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Abstract

We consider distance matrices of certain graphs and of points chosen in a rectangular
grid. Formulae for the inverse and the determinant of the distance matrix of a weighted tree
are obtained. Results concerning the inertia and the determinant of the distance matrix of an
unweighted unicyclic graph are proved. If D is the distance matrix of a tree, then we obtain
certain results for a perturbation of D−1. As an example, it is shown that if L̃ is the Laplacian

matrix of an arbitrary connected graph, then
(
D−1 − L̃

)−1
is an entrywise positive matrix.

We consider the distance matrix of a subset of a rectangular grid of points in the plane. If we
choose m+ k − 1 points, not containing a closed path, in an m× k grid, then a formula for
the determinant of the distance matrix of such points is obtained.
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1. Introduction and background

A graph G = (V ,E) consists of a finite set of vertices V and a set of edges E.
A simple graph has no loops or multiple edges and therefore its edge set consists
of distinct pairs. A weighted graph is a graph in which each edge is assigned a
weight, which is a positive number. An unweighted graph, or simply a graph, is
thus a weighted graph with each of the edges bearing weight 1.

Let G be a connected, weighted graph on n vertices. The distance between ver-
tices i and j is defined to be the minimum weight of all paths from i to j , where
the weight of a path is just the sum of the weights of the edges on the path. The
distance matrix D ofG is an n× n matrix with zeros along the diagonal and with its
(i, j)-entry equal to the distance between vertices i and j .

Distance matrices of graphs, particularly trees, have been investigated to a
great extent in the literature. An early, remarkable result in this context concerns
the determinant of the distance matrix of a tree: Graham and Pollack [3] showed
that if T is a tree on n vertices with distance matrix D, then the determinant of
D is (−1)n−1(n− 1)2n−2, and thus is a function of only the number of vertices;
that paper also discusses the inertia of D. (Recall that for symmetric matrix M , its
inertia is the triple of integers (n+(M), n0(M), n−(M)), where n+(M), n0(M), and
n−(M) denote the number of positive eigenvalues of M , the multiplicity of 0 as
an eigenvalue of M , and the number of negative eigenvalues of M , respectively.)
In subsequent work, Graham and Lovasz [4] obtained a formula for D−1, among
other results. In Section 2 we extend Graham’s and Lovasz’s formula for D−1 to
the case of a weighted tree. We also obtain an extension of the Graham and Pollack
determinantal and inertial formulae to the weighted case. In Section 3 we further
extend these results to distance matrices arising from unweighted unicyclic graphs.

Suppose that we have a weighted graphG = (V ,E) with n vertices and m edges,
and that we assign an orientation to each edge of G. The associated (vertex-edge)
incidence matrix Q of G is the n×m matrix defined as follows. The rows and the
columns of Q are indexed by V and E respectively. The (i, j)-entry of Q is 0 if the
ith vertex and the j th edge are not incident and it is

√
w(j) (respectively, −√

w(j))
if the ith vertex and the j th edge are incident, and the edge originates (respectively,
terminates) at the ith vertex, where w(j) denotes the weight of the j th edge. The
Laplacian matrix L of G is defined as L = QQT, and is independent of the orienta-
tion assigned to G. For basic properties of the Laplacian matrix see [1,7]. We note
that in our results involving weighted trees, we will make use of the incidence matrix
and the Laplacian matrix that arise by replacing each edge weight of the tree by its
reciprocal.

In Section 4 we investigate a perturbation problem for distance matrices arising
from weighted trees. Let D be a distance matrix arising from a weighted tree and
let L be a Laplacian matrix of any weighted graph G. For ε > 0, we consider per-
turbations of D−1 of the form εD−1 − L and show that matrices of this form are
invertible and have a nonnegative inverse.
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Recall that if u and v are vectors in Rn, then the �1-distance between u and
v is defined as ‖u− v‖1 = ∑n

i=1 |ui − vi |. In Section 5 we obtain a formula for
the determinant of the �1-distance matrix of a set of points in a rectangular grid.
If x1, . . . , xn are distinct points in R2, then their �1-distance matrix D = [di,j ] is
an n× n matrix with di,i = 0, i = 1, 2, . . . , n, and di,j = ‖xi − xj‖1, if i /= j . If
m+ k − 1 points are chosen from an m× k rectangular grid and if the points do not
contain a closed path, then a formula for the determinant of D is obtained.

2. Distance matrix of a tree

In this section we extend some well known results on the distance matrix D of an
unweighted tree T . The first result is due to Graham and Lovasz [4], who obtained
a formula for D−1. The latter two results are due to Graham and Pollack [3], who
showed that if T has n vertices, then the determinant of D is (−1)n−1(n− 1)2n−2,
and that D has just one positive eigenvalue. In this section, we extend these results
to the case of weighted trees.

Theorem 2.1. Let T be a weighted tree on n vertices with edge weights α1, . . . , αn−1
and let D be the corresponding distance matrix. Let L denote the Laplacian matrix
for the weighting of T that arises by replacing each edge weight by its reciprocal.
For each i = 1, . . . , n, let di be the degree of the vertex i, let δi = 2 − di, and set
δT = [δ1, . . . , δn]. Then

D−1 = −1

2
L+ 1

2
∑n−1

i=1 αi
δδT. (2.1)

Proof. We use induction on n. For n = 2, we have D =
[

0 α1
α1 0

]
, L =

1
α1

[
1 −1

−1 1

]
, and δ =

[
1
1

]
, and the formula forD−1 follows readily. Now suppose

we have a weighted tree on n vertices 1, 2, . . . , n, and form a new weighted tree T
on vertices 1, . . . , n+ 1 by adding in a pendant vertex n+ 1, adjacent to vertex n
with edge weight αn. Let D, L, and δ be the appropriate quantities for T and let D,
L, and δ̄ be the corresponding quantities for T . Letting en be the nth standard unit
basis vector in Rn and 1 be the all ones vector in Rn, we have

L =
L+ 1

αn
ene

T
n − 1

αn
en

− 1
αn
eT
n

1
αn

 , δ̄ =
[
δ − en

1

]
,

and

D =
[

D Den + αn1

eT
nD + αn1T 0

]
.
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Let σn−1 = ∑n−1
i=1 αi and σn = ∑n

i=1 αi , and note that

−1

2
L+ 1

2
∑n

i=1 αi
δ̄δ̄T = −1

2
L+ 1

2σn
δ̄δ̄T

=
− 1

2L− 1
2αn
ene

T
n + 1

2σn

(
δδT − δeT

n − enδ
T + ene

T
n

) 1
2αn
en + 1

2σn
(δ − en)

1
2αn
eT
n + 1

2σn

(
δT − eT

n

) − 1
2αn

+ 1
2σn



=
− 1

2L+ 1
2σn

(
δδT − δeT

n − enδ
T
)− σn−1

2αnσn
ene

T
n

1
2σn
δ + σn−1

2αnσn
en

1
2σn
δT + σn−1

2αnσn
eT
n − σn−1

2αnσn

 .
From the induction hypothesis, D−11 = 1

2σn−1
δT1δ = 1

σn−1
δ, so that Dδ = σn−11.

Also from the induction hypothesis, D−1 = − 1
2L+ 1

2σn−1
δδT. We thus find that

−1

2
L+ 1

2σn
δ̄δ̄T

=
D−1 − αn

2σnσn−1
δδT − 1

2σn

(
δeT
n + enδ

T)− σn−1
2αnσn

ene
T
n

1
2σn

δ + σn−1
2αnσn

en

1
2σn

δT + σn−1
2αnσn

eT
n − σn−1

2αnσn

 .
Next, we note that

D =
[

D Den + αn1

eT
nD + αn1T 0

]
=
[
I 0

eT
n 1

][
D αn1

αn1T −2αn

][
I en

0 1

]
,

so that

D
−1 =

[
I −en
0 1

][
D αn1

αn1T −2αn

]−1 [
I 0

−eT
n 1

]
.

Now a standard computation shows that[
D αn1

αn1T −2αn

]−1

=
(D + αn

2 11T
)−1 σn−1

2σn
D−11

σn−1
2σn

1TD−1 − σn−1
2αnσn


=
D−1 − αn

2σnσn−1
δδT 1

2σn
δ

1
2σn
δT − σn−1

2αnσn

 ,
so that

D
−1 =

[
I −en
0 1

]D−1 − αn
2σnσn−1

δδT 1
2σn
δ

1
2σn
δT − σn−1

2αnσn

[ I 0

−eT
n 1

]
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=
D−1 − αn

2σnσn−1
δδT − 1

2σn

(
δeT
n + enδ

T
)− σn−1

2αnσn
ene

T
n

1
2σn
δ + σn−1

2αnσn
en

1
2σn
δT + σn−1

2αnσn
eT
n − σn−1

2αnσn


as desired. �

Remark 2.2. For an unweighted tree on n � 3 vertices, the (i, j)-element of D−1

is zero if and only if i /= j , one of the vertices i and j has degree 2, and i and j
are not adjacent. To see this, observe that the (i, j)-element of D−1 is zero if and
only if (2 − di)(2 − dj ) = (n− 1)�ij , so that our conditions are clearly sufficient.
Conversely, if i and j are adjacent, then �ij = −1 so that (n− 1)�ij = −(n− 1).
But (2 − di)(2 − dj ) � 1[2 − (n− 1)] = −(n− 3) and the (i, j)-element of D−1

is nonzero. Finally, if i = j , we see that since n � 3, (2 − d)2 = (n− 1)d has no
admissible positive integer solution for d .

In particular, each row ofD−1 corresponding to a vertex of degree 2 has 3 nonzero
entries: a −1 on the diagonal and 1

2 in each spot corresponding to an adjacent vertex.

In order to discuss the determinant and inertia properties of distance matrices
of weighted trees (and later, of unicyclic graphs), we begin by considering the fol-
lowing somewhat larger class of weighted graphs. Let G be a weighted graph, and
suppose that we have a collection of weighted trees B1, . . . , Bk . We construct a
new graph G from G and the trees B1, . . . , Bk by adding, for each i = 1, . . . , k,
a weighted edge between some vertex of Bi and some vertex of G. We say that
the new graph G is constructed by adding the weighted branches B1, . . . , Bk to G.
Evidently both the weighted trees and the unicyclic graphs can be constructed in this
fashion.

Theorem 2.3. Let G be a connected weighted graph on n vertices with distance
matrixD, and suppose thatD1 = d1. FormG fromG by adding weighted branches
to G on a total of m new vertices, with positive weights α1, . . . , αm on the new
edges. Let D be the distance matrix for G. Then for each x ∈ R, det(D + xJ ) =
(−2)m det(D)

(∏m
i=1 αi

)
(1 + nx

d
+ n

2d

∑m
i=1 αi). Further, n0(D) = n0(D) and if,

in addition, D is nonsingular, then n+(D) = n+(D).

Proof. We prove the statement regarding det(D + xJ ) by induction on m. For
the case thatm = 0, note that the eigenvalues ofD can be written as d = λ1 � λ2 �
· · · � λn, while the eigenvalues of D + xJ are d + nx and λ2, . . . , λn. It now
follows that det(D + xJ ) = d

(
1 + nx

d

)
λ2 · · · λn = det(D)

(
1 + nx

d

)
, as desired.

Suppose now the statement holds for some m � 0 and that G is formed as described
by adding branches on m+ 1 new vertices to G. Without loss of generality, assume
that vertex n+m+ 1 is pendant, adjacent to vertex n+m, and that the weight of
the corresponding pendant edge is αm+1. Then
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D + xJ =
[

I 0

eT
n+m 1

][
D̂ + xJ αm+11

αm+11T −2αm+1

][
I en+m

0 1

]
,

where D̂ is the distance matrix for the weighted graph on n+m vertices formed
from G by deleting vertex n+m+ 1. Thus, det(D + xJ ) = (−2αm+1)

det
(
D̂ + xJ + αm+1

2 J
) = (−2αm+1)(−2)m det(D)

(∏m
i=1 αi

) (
1 + n

d

(
x + αm+1

2

)+
n

2d

∑m
i=1 αi

)
, the first equality following from Schur’s formula, and the second from

an application of the induction hypothesis. We now find readily that det(D + xJ ) =
(−2)m+1 det(D)

(∏m+1
i=1 αi

) (
1 + nx

d
+ n

2d

∑m+1
i=1 αi

)
.

In order to deduce that n0(D) = n0(D), we prove by induction on m that for any
x � 0, n0(D) = n0(D + xJ ). Note that the case m = 0 is straightforward, since the
eigenvalues ofD + xJ consist of the Perron value d + nx, along with the remaining
non-Perron eigenvalues of D. Next, suppose that the result holds for some m � 0,
and that G is formed from G by adding branches on m+ 1 new vertices, with ver-
tex n+m+ 1 pendant, and adjacent to vertex n+m with an edge of weight αm+1
between them. As above we see that D + xJ is congruent to the matrix

M =
[
D̂ + xJ αm+11

αm+11T −2αm+1

]
,

where D̂ is as described above. Evidently n0(M) = n0(D + xJ ). Observe that the

vector

[
v

u

]
(partitioned conformably with M) is a null vector for M if and only if v

is a null vector for D̂ + (x + αm+1/2)J and u = vT1/2. It follows then that the null
vectors of M are in one to one correspondence with those of D̂ + (x + αm+1/2)J .
Applying the induction hypothesis, we find that n0

(
D̂ + (x + αm+1/2)J

) = n0(D),
from which we conclude that n0(D + xJ ) = n0(M) = n0(D).

Next suppose that D is nonsingular; we will prove the statement on n+(D) by
induction on m, and note that the case m = 0 is plain. Suppose that the statement
holds for some m � 0, and that G is formed from G by adding branches on m+ 1
new vertices, with vertex n+m+ 1 pendant, and adjacent to vertex n+m with an
edge of weight αm+1 between them. As above we see that D is congruent to[

D̂ αm+11

αm+11T −2αm+1

]
,

where D̂ is as described above. From interlacing, we find that n+
(
D̂
)

� n+(D) and
n−
(
D̂
)

� n−(D); since det
(
D̂
)

and det(D) have opposite signs, it follows that in
fact n+

(
D̂
) = n+(D). Applying the induction hypothesis, we find that n+(D) =

n+
(
D̂
) = n+(D). �
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Theorem 2.3 yields the following generalization of results of Graham and Pollack
[3] for unweighted trees.

Theorem 2.4. Let T be a weighted tree on n vertices with edge weights α1, . . . ,

αn−1. Let D be the distance matrix of T . Then for any real number x,

det(D + xJ ) = (−1)n−12n−2

(
n−1∏
i=1

αi

)(
2x +

n−1∑
i=1

αi

)
.

Further, the inertia of D is (n+(D), n0(D), n−(D)) = (1, 0, n− 1).

Proof. Observe that we may construct any tree on n vertices with weights α1, . . . ,

αn−1 by beginning with a single edge of weight α1 (whose 2 × 2 distance matrix has
constant row sum α1, determinant −α1

2 and eigenvalues ±α1) and then adding in
branches on n− 2 new vertices as described in Theorem 2.3. The results now follow
from that theorem. �

Corollary 2.5. If D is as in Theorem 2.4, then

det(D) = (−1)n−12n−2

(
n−1∏
i=1

αi

)(
n−1∑
i=1

αi

)
.

3. Distance matrix of a unicyclic graph

Recall that a graph is unicyclic if it is connected and has a single cycle. In this
section we obtain results concerning the inertia and determinant for the distance
matrix of an unweighted unicyclic graph. Many of our results in this section are
stated separately for the cases that the length of the cycle is odd or even.

We begin by investigating the distance matrix for an unweighted cycle of odd
length. Here we assume without loss of generality that the vertices of the cycle of
length 2k + 1 are labelled so that for each i = 1, . . . , 2k + 1, vertex i is adjacent to
vertices i + 1 and i − 1 (where these indices are taken modulo 2k + 1). As part of
our investigation, we make use of the cyclic permutation matrix C (of order 2k + 1)
having Ci,i+1 = 1 for i = 1, . . . 2k + 1 (again taking indices modulo 2k + 1).

Theorem 3.1. Let D be the distance matrix for the cycle on 2k + 1 vertices. Then

D−1 = −2I − Ck − Ck+1 + 2k + 1

k(k + 1)
J.

Proof. Since

eT
1D = [0, 1, 2, . . . , k − 1, k, k, k − 1, . . . , 2, 1],
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eT
k+1D = [k, k − 1, k − 2, . . . , 1, 0, 1, 2, . . . , k − 1, k],
eT
k+2D = [k, k, k − 1, . . . , 2, 1, 0, 1, . . . , k − 2, k − 1],

we find that(
eT
k+1 + eT

k+2 + 2eT
1

)
D = [2k, 2k + 1, . . . , 2k + 1].

It follows that(
Ck + Ck+1 + 2I

)
D = (2k + 1)J − I,

and hence

I = ((2k + 1)J − I )−1
(
Ck + Ck+1 + 2I

)
D

=
(

−I + 2k + 1

4k(k + 1)
J

)(
Ck + Ck+1 + 2I

)
D

=
(

−2I − Ck − Ck+1 + 2k + 1

k(k + 1)
J

)
D. �

Corollary 3.2. The distance matrix for a cycle on 2k + 1 vertices has just one
positive eigenvalue.

Proof. Evidently the eigenvalues for D−1 are 1
k(k+1) and

−2 −
(

cos
2kj

2k + 1
π + cos

2(k + 1)j

2k + 1
π

)
,

j = 1, . . . , 2k, and only the first eigenvalue is positive. �

Remark 3.3. It is straightforward to see that Ck + Ck+1 is the adjacency matrix
for a cycle of length 2k + 1, where for each i = 1, . . . , 2k + 1, vertex i is adjacent
to vertices i + k and i − k (taking those indices modulo 2k + 1). It follows read-
ily that the matrix 2I + Ck + Ck+1 is permutationally similar to 2I + C + CT, so
that det

(
2I + Ck + Ck+1

) = det
(
2I + C + CT

)
. A simple proof by induction on k

shows that det
(
2I + C + CT

) = 4.

Next we give formulae for the determinant and inertia for the distance matrix of
an unweighted unicyclic graph having a cycle of odd length.

Theorem 3.4. LetG be a unicyclic graph with 2k + 1 +m vertices and cycle length

2k + 1. Let D be the distance matrix of G. Then det(D) = (−2)m
[
k(k + 1)+

2k+1
2 m

]
, while the inertia of D is given by

(
n+(D), n0(D), n−(D)

) = (1, 0, 2k +
m).
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Proof. Let D be the distance matrix for the cycle on 2k + 1 vertices, and observe
that D1 = k(k + 1)1. In particular, the hypothesis of Theorem 2.3 applies to D, and
D is constructed from D as described in that theorem.

From Theorem 3.1 we find that the eigenvalues of D consist of the Perron value
k(k + 1), along with the reciprocals of the eigenvalues of −2I − Ck − Ck+1 whose
eigenvectors are orthogonal to 1. By Remark 3.3, det(−2I − Ck − Ck+1) = −4 and
clearly −4 is the eigenvalue of −2I − Ck − Ck+1 corresponding to 1, so that the
remaining eigenvalues have product 1. Hence det(D) = k(k + 1). Applying Theo-

rem 2.3, it now follows readily that det(D) = (−2)m
[
k(k + 1)+ 2k+1

2 m
]
.

From Corollary 3.2 we have n+(D) = 1, and again applying Theorem 2.3, we
find that

(
n+(D), n0(D), n−(D)

) = (1, 0, 2k +m). �

Next we develop parallel results for the distance matrix of an unweighted unicy-
clic graph having a cycle of even length. We begin by analyzing the distance matrix
for an unweighted cycle of even length.

Remark 3.5. The distance matrix for the 2k-cycle is the circulant

D = circ([0, 1, 2, . . . , k, k − 1, . . . , 2, 1]).
In particular, for any x � 0, D + xJ has Perron value k2 + 2kx with Perron vector
1. Further, for each j = 1, . . . , 2k − 1, consider the 2kth root of unity χ = e�ij/k.

It is straightforward to see that χ generates a non-Perron eigenvalue of D + xJ as
follows:

k∑
t=1

tχ t +
k∑
t=1

(k − t)χk+t

= k

k∑
t=1

χk+t + (1 − χk)

k∑
t=1

tχ t

= kχk+1 1 − χk

1 − χ
+ (1 − χk)χ

(1 − χ)2

[
−(k + 1)χk + kχk+1 + 1

]
.

If j is even, then χk = 1, so we get a 0 eigenvalue. If j is odd, we get χk = −1, so
the eigenvalue becomes

2

[
− kχ

1 − χ
+ χ

(1 − χ)2
(k + 2 − kχ)

]
= 2χ

(1 − χ)2
(−k + kχ + k + 2 − kχ)

= 4χ

(1 − χ)2
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= 4

|1 − χ |4χ
(

1 − 2χ + χ2
)

= 4

|1 − χ |4 (χ − 2 + χ)

= − 8

|1 − χ |4
[

1 − cos
πj

k

]
.

In particular, we see that for any x � 0, D + xJ has one positive eigenvalue, and
nullity k − 1.

The following result will be useful in discussing the inertia of the distance matrix
for a unicyclic graph.

Lemma 3.6. LetG0 be a connected graph with distance matrixD0 and suppose that
for all x > 0, D0 + xJ has a single positive eigenvalue (namely the Perron value).
FormGm fromG0 by adding in unweighted branches at various vertices ofG0, on a
total of m new vertices. If Dm is the corresponding distance matrix, then Dm + xJ

has just one positive eigenvalue for any x > 0.

Proof. We proceed by induction on m, and note that the case m = 0 is just the
hypothesis on D0. Note that for some i, we have that

Dm+1 + xJ =
[

Dm + xJ Dmei + (x + 1)1
eT
i Dm + (x + 1)1T x

]
.

Let M =
[
I 0

−eT
i 1

]
. Then we see that

M(Dm+1 + xJ )MT =
[
Dm + xJ 1

1T −2

]
= A,

so that Dm+1 + xJ and A have the same inertia. Note also that A has a positive

eigenvalue λ if and only ifDm +
(
x + 1

2+λ
)
J has λ as a positive eigenvalue, which,

by the induction hypothesis, must be the Perron value. Note that, necessarily, such a
λ is a simple eigenvalue of A since any Perron value is simple. Suppose that there
are two positive eigenvalues λ1 and λ2 with λ1 > λ2 so that λi is the Perron value of

Dm +
(
x + 1

2+λi
)
J , i = 1, 2. Then, letting ρ denote the Perron value, we have

λ1 = ρ

(
Dm +

(
x + 1

2 + λ1

)
J

)
< ρ

(
Dm +

(
x + 1

2 + λ2

)
J

)
= λ2,

the inequality being strict since λ1 > λ2 which is a contradiction. Hence A can
have only one positive eigenvalue so that Dm+1 + xJ has just one positive
eigenvalue. �
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We now determine the inertia for the distance matrix of an unweighted unicyclic
graph having a cycle of even length.

Theorem 3.7. Let G be a unicyclic graph on 2k +m vertices with an even cycle of
length 2k. LetD be the distance matrix ofG. Then the inertia ofD is (n+(D), n0(D),

n−(D)) = (1, k − 1, k +m).

Proof. By Lemma 3.6 and the Remark 3.5, we find that n+(D) = 1. Also, applying
Remark 3.5 and Theorem 2.3, we find that n0(D) = k − 1. Consequently, n−(D) =
k +m and the result follows. �

4. Inverse distance matrix perturbed by a Laplacian

We begin with a preliminary result.

Lemma 4.1. Let T be a weighted tree with n vertices, and suppose that each edge of
T has been assigned an orientation. LetD be the distance matrix of T , and let L and
Q denote the Laplacian matrix and incidence matrix, respectively, for the weighting
of T that arises by replacing each edge weight by its reciprocal. Denote the degree
of vertex i by di, let δi = 2 − di, i = 1, . . . , n, and let δT = [δ1, . . . , δn]T. Then the
following assertions hold:

(i) LD = δ1T − 2I, DL = 1δT − 2I.
(ii) QTDQ = −2I.

(iii) (D−1 − L)−1 = 1
3D + 1

3

(∑n−1
i=1 αi

)
J.

Proof. (i) As in Theorem 2.1, we denote the edge weights of T by α1, . . . , αn−1.
It follows from Theorem 2.1 that − 1

2LD + 1
2
∑n−1
i=1 αi

δδTD = I and hence LD =
1∑n−1
i=1 αi

δδTD − 2I . Also, as seen in the proof of Theorem 2.1, Dδ =
(∑n−1

i=1 αi

)
1

and thus LD = δ1T − 2I . The proof of the second part is similar.
(ii) By (i), QQTD = δ1T − 2I and, since Q has zero column sums, QQTDQ =

−2Q. The result follows sinceQ has full column rank and thus admits a left-inverse.
We remark that the assertion made in (ii) is well-known in the unweighted case, see
[6].

(iii) The result follows immediately from (i) and the fact (see Theorem 2.1) that
D−11 = 1∑n−1

i=1 αi
δ. �

Motivated by the above results, we conducted certain numerical experiments con-
cerning (D−1 − L)−1, in which L was replaced by the Laplacian of an arbitrary
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connected graph, while D continued to be the distance matrix of a weighted tree.
The results were interesting as well as unexpected and are presented in a sequence,
culminating in Theorems 4.5 and 4.6.

LetD be the distance matrix of a weighted tree with at least two vertices. We will
use the well-known fact that D, and any principal submatrix of D of order at least
2, has exactly one positive eigenvalue, while the remaining eigenvalues are negative.
A square matrix is said to be an N-matrix if all its principal minors are negative. A
signature matrix is a diagonal matrix with ±1 on the diagonal.

Lemma 4.2. Let S be an n× n symmetric, positive semidefinite matrix with S1 = 0.
Let D be the distance matrix of a weighted tree on n vertices. Then D−1 − S is
nonsingular and has 1 positive and n− 1 negative eigenvalues.

Proof. Using the notation and the conclusion of Theorem 2.1,

D−1 = −1

2
L+ 1

2
∑n−1

i=1 αi
δδT.

If (D−1 − S)x = 0 for some vector x, then, using the preceding equation,

1T

(
−1

2
L+ 1

2
∑n−1

i=1 αi
δδT − S

)
x = 0

and thus

1TδδTx = 0.

Since 1Tδ = 2n− 2(n− 1) = 2, then δTx = 0. Thus
(
− 1

2L− S
)
x = 0. Since L

and S are positive semidefinite, it follows that Lx = 0 and hence x must be a scalar
multiple of 1. Now since δTx = 0 and 1Tδ /= 0, we have that x = 0. Thus the mat-
rix D−1 − S is nonsingular. Similarly, for any t � 0, (D−1 − tS) is nonsingular
and must have the same inertia for all t � 0. Since D−1 has 1 positive and n− 1 ne-
gative eigenvalues, it follows that D−1 − S has 1 positive and n− 1 negative eigen-
values. �

Lemma 4.3. Let S be an n× n symmetric, positive semidefinite matrix with S1 = 0.
LetD be the distance matrix of a weighted tree on n vertices. Then (i) For any α > 0,

αI − S
1
2DS

1
2 is positive definite. (ii) S

1
2DS

1
2 is negative semidefinite.

Proof. Evaluating the determinant of

[
D−1 S

1
2

S
1
2 αI

]
in two different ways, we see

that

det(D−1) det
(
αI − S

1
2DS

1
2

)
= det(αI) det

(
D−1 − S

α

)
. (4.1)
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By Lemma 4.2, D−1 − 1
α
S has 1 positive and n− 1 negative eigenvalues and thus

det(D−1) and det
(
D−1 − S

α

)
have the same sign. It follows from (4.1) that det(

αI − S
1
2DS

1
2

)
> 0. Since D has inertia (1, 0, n− 1), S

1
2DS

1
2 has at most one

positive eigenvalue. Thus αI − S
1
2DS

1
2 has at most 1 negative eigenvalue. However,

since det
(
αI − S

1
2DS

1
2

)
> 0, αI − S

1
2DS

1
2 has no negative eigenvalue and hence

it is positive definite. This proves (i). To prove (ii), first note that S
1
2DS

1
2 has at

most 1 nonnegative eigenvalue. If S
1
2DS

1
2 has a positive eigenvalue, then we get a

contradiction to (i) for small α > 0. Thus S
1
2DS

1
2 has all eigenvalues nonpositive

and hence is negative semidefinite. �

Lemma 4.4. Let S be an n× n symmetric, positive semidefinite matrix with S1 =
0 and suppose rank(S) = n− 1. Let D be the distance matrix of a weighted tree
on n vertices and let p � 1 be an integer. Then any proper principal submatrix of
D−1(I −DS)p is negative definite.

Proof. We have

D−1(I −DS)p = D−1
p∑
r=0

(−1)r (DS)r
(
p

r

)

= D−1 +
p∑
r=1

(−1)rS(DS)r−1
(
p

r

)
= D−1 − S

1
2ZS

1
2 ,

where

Z = pI +
p∑
r=2

(−1)r−1
(
S

1
2DS

1
2

)r−1
(
p

r

)
.

By Lemma 4.3, S
1
2DS

1
2 is negative semidefinite and hence Z is positive definite.

Thus S
1
2ZS

1
2 is positive semidefinite. Note that rank S

1
2ZS

1
2 = rank S

1
2Z

1
2Z

1
2 S

1
2 =

rank S
1
2Z

1
2 = rank S

1
2 = rank S = n− 1. (Here we used the facts that rank XX′ =

rankX, for anyX and that the rank is invariant under multiplication by a nonsingular

matrix.) Since S is positive semidefinite and S1 = 0, it follows that S
1
2 1 = 0, and

thus S
1
2ZS

1
2 1 = 0. Then all cofactors of S

1
2ZS

1
2 are equal, and, in particular, any

principal submatrix of S
1
2ZS

1
2 of order n− 1 is nonsingular. Denote by A(i, i) the

submatrix of A obtained by deleting row and column i. By the interlacing property,
D−1(i, i) has at most one nonnegative eigenvalue. However, since dii = 0,D−1(i, i)

is singular and thus it has only nonpositive eigenvalues. Thus D−1(i, i) is negative

semidefinite. Since, in view of a preceding remark, S
1
2ZS

1
2 (i, i) is positive definite, it
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follows that
(
D−1 − S

1
2ZS

1
2

)
(i, i) = D−1(i, i)− S

1
2ZS

1
2 (i, i) is negative definite

and the proof is complete. �

Theorem 4.5. Let S be an n× n symmetric, positive semidefinite matrix with S1 =
0 and suppose rank(S) = n− 1. Let D be the distance matrix of a weighted tree on
n vertices and let p � 1 be an integer. Then (I − tDS)−pD > 0, for all t > 0.

Proof. As in the proof of Lemma 4.4 we may write D−1(I − tDS)p = D−1 −
tS

1
2ZS

1
2 , where Z is positive definite. It follows by Lemmas 4.2 and 4.4 that for

t > 0, Ut = −D−1(I − tDS)p has a negative determinant and any proper principal
minor of Ut is positive. Thus U−1

t is an N-matrix and there exists a signature matrix
Rt (see Lemma 2 of [8]) such that RtU

−1
t Rt < 0. By a continuity argument, Rt must

in fact be the same for all t > 0. Since for sufficiently small t > 0, U−1
t , being close

to −D, is negative, it follows that Rt = I for all t > 0. Thus −(I − tDS)−pD < 0
and the proof is complete. �

We now prove an application of our results to Laplacians; the first part of the
result is motivated by (iii), Lemma 4.1.

Theorem 4.6. Let G be a weighted, connected, graph on n vertices and let L̃ be
the Laplacian of G. Let D be the distance matrix of a weighted tree on n verti-

ces. Then (i)
(
D−1 − L̃

)−1
is an entrywise positive matrix, and (ii) each entry of

F(ε) = (
εD−1 − L̃

)−1
is decreasing in ε > 0.

Proof. Since L̃ is symmetric, positive semidefinite of rank n− 1 and satisfies L̃1 =
0, (i) follows from the case p = 1 of Theorem 4.5. To prove (ii), note that the deriv-
ative of F(ε) with respect to ε is given by

F ′(ε)= −
(
εD−1 − L̃

)−1
D−1(εD−1 − L)−1

= −
[(
εD−1 − L̃

)
D
(
εD−1 − L̃

)]−1

= −ε−2
(
D−1 − S̃

)−1
,

where S̃ = 2(L̃/ε)− (
L̃/ε

)
D
(
L̃/ε

)
. We claim that S̃ satisfies the hypotheses of

Theorem 4.5. Note that

S̃ = 2
(
L̃/ε

)− (
L̃/ε

)
D
(
L̃/ε

)= (
L̃/ε

) 1
2

(
2I − (

L̃/ε
) 1

2 D
(
L̃/ε

) 1
2

) (
L̃/ε

) 1
2 .

By (i) of Lemma 4.3, 2I − (
L̃/ε

) 1
2 D

(
L̃/ε

) 1
2 is positive definite. Therefore, S is

positive semidefinite. Furthermore, as in the proof of Lemma 4.4,
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rank S̃ = rank
(
2
(
L̃/ε

)− (
L̃/ε

)
D(L̃/ε)

)
= rank

(
L̃/ε

) 1
2

(
2I − (

L̃/ε
) 1

2 D
(
L̃/ε

) 1
2

) (
L̃/ε

) 1
2

= rank
(
L̃/ε

) 1
2

(
2I − (

L̃/ε
) 1

2 D
(
L̃/ε

) 1
2

)
= rank

(
L̃/ε

) 1
2

= rank
(
L̃/ε

)
= n− 1.

Thus the claim is proved. Hence by Theorem 4.5, F ′(ε) < 0. Thus F(ε) is decreasing
in ε > 0 and the proof of (ii) is complete. �

5. Determinants of �1-distance matrices

We begin by recalling from the introduction that if x1, . . . , xn is a set of dis-
tinct points in R2, then the �1-distance matrix D for these n points is given by the
n× nmatrixD = (di,j )with di,i = 0; i = 1, 2, . . . , n, and di,j = ‖xi − xj‖1, if i /=
j . Furthermore, it is convenient to keep in mind the rectangular grid to which the
points x1, . . . , xn belong. For this purpose, we introduce the following notation. If
σ1 < · · · < σm and τ1 < · · · < τk , then we denote by RG(σ1, . . . , σm; τ1, . . . , τk)

the m× k rectangular grid {σ1, . . . , σm} × {τ1, . . . , τk}. The notation RG will be
used when the numbers are clear from the context.

Next, following Dyn, Light and Cheney [2], a path (this variation of a path is
usually called a “lattice path”) is a finite ordered set in RG, [y1, . . . , yr ] such that the
line segment joining consecutive points are of positive length and are alternately hor-
izontal and vertical. Repetitions of points is permitted. (Strictly speaking, such a path
should be called a “walk”, but we continue to use the term “path” to keep the termi-
nology consistent with [2].) The number r is then the length of the path. A path is said
to be closed if r is even, if yr /= y1 and if the line segment joining y1 and yr is perpen-
dicular to the line segment joining yr and yr−1. We now prove a preliminary result.

Lemma 5.1. LetZ = X ∪ Y be a subset ofRG = RG(σ1, . . . , σm; τ1, . . . , τk) con-
taining m+ k points such that Y = {y1, . . . , yr} and [y1, . . . , yr ] is a closed path.
For i = 1, 2, . . . , r; let Zi = Z \ {yi}, and let Di be the �1-distance matrix of Zi.
Then for any i, j ∈ {1, . . . , r}, det(Di) = det(Dj ).

Proof. It is easily verified that for any u ∈ R2,
∑r

k=1(−1)k−1‖u− yk‖1 = 0. Thus

‖u− y1‖1 =
r∑
k=2

(−1)k‖u− yk‖1.
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In D1, add (−1)k times the column (respectively, row) corresponding to yk to the
column (respectively, row) corresponding to y2, k = 3, . . . , r . The resulting matrix
is clearly D2. Since the determinant is unchanged by these operations, we con-
clude that det(D1) = det(D2). We can similarly prove that det(Di) = det(Di+1),
i = 2, . . . , r − 1 and the proof is complete. �

A set of m+ k − 1 points in RG not containing a closed path correspond to a
basic feasible solution in a transportation problem, see, for example, [5]. We asso-
ciate an (m+ k)×mk matrix, denoted ARG, with RG as follows. The columns of
ARG are indexed by {(i, j); i = 1, . . . , m; j = 1, . . . , k}. For each (i, j), the column
corresponding to (i, j) has a 1 at the ith and the (m+ j)-th places, and zeros else-
where. Then it is well-known from the theory of the transportation problem, (see [5],
Theorem 1, p. 477), that a set ofm+ k − 1 points in RG do not contain a closed path
if and only if the corresponding columns of the matrixARG are linearly independent.
This observation and elementary properties of independent subsets immediately lead
to the following result.

Lemma 5.2. Let X = {x1, . . . , xm+k−1} and Y = {y1, . . . , ym+k−1} be subsets of
RG = RG(σ1, . . . , σm; τ1, . . . , τk) that do not contain a closed path and let y ∈
Y \X. Then there exists x ∈ X \ Y such thatX \ {x} ∪ {y} does not contain a closed
path.

The following is the main result of this section.

Theorem 5.3. Let x1, . . . , xm+k−1 be a subset ofRG = RG(σ1, . . . , σm; τ1, . . . , τk)

that does not contain a closed path and let D be the �1-distance matrix of x1, . . . ,

xm+k−1. Then

det(D) = (−1)m+k2m+k−3(σm − σ1 + τk − τ1)

m−1∏
i=1

(σi+1 − σi)

k−1∏
i=1

(τi+1 − τi).

(5.1)

Proof. Let X = {x1, . . . , xm+k−1} and Y = {y1, . . . , ym+k−1} be subsets of RG =
RG(σ1, . . . , σm; τ1, . . . , τk) that do not contain a closed path and let D and D̃ be
their �1-distance matrices respectively. We claim that det(D) = det

(
D̃
)
. Suppose

det(D) /= det
(
D̃
)

and we assume without loss of generality that, subject to this
condition, |X ∩ Y | is the maximum possible. Let y ∈ Y \X. Then by Lemma 5.2,
there exists x ∈ X \ Y such that X1 = X \ {x} ∪ {y} does not contain a closed path.
LetD′ be the �1-distance matrix ofX1. By Lemma 5.1, det(D′) = det(D) and hence
det(D′) /= det

(
D̃
)
. However |X1 ∩ Y | > |X ∩ Y |,which is a contradiction. Thus we

conclude that det(D) = det
(
D̃
)

and the claim is proved. Now let Z be the set ofm+
k − 1 points (σ1, τ1), (σ1, τ2), . . . , (σ1, τk), (σ2, τ1), (σ3, τ1), . . . , (σm, τ1) and let
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D′′ be the �1-distance matrix of Z. By the preceding conclusion, det(D) = det(D′′).
Note that D′′ is the distance matrix of a path with m+ k − 1 vertices and with edge-
weights σ2 − σ1, σ3 − σ2, . . . , σm − σm−1, τ2 − τ1, τ3 − τ2, . . . , τk − τk−1.By Cor-
ollary 2.5, det(D′′) is given by (5.1) and the proof is complete. �

For relevance of the l1-distance matrix considered in this section, in the context
of numerical analysis, see [9,10].
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