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Abstract—We provide evidence that nonlinear dimensionality reduction, clustering, and data set parameterization can be solved

within one and the same framework. The main idea is to define a system of coordinates with an explicit metric that reflects the

connectivity of a given data set and that is robust to noise. Our construction, which is based on a Markov random walk on the data,

offers a general scheme of simultaneously reorganizing and subsampling graphs and arbitrarily shaped data sets in high dimensions

using intrinsic geometry. We show that clustering in embedding spaces is equivalent to compressing operators. The objective of data

partitioning and clustering is to coarse-grain the random walk on the data while at the same time preserving a diffusion operator for the

intrinsic geometry or connectivity of the data set up to some accuracy. We show that the quantization distortion in diffusion space

bounds the error of compression of the operator, thus giving a rigorous justification for k-means clustering in diffusion space and a

precise measure of the performance of general clustering algorithms.

Index Terms—Machine learning, text analysis, knowledge retrieval, quantization, graph-theoretic methods, compression (coding),

clustering, clustering similarity measures, information visualization, Markov processes, graph algorithms.

Ç

1 INTRODUCTION

WHEN dealing with data in high dimensions, one is

often faced with the problem of how to reduce the

complexity of a data set while preserving information that
is important for, for example, understanding the data

structure itself or for performing later tasks such as

clustering, classification, and regression. Dimensionality

or complexity reduction is an ill-posed problem until one

clearly defines what one is ready to lose. In this work, we

attempt to find both a parameterization and an explicit

metric that reflects the intrinsic geometry of a given data set.

With intrinsic geometry, we here mean a set of rules that
describe the relationship between the objects in the data set

without reference to structures outside of it; in our case, we

define intrinsic geometry by the connectivity of the data

points in a diffusion process. One application of this work

is manifold learning where we have a manifold, say a

2D “Swiss roll,” embedded in a higher-dimensional space—

but, more generally, the problems of data parameterization,

dimensionality reduction, and clustering extend beyond
manifold learning to general graphs of objects that are

linked by edges with weights.

There is a large body of literature regarding the use of the
spectral properties (eigenvectors and eigenvalues) of a
pairwise similarity matrix for geometric data analysis. These
methods can roughly be divided into two main categories:
spectral graph cuts [1], [2], [3] and eigenmaps [4], [5], [6], [7].
The two methodologies were originally developed for
different types of applications: segmentation and partitioning
of graphs versus locality-preserving embeddings of data sets,
respectively. Below, we briefly review previous work and
how it relates to the diffusion framework.

Suppose that � ¼ fx1; . . . ; xng is a data set of points, and
assume that these points form the nodes of a weighted
graph with weight function wðx; yÞ. In the graph-theoretic
approach [8] to data partitioning, one seeks to divide the set
of vertices into disjoint sets, where by some measure, the
similarity among the vertices in a set is high and the
similarity across different sets is low. Different algorithms
use different matrices but, in general, these spectral group-
ing methods are based on an analysis of the dominant
eigenvectors of a suitably normalized weight matrix (see,
e.g., [1] for a review). If the weight function wðx; yÞ satisfies
certain conditions (symmetry and pointwise positivity),
then one can interpret the pairwise similarities as edge
flows in a Markov random walk on the graph. In this
probabilistic formulation, the transition probability of going
from point x to y in one step is

pðx; yÞ ¼ wðx; yÞP
z2� wðx; zÞ

:

The Normalized Cut problem provides a justification and
some intuition for the use of the first nontrivial eigenfunc-
tion of the random walk’s transition matrix [2]; the authors
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Shi and Malik also mention using higher-order eigenfunc-
tions but do not provide a theoretical justification for such
an analysis. More recently, Meila and Shi [3] have shown
that the transition matrix P has piecewise constant
eigenvectors relative to a partition S ¼ ðS1; S2; . . . ; SkÞ when
the underlying Markov chain is lumpable with respect to S,
i.e., when one is able to group vertices together due to
similarities of their transition probabilities to the subsets Sj.
The authors also define a “Modified Ncut” algorithm
which, for the special case of lumpable Markov chains,
finds all k segments by k-means of the eigenvectors of P .

Despite recent progress in the field of spectral graph
theory, there are still many open questions. In particular:
What is the intuition behind spectral clustering when
eigenvectors are not piece-wise constant (and Markov
chains are not lumpable)? Naturally occuring data sets
only display, at best, approximate lumpability; the issue
then is whether we can say something more precise about
the performance of various clustering algorithms. Further-
more, for general data sets, which eigenvectors of the
Markov matrix should be considered and what is the
relative importance of these? Below, we answer these
questions by unifying ideas in spectral clustering, operator
compression, and data set parameterization.

The problem of spectral clustering is very closely related
to the problem of finding low-dimensional locality-preser-
ving embeddings of data sets. For example, suppose that we
wish to find an embedding of � in IRp according to

x 7! fðxÞ ¼ ðf1ðxÞ; . . . ; fpðxÞÞ

that preserves the local neighborhood information. Several
algorithms, such as LLE [4], Laplacian eigenmaps [6],
Hessian eigenmaps [7], LTSA [5], and diffusion maps [9],
[10], all aim at minimizing distortions of the form
QðfÞ ¼

P
i QiðfÞ, where QiðfÞ is a symmetric, positive

semidefinite quadratic form that measures local variations
of f around xi. The p-dimensional embedding problem can,
in these cases, be rewritten as an eigenvalue problem where
the first p eigenvectors ðf1; . . . ; fpÞ provide the optimal
embedding coordinates. The close relationship between
spectral clustering and locality-preserving dimension reduc-
tion has, in particular, been pointed out by Belkin and Niyogi.
In [6], the authors show that the Laplacian of a graph (whose
eigenvectors are used in spectral cuts) is the discrete analogue
of the Laplace-Beltrami operator on manifolds, and the
eigenfunctions of the latter operator have properties desired

for embeddings. However, as in the case of spectral
clustering, the question of the number of eigenvectors in
existing eigenmap methods is still open. Furthermore, as the
distance metric in the embedding spaces is not explicitly
defined, it is not clear how one should cluster and partition
data. The usual approach is: First, pick a dimension k, then
calculate the first k nontrivial eigenvectors and weight these
equally in clustering and other subsequent data analysis.

The contribution of this paper is two-fold: First, we
provide a unified framework for spectral data analysis
based on the idea of diffusion and put previous work in a
new perspective. Our starting point is an explicit metric that
reflects the connectivity of the data set. This so-called
“diffusion metric” can be explained in terms of transition
probabilities of a Markov chain that evolves forward in time
and is, unlike the geodesic distance, or the shortest path of a
graph, very robust to noise. Similar distance measures have
previously been suggested in clustering and data classifica-
tion, see, for example, [11]. However, the use of such
probabilistic distance measures in data parameterization is
completely new. This paper unifies various ideas in
eigenmaps, spectral cuts, and Markov random walk
learning (see Table 1 for a list of different methods). We
show that, in the diffusion framework, the defined distance
measure is induced by a nonlinear embedding in Euclidean
space where the embedding coordinates are weighted
eigenvectors of the graph Laplacian. Furthermore, the time
parameter in the Markov chain defines the scale of the
analysis, which, in turn, determines the dimensionality
reduction or the number of eigenvectors in the embedding.

The other contribution of this work is a novel approach to
data partitioning and graph subsampling based on coarse-
graining the dynamics of the Markov random walk on the
data set. The goal is to subsample and reorganize the data set
while retaining the spectral properties of the graph, and thus
also the intrinsic geometry of the data set. We show that in
order to maximize the quality of the eigenvector approxima-
tion, we need to minimize a distortion in the embedding
space. Consequently, we are relating clustering in embed-
ding spaces to lossy compression of operators—which is a
key idea in this work. As a by-product, we are also obtaining
a rigorous justification for k-means clustering in diffusion
space. The latter method is, by construction, useful when
dealing with data in high dimensions, and can (as in any
kernel k-means algorithm [12]) be applied to arbitrarily
shaped clusters and abstract graphs.
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A Simplified Table of Different Methods for Clustering and Nonlinear Dimensionality Reduction



The organization of the paper is as follows: In Section 2, we
define diffusion distances and discuss their connection to the
spectral properties and time evolution of a Markov chain
random walk. In Section 3, we construct a coarse-grained
random walk for graph partitioning and subsampling. We
relate the compression error to the distortion in the diffusion
space. Moreover, we introduce diffusion k-means as a
technique for distortion minimization. Finally, in Section 4,
we give numerical examples that illustrate the ideas of a
framework for simultaneous nonlinear dimensionality re-
duction, clustering, and subsampling of data using intrinsic
geometry and propagation of local information through
diffusion.

2 GEOMETRIC DIFFUSION AS A TOOL FOR

HIGH-DIMENSIONAL DATA ANALYSIS

2.1 Diffusion Distances

Our goal is to define a distance metric on an arbitrary set that
reflects the connectivity of the points within the set. Suppose
that one is dealing with a data set in the form of a graph.
When identifying clusters or groups of points in this graph,
one needs to measure the amount of interaction, as described
by the graph structure, between pairs of points. Following
this idea, two points should be considered to be close if they
are connected by many short paths in the graph. As a
consequence, points within regions of high density (defined
as groups of nodes with a high degree in the graph), will have
a high connectivity. The connectivity is furthermore decided
by the strengths of the weights in the graph. Below, we
review the diffusion framework that first appeared in [10]
and put it into the context of eigenmaps, dimensionality
reduction, and Markov random walk learning on graphs.

Let G ¼ ð�;W Þ be a finite graph with n nodes, where the

weight matrix W ¼ fwðx; yÞgx;y2� satisfies the following

conditions:

. symmetry: W ¼WT and

. pointwise positivity: wðx; yÞ � 0 for all x; y 2 �.

The way we define the weights should be completely
application-driven, the only requirement being that wðx; yÞ
should represent the degree of similarity or affinity (as
defined by the application) of x and y. In particular, we
expectwðx; xÞ to be a positive number. For instance, if we are
dealing with data points on a manifold, we can start with a
Gaussian kernel w" ¼ expð�jjx� yjj2="Þ and then normalize
it in order to adjust the influence of geometry versus the
distribution of points on the manifold. Different normal-
ization schemes and their connection to the Laplace-Beltrami
operator on manifolds in the large sample limit n!1 and
"! 0 are discussed in [9].

The graph G with weights W represents our knowledge
of the local geometry of the set. Next, we define a Markov
random walk on this graph. To this end, we introduce the
degree dðxÞ of node x as

dðxÞ ¼
X
z2�

wðx; zÞ:

If one defines P to be the n� n matrix whose entries are

given by

p1ðx; yÞ ¼
wðx; yÞ
dðxÞ ;

then p1ðx; yÞ can be interpreted as the probability of transition
from x to y in one time step. By construction, this quantity
reflects the first-order neighborhood structure of the graph.
A new idea introduced in the diffusion maps framework is
to capture information on larger neighborhoods by taking
powers of the matrix P or, equivalently, to run the random
walk forward in time. If Pt is the tth iterate of P , then the
entry ptðx; yÞ represents the probability of going from x to y
in t time steps. Increasing t, corresponds to propagating the
local influence of each node with its neighbors. In other
words, the quantity Pt reflects the intrinsic geometry of the
data set defined via the connectivity of the graph in a
diffusion process and the time t of the diffusion plays the role
of a scale parameter in the analysis.

If the graph is connected, we have that [8]:

lim
t!þ1

ptðx; yÞ ¼ �0ðyÞ; ð1Þ

where �0 is the unique stationary distribution

�0ðxÞ ¼
dðxÞP
z2� dðzÞ

:

This quantity is proportional to the degree of x in the graph,
which is one measure of the density of points. The Markov
chain is furthermore reversible, i.e., it verifies the following
detailed balance condition

�0ðxÞp1ðx; yÞ ¼ �0ðyÞp1ðy; xÞ: ð2Þ

We are mainly concerned with the following idea: For a
fixed but finite value t > 0, we want to define a metric
between points of � which is such that two points x and z
will be close if the corresponding conditional distributions
ptðx; :Þ and ptðz; :Þ are close. A similar idea appears in [11],
where the authors consider the L1 norm jjptðx; :Þ � ptðz; :Þjj.
Alternatively, one can use the Kullback-Leibler divergence
or any other distance between ptðx; :Þ and ptðz; :Þ. However,
as shown below, the L2 metric between the conditional
distributions has the advantage that it allows one to relate
distances to the spectral properties of the random walk
—and thereby, as we will see in the next section, connect
Markov random walk learning on graphs with data parameter-
ization via eigenmaps. As in [14], we will define the “diffusion
distance” Dt between x and y as the weighted L2 distance

D2
t ðx; zÞ ¼ kptðx; �Þ � ptðz; �Þk

2
1=�0
¼
X
y2�

ðptðx; yÞ � ptðz; yÞÞ2

�0ðyÞ
;

ð3Þ

where the “weights” 1
�0ðxÞ penalize discrepancies on

domains of low density more than those of high density.
This notion of proximity of points in the graph reflects the

intrinsic geometry of the set in terms of connectivity of the
data points in a diffusion process. The diffusion distance
between two points will be small if they are connected by
many paths in the graph. This metric is thus a key quantity in
the design of inference algorithms that are based on the
preponderance of evidences for a given hypothesis. For
example, suppose one wants to infer class labels for data
points based on a small number of labeled examples. Then,
one can easily propagate the label information from a labeled
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example x to the new point y following 1) the shortest path or
2) all paths connecting x to y. The second solution (which is
employed in the diffusion framework and in [11]) is usually
more appropriate, as it takes into account all “evidences”
relating x to y. Furthermore, since diffusion-based distances
add up the contribution from several paths, they are also
(unlike the shortest path) robust to noise; the latter point is
illustrated via an example in Section 4.2.

2.2 Dimensionality Reduction and Parameterization
of Data by Diffusion Maps

As mentioned, an advantage of the above definition of
the diffusion distance is the connection to the spectral
theory of the random walk. As is well-known, the
transition matrix P that we have constructed has a set
of left and right eigenvectors and a set of eigenvalues
j�0j � j�1j � . . . � j�n�1j:

�Tj P ¼ �j�Tj and P j ¼ �j j;

where it can be verified that �0 ¼ 1,  0 � 1, and that
�Tk  l ¼ �kl. In fact, left and right eigenvectors are dual and
can be regarded as signed measures and test functions,
respectively. These two sets of vectors are related according to

 lðxÞ ¼
�lðxÞ
�0ðxÞ

for all x 2 �: ð4Þ

For ease of notation, we normalize the left eigenvectors of P
with respect to 1=�0:

k�lk2
1=�0
¼
X
x

�2
l ðxÞ
�0ðxÞ

¼ 1; ð5Þ

and the right eigenvectors with respect to the weight �0:

k lk2
�0
¼
X
x

 2
l ðxÞ�0ðxÞ ¼ 1: ð6Þ

If ptðx; yÞ is the kernel of the tth iterate Pt, we will then have
the following biorthogonal spectral decomposition:

ptðx; yÞ ¼
X
j�0

�tj jðxÞ�jðyÞ: ð7Þ

The above identity corresponds to a weighted principal
component analysis of Pt. The first k terms provide the best
rank-k approximation of Pt, where “best” is defined
according to the following weighted metric for matrices:

kAk2 ¼
X
x

X
y

�0ðxÞaðx; yÞ2
1

�0ðyÞ
:

Here is our main point: If we insert (7) into (3), we will
have that

D2
t ðx; zÞ ¼

Xn�1

j¼1

�2t
j ð jðxÞ �  jðzÞÞ

2:

Since  0 � 1 is a constant vector, it does not enter in the sum
above. Furthermore, because of the decay of the eigenva-
lues,1 we only need a few terms in the sum for a certain

accuracy. To be precise, let qðtÞ be the largest index j such
that j�jjt > �j�1jt. The diffusion distance can then be
approximated to relative precision � using the first qðtÞ
nontrivial eigenvectors and eigenvalues according to

D2
t ðx; zÞ ’

XqðtÞ
j¼1

�2t
j ð jðxÞ �  jðzÞÞ

2:

Now, observe that the identity above can be interpreted as
the Euclidean distance in IRqðtÞ if we use the right
eigenvectors weighted with �tj as coordinates on the data.
In other words, this means that, if we introduce the diffusion
map

�t : x 7�!

�t1 1ðxÞ
�t2 2ðxÞ

..

.

�tqðtÞ qðtÞðxÞ

0BBB@
1CCCA; ð8Þ

then clearly,

D2
t ðx; zÞ ’

XqðtÞ
j¼1

�2t
j ð jðxÞ �  jðzÞÞ

2 ¼ k�tðxÞ ��tðzÞk2: ð9Þ

Note that the factors �tj in the definition of �t are crucial for

this statement to hold.
The mapping �t : �! IRqðtÞ provides a parameterization

of the data set �, or equivalently, a realization of the graphG

as a cloud of points in a lower-dimensional space IRqðtÞ, where

the rescaled eigenvectors are the coordinates. The dimen-

sionality reduction and the weighting of the relevant

eigenvectors are dictated by both the time t of the random

walk and the spectral fall-off of the eigenvalues.
Equation (9) means that �t embeds the entire data set in

IRqðtÞ in such a way that the Euclidean distance is an
approximation of the diffusion distance. Our approach is
thus different from other eigenmap methods: Our starting
points is an explicitly defined distance metric on the data set
or graph. This distance is also the quantity we wish to
preserve during a nonlinear dimensionality reduction.

3 GRAPH PARTITIONING AND SUBSAMPLING

In what follows, we describe a novel scheme for subsampling

data sets that—as above—preserves the intrinsic geometry

defined by the connectivity of the data points in a graph. The

idea is to construct a coarse-grained version of the original

random walk on a new graph eG with similar spectral

properties. This new Markov chain is obtained by grouping

points into clusters and appropriately averaging the transi-

tion probabilities between these clusters. We show that in

order to retain most of the spectral properties of the original

random walk, the choice of clusters in critical. More precisely,

the quantization distortion in diffusion space bounds the

error of the approximation of the diffusion operator.
One application is dimensionality reduction and cluster-

ing of arbitrarily shaped data sets using geometry; see
Section 4 for some simple examples. However, more
generally, the construction also offers a systematic way of
subsampling operators [15] and arbitrary graphs using
geometry.
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1. The speed of the decay depends on the graph structure. For example,
for the special case of a fully connected graph, the first eigenvalue will be 1
and the remaining eigenvalues will be equal to 0. The other extreme case is
a graph that is totally disconnected with all eigenvalues equal to 1.



3.1 Construction of a Coarse-Grained Random Walk

Start by considering an arbitrary partition fSig1�i�k of the
set of nodes �. Our aim is to aggregate the points in each set
in order to coarse-grain both the state set � and the time
evolution of the random walk. To do so, we regard each set
Si as corresponding to the nodes of a k-node graph eG,
whose weight function is defined as

ewðSi; SjÞ ¼X
x2Si

X
y2Sj

�0ðxÞptðx; yÞ;

where the sum involves all the transition probabilities
between points x 2 Si and y 2 Sj (see Fig. 1).

From the reversibility condition of (2), it can be verified
that this graph is symmetric, i.e., that ewðSi; SjÞ ¼ ewðSj; SiÞ.
By setting

e�0ðSiÞ ¼
X
x2Si

�0ðxÞ;

one can define a reversible Markov chain on this graph with
stationary distribution e�0 2 IRk and transition probabilities

epðSi; SjÞ ¼ ewðSi; SjÞP
k ewðSi; SkÞ ¼

X
x2Si

X
y2Sj

�0ðxÞe�0ðSiÞ
ptðx; yÞ:

Let eP be the k� k transition matrix on the coarse-grained
graph. More generally, for 0 � l � n� 1, we define in a
similar way coarse-grained versions of �l by summing over
the nodes in a partition:

e�lðSiÞ ¼X
x2Si

�lðxÞ: ð10Þ

As in (4), we define coarse-grained versions of  l according
to the duality condition

e lðSiÞ ¼ e�lðSiÞe�0ðSiÞ
; ð11Þ

which is equivalent to taking a weighted average of l overSi:

e lðSiÞ ¼X
x2Si

�0ðxÞe�0ðSiÞ
 lðxÞ: ð12Þ

The coarse-grained kernel epðSi; SjÞ contains all the
information in the data regarding the connectivity of the

new nodes in the graph eG. The extent to which the above
vectors constitute approximations of the left and right
eigenvectors of eP depends on the particular choice of the
partition fSig. We investigate this issue more precisely in
the next section.

3.2 Approximation Error: Definition of Geometric
Centroids

In a similar manner to (5) and (6), we define the norm
on coarse-grained signed measures e�l to be

ke�lk2

1=e�0

¼
X
i

e�2
l ðSiÞe�0ðSiÞ

;

and on the coarse-grained test functions e l to be

ke lk2e�0

¼
X
i

e 2
l ðSiÞe�0ðSiÞ:

We now introduce the definition of a geometric centroid, or
a representative point, of each partition Si:

Definition 1 (Geometric Centroid). Let 1 � i � k. The
geometric centroid cðSiÞ of subset Si of � is defined as the
weighted sum

cðSiÞ ¼
X
x2Si

�0ðxÞe�0ðSiÞ
�tðxÞ:

The following result shows that for small values of l, e�l ande l are approximate left and right eigenvectors of eP with
eigenvalue �tl .

Theorem 1. We have for 0 � l � n� 1,

e�Tl eP ¼ �tl e�Tl þ el and eP e l ¼ �tl e l þ fl;
where

kelk2

1=e�0

� 2D and kflk2e�0

� 2D;

and

D ¼
X
i

X
x2Si

�0ðxÞk�tðxÞ � cðSiÞÞk2:

This means that, if j�ljt �
ffiffiffiffi
D
p

, then e�l and e l are approx-
imate left and right eigenvectors of eP with approximate
eigenvalue �tl . The proof of this theorem can be found in the
Appendix.

The previous result also shows that, in order to maximize
the quality of approximation, we need to minimize the
following distortion in diffusion space:

D ¼
X
i

X
x2Si

�0ðxÞk�tðxÞ � cðSiÞÞk2

	 Ei EXji k�tðXÞ � cðSiÞÞk2jX 2 Si
n on o

;

ð13Þ

whereE represents an expectation. This can also be written in
terms of a weighted sum of pairwise distances according to

D ¼ 1

2

X
i

e�0ðSiÞ
X
z2Si

X
x2Si

�0ðxÞe�0ðSiÞ
�0ðzÞe�0ðSiÞ

k�tðxÞ ��tðzÞk2

	 1

2
Ei EX;Zji k�tðXÞ ��tðZÞÞk2jX;Z 2 Si

n on o
:

ð14Þ
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Fig. 1. Example of a coarse-graining of a graph: For a given partition
� ¼ S1 [ S2 [ S3 of the set of nodes in a graph G, we define a coarse-
grained graph eG by aggregating all nodes belonging to a subset Si into a
metanode. By appropriately averaging the transition probabilities between
points x 2 Si and y 2 Sj, for i; j ¼ 1; 2; 3, we then compute new weightsewðSi; SjÞ and a new Markov chain with transition probabilities epðSi; SjÞ.



3.3 An Algorithm for Distortion Minimization

Finally, we make a connection to kernel k-means and the
algorithmic aspects of the minimization. The form ofD given
in (13) is classical in information theory and its minimization
is equivalent to solving the problem of quantizing the
diffusion space with k codewords based on the mass
distribution of the sample set �tð�Þ. This optimization issue
is often addressed via the k-means algorithm [16] which
guarantees convergence toward a local minimum:

1. Step 0: initialize the partition fSð0Þi g1�i�k at random
in the diffusion space.

2. For p > 0, update the partition according to

S
ðpÞ
i ¼ x such that i ¼ arg min

j
k�tðxÞ � cðSðp�1Þ

j Þk2

� �
;

where 1 � i � k and cðSðp�1Þ
j Þ is the geometric centroid

of S
ðp�1Þ
j .

3. Repeat point 2 until convergence.

A drawback of this approach is that each center of mass
fcðSiÞg may not belong to the set �tðEÞ itself. This can be a
problem in some applications where such combinations
have no meaning, such as in the case of gene data. In order
to obtain representatives fcig of the clusters that belong to
the original set E, we introduce the following definition of
diffusion centers:

Definition 2 (Diffusion Center). The diffusion center uðSÞ of
a subset S of � is any solution of

arg min
x2�
k�tðxÞ � cðSÞk2:

This notion does not define a unique diffusion center, but it
is sufficient for our purpose of minimizing the distortion.
Note that uðSÞ is a generalization of the idea of center of
mass to graphs.

Now, if fSig is the output of the k-means algorithm, then
we can assign to each point in Si the representative center
uðSiÞ. In that sense, the graph eG is a subsampled version of
G that, for a given value of k, retains the spectral properties of
the graph. The analysis above provides a rigorous justifica-
tion for k-means clustering in diffusion spaces, and further-
more links our work to both spectral graph partitioning

(where often only the first nontrivial eigenvector of the graph
Laplacian is taken into account) and eigenmaps (where one
uses spectral coordinates for data parameterization).

4 NUMERICAL EXAMPLES

4.1 Importance of Learning the Nonlinear Geometry
of Data in Clustering

In many applications, real data sets exhibit highly nonlinear
structures. In such cases, linear methods such as Principal
Components will not be very efficient for representing the
data. With the diffusion coordinates, however, it is possible
to learn the intrinsic geometry of data set and then project
the data points into a nonlinear coordinate space with a
diffusion metric. In this diffusion space, one can use
classical geometric algorithms (such as separating hyper-
plane-based methods, k-means algorithms, etc.) for unsu-
pervised as well as supervised learning.

To illustrate this idea, we study the famous Swiss roll.
This data set is intrinsically a surface embedded in three
dimensions. In this original coordinate system, global
extrinsic distances, such as the Euclidean distance, are
often meaningless as they do not incorporate any informa-
tion on the structure or shape of the data set. For instance, if
we run the k-means algorithm for clustering with k ¼ 4, the
obtained clusters do not reflect the natural geometry of the
set. As shown in Fig. 2, there is some “leakage” between
different parts of the spiral due to the convexity of the
k-means clusters in the ambient space.

As a comparison, we also show in Fig. 2 the result of
running the k-means algorithm in diffusion space. In the
latter case, we obtain meaningful clusters that respect the
intrinsic geometry of the data set.

4.2 Robustness of the Diffusion Distance

One of the most attractive features of the diffusion distance is
its robustness to noise and small perturbations of the data. In
short, its stability follows from the fact that it reflects the
connectivity of the points in the graph. We illustrate this idea
by studying the case of data points approximately lying on a
spiral in the two-dimensional plane. The goal of this
experiment is to show that the diffusion distance is a robust
metric on the data, and in order to do so, we compare it to the
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Fig. 2. The Swiss roll, and its quantization by k-means (k ¼ 4) in the (a) original coordinate system and in the (b) diffusion space.



shortest path (or geodesic) distance that is employed in
schemes such as ISOMAP [13].

We generate 1,000 instances of a noisy spiral in the plane,
each corresponding to a different realization of the random
noise perturbation (see Fig. 3). From each instance, we
construct a graph by connecting all pairs of points at a
distance less than a given threshold � , which is kept
constant over the different realizations of the spiral. The
corresponding adjacency matrix W contains only zeros or
ones, depending on the absence or presence of an edge,
respectively. In order to measure the robustness of the
diffusion distance, we repeatedly compute the diffusion
distance between two points of reference A and B in all
1,000 noisy spirals. We also compute the geodesic distance
between these two points using Dijkstra’s algorithm.

As shown in Fig. 3, depending on the presence of
shortcuts arising from points appearing between the
branches of the spiral, the geodesic distance (or shortest
path length) between A and B may vary by large amounts
from one realization of the noise to another. The histogram
of all geodesic distances measurements between A and B
over the 1,000 trials is shown on Fig. 4. The distribution of
the geodesic distance appears poorly localized, as its
standard deviation equals 42 percent of its mean. This
indicates that the geodesic distance is extremely sensitive to
noise and thus unreliable as a measure of distance.

The diffusion distance, however, is not sensitive to small
random perturbations of the data set because, unlike the
geodesic distance, it represents an average quantity. More
specifically, it takes into account all paths of length less than
or equal to t that connect A and B. As a consequence,
shortcuts due to noise will have little weight in the
computation, as the number of such paths is much smaller
than the number of paths following the shape of the spiral.
This is also what our experiment confirms: Fig. 4 shows the
distribution of the diffusion distances between A and B
over the random trials. In this experiment, t was taken to be
equal to 600. The corresponding histogram shows a very
localized distribution, with a standard deviation equal to
only 7 percent of its mean, which translates into robustness
and consistency of the diffusion distance.

4.3 Organizing and Clustering Words via Diffusion
Maps

Many of the ideas in this paper can be illustrated with an
application to word-document clustering. We here show
how we can measure the semantic association of words
using diffusion distances and how we can organize and
form representative metawords using diffusion maps and
the k-means algorithm.

Our starting point is a collection of p ¼ 1; 161 Science
News articles. These articles belong to eight different
categories (see [17]). Our goal is to cluster words based on
their distribution over the documents. From the database, we
extract the 20 most common words in each document, which
corresponds to 3,218 unique words total. Out of these words,
we then select words with an intermediate document
conditional entropy. The conditional entropy of a document
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Fig. 3. Two realizations of a noisy spiral with points of references A and B. Ideally, the shortest path between A and B should follow the (a) branch of
the spiral. However, some realizations of the noise may give rise to shortcuts, thereby dramatically reducing the length of the (b) shortest path.

Fig. 4. Distribution of the (a) geodesic and (b) diffusion distances. Each

distribution was rescaled in order to have a mean equal to 1.



X given a word y is defined as HXjy ¼ �
P

x pðxjyÞ log pðxjyÞ.
Words with a very low entropy occur, by definition, in few
documents and are often not good descriptors of the
database, while high-entropy words such as “it,” “if,”
“and,” etc. can be equally uninformative. Thus, in our case,
we choose a set of N ¼ 1; 004 words with entropy 2 < H

ðXjyÞ < 4. As in [17], we calculate the mutual information
between document x and word y according to

mx; y ¼ log
fx; yP

� f�; y
P

� f�;�

 !
;

where fx;y ¼ cx;y=N and cx;y is the number of times word w
appears in document x. In the analysis below, we describe
word y in terms of the p-dimensional feature vector

ey ¼ ½m1; y;m2; y; . . .mp; y
:

Our first task is to find a low-dimensional embedding of
the words. We form the kernel

wðei; ejÞ ¼ exp � jjei � ejjj
2

�2

 !
;

and normalize it, as described in Section 2.1, to obtain the
diffusion kernel ptðei; ejÞ. We then embed the data using the

eigenvalues �tk and the eigenvectors  k of the kernel (see (8)).
As mentioned, the effective dimensionality of the embedding
is given by the spectral fall-off of the eigenvalues. For � ¼ 18
and t ¼ 4, we have that ð�10=�1Þt < 0:1, which means that we
have effectively reduced the dimensionality of the original
p-dimensional problem, where p ¼ 1; 161, with a factor of
about 1=100. Fig. 5 shows the first two coordinates in the
diffusion map; Euclidean distances in the figure only
approximately reflect diffusion distances since higher-order
coordinates are not displayed. Note that the words have
roughly been rearranged according to their semantics.
Starting to the left, moving counterclockwise, we have words
that, respectively, express concepts in medicine, social
sciences, computer science, physics, astronomy, earth
sciences, and anthropology.

Next, we show that the original 1; 004 words can be
clustered and grouped into representative “metawords” by
minimizing the distortion in (13). The k-means algorithm
with k ¼ 100 cluster leads to the results in Fig. 5. Table 2
furthermore gives some examples of diffusion centers and
words in a cluster. The diffusion centers or “metanode”
form a coarse-grained representation of the word graph and
can, for example, be used as conceptual indices for
document retrieval and document clustering. This will be
discussed in later work.
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Fig. 5. Embedding and k-means clustering of 1,004 words for t ¼ 4 and k ¼ 100. The colors correspond to the different word clusters, and the

text labels the representative diffusion center or “metaword” of each word cluster. Note that the words are automatically arranged according to

their semantics.



5 DISCUSSION

In this work, we provide evidence that clustering, graph
partitioning, and data set parameterization can be solved
within one and the same framework. Our starting point is to
find a meaningful representation of the data and to explicitly
define a distance metric on the data. Here, we propose
using a system of coordinates and a metric that reflects the
connectivity of the data set. By doing so, we lay down a
solid foundation for subsequent data analysis.

All the geometry of the data set is captured in a diffusion
kernel. However, unlike SVM and so-called “kernel meth-
ods” [18], [19], [20], we are working with the embedding
coordinates explicitly. Our method is completely data
driven: Both the data representation and the kernel are
computed directly on the data. The notion of a distance
allows us to more precisely define our goals in clustering and
dimensionality reduction. In addition, the diffusion frame-
work makes it possible to directly connect grouping in
embedding spaces to spectral graph clustering and data
analysis by Markov chains [21], [11].

In a sense, we are extending Meila and Shi’s work [3]
from lumpable Markov chains and piece-wise constant
eigenvectors to the general case of arbitrary Markov chains
and arbitrary eigenvectors. The key idea is to work with
embedding spaces directly and also to take powers of the
transition matrix. The time parameter t sets the scale of the
analysis. Note also that by using different values of t, we are
able to perform a multiscale analysis of the data [22], [23].

Our other contribution is a novel scheme for simultaneous
dimensionality reduction, parameterization, and subsam-
pling of data sets. We show that clustering in embedding
spaces is equivalent to compressing operators. As mentioned,
the diffusion operator defines the geometry of our data set.

There are several ways of compressing a linear operator,
depending on what properties one wishes to retain. For
instance, in [22], the goal is to maintain sparseness of the
representation while achieving the best compression rate. On
the other hand, the objective in our work is to cluster or
partition a given data set while at the same time preserving
the operator (that captures the geometry of the data set) up to
some accuracy. We show that, for a given partitioning
scheme, the corresponding quantization distortion in diffu-
sion space bounds the error of compression of the operator.
This gives us a precise measure of the performance of
clustering algorithms. To find the best clustering, one needs
to minimize this distortion, and the k-means algorithm is one
way to achieve this goal. Another aspect of our approach is
that we are coarse-graining a Markov chain defined on the
data, thus offering a general scheme to subsample and
parameterize graphs based on intrinsic geometry.

APPENDIX

In this section, we provide a proof for Theorem 1, which we
recall as

Theorem 2. We have for 0 � l � n� 1,

e�Tl eP ¼ �tl e�Tl þ el and eP e l ¼ �tl e l þ fl;
where

kelk2

1=e�0

� 2D and kflk2e�0

� 2D;

and

D ¼
X
i

X
x2Si

�0ðxÞk�tðxÞ � cðSiÞÞk2:
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TABLE 2
Examples of Diffusion Centers and Words in a Cluster



This means that, if j�ljt �
ffiffiffiffi
D
p

, then e�l and e l are

approximate left and right eigenvectors of eP with approximate

eigenvalue �tl .

Proof. We start by treating left eigenvectors: For all z 2 Si,
we define

rijðzÞ ¼ epðSi; SjÞ � ptðz; SjÞ:
Then,

jrijðzÞj ¼
X
x2Si

�0ðxÞe�0ðSiÞ
ðptðx; SjÞ � ptðz; SjÞÞ

�����
�����

�
X
x2Si

�0ðxÞe�0ðSiÞ

X
y2Sj
jptðx; yÞ � ptðz; yÞj

�
X
x2Si

�0ðxÞe�0ðSiÞ

X
y2Sj

�0ðyÞ

0@ 1A1
2

 X
y2Sj

1

�0ðyÞ
jptðx; yÞ � ptðz; yÞj2

!1
2

ðCauchy-SchwarzÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffie�0ðSjÞ

q X
x2Si

�0ðxÞe�0ðSiÞ

X
y2Sj

1

�0ðyÞ
jptðx; yÞ�ptðz; yÞj2

0@ 1A1
2

:

Another application of the Cauchy-Schwarz inequality

yields

jrijðzÞj2 � e�0ðSjÞ
X
x2Si

�0ðxÞe�0ðSiÞ

X
y2Sj

1

�0ðyÞ
jptðx; yÞ � ptðz; yÞj2:

ð15Þ

Thus,X
i

e�lðSiÞepðSi; SjÞ ¼X
i

X
z2Si

�lðzÞepðSi; SjÞ
¼
X
i

X
z2Si

�lðzÞðptðz; SjÞ þ rijðzÞÞ

¼ �tl e�lðSjÞ þX
i

X
z2Si

�lðzÞrijðzÞ:

We therefore define el 2 IRk by

elðSjÞ ¼
X
i

X
z2Si

�lðzÞrijðzÞ:

To prove the theorem, we need to bound

kelk2

1=e�0

¼
X
j

elðSjÞ2e�0ðSjÞ
:

First, observe that by the Cauchy-Schwartz inequality,

elðSjÞ2 �
X
i

X
z2Si

�lðzÞ2

�0ðzÞ

 ! X
i

X
z2Si

rijðzÞ2�0ðzÞ
 !

:

Now, since �l was normalized, this means that

elðSjÞ2 �
X
i

X
z2Si

rijðzÞ2�0ðzÞ
 !

:

Invoking (15), we conclude that

kelk2

1=e�0

�
X
j

X
i

X
z2Si

�0ðzÞ
X
x2Si

�0ðxÞe�0ðSiÞ

X
y2Sj

1

�0ðyÞ
jptðx; yÞ

� ptðz; yÞj2

�
X
i

X
z2Si

�0ðzÞ
X
x2Si

�0ðxÞe�0ðSiÞ

X
y

1

�0ðyÞ
jptðx; yÞ

� ptðz; yÞj2

�
X
i

e�0ðSiÞ
X
z2Si

X
x2Si

�0ðxÞe�0ðSiÞ
�0ðzÞe�0ðSiÞ

D2
t ðx; zÞ

�
X
i

e�0ðSiÞ
X
z2Si

X
x2Si

�0ðxÞe�0ðSiÞ
�0ðzÞe�0ðSiÞ

k�tðxÞ ��tðzÞk2

�
X
i

e�0ðSiÞ
X
z2Si

X
x2Si

�0ðxÞe�0ðSiÞ
�0ðzÞe�0ðSiÞ

� ðk�tðxÞ � cðSiÞk2 þ k�tðzÞ � cðSiÞk2

� 2h�tðxÞ � cðSiÞ;�tðzÞ � cðSiÞiÞ:

By definition of cðSiÞ,X
z2Si

X
x2Si

�0ðxÞe�0ðSiÞ
�0ðzÞe�0ðSiÞ

h�tðxÞ � cðSiÞ;�tðzÞ � cðSiÞi ¼ 0;

and, therefore,

kelk2

1=e�0

� 2
X
i

X
x2Si

�0ðxÞk�tðzÞ � cðSiÞk2:

As for right eigenvectors, the result follows from (11) and

the fact that the coarse-grained Markov chain is

reversible with respect to e�0. Indeed,

eP e lðSiÞ ¼X
j

epðSi; SjÞe lðSjÞ
¼
X
j

epðSi; SjÞ
�0ðSjÞ

e�lðSjÞ by ð11Þ

¼
X
j

epðSj; SiÞ
�0ðSiÞ

e�lðSjÞ by reversibility

¼ �tl
e�lðSiÞe�0ðSiÞ

þ elðSiÞe�0ðSiÞ

¼ �tl e lðSiÞ þ elðSiÞe�0ðSiÞ
by ð11Þ:

If we set flðSiÞ ¼ elðSiÞ=e�0ðSiÞ, we conclude that

kflk2e�0

¼
X
i

elðSiÞ2e�0ðSiÞ2
e�0ðSiÞ ¼ kelk2

1=e�0

� 2D:

ut
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