G1 and an
orthonormal basis 
2 � {
2,k}k�X2

for the range of A1
2 up to

precision �, and hence for the range of A0
3 up to precision 2�.

Moreover, depending on the decay of the spectrum of A,
�X2� �� �X1�. The matrix M1, which is the composition of G1 with
A1

2, is then of size �X2� � �X1�, and A2
2 � M1 M1

T is a represen-
tation of A4 acting on 
2.

After j steps in this fashion, we will have a representation of
A1�2�22�� � ��2j

� A2j�1�1 onto a basis 
j � {
j,k}k�Xj
that spans
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a subspace which is j�-close to Vj. Depending on the decay of the
spectrum of A, we expect �Xj� �� �X�; in fact, in the ideal
situation§ the spectrum of A decays fast enough so that there
exists � � 1 such that �Xj� � �2j�1�1�X�. This subspace is spanned
by ‘‘bump’’ functions at scale j, as defined by the corresponding
power of the diffusion operator A. The ‘‘centers’’ of these bump
functions can be identified with Xj, which we can think of Xj as
a coarser version of X. The basis 
j is naturally identified with
the set of Dirac 	-functions on Xj; however, one can extend these
functions, defined on the ‘‘compressed’’ graph Xj, to the whole
initial graph X by writing


j,kx� � Mj�1
j�1,kx�, x � Xj�1

� Mj�1Mj�2� · · · �M0
0,kx�, x � X0. [3]

Since every function in 
0 is defined on X, so is every function
in 
j. Hence, any function on the compressed space Xj can be

extended naturally to the whole X. In particular, one can
compute low-frequency eigenfunctions on Xj and then extend
them to the whole X. This is of course completely analogous to
the standard construction of scaling functions in the Euclidean
setting (5, 11, 12). Observe that each point in Xj can be
considered as a ‘‘local aggregation’’ of points in Xj�1, which is
completely dictated by the action of the operator A on functions
on X: A itself is dictating the geometry with respect to which it
should be analyzed, compressed, and applied to any vector.

We have thus computed and efficiently represented the pow-
ers A2j

, for j 	 0, that describe the behavior of the diffusion at
different time scales. This applies to the solution of discretized
of partial differential equations, of Markov chains, and in
learning and related classification problems.

Wavelet Transforms and Green’s Function. The construction imme-
diately suggests an associated fast scaling function transform:
Suppose we are given f on X and want to compute �f, 
j,k� for all
scales j and corresponding ‘‘translations’’ k. Being given f is
equivalent to saying we are given (�f, 
0,k�)k�X. Then we can
compute (�f, 
1,k�)k�X1

� M0 (�f, 
0,k�)k�X, and so on for all
scales. The matrices Mj are sparse (since Aj and Gj are), so this
computation is fast. This generalizes the classical scaling func-
tion transform. We will see later that wavelets can be constructed
as well and a fast wavelet transform is possible.

In the same way, any power of A can be applied fast to a
function f. In particular, Green’s function (I � A)�1 can be
applied fast to any function. Since

I � A��1 f � �
k�1

��

Ak f,
§By Weyl’s Theorem on the distribution function of the spectrum of the Laplace–Beltrami
operator, this is the case when A is an accurate enough discretization of the Laplace–
Beltrami on a smooth compact Riemannian manifold with smooth boundary.

Fig. 2. Diffusion multiresolution analysis on the circle. We consider 256 points on the unit circle, starting with 
0,k � 	k and with the standard diffusion. We
plot several scaling functions in each approximation space Vj.

Fig. 1. Diagram for downsampling, orthogonalization, and operator
compression.
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if we let SK � �k�1
2K

Ak, we see that

SK�1 � SK � A2K SK � �
k�0

K

I � A2k
�f,

and each term of the product can be applied fast to f.
The construction of the multiscale bases can be done in time

O(n log2 n), where n � �X�, if the spectrum of A has fast enough
decay. The decomposition of a function f onto the scaling
functions and wavelets we construct can be done in the same
time, and so does the computation of (I � A)�1 f.

The Orthogonalization Process. We sketch here how the orthogo-
nalization works (for details, refer to refs. 2 and 3). Suppose we start
from a 	-local basis 
 � {
x}x�T (in our case, 
x is going to be a
bump Al	x). We greedily build a first layer of basis functions 
0 �
{
̃0,xk

}xk�K0
, K0 � T as follows. We let 
0,x0

be a basis function with
greatest L2-norm. Then we let 
0,x1

be a basis function with biggest
L2-norm among the basis functions with support disjoint from the
support of 
0,x0

but not farther than 	 from it. By induction, after

0,x0

, . . . , 
0,xl
have been chosen, we let 
0,xl�1

be a scaling function
with largest L2-norm among those having a support that does not
intersect any of the supports of the basis functions already con-
structed but is not farther than 	 from the closest such support. We
stop when no such choice can be made. One can think of K0 roughly
as a 2	 lattice.

At this point, 
0 in general spans a subspace much smaller
than the one spanned by 
. We construct a second layer 
1 �
{
̃1,xk

}xk�K1
, K1 � TK 0 as follows. Orthogonalize each

{
x}x�TK 0
to the functions {
0,xk

}xk�K 0
. Observe that since the

support of 
x is small, this orthogonalization is local, in the sense
that each 
x needs to be orthogonalized only to the few 
�0,xk

s that
have an intersecting support. In this way, we get a set 
̃1,
orthogonal to 
0 but not orthogonal itself. We orthonormalize
it exactly as we did to get 
0 from 
. We proceed by building as
many layers as necessary to span the whole space �
� (up to the
specified precision �).

Wavelets. We would like to construct bases {�j,k}k for the spaces
Wj, j � 1, such that Vj Q� Wj � Vj�1. To achieve this, after
having built {
j,k}k�K j

and {
j�1,k}k�K j�1
, we can apply our

modified Gram–Schmidt procedure with geometric pivoting to
the set of functions

�Pj � Pj�1�
j,k�k�K j
,

which will yield an orthonormal basis of wavelets for the
orthogonal complement of Vj�1 in Vj. Observe that each wavelet
is a result of an orthogonalization process that is local, so the

Fig. 3. Diffusion multiresolution analysis on the circle. We plot the compressed matrices representing powers of the diffusion operator, in white are the entries
above working precision (here set to 10�8). Notice the shrinking of the size of the matrices which are being compressed at the different scales.

Fig. 4. Some diffusion scaling functions and wavelets at different scales on a
dumbbell-shaped manifold sampled at 1,400 points.
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computation is again fast. To achieve numerical stability, we
orthogonalize at each step the remaining 
j�1,ks to both the
wavelets built so far and 
j,k. Wavelet subspaces can be recur-
sively split further to obtain diffusion wavelet packets (4), which
allow the application of the classical fast algorithms (13) for
denoising (14), compression (15), and discrimination (16).

Examples and Applications
Example 3.1: Multiresolution diffusion on the homogeneous circle.
To compare with classical constructions of wavelets, we consider
the unit circle, sampled at 256 points, and the classical isotropic
heat diffusion on it. The initial orthonormal basis 
0 is given by
the set of 	-functions at each point, and we build the diffusion
wavelets at all scales, which clearly relate to splines and multi-
wavelets. The spectrum of the diffusion operator does not decay
very fast (see Figs. 2 and 3).
Example 3.2: Dumbbell. We consider a dumbbell-shaped mani-
fold, sampled at 1,400 points, and the diffusion associated to the
(discretized) Laplace–Beltrami operator as discussed in ref. 1.
See Fig. 4 for the plots of some scaling functions and wavelets:
They exhibit the expected locality and multiscale features,
dependent on the intrinsic geometry of the manifold.

Example 3.3: Multiresolution diffusion on a nonhomogeneous
circle. We can apply the construction of diffusion wavelets to
nonisotropic diffusions arising from partial differential equa-
tions, to tackle problems of homogenization in a natural way.
The literature on homogenization is vast (see, e.g., refs. 17–21
and references therein).

Our definition of scales, driven by the differential operator, in
general results in highly nonuniform and nonhomogeneous
spatial and spectral scales, and in corresponding coarse equa-
tions of the system, which have high precision.

For example, we can consider the nonhomogeneous heat
equation on the circle

�u
�t

�
�

�x �cx�
�

�x
u�, [4]

where c(x) is a positive function close 0 at certain points and almost
1 at others. We want to represent the intermediate and large
scale�time behavior of the solution by compressing powers of the
operator representing the discretization of the spatial differential
operator ���x(c(x)(���x)). The spatial differential operator on the
right-hand side of Eq. 4 is a matrix T that, when properly normal-
ized, can be interpreted as a nontranslation invariant random walk.

Fig. 5. Multiresolution diffusion on a circular medium with non-constant diffusion coefficient. (Upper) Several scaling functions and wavelets in different
approximation subspaces Vj. Notice that scaling functions at the same diffusion scale exhibit different spatial localization, which depends on the local diffusion
coefficient. (Lower) Matrix compression of the dyadic powers of T on the scaling function bases of the Vjs. Notice the size of the matrices shrinking with scale.
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Our construction yields a multiresolution associated to this oper-
ator that is highly nonuniform, with most scaling functions con-
centrated around the points where the conductivity is highest, for
several scales. The compressed matrices representing the (dyadic)
powers of this operator can be viewed as multiscale homogenized
versions, at a certain scale that is time and space dependent, of the
original operator (see Fig. 5).

While the examples above illustrate classical settings, the
construction of diffusion wavelets carries over unchanged to
weighted graphs, by considering the generator of the diffusion
associated to the natural random walk (and Laplacian) on the
graph. It then allows a natural multiscale analysis of functions of
interest on such a graph. We expect this to have a wide range of
applications to the analysis of large data sets, document corpora,
network traffic, etc., which are naturally modeled by graphs.

Extension of Empirical Functions of the Data Set
An important aspect of the multiscale developed so far involves
the relation of the spectral theory on the set to the localization
on and off the set of the corresponding eigenfunctions and
diffusion scaling functions and wavelets. In addition to the
theoretical interest of this topic, the extension of functions
defined on a set X to a larger set X� is of critical importance in
applications such as statistical learning. To this end, we construct
a set of functions, termed geometric harmonics, that allow one to
extend a function f off the set X, and we explain how this provides
a multiscale analysis of f. For a more detailed studied of
geometric harmonics, the reader is referred to ref. 22.

Construction of the Extension: The Geometric Harmonics. Let us
specify the mathematical setting. Let X be a set contained in a larger
set X� , and � be a measure on X. Suppose that one is given a positive
semidefinite symmetric kernel k(�, �) defined on X� � X� , and if f is
defined on X, let K: L2(X, �) 3 L2 (X, �) be defined by

Kfx� � �
X

kx, y�fy�d�y�.

Let {�j} and {�j
2} be the eigenfunctions and eigenvalues of this

operator. Note that under weak hypotheses, the operator K is
compact, and its eigenfunctions form a basis of L2(X, �). Then,
by definition, if �j

2 	 0, then

�jx� �
1
�j

2 K�jx� �
1
�j

2 �
X

kx, y��jy�d�y�,

where this identity holds for x � X. Now, if we let x be in X� , the
right-hand side of this equation is well defined, and this allows
one to extend �j as a function �� j defined on X� . This procedure,
which goes by the name of Nyström extension, has already been
suggested to overcome the problem of large-scale data sets (23)
and to speed up the data processing (24).

From the above, each extension is constructed as an integral
of the values over the smaller set X and consequently verifies
some sort of mean value theorem. We call these functions
geometric harmonics.

From the numerical analysis point of view, one has to be
careful as �j 3 0 as j 3 ��, and one can extend only the
eigenfunctions �j for which �j

2 	 	�0
2, where 	 	 0 is preset

number. We can now safely define the extension of function f
from X to X� by

f�x� � �
�j

2		�0
2

��j , f�x�� jx�

for x � X� , where ��, ��X is the inner product of L2(X, �). This way,
the extension operation has condition number 1�	. We imme-
diately notice that for f� to approximately coincide with f on X,
one must have that most of the energy of f be concentrated in the
first few eigenfunctions �j.

Let us give three examples of geometric harmonics. The first
example is related to potential theory. Assume that X is a smooth
closed hypersurface of �n � X� , d� � dx and consider the
Newtonian potential in �n:

kx, y� � ��log	x � y	� if n � 2,
1

	x � y	n�2 if n � 3.

Then the geometric harmonics have the form

�� jx� �
1
�j

2�
X

kx, y��jy�dy

and are obviously harmonic in the domain with boundary X. If
f is a function on X representing the single layer density of
charges on X, then the extension f� is, by construction, a sum of
harmonic functions and an harmonic extension of f.

For the second example, consider a Hilbert basis {ej}j�� of a
subspace V of L2(�n) � C(�n). For instance, this could be a
wavelet basis of some finite-scale shift-invariant space. Then the
diagonalization of the restriction of kernel

kx, y� � �
j��

enx�e*ny�

to a set X generates geometric harmonics, and an extension
procedure of empirical functions on X to functions of V.

The third example is of particular importance because it
generalizes the prolate spheroidal wave functions introduced in
the context of signal processing in refs. 25 and 26. Assume that
X � �n and consider the space VB of bandlimited functions with
fixed band B 	 0 (we call these functions B-bandlimited).
Following the procedure explained in the second example, we
can construct geometric harmonics {�� j} that are B-bandlimited.
It can be shown that this comes down to diagonalizing the kernel

Fig. 6. Extension of the functions fj(�) � cos(2�j�) for j � 1, 2, 3, and 4, from
the unit circle to the plane.
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kBx, y� � �
	�	�B

e2i���,x� e�2i���,y�d� �
Jn/22�B	x � y	�

	x � y	n/2 ,

where x and y belong to X, and J� is the Bessel function of the
first type and of order �. From the first equality sign, we see that
the geometric harmonics arise from a principal component
analysis of the set of all restrictions of B-bandlimited complex
exponentials to X.

It can verified that, in addition to be orthogonal on the set X,
these B-bandlimited geometric harmonics are also orthogonal
over the whole space �n. Moreover, �� j minimizes the Rayleigh
quotient

�
�n

�f�x��2dx

�
X

�fx��2dx

under the constraint that f be orthogonal to {�0, �1, . . . , �j�1}.
In other words, �� 0 is the B-bandlimited extension of �j that has
minimal energy on �n. As a consequence, f� is the B-bandlimited
extension of f that has minimal energy off the set X. This type
of extension is optimal in the sense that it is the average of all
B-bandlimited extension of f. It also suggests that this extension
satisfies Occam’s razor in that it is the ‘‘simplest’’ among all
bandlimited extensions: Any other extension is equal to f� plus an
orthogonal bandlimited function that vanishes on X.

Multiscale Extension. For a given function f on X, we have
constructed a minimal energy B-bandlimited extension f�. In the
case when X is a smooth compact submanifold of �n, we can now
relate the spectral theory on the set X to that on �n.

On the one hand, any band limited function of band B 	 0
restricted to X can be expanded to exponential accuracy in terms
of the eigenfunctions of the Laplace–Beltrami operator � with
eigenvalues �j

2 not exceeding CB2 for some small constant C 	

0. On the other hand, it can be shown that every eigenfunction
of the Laplace–Beltrami operator satisfying this condition ex-
tends as a bandlimited function with band C�B. Both of these
statements can be proved by observing that eigenfunctions on
the manifold are well approximated by restrictions of bandlim-
ited functions.

We conclude that any empirical function f on X that can be
approximated as a linear combination of eigenfunctions of �,
and these eigenfunctions can be extended to different distances:
If the eigenvalue is �2, then the corresponding eigenfunction can
be extended as a �-bandlimited function off the set X to a
distance C��1. This observation constitutes a formulation of the
Heisenberg principle involving the Fourier analysis on and off
the set X, and which states that any empirical function can be
extended as a sum of ‘‘atoms’’ whose numerical supports in the
ambient space is related to their frequency content on the set.

The generalized Heisenberg principle is illustrated on Fig. 6,
where we show the extension of the functions fj(�) � cos(2�j�) for
j � 1, 2, 3 and 4, from the unit circle to the plane. For each function,
we used Gaussian kernels, and the scale was adjusted as the
maximum scale that would preserve a given accuracy.

Conclusion
We have introduced a multiscale structure for the efficient com-
putation of large powers of a diffusion operator, and its Green
function, based on a generalization of wavelets to the general setting
of discretized manifolds and graphs. This has application to the
numerical solution of partial differential equations and to the
analysis of functions on large data sets and learning. We have shown
that a global (with eigenfunctions of the Laplacian) or local (with
diffusion wavelets) analysis on a manifold embedded in Euclidean
space can be extended outside the manifold in a multiscale fashion
by using band-limited functions.

We thank James C. Bremer, Jr., Naoki Saito, Raanan Schul, and Arthur
D. Szlam for their useful comments and suggestions during the prepa-
ration of the manuscript. This work was partially funded by the Defense
Advanced Research Planning Agency and the Air Force Office of
Scientific Research.
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