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1. Introduction. In 1928, Menger gave a characterization of several geometric
concepts (e.g., congruence and set convexity) in terms of distances [161]. The results
found by Menger, and eventually completed by Blumenthal [28], originated a body
of knowledge that goes by the name of distance geometry (DG). This survey paper is
concerned with what we believe to be the fundamental problem in DG:

Distance Geometry Problem (DGP). Given an integer K > 0
and a simple undirected graph G = (V,E) whose edges are weighted
by a nonnegative function d : E → R+, determine whether there is a
function x : V → RK such that

(1.1) ∀{u, v} ∈ E, ‖x(u)− x(v)‖ = d({u, v}).

Throughout this survey, we shall write x(v) as xv and d({u, v}) as duv or d(u, v);
moreover, norms ‖ · ‖ will be Euclidean unless marked otherwise (see [60] for an
account of existing distances).

Given the vast extent of this field, we make no claim to nor attempt at exhaus-
tiveness. This survey is intended to give the reader an idea of what we believe to be
the most important concepts of DG, keeping in mind our own particular application-
oriented slant (i.e., molecular conformation).

The function x satisfying (1.1) is also called a realization of G in RK . IfH is a sub-
graph ofG and x̄ is a realization ofH , then x̄ is a partial realization ofG. If G is a given
graph, then we sometimes indicate its vertex set by V (G) and its edge set by E(G).

We remark that, for Blumenthal, the fundamental problem of DG was what he
called the “subset problem” [28, Chap. IV, sect. 36, p. 91], i.e., finding necessary
and sufficient conditions to decide whether a given matrix is a distance matrix (see
section 1.1.3). Specifically, for Euclidean distances, necessary conditions were (implic-
itly) found by Cayley [38], who proved that five points in R3, four points on a plane,
and three points on a line will have zero Cayley–Menger determinant (see section 2).
Some sufficient conditions were found by Menger [162], who proved that it suffices to
verify that all (K +3)× (K + 3) square submatrices of the given matrix are distance
matrices (see [28, Thm. 38.1]; other necessary and sufficient conditions are given in
Theorem 2.1). The most prominent difference with the DGP is that a distance matrix
essentially represents a complete weighted graph, whereas the DGP does not impose
any structure on G. The first explicit mention we found of the DGP, as defined above,
dates from 1978:

The positioning problem arises when it is necessary to locate a set of ge-

ographically distributed objects using measurements of the distances be-

tween some object pairs. (Yemini [242])

The explicit note that only some object pairs have known distance makes the crucial
transition from classical DG lore to the DGP. In the year following his 1978 paper,
Yemini wrote another paper on the computational complexity of some problems in
graph rigidity [243], which introduced the position-location problem as the problem of
determining the coordinates of a set of objects in space from a sparse set of distances.
This was in contrast to typical structural rigidity results of the time, whose main focus
was the determination of the rigidity of given frameworks (see [233] and references
therein). Meanwhile, Saxe published a paper in the same year [198] in which the
DGP was introduced as the K-embeddability problem and shown to be strongly NP-
complete when K = 1 and strongly NP-hard for general K > 1.
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The interest in the DGP resides in its wealth of applications (molecular conforma-
tion, wireless sensor networks, statics, dimensionality reduction, and robotics, among
others), as well as in the beauty of the related mathematical theory. Our exposition
takes the viewpoint of a specific application that we have studied for a number of
years, namely, the determination of protein structure using nuclear magnetic reso-
nance (NMR) data [52]. A discussion of the relationship between DG and real-world
problems in computational chemistry is presented in [51].

NMR data is usually presented in the current DG literature as a graph whose
edges are weighted with intervals, which represent distance measurements with errors.
This, however, is the result of data manipulation carried out by NMR specialists. The
actual situation is more complex: the NMR machinery outputs frequency readings for
distance values related to pairs of atom types. Formally, one could imagine the NMR
machinery to be a black box whose input is a set of distinct atom-type pairs {a, b}
(e.g., {H,H}, {C,H}, and so on) and whose output is a set of triplets ({a, b}, d, q).
Their meaning is that q pairs of atoms of type a, b were observed to have (interval)
distance d within the molecule being analyzed. The chemical knowledge of a protein
also includes other information such as covalent bond and angles, certain torsion
angles, and so on (see [199] for definitions of these chemical terms). Armed with
this knowledge, NMR specialists are able to output an interval weighted graph that
represents the molecule with a subset of its uncertain distances (this process, however,
often yields errors, so that a certain percentage of interval distances might be outright
wrong [17]). The problem of finding a protein structure given all practically available
information about the protein is not formally defined, but we name it the protein
structure from raw data (PSRD) for future reference. Several DGP variants discussed
in this survey are abstract models for the PSRD.

The rest of this survey paper is organized as follows. Section 1.1 introduces the
mathematical notation and basic definitions. Sections 1.2–1.3 present a taxonomy
of problems in DG, which we hope will help the reader not get lost in the scores of
acronyms we use. Section 2 presents the main fundamental mathematical results in
DG. Section 3 discusses applications to molecular conformation, with a special focus
on proteins. Section 4 surveys engineering applications of DG, mainly wireless sensor
networks and statics, with some notes on dimensionality reduction and robotics.

1.1. Notation and Definitions. In this section, we give a list of the basic math-
ematical definitions employed in this paper. We focus on graphs, orders, matrices,
realizations, and rigidity. This section may be skipped on a first reading and referred
to later on if needed.

1.1.1. Graphs. The main objects studied in this survey are weighted graphs.
Most of the definitions below can be found in any standard textbook on graph theory
[61]. Our definition of paths rests on graph theoretical notions only (most definitions
also involve an order on the vertices).

1. A simple undirected graph G is a pair (V,E), where V is the set of vertices
and E is a set of unordered pairs {u, v} of vertices, called edges. For U ⊆ V ,
we let E[U ] = {{u, v} ∈ E | u, v ∈ U} be the set of edges induced by U .

2. H = (U, F ) is a subgraph of G if U ⊆ V and F ⊆ E[U ]. The subgraph H of
G is induced by U (denoted H = G[U ]) if F = E[U ].

3. A graph G = (V,E) is complete (or a clique on V ) if E = {{u, v} | u, v ∈
V ∧ u �= v}.

4. Given a graph G = (V,E) and a vertex v ∈ V , we let NG(v) = {u ∈
V | {u, v} ∈ E} be the neighborhood of v and δG(v) = {{u,w} ∈ E | u = v}
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EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 7

be the star of v in G. If no ambiguity arises, we simply write N(v) and
δ(v).

5. We extend NG and δG to subsets of vertices: given a graph G = (V,E)
and U ⊆ V , we let NG(U) =

⋃
v∈U NG(v) be the neighborhood of U and

δG(U) =
⋃

v∈U δG(v) be the cutset induced by U in G. A cutset δ(U) is
proper if U �= ∅ and U �= V . If no ambiguity arises, we write N(U) and
δ(U).

6. A graph G = (V,E) is connected if no proper cutset is empty.
7. Given a graph G = (V,E) and s, t ∈ V , a simple path H with endpoints s, t

is a connected subgraph H = (V ′, E′) of G such that s, t ∈ V ′, |NH(s)| =
|NH(t)| = 1, and |NH(v)| = 2 for all v ∈ V ′ � {s, t}.

8. A graph G = (V,E) is a simple cycle if it is connected and for all v ∈ V we
have |N(v)| = 2.

9. Given a simple cycle C = (V ′, E′) in a graph G = (V,E), a chord of C in G
is a pair {u, v} such that u, v ∈ V ′ and {u, v} ∈ E � E′.

10. A graph G = (V,E) is chordal if every simple cycle C = (V ′, E′) with |E′| > 3
has a chord.

11. Given a graph G = (V,E), {u, v} ∈ E, and z �∈ V , the graph G′ = (V ′, E′)
such that V ′ = (V ∪ {z}) � {u, v} and E′ = (E ∪ {{w, z} | w ∈ NG(u) ∪
NG(v)})� {{u, v}} is the edge contraction of G w.r.t. {u, v}.

12. Given a graph G = (V,E), a minor of G is any graph obtained from G by
repeated edge contraction, edge deletion, and vertex deletion operations.

13. Unless otherwise specified, we let n = |V | and m = |E|.

1.1.2. Orders. At first sight, realizing weighted graphs in Euclidean spaces in-
volves a continuous search. If the graph has certain properties, such as rigidity, then
the number of embeddings is finite (see section 3.3) and the search becomes combi-
natorial. This offers numerical advantages in terms of efficiency of reliability. Since
rigidity is hard to determine a priori, one often requires stricter conditions that are
easier to verify. Most such conditions are concerned with the existence of a vertex
order with special topological properties. If such orders can be defined in the input
graph, the corresponding realization algorithms usually embed each vertex in turn,
following the order. These orders are sometimes inherent to the application (e.g.,
in molecular conformation we might choose to look at the backbone order), but are
more often determined either theoretically for an infinite class of problem instances
(see section 3.5) or else algorithmically for a given instance (see section 3.3.3).

The names of the orders listed below refer to acronyms that indicate the problems
they originate from; the acronyms themselves will be explained in section 1.2. Orders
are defined with respect to a graph and sometimes an integer (which will turn out to
be the dimension of the embedding space).

1. For any positive integer p ∈ N, we let [p] = {1, . . . , p}.
2. For a set V , a total order < on V , and v ∈ V , we let γ(v) = {u ∈ V | u < v}

be the set of predecessors of v w.r.t. < and let ρ(v) = |γ(v)| + 1 be the rank
of v in <. We also define η(v) = {u ∈ V | v < u} to be the set of successors
of v w.r.t. <.

3. The notationN(v)∩γ(v) indicates the set of adjacent predecessors of a vertex
v; N(v) ∩ η(v) indicates the set of adjacent successors of v.

4. It is easy to show that if G = (V,E) is a simple path, then there is an order
< on V such that for all {u, v} ∈ E we have ρ(u) = ρ(v)− 1 and the vertices
of minimum and maximum rank in < are the endpoints of the path.
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1

23

4

5 6

Fig. 1.1 A graph with a PEO order on V : N(1) ∩ η(1) = {2, 3, 4, 5}, N(2) ∩ η(2) = {3, 4, 5},
N(3)∩η(3) = {4, 5}, N(4)∩η(4) = {5}, N(5)∩η(5) = {6}, N(6)∩η(6) = ∅ are all cliques.

1

23

4

5 6

Fig. 1.2 A graph with a DVOP order on V (for K = 2): {1, 2} induces a clique, N(v) ∩ γ(v) =
{v − 1, v − 2} for all v ∈ {3, 4, 5}, and N(6) ∩ γ(6) = {1, 2, 3, 4}.

1

23

4

5 6

Fig. 1.3 A graph with a Henneberg type I order on V (for K = 2): {1, 2} induces a clique, N(v) ∩
γ(v) = {v − 1, v − 2} for all v ∈ {3, 4, 5}, and N(6) ∩ γ(6) = {1, 5}.

5. A perfect elimination order (PEO) on G = (V,E) is an order on V such that,
for each v ∈ V , G[N(v) ∩ η(v)] is a clique in G (see Figure 1.1).

6. A DVOP order on G = (V,E) w.r.t. an integer K ∈ [n] is an order on V
where (a) the first K vertices induce a clique in G and (b) each v ∈ V of rank
ρ(v) > K has |N(v) ∩ γ(v)| ≥ K (see Figure 1.2).

7. A Henneberg type I order is a DVOP order where each v with ρ(v) > K has
|N(v) ∩ γ(v)| = K (see Figure 1.3).

8. A K-trilateration (or K-trilaterative) order is a DVOP order where (a) the
first K + 1 vertices induce a clique in G and (b) each v with ρ(v) > K + 1
has |N(v) ∩ γ(v)| ≥ K + 1 (see Figure 1.4).

9. A DDGP order is a DVOP order where, for each v with ρ(v) > K, there exists
Uv ⊆ N(v) ∩ γ(v) with |Uv| = K and G[Uv] a clique in G (see Figure 1.5).

10. A KDMDGP order is a DVOP order where, for each v with ρ(v) > K, there
exists Uv ⊆ N(v) ∩ γ(v) with (a) |Uv| = K, (b) G[Uv] a clique in G, and (c)
for all u ∈ Uv (ρ(v)−K − 1 ≤ ρ(u) ≤ ρ(v)− 1) (see Figure 1.6).

From these definitions it is clear that:
• KDMDGP orders are also DDGP orders;
• DDGP, K-trilateration, and Henneberg type I orders are also DVOP orders;
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1

23

4

5 6

Fig. 1.4 A graph with a 2-trilaterative order on V : {1, 2, 3} induces a clique N(v) ∩ γ(v) = {v −
1, v − 2, v − 3} for all v ∈ {4, 5, 6}.

1

23

4

5 6

Fig. 1.5 A graph with a DDGP order on V (for K = 2): U3 = U4 = U5 = {1, 2}, U6 = {3, 4}.

1

23

4

5 6

Fig. 1.6 A graph with a KDMDGP order on V (for K = 2): U3 = {1, 2}, U4 = {2, 3}, U5 = {3, 4},
U6 = {4, 5}.

• KDMDGP orders on graphs with a minimal number of edges are inverse PEOs;
• K-trilateration orders on graphs with a minimal number of edges are inverse
PEOs.

Furthermore, it is easy to show that DDGP, K-trilateration, and Henneberg type I
orders have a nonempty symmetric difference and that there are PEO instances not
corresponding to any inverse KDMDGP or K-trilateration orders.

1.1.3. Matrices. The incidence and adjacency structures of graphs can be well
represented using matrices. For this reason, DGPs on graphs can also be seen as
problems on matrices.

1. A distance space is a pair (X, d), where X ⊆ RK and d : X ×X → R+ is a
distance function (i.e., a metric on X , which by definition must be a nonneg-
ative, symmetric function X × X → R+ satisfying the triangular inequality
d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X and such that d(x, x) = 0 for all
x ∈ X).

2. A distance matrix for a finite distance space (X = {x1, . . . , xn}, d) is the n×n
square matrix D = (duv) where, for all u, v ≤ |X |, we have duv = d(xu, xv).

3. A partial matrix on a field F is a pair (A,S), where A = (aij) is an m × n
matrix on F and S is a set of pairs (i, j) with i ≤ m and j ≤ n; the completion
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10 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

of a partial matrix is a pair (α,B), where α : S → F and B = (bij) is
an m × n matrix on F, such that for all (i, j) ∈ S (bij = αij) and for all
(i, j) �∈ S (bij = aij).

4. An n× n matrix D = (dij) is a Euclidean distance matrix if there exists an
integer K > 0 and a set X = {x1, . . . , xn} ⊆ RK such that, for all i, j ≤ n,
we have dij = ‖xi − xj‖.

5. An n× n symmetric matrix A = (aij) is positive semidefinite if all its eigen-
values are nonnegative.

6. Given two n × n matrices A = (aij), B = (bij), the Hadamard product C =
A ◦B is the n× n matrix C = (cij), where cij = aijbij for all i, j ≤ n.

7. Given two n×n matrices A = (aij), B = (bij), the Frobenius (inner) product
C = A •B is defined as trace(A�B) =

∑
i,j≤n aijbij .

1.1.4. Realizations and Rigidity. The definitions below give enough information
to define the concept of rigid graph, but there are several more definitions concerning
rigidity concepts. For a more extensive discussion, see section 4.2.

1. Given a graph G = (V,E) and a manifold M ⊆ RK , a function x : G → M
is an embedding of G in M if (i) x maps V to a set of n points in M ; (ii) x
maps E to a set of m simple arcs (i.e., homeomorphic images of [0, 1]) in M ;
(iii) for each {u, v} ∈ E, the endpoints of the simple arc xuv are xu and xv.
We remark that the restriction of x to V can also be seen as a vector in RnK

or as an K × n real matrix.
2. An embedding such that M = RK and the simple arcs are line segments is

called a realization of the graph in RK . A realization is valid if it satisfies
(1.1). In practice we neglect the action of x on E (because it is naturally
induced by the action of x on V , since the arcs are line segments in RK) and
only denote realizations as functions x : V → RK .

3. Two realizations x, y of a graph G = (V,E) are congruent if, for every
u, v ∈ V , we have ‖xu − xv‖ = ‖yu − yv‖. If x, y are not congruent,
then they are incongruent. If R is a rotation, translation, or reflection and
Rx = (Rx1, . . . , Rxn), then Rx is congruent to x [28].

4. A framework in RK is a pair (G, x) where x is a realization of G in RK .
5. A displacement of a framework (G, x) is a continuous function y : [0, 1]→ RnK

such that (i) y(0) = x; (ii) y(t) is a valid realization of G for all t ∈ [0, 1].
6. A flexing of a framework (G, x) is a displacement y of x such that y(t) is

incongruent to x for any t ∈ (0, 1].
7. A framework is flexible if it has a flexing; otherwise it is rigid.
8. Let (G, x) be a framework. Consider the linear system Rα = 0, where R

is the m × nK matrix each {u, v}th row of which has exactly 2K nonzero
entries, xui − xvi and xvi − xui (for {u, v} ∈ E and i ≤ K), and α ∈ RnK is
a vector of indeterminates. The framework is infinitesimally rigid if the only
solutions of Rα = 0 are translations or rotations [218], and infinitesimally
flexible otherwise. By [81, Thm. 4.1], infinitesimal rigidity implies rigidity.

9. By [94, Thm. 2.1], if a graph has a unique infinitesimally rigid framework,
then almost all its frameworks are rigid. Thus, it makes sense to define a rigid
graph as a graph having an infinitesimally rigid framework. The notion of a
graph being rigid independent of the framework assigned to it is also known
as generic rigidity [45].

A few remarks on the concepts of embedding and congruence, which are of para-
mount importance throughout this survey, are in order. The definition of an embed-
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EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 11

ding (item 1 above) is similar to that of a topological embedding. The latter, however,
also satisfies other properties: no graph vertex is embedded in the interior of any
simple arc (for all v ∈ V, {u,w} ∈ E (xv �∈ x◦

uw), where S
◦ is the interior of the set S),

and no two simple arcs intersect (for all {u, v} �= {v, z} ∈ E (x◦
uv ∩ x◦

vz = ∅)). The
graph embedding problem on a given manifold, in the topological sense, is the problem
of finding a topological embedding for a graph in the manifold: the constraints are
given not by the distances, but rather by the requirement that no two edges must be
mapped to intersecting simple arcs. Garey and Johnson list a variant of this problem
as the open problem Graph Genus [79, OPEN3]. The problem was subsequently
shown to be NP-complete by Thomassen in 1989 [221].

The definition of congruence concerns pairs of points: two distinct pairs of points
{x1, x2} and {y1, y2} are congruent if the distance between x1 and x2 is equal to the
distance between y1 and y2. This definition is extended to sets of points X,Y in a
natural way: X and Y are congruent if there is a surjective function f : X → Y such
that each pair {x1, x2} ⊆ X is congruent to {f(x1), f(x2)}. Set congruence implies
that f is actually a bijection; moreover, it is an equivalence relation [28, Chap. II,
sect. 12].

1.2. A Taxonomy of Problems in Distance Geometry. Given the broad scope
of the presented material (and the considerable number of acronyms attached to prob-
lem variants), we believe that the reader will appreciate this introductory taxonomy,
which defines the problems we shall discuss in the rest of this paper. Figure 1.7 and
Table 1.1 provide a graphical description of the existing logical/topical relations be-
tween problems. Some of our terminology has changed from past papers, as we are
now attempting to standardize the problem names in a consistent manner.

DGP

PSRD

MDGP

DVOP

DDGP

K-TOP

KDMDGP
DMDGPK

DMDGP

DDGPK

iDGP

iDMDGP

iMDGP

MCP

EDMCP
EDM

PSDMCP

PSD

WSNL

GRP

IKP

MDS

molecular structure
interval dist.

exact distances

matrices

robotics

statics

dim. reduct.

sensor netw’ks

Fig. 1.7 Classification of DGPs.

D
ow

nl
oa

de
d 

06
/1

2/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

12 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

Table 1.1 Distance geometry problems and their acronyms.

Acronym Full Name

Distance geometry

DGP Distance Geometry Problem [28]

MDGP Molecular DGP (in 3 dimensions) [52]
DDGP Discretizable DGP [121]

DDGPK DDGP in fixed dimension [168]
KDMDGP Discretizable MDGP (a.k.a. GDMDGP [151])
DMDGPK DMDGP in fixed dimension [147]

DMDGP DMDGPK with K = 3 [127]

iDGP interval DGP [52]
iMDGP interval MDGP [165]

iDMDGP interval DMDGP [129]

Vertex orders

DVOP Discretizable Vertex Order Problem [121]

K-TOP K-Trilateration order problem [73]

Applications

PSRD Protein Structure from Raw Data
MDS Multidimensional Scaling [58]

WSNL Wireless Sensor Network Localization [242]

IKP Inverse Kinematic Problem [222]

Mathematics

GRP Graph Rigidity Problem [243]
MCP Matrix Completion Problem [119]

EDM Euclidean Distance Matrix Problem [28]

EDMCP Euclidean Distance MCP [117]
PSD Positive Semidefinite determination [118]

PSDMCP Positive Semidefinite MCP [117]

We sometimes emphasize problem variants where the dimension K is “fixed.”
This is common in theoretical computer science: it simply means that K is a given
constant that is not part of the problem input. This is important because the worst-
case complexity expression for the corresponding solution algorithms decreases. For
example, in section 3.3.3 we give an O(nK+3) algorithm for a problem parametrized
on K. This has exponential time whenever K is part of the input, but it becomes
polynomial when K is a fixed constant.

1. Distance Geometry Problem (DGP) [28, Chap. IV, sects. 36–42], [128]: given
an integer K > 0 and a nonnegatively weighted simple undirected graph, find
a realization in RK such that Euclidean distances between pairs of points
are equal to the edge weights (formal definition in section 1). We denote by
DGPK the subclass of DGP instances for a fixed K.

2. Protein Structure from Raw Data (PSRD): we do not mean this as a formal
decision problem, but rather as a practical problem; i.e., given all possible
raw data concerning a protein, find the protein structure in space. Notice
that the “raw data” might contain raw output from the NMR machinery,
covalent bonds and angles, a subset of torsion angles, information about the
secondary structure of the protein, information about the potential energy
function, and so on (discussed above) [199].

3. Molecular Distance Geometry Problem (MDGP) [52, sect. 1.3], [148]: same
as DGP3 (discussed in section 3.2).

4. Discretizable Distance Geometry Problem (DDGP) [121]: subset of DGP in-
stances for which a vertex order is given such that (a) a realization for the
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EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 13

first K vertices is also given; (b) each vertex v of rank >K has ≥K adjacent
predecessors (discussed in section 3.3.4).

5. Discretizable Distance Geometry Problem with a fixed number of dimensions
(DDGPK) [168]: subset of DDGP for which the dimension of the embedding
space is fixed to a constant value K (discussed in section 3.3.4). The case
K = 3 was specifically discussed in [168].

6. Discretizable Vertex Order Problem (DVOP) [121]: given an integer K > 0
and a simple undirected graph, find a vertex order such that the first K
vertices induce a clique and each vertex of rank > K has ≥ K adjacent
predecessors (discussed in section 3.3.3).

7. K-Trilateration order problem (K-TOP) [73]: like the DVOP, with “K” re-
placed by “K + 1” (discussed in section 3.3).

8. Discretizable Molecular Distance Geometry Problem (KDMDGP) [151]: subset
of DDGP instances for which the K immediate predecessors of v are adjacent
to v (discussed in section 3.3).

9. Discretizable Molecular Distance Geometry Problem in fixed dimension
(DMDGPK) [150]: subset of KDMDGP for which the dimension of the em-
bedding space is fixed to a constant value K (discussed in section 3.3).

10. Discretizable Molecular Distance Geometry Problem (DMDGP) [127]: the
DMDGPK with K = 3 (discussed in section 3.3).

11. Interval Distance Geometry Problem (iDGP) [52, 128]: given an integer K >
0 and a simple undirected graph whose edges are weighted with intervals,
find a realization in RK such that Euclidean distances between pairs of points
belong to the edge intervals (discussed in section 3.4).

12. Interval Molecular Distance Geometry Problem (iMDGP) [165, 128]: the
iDGP with K = 3 (discussed in section 3.4).

13. Interval Discretizable Molecular Distance Geometry Problem (iDMDGP) [176]:
given (i) an integer K > 0; (ii) a simple undirected graph whose edges can be
partitioned in three sets EN , ES , EI such that edges in EN are weighted with
nonnegative scalars, edges in ES are weighted with finite sets of nonnegative
scalars, and edges in EI are weighted with intervals; (iii) a vertex order such
that each vertex v of rank >K has at least K immediate predecessors that
are adjacent to v using only edges in EN ∪ ES , find a realization in R3 such
that Euclidean distances between pairs of points are equal to the edge weights
(for edges in EN ), or belong to the edge set (for edges in ES), or belong to
the edge interval (for edges in EI) (discussed in section 3.4).

14. Wireless Sensor Network Localization problem (WSNL) [242, 197, 73]: like
the DGP, but with a subset A of vertices (called anchors) whose position in
RK is known a priori (discussed in section 4.1). The variants of practical
interest have K fixed to 2 or 3.

15. Inverse Kinematic Problem (IKP) [222]: subset of WSNL instances such that
the graph is a simple path whose endpoints are anchors (discussed in sec-
tion 4.3.2).

16. Multidimensional Scaling problem (MDS) [58]: given a set X of vectors, find
a set Y of smaller dimensional vectors (with |X | = |Y |) such that the dis-
tance between the ith and jth vectors of Y approximates the distance of the
corresponding pair of vectors of X (discussed in section 4.3.1).

17. Graph Rigidity Problem (GRP) [243, 117]: given a simple undirected graph,
find an integer K ′ > 0 such that the graph is (generically) rigid in RK for all
K ≥ K ′ (discussed in section 4.2).
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14 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

iDGP

iMDGP

iDMDGP

DMDGPK

MDGP

DGP

DDGP

DDGPKKDMDGP

DMDGP

Fig. 1.8 Inclusionwise lattice of DGP variants (arrows mean ⊂).

18. Matrix Completion Problem (MCP) [119]: given a square “partial matrix”
(i.e., a matrix with some missing entries) and a matrix property P , deter-
mine whether there exists a completion of the partial matrix that satisfies P
(discussed in section 2).

19. Euclidean Distance Matrix (EDM) problem [28]: determine whether a given
matrix is an EDM (discussed in section 2).

20. Euclidean Distance Matrix Completion Problem (EDMCP) [117, 118, 100]:
subset of MCP instances with P corresponding to “Euclidean distance matrix
for a set of points in RK for some K” (discussed in section 2).

21. Positive Semidefinite (PSD) determination [118]: determine whether a given
matrix is positive semidefinite (discussed in section 2).

22. Positive Semidefinite Matrix Completion Problem (PSDMCP) [117, 118, 100]:
subset of MCP instances with P corresponding to “positive semidefinite ma-
trix” (discussed in section 2).

1.3. DGP Variants by Inclusion. The research carried out by the authors of this
survey focuses mostly on the subset of problems in the DG category mentioned in
Figure 1.7. These problems, seen as sets of instances, are related by the inclusionwise
lattice shown in Figure 1.8.

2. The Mathematics of Distance Geometry. This section will briefly discuss
some fundamental mathematical notions related to DG. As is well known, DG has
strong connections to matrix analysis, semidefinite programming (SDP), convex geom-
etry, and graph rigidity [56]. On the other hand, Gödel’s extensions to differentiable
manifolds (section 2.2) and the exterior algebra formalization (section 2.3) are perhaps
less well known.

Given a set U = {p0, . . . , pK} of K + 1 points in ⊆ RK , the volume of the K-
simplex defined by the points in U is given by the so-called Cayley–Menger formula
[161, 162, 28]

(2.1) ΔK(U) =
√

(−1)K+1

2K(K!)2
CM(U),
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EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 15

where CM(U) is the Cayley–Menger determinant [161, 162, 28]

(2.2) CM(U) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 d201 . . . d20K
1 d201 0 . . . d21K
...

...
...

. . .
...

1 d20K d21K . . . 0

∣∣∣∣∣∣∣∣∣∣∣
,

with duv = ‖pu − pv‖ for all u, v ∈ {0, . . . ,K}. The Cayley–Menger determinant is
proportional to the quantity known as the oriented volume [52] (sometimes also called
the signed volume), which plays an important role in the theory of oriented matroids
[27]. Opposite signed volume values correspond to the two possible orientations of
a simplex keeping one of its facets fixed (see, e.g., the two positions for vertex 4
in Figure 3.6, center). In [241], a generalization of DG is proposed to solve spatial
constraints, using an extension of the Cayley–Menger determinant.

2.1. The Euclidean Distance Matrix Problem. Cayley–Menger determinants
were used in [28] to give necessary and sufficient conditions for the EDM problem,
i.e., determining whether for a given n × n matrix D = (dij) there exist an integer
K and a set {p1, . . . , pn} of points of RK such that dij = ‖pi − pj‖ for all i, j ≤ n.
Necessary and sufficient conditions for a matrix to be an EDM are given in [209]. For
a square h× h matrix R and any i ≤ h, let R(i) the submatrix of R consisting of the
first i rows and columns.

Theorem 2.1 (Theorem 4 in [209]). An n×n distance matrix D is embeddable in
RK but not in RK−1 if and only if (a) there is a principal (K+1)× (K+1) submatrix
R of D (whose rows and columns are not necessarily of the same order as in D) such
that, for all i ∈ {2, . . . ,K + 1}, the sign of the Cayley–Menger determinant of R(i) is
(−1)i; (b) for μ ∈ {2, 3}, every principal (K+μ)×(K+μ) submatrix of D containing
R has zero Cayley–Menger determinant.

In other words, the two conditions of this theorem state that there must be a
K-simplex S of reference with nonzero volume in RK , and all (K + 1)- and (K + 2)-
simplices containing S as a face must be contained in RK .

2.2. Differentiable Manifolds. Condition (ii) in Theorem 2.1 fails to hold in
the cases of (curved) manifolds. Gödel showed that for K = 3, the condition can be
updated as follows (see paper 1933h in [75]): for any quadruplet Un of point sequences
pnu (for u ∈ {0, . . . , 3}) converging to a single nondegenerate point p0, the following
holds:

lim
n→∞

CM(Un)∑
u<v
‖pnu − pnv‖6

= 0.

In a related note, Gödel also showed that if U = {p0, . . . , p3} with CM(U) �= 0,
then the distance matrix over U can be realized on the surface of a 2-sphere where
the distances between the points are the lengths of the arcs on the spherical surface
(see paper 1933b in [75]). This observation establishes a relationship between DG
and the kissing number problem [114] and, more generally, to coding theory [46]. The
specializations of the “subset problem” (see the introduction) and the DGP to kissing
arrangements of spheres in space is studied from a theoretical point of view in [39].

2.3. Exterior Algebras. Cayley–Menger determinants are exterior products [10].
The set of all possible exterior products of a vector space forms an exterior algebra,
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16 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

which is a special type of Clifford algebra [40]; specifically, exterior algebras are tensor
algebras modulo the ideal generated by x2. The fact that any square element of the
algebra is zero implies 0 = (x+y)2 = x2+xy+yx+y2 = xy+yx, and hence xy = −yx.
Accordingly, exterior algebras are used in the study of alternating multilinear forms.
The paper [67] gives an in-depth view of the connection between DG and Clifford
algebras.

In the setting of DG, we define the product of vectors x1, . . . , xn ∈ RK (for n ≥ K)
using the corresponding Cayley–Menger determinant on U = {x0, . . . , xn}, where x0 is
the origin. It is clear that if xi = xj for some i �= j, then the corresponding n-simplex
is degenerate and certainly has volume 0 in RK (even if n = K), hence CM(U) = 0.
Equivalently, if a product

∏
i xi can be written as x2

j

∏
i
=j xi, then it belongs to the

ideal 〈x2〉 and is replaced by 0 in the exterior algebra.
Abstract relationships between an exterior algebra and its corresponding vector

space are specialized to relationships between Cayley–Menger determinants and vec-
tors in RK . Thus, for example, one can derive the following well-known result in
linear algebra: x1, . . . , xK are linearly independent if and only if CM(U) �= 0, where
U = {x0, . . . , xK} with x0 being the origin [10, 40]. A more interesting example
consists in deriving certain invariants expressed in Plücker coordinates [40]: given a
basis x1, . . . , xK of RK and a basis y1, . . . , yh of Rh, where h ≤ K, it can be shown
that for any subset S of {1, . . . ,K} of size h there exist constants αS such that∑

S αS

∏
i∈S xi =

∏
i≤h yi. In our setting, product vectors correspond to Cayley–

Menger determinants derived from the given points x1, . . . , xK and an origin x0. It
turns out that the ratios of various αS ’s are invariant over different bases y′1, . . . , y

′
h

of Rh, which allows their employment as a convenient coordinate system for Rh. In-
variants related to the Plücker coordinates are exploited in [52] to find realizations of
chirotopes (orientations of vector configurations [27]).

2.4. Bideterminants. For sets of more than K + 1 points, the determination
of the relative orientation of each K-simplex in terms of a K-simplex of reference
(see, e.g., Figure 3.10, center and right) is important. Such relative orientations are
given by the Cayley–Menger bideterminant of two K-simplices U = {p0, . . . , pK} and
V = {q0, . . . , qK}, with dij = ‖pi − qj‖:

(2.3) CM(U ,V) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 1
1 d200 . . . d20K
1 d210 . . . d21K
...

...
. . .

...
1 d2K0 . . . d2KK

∣∣∣∣∣∣∣∣∣∣∣
.

These bideterminants allow, for example, the determination of stereoisometries in
chemistry [27].

2.5. Positive Semidefinite and Euclidean Distance Matrices. In [200] Schoen-
berg proved that there is a one-to-one relationship between EDMs and PSD matrices.
Let D = (dij) be an (n + 1) × (n + 1) matrix and A = (aij) the (n + 1) × (n + 1)
matrix given by aij =

1
2 (d

2
0i + d20j − d2ij).

The bijection given by Theorem 2.2 below can be exploited to show that deter-
mining whether a matrix is PSD or EDM is essentially the same thing [208].

Theorem 2.2 (Theorem 1 in [208]). A necessary and sufficient condition for
the matrix D to be an EDM with respect to a set U = {p0, . . . , pn} of points in RK
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EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 17

but not in RK−1 is that the quadratic form x�Ax (where A is given above) is PSD of
rank K.

Schoenberg’s theorem was cast in a very compact and elegant form in [57]:

(2.4) EDM = Sh ∩ (S⊥c − S+),

where EDM is the set of n × n EDMs, S is the set of n × n symmetric matrices,
Sh is the projection of S on the subspace of matrices having zero diagonal, Sc is the
kernel of the matrix map Y → Y 1 (with 1 the all-one n-vector), S⊥c is the orthogonal
complement of Sc, and S+ is the set of symmetric PSD n× n matrices. The matrix
representation in (2.4) was exploited in the alternating projection algorithm (APA)
discussed in section 3.4.4.

2.6. Matrix Completion Problem. Given an appropriate property P applicable
to square matrices, the MCP schema asks whether a given n×n partial matrix A′ can
be completed to a matrix A such that P (A) holds. MCPs are naturally formulated
in terms of graphs: given a weighted graph G = (V,E, a′), with a′ : E → R, is there
a complete graph K on V (possibly with loops) with an edge weight function a such
that auv = a′uv for all {u, v} ∈ E? This problem schema is parametrized over P (·).
In two specializations mentioned below, a is completed so that the whole matrix is an
EDM or a PSD matrix.

MCPs are an interesting class of inverse problems that find applications in the
analysis of data, such as, for example, the reconstruction of 3D images from several
2D projections on random planes in cryoelectron microscopy [207]. When P (A) is
the (informal) statement “A has low rank,” there is an interesting application to
recommender systems: voters submit rankings for a few items, and consistent rankings
for all items are required. Since few factors are believed to impact a user’s preferences,
the data matrix is expected to have low rank [206].

Two celebrated specializations of this problem schema are the EDMCP and the
PSDMCP. These two problems have a strong link by virtue of Theorem 2.2 and,
in fact, there is a bijection between EDMCP and PSDMCP instances [117]. MCP
variants where a′ij is an interval and the condition (i) is replaced by aij ∈ a′ij also
exist (see, e.g., [100], where a modification of the EDMCP in this sense is given).

2.6.1. Positive Semidefinite Completion. Laurent [118] remarks that the PS-
DMCP can be reduced to the SDP feasibility problem: given integral n× n symmet-
ric matrices Q0, . . . , Qm, determine whether there exist scalars z1, . . . , zm satisfying
Q0 +

∑
i≤m ziQi � 0. Thus, by Theorem 2.2, the EDMCP has the same property.

Since the complexity status of the SDP problem is currently unknown (and, in par-
ticular, it is not even known whether this problem is in NP), the same holds for the
PSDMCP, and hence also for the EDMCP. If one allows ε-approximate solutions,
however, the situation changes. The following SDP formulation correctly models the
PSDMCP:

max
∑

(i,j) 
∈E

aij ,

A = (aij) � 0,
∀i ∈ V aii = a′ii,

∀{i, j} ∈ E aij = a′ij .

Accordingly, SDP-based formulations and techniques are common in DG (see, e.g.,
section 4.1.2).
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18 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

Polynomial cases of the PSDMCP are discussed in [117, 118] (and citations
therein). These include chordal graphs, graphs without K4 minors, and graphs with-
out certain induced subgraphs (e.g., wheels Wn with n ≥ 5). Specifically, in [118] it
is shown that if a graph G is such that adding m edges makes it chordal, then the
PSDMCP is polynomial on G for fixed m. All these results naturally extend to the
EDMCP.

Another interesting challenge, aside from actually solving the problem, is to de-
termine conditions on the given partial matrix to bound the cardinality of the solution
set (specifically, the cases of one or finitely many solutions are addressed). This ques-
tion is addressed in [100], where explicit bounds on the number of nondiagonal entries
of A′ are found in order to ensure uniqueness or finiteness of the solution set.

2.6.2. Euclidean Distance Completion. The EDMCP differs from the DGP in
that the dimension K of the embedding space is not provided as part of the input. An
upper bound to the minimum possible K that is better than the trivial one (K ≤ n)
was given in [12] as

(2.5) K ≤
√
8|E|+ 1− 1

2
.

Because of Theorem 2.2, the EDMCP inherits many of the properties of the PSDMCP.
We believe that Menger was the first to explicitly state a case of EDMCP in the
literature: in [161, p. 121] (see also [162, p. 738]) he refers to the matrices appearing
in Cayley–Menger determinants with one missing entry. These, incidentally, are also
used in the dual branch-and-prune (BP) algorithm (see section 3.3.6.1).

As mentioned in section 2.6.1, the EDMCP can be solved in polynomial time on
chordal graphs G = (V,E) [90, 117]. This is because a graph is chordal if and only if
it has a perfect elimination order (PEO) [62], i.e., a vertex order on V such that, for
all v ∈ V , the set of adjacent successors N(v) ∩ η(v) is a clique in G. PEOs can be
found in O(|V | + |E|) [190] and can be used to construct a sequence of graphs G =
(V,E) = G0, G1, . . . , Gs, where Gs is a clique on V and E(Gi) = E(Gi−1)∪ {{u, v}},
where u is the maximum ranking vertex in the PEO of Gi−1 such that there exists
v ∈ η(u) with {u, v} �∈ E(Gi−1). Assigning to {u, v} the weight duv =

√
d21u + d21v

guarantees that the weighted (complete) adjacency matrix of Gs is a distance matrix
completion of the weighted adjacency matrix of G, as required [90]. This result is
introduced in [90] (for the PSDMCP rather than the EDMCP) and summarized in
[117].

3. Molecular Conformation. Following the authors’ personal interests, this is
the largest section in the present survey. DG is mainly (but not exclusively [29])
used in molecular conformation as a model of an inverse problem connected to the
interpretation of NMR data. We survey continuous search methods, then focus on
discrete search methods, discuss the extension to interval distances, and finally present
recent results specific to the NMR application.

3.1. Test Instances. The methods described in this section have been empirically
tested according to different instance sets and on different computational testbeds, so
a comparison is difficult. In general, researchers in this area try to provide a “realistic”
setting; the most common choices are as follows.

• Geometrical instances: instances are generated randomly from a geometri-
cal model that is also found in nature, such as grids [164]; see Figure 3.1.
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Fig. 3.1 A Moré–Wu 3× 3× 3 cubic instance, with its 3D realization (similar to a crystal).
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Fig. 3.2 A Lavor instance with 7 vertices and 11 edges: graph and 3D realization (similar to a
protein backbone).

• Random instances: instances are generated randomly from a physical model
that is close to reality, such as [120, 146]; see Figure 3.2.
• Dense PDB instances: real protein conformations (or backbones) are down-
loaded from the Protein Data Bank (PDB) [18] and then, for each residue,
all within-residue distances as well as all distances between each residue and
its two neighbors are generated [165, 98, 99]; see Figure 3.3.
• Sparse PDB instances: real protein conformations (or backbones) are down-
loaded from the PDB [18] and then all distances within a given threshold are
generated [137, 127]; see Figure 3.4.

When the target application is the analysis of NMR data, as in the present case, the
best test setting is provided by sparse PDB instances, as NMR can only measure
distances up to a given threshold. Random instances are only useful when the un-
derlying physical model is meaningful (as is the case in [120]). Geometrical instances
could be useful in specific cases, e.g., the analysis of crystals. The problem with dense
PDB instances is that, using the notions given in section 3.3 and the fact that a
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Fig. 3.3 A fragment of 2erl with all within-residue and contiguous residue distances, and one of
two possible solutions.
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Fig. 3.4 The backbone of the 2erl instance from the PDB: graph and 3D realization.

residue contains more than three atoms, it is easy to show that the backbone order
on these protein instances induces a 3-trilateration order in R3 (see section 4.1.1).
Since graphs with such orders can be realized in polynomial time [73], they do not
provide a particularly hard class of test instances. Moreover, since there are actually
nine backbone atoms in each set of three consecutive residues, the backbone order is
actually a 7-trilateration order. In other words, there is a surplus of distances, and
the problem is overdetermined.

D
ow

nl
oa

de
d 

06
/1

2/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 21

Aside from a few early papers (e.g., [123, 145, 146]), we (the authors of this
survey) have always used test sets consisting mostly of sparse PDB instances. We
have also occasionally used geometric and (hard) random instances, but have never
employed “easy” dense PDB instances.

3.1.1. Test Result Evaluation. The test results always yield a realization x for
the given instance; accuracy measures for x, which quantify either how far x is from
being valid, or how far it is from a known optimal solution; and a CPU time taken
by the method to output x. Optionally, certain methods (such as the BP algorithm;
see section 3.3.5) might also yield a whole set of valid realizations. Different methods
are usually compared according to their accuracy and speed.

There are three popular accuracy measures. The penalty is the evaluation of
the function defined in (3.3) for a given realization x. The largest distance error
(LDE) is a scaled, averaged, and square-rooted version of the penalty, given by
1
|E|
∑

{u,v}∈E
|‖xu−xv‖−duv|

duv
. The root mean square deviation (RMSD) is a difference

measure for sets of points in Euclidean space having the same center of mass. Specifi-
cally, if x, y are embeddings of G = (V,E), then RMSD(x, y) = minT ‖y−Tx‖, where
T varies over all rotations and translations in RK . Accordingly, if y is the known op-
timal configuration of a given protein, different realizations of the same protein yield
different RMSD values. Evidently, RMSD is a meaningful accuracy measure only for
test sets where the optimal conformations are already known (such as PDB instances).

3.2. The Molecular Distance Geometry Problem. The MDGP is the same as
DGP3. The name “molecular” indicates that the problem originates from the study
of molecular structures.

The relationship between molecules and graphs is probably the deepest existing
between chemistry and discrete mathematics: a wonderful account is given in [20,
Chap. 4]. Molecules were initially identified by atomic formulae (such as H2O), which
indicate the relative numbers of atoms in each molecule. When chemists started to re-
alize that some compounds with the same atomic formula have different physical prop-
erties, they sought the answer in the way the same numbers of atoms were linked to
each other through chemical bonds. Displaying this type of information required more
than an atomic formula, and, accordingly, several ways to represent molecules using
diagrams were independently invented. The one which is still essentially in use today,
consisting in a set of atom symbols linked by segments, was originally described in [53].
The very origin of the word “graph” is due to the representation of molecules [215].

The function of molecules rests on their chemical composition and three-dimen-
sional (3D) shape in space (also called structure or conformation). As mentioned in
section 1, NMR experiments can be used to determine a subset of short Euclidean
distances between atoms in a molecule. These, in turn, can be used to determine its
structure, i.e., the relative positions of atoms in R3. The MDGP provides the simplest
model for this inverse problem: V models the set of atoms, E the set of atom pairs for
which a distance is available, and the function d : E → R+ assigns distance values to
each pair, so that G = (V,E) is the graph of the molecule. Assuming the input data
are correct, the set X of solutions of the MDGP on G will yield all the structures of
the molecule that are compatible with the observed distances.

In this section we review the existing methods for solving the MDGP with exact
distances on general molecule graphs.

3.2.1. General-Purpose Approaches. Finding a solution of the set of nonlin-
ear equations (1.1) poses several numerical difficulties. Recent (unpublished) tests
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performed by the authors of this survey determined that tiny, randomly generated
weighted graph instances with fewer than ten vertices could not be solved using Oc-
tave’s nonlinear equation solver fsolve [70]. The spatial branch-and-bound (sBB)
code Couenne [14] could solve instances with |V | ∈ {2, 3, 4} but no larger in reason-
able CPU times: attaining feasibility of local iterates with respect to the nonlinear
manifold defined by (1.1) is a serious computational challenge. This motivates the
following formulation using mathematical programming (MP):

(3.1) min
x∈RK

∑
{u,v}∈E

(‖xu − xv‖2 − d2uv)
2.

The global optimization (GO) problem (3.1) aims to minimize the squared infeasibil-
ity of points in RK with respect to the manifold (1.1). Both terms in the squared
difference are themselves squared in order to decrease floating point errors (NaN occur-
rences due to the square root) while evaluating the objective function of (3.1) when
‖xu−xv‖ is very close to 0. We remark that (3.1) is an unconstrained nonconvex non-
linear program (NLP) whose objective function is a nonnegative polynomial of fourth
degree, with the property that x ∈ X if and only if the evaluation of the objective
function at x yields 0.

In [123] we tested formulation (3.1) and some variants thereof with three GO
solvers: a multilevel single linkage (MLSL) multistart method [115], a variable neigh-
borhood search (VNS) metaheuristic for nonconvex NLPs [142], and an early imple-
mentation of sBB [153, 140, 143] (the only solver in the set that guarantees global
optimality of the solution to within a given ε > 0 tolerance). We found that it was
possible to solve geometrical and random instances [120] with up to 30 atoms using
the sBB solver, whereas the two stochastic heuristics could scale up to 50 atoms, with
VNS yielding the best performance.

3.2.2. Smoothing-Based Methods. A smoothing of a multivariate multimodal
function f(x) is a family of functions Fλ(x) such that F0(x) = f(x) for all x ∈ RK

and Fλ(x) has a decreasing number of local optima as λ increases. Eventually, Fλ

becomes convex, or at least invex [15], and its optimum xλ can be found using a
single run of a local NLP solver. A homotopy continuation algorithm then traces the
sequence xλ in reverse as λ→ 0 by locally optimizing Fλ−Δλ(x) for a given step Δλ
with xλ as a starting point, hoping to identify the global optimum x∗ of the original
function f(x) [108]. Since the reverse tracing is based on a local optimization step,
rather than a global one, global optima in the smoothing sometimes fail to be traced
to global optima in the original function.

Of course, the intuitive geometrical meaning of Fλ with respect to f really de-
pends on the kind of smoothing operator we employ. It was shown in [146, Thm. 2.1]
that the smoothing 〈f〉λ of (3.4) decreases the squares of the distance values, so that
eventually they become negative;1 this implies that the problematic nonconvex terms
(‖xu − xv‖2 − d2uv)

2 become convex. The higher the value of λ, the more nonconvex
terms become convex. Those terms (indexed on u, v) that remain nonconvex have
a smaller value for d2uv. Thus λ can be seen as a sliding rule controlling the con-
vexity/nonconvexity of any number of terms via the size and sign of the d2uv values.
The upshot of this is that 〈f〉λ clusters closer vertices and shortens the distance to
farther vertices; in other words, this smoothing provides a “zoomed-out view” of the
realization.

1By mentioning negative squares we do not invoke complex numbers here; we merely mean that
the values assigned to the symbols denoted by d2uv eventually become negative.
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Fig. 3.5 Comparison of a wrong molecular conformation for 1mbn found by DGSOL (left) with
the correct one found by the BP Algorithm 1 (right). Because of the local optimization
step, DGSOL traced a smoothed global optimum to a strictly local optimum of the original
function.

A smoothing operator based on the many-dimensional diffusion equation ΔF =
∂F
∂λ , where Δ is the Laplacian

∑
i≤n ∂2/∂x2

i , is derived in [108] as the Fourier–Poisson
formula

(3.2) Fλ(x) =
1

πn/2λn

∫
Rn

f(y)e−
||y−x||2

λ2 dy,

also called the Gaussian transform in [164]. The Gaussian transform with the homo-
topy method provides a successful methodology for optimizing the objective function

(3.3) f(x) =
∑

{u,v}∈E

(‖xu − xv‖2 − d2uv)
2,

where x ∈ R3. More information on continuation and smoothing-based methods
applied to the iMDGP can be found in section 3.4.

In [164], it is shown that the closed form of the Gaussian transform applied to
(3.3) is

(3.4) 〈f〉λ = f(x) + 10λ2
∑

{u,v}∈E

(‖xu − xv‖2 − 6d2uvλ
2) + 15λ4|E|.

Based on this, a continuation method is proposed and successfully tested on a set of
geometrical instances (cubical grids). The implementation of this method, DGSOL,
is one of the few MDGP solution codes that are freely available (source included);
see http://www.mcs.anl.gov/˜more/dgsol/. DGSOL has several advantages: it is
efficient, effective for small-to-medium-sized instances, and, more importantly, can be
naturally extended to solve iMDGP instances (which replace the real edge weights
with intervals). The one disadvantage we found with DGSOL is that it does not
scale well to large-sized instances: although the method is reasonably fast even on
large instances, the solution quality decreases. On large instances, DGSOL often finds
infeasibilities that denote not just an offset from an optimal solution, but a completely
wrong conformation (see Figure 3.5).
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In [98, 99] an exact reformulation of a Gaussian transform of (3.1) as a difference of
convex (d.c.) function is proposed and then solved using a method similar to DGSOL,
but where the local NLP solution is carried out using a different algorithm, called the
DCA. Although the method does not guarantee global optimality, there are empirical
indications that the DCA works well in that sense. This method has been tested
on three sets of data: the artificial data from Moré and Wu [164] (with up to 4096
atoms), 16 proteins in the PDB [18] (from 146 up to 4189 atoms), and the data from
Hendrickson [95] (from 63 up to 777 atoms).

In [146], VNS and DGSOL were combined into a heuristic method called double
VNS with smoothing (DVS). DVS consists in running VNS twice: first on a smoothed
version 〈f〉λ of the objective function f(x) of (3.1), and then on the original function
f(x) with tightened ranges. The rationale behind DVS is that 〈f〉λ is easier to solve,
and the homotopy defined by λ should increase the probability that the global opti-
mum xλ of 〈f〉λ is close to the global optimum x∗ of f(x). The range tightening that
allows VNS to be more efficient in locating x∗ is based on a “Gaussian transform cal-
culus” that gives explicit formulae that relate 〈f〉λ to f(x) whenever λ and d change.
These formulae are then used to identify smaller ranges for x∗. DVS is more accurate
but slower than DGSOL.

It is worth remarking that both DGSOL and the DCA methods were tested
using geometrical and (easy) dense PDB instances, whereas the DVS was tested using
geometric and random instances (see section 3.1).

3.2.3. Geometric Build-Up Methods. In [66], a combinatorial method called the
geometric build-up (GBU) algorithm is proposed to solve the MDGP on sufficiently
dense graphs. A subgraph H of G, initially chosen to consist of only four vertices,
is given together with a valid realization x̄. The algorithm proceeds iteratively by
finding xv for each vertex v ∈ V (G)�V (H). When xv is determined, v and δH(v) are
removed from G and added to H . For this to work, at every iteration three conditions
must hold:

1. |δH(v)| ≥ 4.
2. At least one subgraph H ′ of H , with V (H ′) = {u1, u2, u3, u4} and |δH′ (v)| =

4, must be such that the realization x̄ restricted to H ′ is noncoplanar.
3. The input instance must be a YES one.

These conditions ensure that the position xv can be determined using triangulation.
More specifically, let x̄|H′ = {xui | i ≤ 4} ⊆ R3. Then xv is a solution of the following
system:

||xv − xu1 || = dvu1 ,

||xv − xu2 || = dvu2 ,

||xv − xu3 || = dvu3 ,

||xv − xu4 || = dvu4 .

Squaring both sides of these equations, we have

||xv||2 − 2xv
�xu1 + ||xu1 ||2 = d2vu1

,

||xv||2 − 2xv
�xu2 + ||xu2 ||2 = d2vu2

,

||xv||2 − 2xv
�xu3 + ||xu3 ||2 = d2vu3

,

||xv||2 − 2xv
�xu4 + ||xu4 ||2 = d2vu4

.

By subtracting one of the above equations from the others, one obtains a linear system
that can be used to determine xv. For example, subtracting the first equation from
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the others, we obtain

(3.5) Ax = b,

where

A = −2

⎛
⎜⎝ (xu1 − xu2)

�

(xu1 − xu3)
�

(xu1 − xu4)
�

⎞
⎟⎠

and

b =

⎛
⎝
(
d2vu1

− d2vu2

)− (||xu1 ||2 − ||xu2 ||2
)(

d2vu1
− d2vu3

)− (||xu1 ||2 − ||xu3 ||2
)(

d2vu1
− d2vu4

)− (||xu1 ||2 − ||xu4 ||2
)
⎞
⎠ .

Since xu1 , xu2 , xu3 , xu4 are noncoplanar, (3.5) has a unique solution.
The GBU is very sensitive to numerical errors [66]. In [236], Wu and Wu proposed

an updated GBU algorithm in which the accumulated errors can be controlled. Their
algorithm was tested on a set of sparse PDB instances consisting of 10 proteins with
404 up to 4201 atoms. The results yielded RMSD measures ranging from O(10−8)
to O(10−13). It is interesting to remark that if G is a complete graph and duv ∈ Q+

for all {u, v} ∈ E, this approach solves the MDGP in linear time O(n) [65]. A more
complete treatment of MDGP instances satisfying the K-dimensional generalization
of conditions 1–2 above is given in [73, 8] in the framework of the WSNL and K-TOP
problems.

An extension of the GBU that is able to deal with sparser graphs (more precisely,
δH(v) ≥ 3) is given in [36]; another extension along the same lines is given in [237]. We
remark that the set of graphs such that δH(v) ≥ 3 and the condition 2 above hold are
precisely the instances of the DDGP such that K = 3 (see section 3.3.4); this problem
is discussed extensively in [168]. The main conceptual difference between these GBU
extensions and the BP algorithm for the DDGP [168] (see section 3.3 below) is that
BP exploits a given order on V (see section 1.1.2). Since the GBU extensions do not
make use of this order, they are heuristic algorithms: if δH(v) < 3 at iteration v, then
the GBU stops, but there is no guarantee that a different choice of “next vertex” might
not have carried the GBU to termination. A very recent review on methods based on
the GBU approach and on the formulation of other DGPs with inexact distances is
given in [228]. The BP algorithm (Algorithm 1) marks a striking difference insofar as
the knowledge of the order guarantees the exactness of the algorithm.

3.2.4. Graph Decomposition Methods. Graph decomposition methods are in
essence mixed-combinatorial algorithms based on graph decomposition: the input
graph G = (V,E) is partitioned or covered by subgraphs H , each of which is re-
alized independently (the local phase), and then the realizations of the subgraphs
are “stitched together” using MP techniques (the global phase). The global phase is
equivalent to applying MDGP techniques to the minor G′ of G obtained by contract-
ing each subgraph H to a single vertex. The nice feature of these methods is that the
local phase is amenable to efficient yet exact solutions. For example, if H is uniquely
realizable, then it is likely to be realizable in polynomial time. More precisely, a graph
H is uniquely realizable if it has exactly one valid realization in RK modulo rotations
and translations; see section 4.1.1. A graph H is uniquely localizable if it is uniquely
realizable and there is no K ′ > K such that H also has a valid realization affinely

D
ow

nl
oa

de
d 

06
/1

2/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

26 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

spanning RK′
. It was shown in [157] that uniquely localizable graphs are realizable in

polynomial time up to a given ε > 0 tolerance (see section 4.1.2). On the other hand,
no graph decomposition algorithm currently makes a claim to overall exactness: in
order to make them practically useful, several heuristic steps must also be employed.

In ABBIE [95], both local and global phases are solved using local NLP solution
techniques. Once a realization for all subgraphs H is known, the coordinates of the
vertex set VH of H can be expressed relative to the coordinates of a single vertex in
VH ; this corresponds to a starting point for the realization of the minor G′. ABBIE
was the first graph decomposition algorithm for the DGP, and was able to realize
sparse PDB instances with up to 124 amino acids, a considerable feat in 1995.

In DISCO [139], V is covered by appropriately sized subgraphs sharing at least
K vertices. The local phase is solved using an SDP formulation similar to the one
given in [25]. The local phase is solved using the positions of common vertices: these
are aligned, and the corresponding subgraph is then rotated, reflected, and translated
accordingly.

In [24], G is covered by appropriate subgraphs H which are determined using a
swap-based heuristic from an initial covering. Both local and global phases are solved
using the SDP formulation in [25]. A version of this algorithm targeting the WSNL
(see section 4.1) was proposed in [26]; the difference is that, since the positions of
some vertices are known a priori, the subgraphs H are clusters formed around these
vertices (see section 4.1.2).

In [111], the subgraphs include one or more (K + 1)-cliques. The local phase is
very efficient, as cliques can be realized in linear time [209, 65]. The global phase is
solved using an SDP formulation proposed in [2] (also see section 4.1.2).

A very recent method called 3D-ASAP [55], designed to be scalable, distributable,
and robust with respect to data noise, employs either a weak form of unique localiz-
ability (for exact distances) or spectral graph partitioning (for noisy distance data)
to identify clusters. The local phase is solved using either local NLP- or SDP-based
techniques (whose solutions are refined using appropriate heuristics), while the global
phase reduces to a 3D synchronization problem, i.e., finding rotations in the special
orthogonal group SO(3,R), reflections in Z2, and translations in R3 such that two
similar distance spaces have the best possible alignment in R3. This is addressed using
a 3D extension of a spectral technique introduced in [205]. A somewhat simpler ver-
sion of the same algorithm tailored to the case K = 2 (with the WSNL as motivating
application; see section 4.1) is discussed in [54].

3.3. Discretizability. Some DGP instances can be solved using mixed-combin-
atorial algorithms such as GBU-based (section 3.2.3) and graph-decomposition-based
(section 3.2.4) methods. Combinatorial methods offer several advantages with respect
to continuous ones, for example, accuracy and efficiency. In this section, we shall
give an in-depth view of discretizability of the DGP and discuss at length an exact
combinatorial algorithm for finding all solutions to those DGP instances which can
be discretized.

We let X be the set of all valid realizations in RK of a given weighted graph
G = (V,E, d) modulo rotations and translations (i.e., if x ∈ X , then no other valid
realization y for which there exists a rotation and/or translation operator T with
y = Tx is in X). We remark that we allow reflections for technical reasons: much of
the theory of discretizability is based on partial reflections, and since any reflection is
also a partial (improper) reflection, disallowing reflections would complicate notation
later on. In practice, the DGP system (1.1) can be reduced modulo translations by
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1 2

3
4

1 2

3
4

4′ 1 2

3
4

Fig. 3.6 A flexible framework (left), a rigid graph (center), and a uniquely localizable (rigid) graph
(right).

fixing a vertex v1 to xv1 = (0, . . . , 0) and modulo rotations by fixing an appropriate
set of components out of the realizations of the other K − 1 vertices {v2, . . . , vK}
to values that are consistent with the distances in the subgraph of G induced by
{vi | 1 ≤ i ≤ K}.

Assuming X �= ∅, every x ∈ X is a solution of the polynomial system

(3.6) ∀{u, v} ∈ E ‖xu − xv‖2 = d2uv,

and as such it has either finite or uncountable cardinality (this follows from a funda-
mental result on the structure of semialgebraic sets [16, Thm. 2.2.1]; also see [163]).
This feature is strongly related to graph rigidity (see sections 1.1.4 and 4.2.2); specif-
ically, |X | is finite for a rigid graph and almost all nonrigid graphs yield uncountable
cardinalities for X whenever X is nonempty. If we know that G is rigid, then |X | is
finite and, a posteriori, we only need to look for a finite number of realizations in RK :
a combinatorial search is better suited than a continuous one.

When K = 2, it is instructive to inspect a graphical representation of the situation
(Figure 3.6). The framework for the graph ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {2, 3}, {2, 4}})
shown in Figure 3.6 (left) is flexible: any of the uncountably many positions for vertex
4 (shown by the dashed arrow) yield a valid realization of the graph. If we add the edge
{1, 4}, there are exactly two positions for vertex 4 (Figure 3.6, center), and if we also
add {3, 4}, there is only one possible position (Figure 3.6, right). Accordingly, if we
can only use one distance d24 to realize x4 in Figure 3.6 (left), X is uncountable, but
if we can use K = 2 distances (Figure 3.6, center) or K +1 = 3 distances (Figure 3.6,
right), then |X | becomes finite. The GBU algorithm [66] and the triangulation method
in [73] exploit the situation shown in Figure 3.6 (right); the difference between these
two methods is that the latter exploits a vertex order given a priori that ensures that
a solution can be found for every realizable graph.

The core of the work that the authors of this survey have been carrying out
(with the help of several colleagues) since 2005 is focused on the situation shown
in Figure 3.6 (center): we do not have one position to realize the next vertex v
in the given order, but (in almost all cases) two, x0

v, x
1
v, so that the graph is rigid

but not uniquely so. In order to disregard translations and rotations, we assume a
realization x̄ of the first K vertices is given as part of the input. This means that
there will be two possible positions for xK+1, four for xK+2, and so on. All in all,
|X | = 2n−K . The situation becomes more interesting if we consider additional edges
in the graph, which sometimes make one or both of x0

v, x
1
v infeasible with respect to

(1.1). A natural methodology to exploit this situation is to follow the binary branching
process whenever possible, pruning a branch x�

v (� ∈ {0, 1}) only when there is an
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additional edge {u, v} whose associated distance duv is incompatible with the position
x�
v. We call this methodology branch-and-prune (BP).

Our motivation for studying nonuniquely rigid graphs arises from protein con-
formation; realizing the protein backbone in R3 is possibly the most difficult step to
realizing the whole protein (arranging the side chains can be seen as a subproblem
[194, 193]). As discussed in the rest of this section, protein backbones also conve-
niently supply a natural atomic ordering, which can be exploited in various ways to
produce a vertex order that will guarantee exactness of the BP method. The edges
necessary to pruning are supplied by NMR experiments. A definite advantage of the
BP method is that it offers a theoretical guarantee of finding all realizations in X
instead of just one, as most other methods do.

3.3.1. Rigid Geometry Hypothesis and Molecular Graphs. Discretizability of
the search space turns out to be possible only if the molecule is rigid in physical space,
which fails to be the case in practice. In order to realistically model the flexing of a
molecule in space, it is necessary to consider the bond-stretching and bond-bending
effects, which increase the number of variables of the problem and also the computa-
tional effort to solve it. However, it is common in molecular conformational calcula-
tions to assume that all bond lengths and bond angles are fixed at their equilibrium
values, which is known as the rigid geometry hypothesis [80].

It follows that for each pair of atomic bonds, say, {u, v}, {v, w}, the covalent bond
lengths duv, dvw are known, as well as the angle between them. With this information,
it is possible to compute the remaining distance duw. Every weighted graph G repre-
senting bonds (and their lengths) in a molecule can therefore be trivially completed
with weighted edges {u,w} whenever there is a path with two edges connecting u and
w. Such a completion, denoted G2, is called a molecular graph [104]. We remark that
all graphs that the BP method can realize are molecular, but not vice versa.

3.3.2. Sphere Intersections and Probability. For a center c ∈ RK and a ra-
dius r ∈ R+, we denote by SK−1(c, r) the sphere centered at c with radius r in RK .
The intersection of K spheres in RK might contain zero, one, two, or uncountably
many points depending on the position of the centers x1, . . . , xK and the lengths
d1,K+1, . . . , dK,K+1 of the radii [47]. Let P =

⋂
i≤K SK−1(xi, di,K+1) be the intersec-

tion of these K spheres and U− = {xi | i ≤ K}. If dim aff(U−) < K − 1, then |P | is
uncountable [121, Lemma 3] (see Figure 3.7). Otherwise, if dim aff(U−) = K−1, then

Fig. 3.7 When three sphere centers are collinear in three dimensions, a nonempty sphere intersec-
tion (the thick circle) has uncountable cardinality.
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Fig. 3.8 General case for the intersection P of three spheres in R3.

|P | ∈ {0, 1, 2} [121, Lemmata 1–2]. We also remark that the condition dim aff(U−) <
K − 1 corresponds to requiring that CM(U−) = 0. See [182] for a detailed treatment
of sphere intersections in molecular modeling.

Now assume dim aff(U−) = K − 1, let xK+1 be a given point in P , and let U =
U− ∪ {xK+1}. The inequalities ΔK(U) ≥ 0 (see (2.1)) are called simplex inequalities
(or strict simplex inequalities if ΔK(U) > 0). We remark that, by definition of the
Cayley–Menger determinant, the simplex inequalities are expressed in terms of the
squared values duv of the distance function, rather than the points in U . Accordingly,
given a weighted clique K = (U,E, d) where |U | = K + 1, we can also denote the
simplex inequalities as ΔK(U, d) ≥ 0. If the simplex inequalities fail to hold, then
the clique cannot be realized in RK , and P = ∅. If ΔK(U, d) = 0, the simplex has
zero volume, which implies that |P | = 1 by [121, Lemma 1]. If the strict simplex
inequalities hold, then |P | = 2 by [121, Lemma 2] (see Figure 3.8). In summary, if
CM(U−) = 0, then P is uncountable; if ΔK(U, d) = 0, then |P | = 1; and all other
cases lead to |P | ∈ {0, 2}.

Next, we are going to consider a probability distribution in RK . Notice that any
realization x = (x1, . . . , xn) of any weighted graph G in RK is contained in a ball
B centered at, say, x1, with radius

∑
{u,v}∈T duv, where T is a minimum spanning

tree of G (this is a “worst case” corresponding to every point in the realization being
collinear). Thus the set X of all realizations of a given graph is bounded, say, X ⊆ B′,
where the ball B′ ⊆ RKn is induced by B ⊆ RK .

We now focus on the case where G = K only hasK vertices. Consider the uniform
probability distribution on B′. The probability that any randomly sampled realization
in B′ belongs to any given subset with Lebesgue measure zero is equal to zero. Since
both {x ∈ RK2 | CM(U−) = 0} and {x ∈ RK2 | ΔK(U, d) = 0} are (strictly) lower-

dimensional manifolds in RK2

, they have Lebesgue measure zero, and so do their
restrictions to B′. Thus the probability that |P | = 1 or P is uncountable for any given
x ∈ B′ is zero. Furthermore, if we assume P �= ∅, then |P | = 2 with probability 1.

We extend this notion to hold for any given sentence p(x): the statement “for
all x ∈ Y (p(x) with probability 1)” (where Y is a bounded set in a Euclidean space)
means that the statement p(x) holds over a subset of Y having the same Lebesgue
measure as Y . Typically, this occurs whenever p is a geometrical statement that fails
to hold for strictly lower-dimensional manifolds. These situations, such as collinearity
causing an uncountable P in Figure 3.7, are generally described by equations. Notice
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that an event can occur with probability 1 conditional to another event happening
with probability 0. For example, we shall show in section 3.3.8 that the cardinality of
the solution set of YES instances of the KDMDGP is a power of two with probability
1, even though a KDMDGP instance has probability 0 of being a YES instance, when
sampled uniformly in the set of all KDMDGP instances.

We remark that our notion of “statement holding with probability 1” is different
from the genericity assumption that is used in early works in graph rigidity (see
section 4.2 and [45]): a finite set S of real values is generic if the elements of S are
algebraically independent over Q, i.e., there exists no rational polynomial whose set
of roots is S. This requirement is too stringent for our aims. The notion we propose is
similar to Graver’s definition of genericity: all minors of the complete rigidity matrix
must be nontrivial (see section 4.2.2 and [87]).

Lastly, most computer implementations will only employ (a subset of) rational
numbers. This means that the genericity assumption based on algebraic independence
can only ever work for sets of at most one floating point number (any other being
trivially linearly dependent on it), which makes the whole exercise futile (as remarked
in [95]). The fact that Q has Lebesgue measure zero in R also makes our notion
theoretically void, since it destroys the possibility of sampling in a set of positive
Lebesgue measure. But the practical implications of the two notions are different:
whereas no two floating points will ever be algebraically independent, it is empirically
extremely unlikely that any sampled vector of floating point numbers should belong
to the manifold defined by a given set of rational equations. This is one more reason
why we prefer our “probability 1” notion to genericity.

3.3.3. The Discretizable Vertex Ordering Problem. The theory of sphere in-
tersections, as described in section 3.3.2, implies that if there exists a vertex order on
V such that each vertex v such that ρ(v) > K has exactly K adjacent predecessors,
then with probability 1 we have |X | = 2n−K . If there are at least K adjacent prede-
cessors, |X | ≤ 2n−K as either or both positions x0

v, x
1
v for v might be infeasible with

respect to some distances. In the rest of this paper, to simplify notation we identify
each vertex v ∈ V with its (unique) rank ρ(v), let V = {1, . . . , n}, and write, e.g.,
u− v to mean ρ(u)− ρ(v) or v > K to mean ρ(v) > K.

In this section we discuss the problem of identifying an order with the above prop-
erties. Formally, the DVOP asks to find a vertex order on V such that G[{1, . . . ,K}]
is a K-clique and such that for all v > K (|N(v) ∩ γ(v)| ≥ K). We specify that
the first K vertices induce a clique in G, because this allows us to realize the first K
vertices uniquely—it is a requirement of DDGPs that a realization should be known
for the first K vertices.

The DVOP is NP-complete by reduction from the K-clique. An exponential time
solution algorithm consists in testing each subset of K vertices; if one is a clique,
then try to build an order by greedily choosing a next vertex with the largest number
of adjacent predecessors, stopping whenever this is smaller than K. This yields an
O(nK+3) algorithm. IfK is a fixed constant, then of course this becomes a polynomial
algorithm, showing that the DVOP with fixed K is in P. Since DGP applications
rarely require a variable K, this is a positive result.

The computational results given in [121] show that solving the DVOP as a pre-
processing step sometimes allows the solution of a sparse PDB instance whose back-
bone order is not a DVOP order. This may happen if the distance threshold used to
generate sparse PDB instances is set to values that are lower than usual (e.g., 5.5Å
instead of 6Å).
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3.3.4. The Discretizable Distance Geometry Problem. The input of the DDGP
consists of

• a simple weighted undirected graph G = (V,E, d);
• an integer K > 0;
• an order on V such that

– for each v > K, the set N(v)∩γ(v) of adjacent predecessors has at least
K elements;

– for each v > K, N(v)∩ γ(v) contains a subset Uv of exactly K elements
such that
∗ G[Uv] is a K-clique in G;
∗ strict triangular inequalities ΔK−1(Uv, d) > 0 hold (see (2.1));

• a valid realization x̄ of the first K vertices.
The DDGP asks whether x̄ can be extended to a valid realization of G [121]. The
DDGP with fixed K is denoted by DDGPK ; the DDGP3 is discussed in [168].

We remark that any method that computes xv in terms of its adjacent predeces-
sors is able to employ a current realization of the vertices in Uv during the computation
of xv. As a consequence, ΔK−1(Uv, d) is well defined (during the execution of the al-
gorithm), even though G[Uv] might fail to be a clique in G. Thus, potentially more
DGP instances besides those in the DDGP can be solved with a DDGP method of
this kind. The DDGP is NP-hard because it contains the DMDGP (see section 3.3.7
below), and there is a reduction from Subset-Sum [79] to the DMDGP [127].

3.3.5. The Branch-and-Prune Algorithm. The recursive step of an algorithm
for realizing a vertex v given an embedding x′ for G[γv], where γv is the set of prede-
cessors of v, is shown in Algorithm 1. We recall that SK−1(y, r) denotes the sphere
in RK centered at y with radius r. By the discretization due to sphere intersec-
tions, we note that |P | ≤ 2. The BP algorithm consists in calling BP(K + 1, x̄,∅).
The BP method finds the set X of all valid realizations of a DDGP instance graph
G = (V,E, d) in RK modulo rotations and translations [145, 127, 168]. The structure
of its recursive calls is a binary tree (called the BP tree), which contains 2n−K nodes
in the worst case; this makes BP a worst-case exponential algorithm. Figure 3.9 gives
an example of a BP tree.

Algorithm 1 BP(v, x̄, X)

Require: A vertex v ∈ V � [K], an embedding x′ for G[γv], a set X .
1: P =

⋂
u∈N(v)

u<v

SK−1(x′
u, duv);

2: for xv ∈ P do
3: x = (x′, xv)
4: if v = n then
5: X ← X ∪ {x}
6: else
7: BP(v + 1, x,X)
8: end if
9: end for

Realizations x ∈ X can also be represented by sequences χ(x) ∈ {−1, 1}n such
that (i) χ(x)v = 1 for all v ≤ K; (ii) for all v > K, χ(x)v = −1 if axv < a0 and
χ(x)v = 1 if axv ≥ a0, where ax = a0 is an equation of the hyperplane through
x(Uv) = {xu | u ∈ Uv}, which is unique with probability 1. The vector χ(x) is also
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Fig. 3.9 An example of a BP tree on the random instance lavor11 7 [120]. Pruning edges (see
section 3.3.5.1) are as follows: N(2) = {9}, N(3) = N(4) = {8, 9, 10}, N(5) = {9, 10},
N(6) = {10}, N(7) = {11}.

known as the chirality [52] of x (formally, the chirality is defined to be χ(x)v = 0 if
ax = a0, but since this case holds with probability 0, we disregard it).

The BP algorithm (Algorithm 1) can be run to termination to find all possible
valid realizations of G, or stopped after the first leaf node at level n is reached, in order
to find just one valid realization ofG. Compared to most continuous search algorithms
we tested for DGP variants, the performance of the BP algorithm is impressive from
the points of view of both efficiency and reliability, and, to the best of our knowledge,
it is currently the only method that is able to find all valid realizations of DDGP
graphs. The computational results in [127], obtained using sparse PDB instances as
well as hard random instances [120], show that graphs with thousands of vertices and
edges can be realized on standard PC hardware from 2007 in fewer than 5 seconds, to
an LDE accuracy of at worst O(10−8). Complete sets X of incongruent realizations
were obtained for 25 sparse PDB instances (generation threshold fixed at 6Å) with
sizes ranging from n = 57,m = 476 to n = 3861,m = 35028. All such sets contain
exactly one realization with RMSD value of at worst O(10−6), together with one or
more isomers, all of which have LDE values of at worst O(10−7) (and most often
O(10−12) or less). The cumulative CPU time taken to obtain all these solution sets
is 5.87s of user CPU time, with one outlier taking 90% of the total.

3.3.5.1. Pruning Devices. We partition E into the sets ED = {{u, v} ∈ E | u ∈ Uv}
and EP = E � ED. We call ED the discretization edges and EP the pruning edges.
Discretization edges guarantee that a DGP instance is in the DDGP. Pruning edges
are used to reduce the BP search space by pruning its tree. In practice, pruning edges
might cause the set T in Algorithm 1 to have cardinality 0 or 1 instead of 2, if the
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distance associated with them is incompatible with the distances of the discretization
edges.

The pruning carried out using pruning edges is called direct distance feasibility
(DDF) and is by far the easiest, most efficient, and most generally useful. Other
pruning tests have been defined. A pruning technique called Dijkstra shortest path
(DSP) was considered in [127, sect. 4.2], based on the fact that G is a Euclidean
network. Specifically, the total weight of a shortest path from u to v provides an upper
bound to the Euclidean distance between xu and xv, and can therefore be employed
to prune positions xv that are too far from xu. The DSP was found to be effective in
some instances, but too often very costly. Other more effective pruning tests based on
chemical observations, including secondary structures provided by NMR data, have
been considered in [176].

3.3.6. Dual Branch-and-Prune. There is a close relationship between the DGPK

and the EDMCP (see section 2.6.2) withK fixed: each DGPK instanceG can be trans-
formed in linear time to an EDMCP instance (and vice versa) by just considering the
weighted adjacency matrix of G, where vertex pairs {u, v} �∈ E correspond to entries
missing from the matrix. We shall call M (G) the EDMCP instance corresponding to
G and G (A) the DGPK instance corresponding to an EDMCP instance A.

As remarked in [184], the completion in R3 of a distance (sub)matrix D with the
structure

(3.7)

⎛
⎜⎜⎜⎜⎝

0 d12 d13 d14 δ
d21 0 d23 d24 d25
d31 d32 0 d34 d35
d41 d42 d43 0 d45
δ d52 d53 d54 0

⎞
⎟⎟⎟⎟⎠

can be carried out in constant time by solving a quadratic system in the unknown δ
derived from setting the Cayley–Menger determinant (see section 2) of the distance
space (X, d) to zero, where X = {x1, . . . , x5} and d is given by (3.7). This is because
the Cayley–Menger determinant is proportional to the volume of a 4-simplex, which
is the (unique, up to congruences) realization of the weighted 5-clique defined by a
full distance matrix. Since a simplex on five points embedded in R3 necessarily has
4-volume equal to zero, it suffices to set the Cayley–Menger determinant of (3.7) to
zero to obtain a quadratic equation in δ.

We denote the pair {u, v} indexing the unknown distance δ by e(D), the Cayley–
Menger determinant of D by CM(D), and the corresponding quadratic equation in δ
by CM(D, δ) = 0. If D is a distance matrix, then CM(D, δ) = 0 has real solutions;
furthermore, in this case it has two distinct solutions δ1, δ2 with probability 1, as
remarked in section 3.3. These are two valid values for the missing distance d15. This
observation extends to general K, where we consider a (K +1)-simplex realization of
a weighted near-clique (defined as a clique with a missing edge) on K + 2 vertices.

3.3.6.1. BP in Distance Space. In this section we discuss a coordinate-free BP variant
that takes decisions about distance values on missing edges rather than on realization
of vertices in RK . We are given a DDGP instance with a graph G = (V,E) and a
partial embedding x̄ for the subgraph G[[K]] of G induced by the set [K] of the first
K vertices. The DDGP order on V guarantees that the vertex of rank K + 1 has K
adjacent predecessors, hence it is adjacent to all the vertices of rank v ∈ [K]. Thus,
G[[K + 1]] is a full (K + 1)-clique. Consider now the vertex of rank K + 2: again,
the DDGP order guarantees that it has at least K adjacent predecessors. If it has
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Fig. 3.10 On the left, a near-clique on five vertices with one missing edge (dotted line). Center and
right, its two possible realizations in R3 (missing distance shown in red).

K+1, then G[[K+2]] is the full (K+2)-clique. Otherwise G[[K+2]] is a near-clique
on K + 2 vertices with a missing edge {u,K + 2} for some u ∈ [K + 1]. We can
therefore use the Cayley–Menger determinant (see (3.7) for the special case K = 3
and section 2 for the general case) to compute two possible values for du,K+2. Because
the vertex order always guarantees at least K adjacent predecessors, this procedure
can be generalized to vertices of any rank v in V � [K], and so it defines a recursive
algorithm that

• branches whenever a distance can be assigned two different values;
• simply continues to the next rank whenever the subgraph induced by the
current K + 2 vertices is a full clique;
• prunes all branches whenever the partial distance matrix defined on the cur-
rent K + 2 vertices has no Euclidean completion.

In general, this procedure holds for DDGP instances G whenever there is a vertex
order such that each next vertex v is adjacent to K predecessors. This ensures G has
a subgraph (containing v and K + 1 predecessors) consisting of two (K + 1)-cliques
whose intersection is aK-clique, i.e., a near-clique with one missing edge. There are in
general two possible realizations in RK for such subgraphs, as shown in Figure 3.10.

Algorithm 2 presents the dual BP method. It takes as input a vertex v of rank
greater than K + 1, a partial matrix A, and a set A which will eventually contain
all the possible completions of the partial matrix given as the problem input. For
a given partial matrix A, a vertex v of G (A), and an integer � ≤ K, let A�

v be the
�× � symmetric submatrix of A including row and column v that has fewest missing
components. WheneverAK+2

v has no missing elements, the equation CM(AK+2
v , δ) = 0

is either a tautology if AK+2
v is an EDM, or unsatisfiable in R otherwise. In the first

case, we define it to have δ = duv as a solution, where u is the smallest row/column
index of AK+2

v . In the second case, it has no solutions.
Theorem 3.1 (see [144]). At the end of Algorithm 2, A contains all possible

completions of the input partial matrix.
The similarity of Algorithms 1 and 2 is such that it is very easy to assign dual

meanings to the original (otherwise known as primal) BP algorithms. This duality
stems from the fact that weighted graphs and partial symmetric matrices are “dual”
to each other through the inverse mappings M and G . Whereas in the primal BP
algorithm we decide realizations of the graph, in the dual BP algorithm we decide the
completions of partial matrices, so realizations and distance matrix completions are
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Algorithm 2 dBP(v, A, A )

Require: A vertex v ∈ V � [K + 1], a partial matrix A, a set A .
1: P = {δ | CM(AK+2

v , δ) = 0}
2: for δ ∈ P do
3: {u, v} ← e(AK+2

v )
4: duv ← δ
5: if A is complete then
6: A ← A ∪ {A}
7: else
8: dBP(v + 1, A, A )
9: end if

10: end for

dual to each other. The primal BP method decides on points xv ∈ RK to assign to
the next vertex v, whereas the dual BP method decides on distances δ to assign to the
next missing distance incident to v and to a predecessor of v; there are at most two
choices of xv as there are at most two choices for δ; only one choice of xv is available
whenever v is adjacent to strictly more than K predecessors, and the same happens
for δ; finally, no choices for xv are available in the case that the current partial real-
ization cannot be extended to a full realization of the graph, and no choices for δ are
available in the case that the current partial matrix cannot be completed to an EDM.
Thus, point vectors and distance values are dual to each other. The same vertex order
can be used by both the primal and the dual BP algorithms (so the order is self-dual).

There is one clear difference between primal and dual BP methods: namely,
that the dual BP method needs an initial (K + 1)-clique, whereas the primal BP
method only needs an initial K-clique. This difference also has a dual interpretation:
a complete EDM corresponds to two (rather than one) realizations, one being the
reflection of the other through the hyperplane defined by the firstK points (this is the
“fourth level symmetry” referred to in [127, sect. 2.1] for the case K = 3). We remark
that this difference is related to the reason why the exact SDP-based polynomial
method for realizing uniquely localizable (see section 3.2.4) networks proposed in
[157] needs the presence of at least K + 1 anchors.

3.3.7. The Discretizable Molecular Distance Geometry Problem. The
DMDGP is a subset of instances of the DDGP3; its generalization to arbitrary
K is denoted KDMDGP. The difference between the DMDGP and the DDGP is
that Uv is required to be the set of K immediate (rather than arbitrary) prede-
cessors of v. So, for example, the discretization edges can also be expressed as
ED = {{u, v} ∈ E | |u−v| ≤ K} (see section 3.3.5.1), and x(Uv) = {xv−K , . . . , xv−1}.
This restriction originates from the practically interesting case of realizing protein
backbones with NMR data.

Since such graphs are molecular (see section 3.3.1), they have vertex orders guar-
anteeing that each vertex v > 3 is adjacent to two immediate predecessors, as shown
in Figure 3.11. The distance dv,v−2 is computed using the covalent bond lengths and
the angle (v − 2, v − 1, v), which are known because of the rigid geometry hypothesis
[80]. In general, this is only enough to guarantee discretizability for K = 2. By
exploiting further protein properties, however, we were able to find a vertex order
(different from the natural backbone order) that satisfies the DMDGP definition (see
section 3.5.2).
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covalent covalent
known

v

v − 1

v − 2
computed

Fig. 3.11 Vertex v is adjacent to its two immediate predecessors.

i− 3

i− 2

i− 1

i

φi

Fig. 3.12 The torsion angle φi.

Requiring that all adjacent predecessors of v must be immediate provides suf-
ficient structure to prove several results about the symmetry of the solution set
X (section 3.3.8) and about the fixed-parameter tractability of the BP algorithm
(Algorithm 1) when solving KDMDGPs on protein backbones with NMR data (sec-
tion 3.3.9). The DMDGP is NP-hard by reduction from Subset-Sum [127]. The
result can be generalized to the KDMDGP [147].

3.3.7.1. Mathematical Programming Formulation. For completeness, and for the conve-
nience of MP-versed readers, we provide here an MP formulation of the DMDGP.
We model the choice between x0

v, x
1
v by using torsion angles [126]: these are the an-

gles φv defined for each v > 3 by the planes passing through xv−3, xv−2, xv−1 and
xv−2, xv−1, xv (Figure 3.12). More precisely, we suppose that the cosines cv = cos(φv)
of such angles are also part of the input. In fact, the values for c : V � {1, 2, 3} → R

can be computed using the DMDGP structure of the weighted graph in constant time
using [93, eq. (2.15)]. Conversely, if one is given precise values for the torsion angle
cosines, then every quadruplet (xv−3, xv−2, xv−1, xv) must be a rigid framework (for
v > 3). We let α : V �{1, 2} → R3 be the normal vector to the plane defined by three
consecutive vertices,

∀v ≥ 3 αv =

∣∣∣∣∣∣
i j k

xv−2,1 − xv−1,1 xv−2,2 − xv−1,2 xv−2,3 − xv−1,3

xv,1 − xv−1,1 xv,2 − xv−1,2 xv,3 − xv−1,3

∣∣∣∣∣∣
=

(
(xv−2,2 − xv−1,2)(xv,3 − xv−1,3)− (xv−2,3 − xv−1,3)(xv,2 − xv−1,2)
(xv−2,1 − xv−1,1)(xv,3 − xv−1,3)− (xv−2,3 − xv−1,3)(xv,1 − xv−1,1)
(xv−2,1 − xv−1,1)(xv,2 − xv−1,2)− (xv−2,2 − xv−1,2)(xv,1 − xv−1,1)

)
,
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so that αv is expressed a function αv(x) of x and represented as a matrix with entries
xvk. Now, for every v > 3, the cosine of the torsion angle φv is proportional to the
scalar product of the normal vectors αv−1 and αv:

∀v > 3 αv−1(x) · αv(x) = ‖αv−1(x)‖‖αv(x)‖ cosφv.

Thus, the following provides an MP formulation for the DMDGP:

(3.8)
minx

∑
{u,v}∈E

(‖xu − xv‖2 − d2uv)
2

s.t. ∀v > 3 αv−1(x) · αv(x) = ‖αv−1(x)‖‖αv(x)‖cv.

We remark that generalizations of (3.8) to arbitrary (fixed) K are made possible by
using Graßmann–Plücker relations [30] (also see [52, Chap. 2]).

3.3.8. Symmetry of the Solution Set. When we first experimented with the BP
method on the DMDGP, we observed that |X | was always a power of two. An initial
conjecture in this direction was quickly disproved by hand-crafting an instance with
54 solutions derived by the polynomial reduction of the Subset-Sum to the DMDGP
used in the NP-hardness proof of the DMDGP [127]. Notwithstanding, all protein and
protein-like instances we tested yielded |X | = 2� for some integer �. Years later, we
were able to prove that the conjecture holds on KDMDGP instances with probability
1, and also derived an infinite class of counterexamples [151]. Aside from explaining
our conjecture arising from empirical evidence, our result is also important insofar
as it provides the core of a theory of partial reflections for the KDMDGP. References
to partial reflections are occasionally found in the DGP literature [94, 157], but our
group-theoretical treatment is an extensive addition to the current body of knowledge.

In this section we give an exposition that is more compact and hopefully clearer
than the one in [151]. We focus on KDMDGP and therefore assume that Uv contains
the K immediate predecessors of v for each v > K. We also assume G is a YES
instance of the KDMDGP, so that |P | = 2 with probability 1.

3.3.8.1. The Discretization Group. Let GD = (V,ED, d) be the subgraph of G con-
sisting of the discretization edges, and let XD be the set of realizations of GD; since
GD has no pruning edges by definition, the BP search tree for GD is a full binary
tree and |XD| = 2n−K . The discretization edges arrange the realizations so that,
at level � > K, there are 2�−K possible positions for the vertex v with rank �. We
assume that |P | = 2 (see Algorithm 1) at each level v of the BP tree, an event which,
for YES instances, in the absence of pruning edges, happens with probability 1. Let
P = {x0

v, x
1
v} be the two possible realizations of v at some recursive call of Algorithm 1

at level v of the BP tree; then because P is an intersection of K spheres, x1
v is the

reflection of x0
v through the hyperplane defined by x(Uv) = {xv−K , . . . , xv−1}. We

denote this reflection operator by Rv
x.

Theorem 3.2 (Cor. 4.6 and Thm. 4.9 of [151]). With probability 1, for all v > K
and u < v −K, there is a set Huv of 2v−u−K real positive values such that for each
x ∈ X we have ‖xu − xv‖ ∈ Huv. Furthermore, for all x′ ∈ X such that x′ �= x and
x′
t = xt for all t ≤ u+K − 1, ‖xu − xv‖ = ‖x′

u − x′
v‖ if and only if x′

v = Ru+K
x (xv).

We sketch the proof in Figure 3.13 for K = 2; the solid arcs at levels 3, 4, 5 mark
the locus of feasible realizations for vertices at rank 3, 4, 5 in the KDMDGP order. The
dashed arcs represent the spheres Sx

uv (see Algorithm 1). Intuitively, two branches
from level 1 to level 4 or 5 will have equal segment lengths but different angles between
consecutive segments, which will cause the end nodes to be at different distances from
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ν1

ν2

1

2

5
3 4

ν3 ν4
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ν6 ν7
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ν13
ν14

ν15
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Fig. 3.13 A pruning edge {1, 4} prunes either ν6, ν7 or ν5, ν8.

the node at level 1. Observe that the number of solid arcs at each level is a power of
two, where the exponent depends on the level index �, and each solid circle contains
exactly two realizations (that are reflections of each other) of the same vertex at rank
�.

We now give a basic result on reflections in RK . For any nonzero vector y ∈ RK ,
let R(y) be the reflection operator through the hyperplane passing through the origin
and normal to y. If y is normal to the hyperplane defined by xv−K , . . . , xv−1, then
R(y) = Rv

x.
Lemma 3.3 (Lemma 4.2 in [147]). Let x �= y ∈ RK and z ∈ RK such that z

is not in the hyperplanes through the origin and normal to x, y. Then R(x)R(y)z =
R(R(x)y)R(x)z.

Theorem 3.3 provides a commutativity for reflections acting on points and hyper-
planes. Figure 3.14 illustrates the proof for K = 2.

For v > K and x ∈ X we now define partial reflection operators as

(3.9) gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn)).

The gv’s map a realization x to its partial reflection with the first branch at v. It is
easy to show that the gv’s are injective with probability 1 and idempotent.

Lemma 3.4 (Lemma 4.3 in [147]). For x ∈ X and u, v ∈ V such that u, v > K,
gugv(x) = gvgu(x).

We define the discretization group to be the symmetry group GD = 〈gv | v > K〉
generated by the partial reflection operators gv.

Corollary 3.5. With probability 1, GD is an Abelian group isomorphic to Cn−K
2

(the Cartesian product consisting of n−K copies of the cyclic group of order 2).
For all v > K let ξv = (1, . . . , 1,−1v, . . . ,−1) be the vector consisting of ones in

the first v − 1 components and −1 in the last components. Then the gv actions are
naturally mapped onto the chirality functions.
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R(x)

R(y)
z

O

x

y

R(x)y

R(y)z

R(x)z

R(R(x)y)

R(x)R(y)z = R(R(x)y)R(x)z

Fig. 3.14 Reflecting through R(y) first and R(x) later is equivalent to reflecting through R(x) first
and the reflection of R(y) through R(x) later.

Lemma 3.6 (Lemma 4.5 in [147]). For all x ∈ X, χ(gv(x)) = χ(x) ◦ ξv, where ◦
is the Hadamard product.

This follows by definitions of gv and of chirality of a realization. Since, by Algo-
rithm 1, each x ∈ X has a different chirality, for all x, x′ ∈ X there is g ∈ GD such
that x′ = g(x), i.e., the action of GD on X is transitive. By Theorem 3.2, the distances
associated to the discretization edges are invariant with respect to the discretization
group.

3.3.8.2. The Pruning Group. Consider a pruning edge {u, v} ∈ EP . By Theorem 3.2,
with probability 1 we have duv ∈ Huv, otherwise G cannot be a YES instance (against
the initial assumption). Also, again by Theorem 3.2, duv = ‖xu − xv‖ �= ‖gw(x)u −
gw(x)v‖ for all w ∈ {u + K + 1, . . . , v} (e.g., the distance ‖ν1 − ν9‖ in Figure 3.13
is different from all its reflections ‖ν1 − νh‖, with h ∈ {10, 11, 12}, w.r.t. g4, g5). We
therefore define the pruning group

GP = 〈gw | w > K ∧ ∀{u, v} ∈ EP (w �∈ {u+K + 1, . . . , v})〉.
By definition, GP ≤ GD and the distances associated with the pruning edges are
invariant with respect to GP .

Theorem 3.7 (Theorem 4.6 in [151]). The action of GP on X is transitive with
probability 1.

Theorem 3.8 (Theorem 4.7 in [147]). With probability 1, ∃� ∈ N |X | = 2�.
Proof. The argument below holds with probability 1. Since GD ∼= Cn−K

2 , |GD| =
2n−K . Since GP ≤ GD, |GP | divides the order of |GD|, which implies that there is an
integer � with |GP | = 2�. By Theorem 3.7, the action of GP on X has only one orbit,
i.e., GPx = X for any x ∈ X . By idempotency, for g, g′ ∈ GP , if gx = g′x, then g = g′.
This implies |GPx| = |GP |. Thus, for any x ∈ X , |X | = |GPx| = |GP | = 2�.

3.3.8.3. Practical Exploitation of Symmetry. These results naturally find a practical
application to speed-up the BP algorithm. The BP algorithm proceeds until a first
valid realization is identified. It can be shown that, at that point, a set of generators
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40 L. LIBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO

for the group GP is known. These are used to generate all other valid realizations of
the input graph, up to rotations and translations [167, 169]. Empirically, this cuts
the CPU time to roughly 2/|X | (the factor 2 is due to the fact that the original BP
algorithm already takes one reflection symmetry into account; see [127, Thm. 2]).

3.3.9. Fixed-Parameter Tractability. As the theory of partial reflections, the
proof that the BP algorithm is fixed-parameter tractable (FPT) on proteins also
stems from empirical evidence. All the CPU time plots versus instance size for the
BP algorithm on protein backbones look roughly linear, suggesting that perhaps such
instances are a “polynomial case” of the DMDGP. The results that follow provide
sufficient conditions for this to be the case, and we were able to verify empirically
that PDB proteins conform to these conditions. These results are a consequence of
the theory in section 3.3.8 insofar as they rely on an exact count of the BP tree
nodes at each level. We formalize this in a directed acyclic graph (DAG) Duv that
represents the number of valid BP search tree nodes in terms of pruning edges between
two vertices u, v ∈ V such that v > K and u < v−K (see Figure 3.15). The first row
in Figure 3.15 shows different values for the rank of v w.r.t. u; an arc labeled with an
integer i implies the existence of a pruning edge {u + i, v} (arcs with ∨-expressions
replace parallel arcs with different labels). An arc is unlabeled if there is no pruning
edge {w, v} for any w ∈ {u, . . . , v − K − 1}. The vertices of the DAG are arranged
vertically by BP search tree level, and are labeled with the number of BP nodes at
a given level, which is always a power of two by Theorem 3.8. A path in this DAG
represents the set of pruning edges between u and v, and its incident vertices show the
number of valid nodes at the corresponding levels. For example, following unlabeled
arcs corresponds to no pruning edge between u and v and leads to a full binary BP
search tree with 2v−K nodes at level v.

For a givenGD, each possible pruning edge set EP corresponds to a path spanning
all columns in D1n. Instances with diagonal (Proposition 3.9) or below-diagonal
(Proposition 3.10) EP paths yield BP trees whose width is bounded by O(2v0 ), where

Fig. 3.15 Number of valid BP nodes (vertex label) at level u + K + � (column) in terms of the
pruning edges (path spanning all columns).
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Fig. 3.16 A path p0 yielding treewidth 4 (top) and another path below p0 (bottom).

v0 is some fixed vertex in V . Since v0 is usually small w.r.t. n, the multiplying constant
2v0 is not prohibitively large.

Proposition 3.9 (Proposition 5.1 in [147]). If ∃v0 > K s.t. for all v > v0
∃u < v −K with {u, v} ∈ EP , then the BP search tree width is bounded by 2v0−K .

This corresponds to a path p0 = (1, 2, . . . , 2v0−K , . . . , 2v0−K) that follows unla-
beled arcs up to level v0 and then arcs labeled v0 −K − 1, v0 −K − 1 ∨ v0 −K, and
so on, leading to nodes that are all labeled with 2v0−K (Figure 3.16, top).

Proposition 3.10 (Proposition 5.2 in [147]). If ∃v0 > K such that every sub-
sequence s of consecutive vertices >v0 with no incident pruning edge is preceded by a
vertex vs such that ∃us < vs (vs − us ≥ |s| ∧ {us, vs} ∈ EP ), then the BP search tree
width is bounded by 2v0−K .

This situation corresponds to a below-diagonal path (Figure 3.16, bottom). In
general, for those instances for which the BP search tree width has an O(2v0 logn)
bound, the BP algorithm has a worst-case running time O(2v0L2logn) = O(Ln),
where L is the complexity of computing P as defined in Algorithm 1. Since L is
typically constant in n [66], for such cases the BP algorithm runs in time O(2v0n).
Let V ′ = {v ∈ V | ∃� ∈ N (v = 2�)}.

Proposition 3.11 (Proposition 5.3 in [147]). If ∃v0 > K s.t. for all v ∈ V � V ′

with v > v0 there is u < v −K with {u, v} ∈ EP , then the BP search tree width at
level n is bounded by 2v0n.
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1 2 4 8 16 32 64 128

1 2 4 8 16 32 64
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1 2 4

1 2 4 8 16 32 64 128 256 512

256

128

64

32

16

8

1 2 3 4 5 6 7 8 9 10

Fig. 3.17 A path yielding treewidth O(n).

This corresponds to a path roughly along the diagonal apart from logarithmically
many vertices in V (those in V ′), at which levels the BP algorithm doubles the number
of search nodes (Figure 3.17). For a pruning edge set EP as in Proposition 3.11, or
yielding a path below it, the BP algorithm runs in O(2v0n2).

3.3.9.1. Empirical Verification. On a set of 45 protein instances from the PDB, 40
satisfy Proposition 3.9 and 5 satisfy Proposition 3.10, all with v0 = 4 [147]. This
is consistent with the computational insight [127] that BP empirically displays a
polynomial (specifically, linear) complexity on real proteins.

3.3.10. Development of the Branch-and-Prune Algorithm. To the best of our
knowledge, the first discrete search method for the MDGP that exploited the intersec-
tion of three spheres in R3 was proposed by three of the coauthors of this survey (CL,
LL, NM) in 2005 [122], in the framework of a quantum computing algorithm. Quite
independently, the GBU algorithm was extended in 2008 [237] to deal with intersec-
tions of three rather than four spheres. Interestingly, as remarked in section 3.2.3,
another extension to the same case was proposed by a different research group in
the same year [36]. By contrast, the idea of a vertex order used to find realizations
iteratively was already present in early works in statics [195, 96] (see section 4.2) and
was first properly formalized in [97] (see section 4.2.3).

The crucial idea of combining the intersection of three spheres with a vertex
ordering, which would offer a theoretical guarantee of exactness, occurred in June
2005, when two of the coauthors of this survey (CL, LL) met in Milan, Italy. The
first version of the BP algorithm was conceived, implemented, and computationally
validated during the summer of 2005; this work, however, only appeared in 2008 [145]
due to various editorial mishaps. Between 2005 and 2008 we kept working on the
theory of the DMDGP; we were able to publish an arXiv technical report in 2006
[124], which was eventually completed in 2009 and published online in 2011 [127].
Remarkably, our own early work on BP and an early version of [237] were both
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presented at the International Symposium on Mathematical Programming (ISMP) in
Rio de Janeiro in 2006.

Along the years we improved and adapted the original BP algorithm [145] to
further settings. We defined precisely the DGP subclasses on which it works, and
proved that it finds all realizations in X for these subclasses [124, 130, 127, 168]. We
discussed how to determine a good vertex order automatically [121]. We tested and
fine-tuned the BP algorithm for proteins [175]. We compared it with other methods
[178]. We tried to decompose the protein backbone in order to reduce the size of the
BP trees [181]. We adapted the BP to work with intervals instead of exact distances
[166, 134, 171, 129]. We engineered it to work on distances between atoms of given
type (this is an important restriction of NMR experiments) [131, 132, 170, 133, 135].
We generalized it to arbitrary values of K and developed a theory of symmetries
in protein backbones [149, 151, 152]. We exploited these symmetries in order to
immediately reconstruct all solutions from just one [167, 169]. We showed that the BP
algorithm is FPT on protein-like instances and empirically appears to be polynomial
on proteins [150, 147]. We derived a dual BP algorithm that works in distance rather
than realization space [144]. We put all this together so that it would work on real
NMR data [176, 156]. We started working on embedding the side chains [193, 48]. We
took some first steps toward applying the BP algorithm to more general molecular
conformation problems involving energy minimization [136]. We provided an open-
source [177] implementation and tested some parallel ones [174, 86]. We wrote a
number of other surveys [125, 148, 128, 172], but none as extensive as the present
one. We also edited a book on the subject of DG and applications [173].

3.4. Interval Data. In this section we discuss methods that target an MDGP
variant, called iMDGP, which is closer to the real NMR data: edges {u, v} ∈ E are
weighted with real intervals duv = [dLuv, d

U
uv] instead of real values. These intervals

occur in practice because, as in all other physical experiments, NMR outputs data
with some uncertainty, which can be modeled using intervals. The iMDGP therefore
consists of finding x ∈ RK that satisfies the following set of nonlinear inequalities:

(3.10) ∀{u, v} ∈ E dLuv ≤ ‖xu − xv‖ ≤ dUuv.

The MP formulation (3.1) can be adapted to deal with this situation in a number of
ways, such as

min
x

∑

{u,v}∈E

(max(dLuv − ||xu − xv||, 0) + max(||xu − xv|| − dUuv, 0)),(3.11)

min
x

∑

{u,v}∈E

(max((dLuv)
2 − ||xu − xv||2, 0) + max(||xu − xv||2 − (dUuv)

2, 0),(3.12)

min
x

∑

{u,v}∈E

(max2((dLuv)
2 − ||xu − xv||2, 0) +max2(||xu − xv||2 − (dUuv)

2, 0)).(3.13)

Problem (3.13) is often appropriately modified to avoid bad scaling (which occurs
whenever the observed distances differ in order of magnitude):
(3.14)

min
x

∑
{u,v}∈E

(
max2

(
(dLuv)

2 − ||xu − xv||2
(dLuv)

2
, 0

)
+max2

( ||xu − xv||2 − (dUuv)
2

(dUuv)
2

, 0

))
.

3.4.1. Smoothing-Based Methods. Several smoothing-based methods (e.g., DG-
SOL and DCA; see section 3.2.2) have been trivially adapted to solve (3.13) and/or
(3.14).
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F (x, λ)

max(x, 0)

x

Fig. 3.18 The function max(x, 0) and its hyperbolic smoothing F (x, λ).

3.4.1.1. Hyperbolic Smoothing. The hyperbolic smoothing described in [212, 211] is
specifically suited to the shape of each summand in (3.11), as shown in Figure 3.18.
The actual solution algorithm is very close to the one employed by DGSOL (see
section 3.2.2). Given the fact that the smoothing is not “general purpose” (as the
Gaussian transform is), but is specific to the problem at hand, the computational
results improve.

3.4.2. The EMBED Algorithm. The EMBED algorithm, proposed by Crippen
and Havel [52], first completes the missing bounds and refines the given bounds using
triangle and tetrangle inequalities. Then a trial distance matrix D′ is randomly gener-
ated, and a solution is sought using a matrix decomposition method [28]. Since the dis-
tance matrix D′ is not necessarily Euclidean [71], the solution may not satisfy (3.10).
If this is the case, the final step of the algorithm is to minimize the distance violations
using the previous solution as the initial guess. More details can be found in [229, 92].

3.4.3. Monotonic Basin Hopping. A monotonic basin hopping (MBH) algo-
rithm for solving (3.13)–(3.14) is employed in [91]. Let L be the set of local optima
of (3.3) and N : R3 → P(R3) (where P(S) denotes the power set of S) be some
appropriate neighborhood structure. A partial order � on L is assumed to exist:
x � y implies y ∈ N (x) and f(x) > f(y). A funnel is a subset F ⊆ L such that for
each x ∈ F there exists a chain x = x0 � x1 � · · · � xt = minF (this situation is
described in Figure 3.19). The MBH algorithm is as follows. Starting with a current
solution x ∈ F , sample a new point x′ ∈ N (x) and use it as the starting point for
a local NLP solver; repeating this sufficiently many times will yield the next opti-
mum x1 in the funnel. This is repeated until improvements are no longer possible.
The MBH is also employed within a population-based metaheuristic called population
basin hopping (PBH), which explores several funnels in parallel.

3.4.4. Alternating Projections Algorithm. The alternating projection algorithm
(APA) [187] is an application of the more general successive projection methodology
(SPM) [89, 225] to the iMDGP. The SPM takes a starting point and projects it al-
ternately on the two convex sets, attempting to reach a point in their intersection
(Figure 3.20).

In the APA, the starting point is a given predistance matrix D = (δuv), i.e.,
an n × n symmetric matrix with nonnegative components and zero diagonal. D is
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funnel

no
t a

 fu
nn

el

x x1 x∗ y

N (x)

N (x1)

N (x∗)

N (y)

f

Fig. 3.19 The dashed horizontal lines indicate the extent of the neighborhoods. The set F =
{x, x1, x∗} is a funnel, because x � x1 � x∗ = minF . The set {x∗, y} is not a fun-
nel, as x∗ �∈ N (y).

Fig. 3.20 The SPM attempts to find a point in the intersection of two convex sets.

generated randomly so that dLuv ≤ δuv ≤ dUuv for all {u, v} ∈ E, and δuv = 0 otherwise.
By Schoenberg’s Theorem 2.2 and (2.4), if we let P = I − 1

n11
� and A = − 1

2PDP ,
where I is the n×n identity matrix and 1 is the all-one n-vector, D is an EDM if and
only if A is PSD. Notice that P is the orthogonal projection operator on the subspace
M = {x ∈ Rn | x�1 = 0} of vectors orthogonal to 1, so D is an EDM if and only if
D is negative semidefinite on M [82]. On the other hand, a necessary condition for
any matrix to be an EDM is that it should have zero diagonal. This identifies the
two convex sets on which the SPM is run: the set P of matrices which are negative
semidefinite on M , and the set Z of zero-diagonal matrices. The projection operator
for P is Q(D) = PUΛ−UP , where UΛU is the spectral decomposition of D and Λ− is
the nonpositive part of Λ, and the projection operator for Z is Q′(D) = D−diag(D).

Although the convergence proofs for the SPM assume an infinite number of iter-
ations in the worst case, empirical tests suggest that five iterations of the APA are
enough to get satisfactory results. The APA was tested on the bovine pancreatic
trypsin inhibitor protein (qlq), which has 588 atoms including side chains.

3.4.5. The GNOMAD Iterative Method. The GNOMAD algorithm [235] (see
Algorithm 3) is a multilevel iterative method, which tries to arrange groups of atoms
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Algorithm 3 GNOMAD

1: {C1, . . . , C�} is a vertex cover for V
2: for i ∈ {1, . . . , �} do
3: while termination condition not met do
4: determine an order < on Ci

5: for v ∈ (Ci, <) do
6: find search direction Δv for xv (obtained by solving an NLP locally)
7: determine step sv minimizing constraint infeasibility
8: xv ← xv + svΔv

9: end for
10: end while
11: end for

at the highest level, then determines an appropriate order within each group using
the contribution of each atom to the total error, then finally, at the lowest level,
performs a set of atom moves within each group in the prescribed order. The method
exploits several local NLP searches (in low dimension) at each iteration, as detailed in
Algorithm 3. The constraints exploited in step 7 are mostly given by van der Waals
distances [199], which are physically inviolable separation distances between atoms.

3.4.6. Stochastic Proximity Embedding Heuristic. The basic idea of the sto-
chastic proximity embedding (SPE) [240] heuristic is as follows. All the atoms are
initially placed randomly into a cube of a given size. Pairs of atoms in E are repeatedly
and randomly selected; for each pair {u, v}, the algorithm checks satisfaction of the
corresponding constraint in (3.10). If the constraint is violated, the positions of the
two atoms are changed according to explicit formulae in order to improve the current
embedding (two examples are shown in Figure 3.21).

u
u

v
vdd

λλ

Fig. 3.21 Local changes to positions according to discrepancy with respect to the corresponding dis-
tance.

The SPE heuristic is shown in Algorithm 4. SPE offers no guarantee to obtain a
solution satisfying all constraints in (3.10); however, the “success stories” reported in
[102] seem to indicate this as a valid methodology.

Algorithm 4 SPE Heuristic

while termination condition not met do
Pick {u, v} ∈ E (‖xu − xv‖ �∈ duv)
Update λ
Let xu ← xu + λ(xu − xv)
Let xv ← xv + λ(xv − xu).

end while

3.5. NMR Data. NMR experiments are performed in order to estimate distances
between some pairs of atoms forming a given molecule [238]. In solution, the molecule
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is subjected to a strong external magnetic field, which induces the alignment of the
spin magnetic moment of the observed nuclei. The analysis of this process allows
the identification of a subset of distances for certain pairs of atoms, mostly those
involving hydrogens, as explained in the introduction. In proteins, nuclei of carbons
and nitrogens are also sometimes considered.

It is important to remark that some NMR signals may be imprecise, because it
is not always possible to distinguish between the atoms of the molecule. We can
have this situation, for example, in proteins containing amino acids such as valines
and leucines. In such a case, the distance restraints (a term used in proteomics
meaning “constraints”) involve a “pseudoatom” that is placed halfway between the
two undistinguished atoms [239]. Once the upper bound for the distance has been
chosen when considering the pseudoatom, its value is successively increased in order
to obtain an upper bound for the real atoms.

There are also other potential sources of errors that can affect NMR data. If
the molecule is not stable in solution, its conformation may change during the NMR
experiments, and therefore the information obtained could be inconsistent. Depending
on the machine and on the magnetic field, some noise may spoil the quality of the
NMR signals from which the intervals are derived. Moreover, due to a phenomenon
called “spin diffusion,” the NMR signals related to two atoms could also be influenced
by neighboring atoms [42]. Thus, the distances provided by NMR are imprecise, not
only due to noise, but also due to dynamics of the molecule in solution.

Fortunately, for molecules having a known chemical composition such as pro-
teins, there are a priori known distances that can be considered together with those
obtained through NMR experiments. If two atoms are chemically bonded, their rel-
ative distance is known; this distance is subject to small variations, but it can still
be considered as fixed in several applications (see the rigid geometry hypothesis; sec-
tion 3.3.1). Moreover, the distance between two atoms bonded to a common atom
can also be estimated, because they generally form a specific angle that depends upon
the kind of atoms involved. Such distances can therefore be considered precise and
provide valuable information for the solution of DGPs (this follows because protein
graphs are molecular; see section 3.3.1).

As explained in the introduction, the output of an NMR experiment on a given
molecule can be taken to consist of a set of triplets ({a, b}, d, q), meaning that q pairs
of atoms of type a, b were observed to have distance d [17]. It turns out that NMR
data can be further manipulated so that it yields a list of pairs {u, v} of atoms with
a corresponding nonnegative distance duv. Unfortunately, this manipulation is rather
error-prone, resulting in interval-type errors, so that the exact interatomic distances
duv are in fact contained in given intervals [dLuv, d

U
uv] [17]. For practical reasons, NMR

experiments are most often performed on hydrogen atoms [17] (although sometimes
carbons and nitrogens are also considered). Other known molecular information in-
cludes [199, 64] the number and type of atoms in the molecules, all the covalent bonds
with corresponding Euclidean distances, and all distances between atoms separated
by exactly two covalent bonds.

3.5.1. Virtual Backbones of Hydrogens. In order to address the NMR limita-
tion concerning the lack of data reliability for interatomic distances of non-hydrogen
atoms, we define atomic orders limited to hydrogens and disregard the natural back-
bone order during discretization. Even though we showed that this approach works
on a set of artificially generated instances [135], we remarked on its limitations when
we tried to apply it to real NMR data. These limitations have been addressed by
using reorders (see section 3.5.2).
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Fig. 3.22 The order used for discretizing MDGPs with interval data.

3.5.2. Re-orders and Interval Discretization. In [129] we defined an atomic
ordering that ensures that every atom of rank > 3 is adjacent to its three immediate
predecessors by means of either real-valued distances d or interval distances d̄ that
arise from geometrical considerations rather than NMR experiments. Specifically,
with reference to Figure 3.12, the distance di−3,i belongs to a range determined by
the uncertainty associated with the torsion angle φi.

We exploited three protein features to this aim: (i) using hydrogen atoms off
the main backbone whenever appropriate; (ii) using the same atom more than once;
(iii) remarking that some interval distances d̄ can be replaced with finite (small) sets
D of real-valued distances. Considering these properties, we were able to define a
new atomic ordering for which v can be placed in a finite number of positions in
the set {0, 1, 2, 2|D|}, consistent with the known positions of the three immediate
predecessors of v. Feature (i) allows us to exploit atoms for which NMR data are
available. Feature (ii) allows us to exploit more than just two bond lengths on atoms
with valence > 2, such as carbons and nitrogens, by defining an order that includes the
atom more than once; these orders are called re-orders, which is short for “repetition
orders” [129]. Feature (iii) is related to some interval distances whose interval can
be exactly computed (rather than estimated via NMR experiments) by relating it to
the torsion angles: a torsion angle of 0 gives the lower bound, and a torsion angle of
π radians gives the upper bound. Figure 3.22 shows a re-order for a small protein
backbone containing three amino acids.

Re-orders (v1, . . . , vp) deserve a further remark. We stressed the importance of
strict simplex inequalities in section 3.3.2, but requiring that vi = vj for some i �= j
introduces a zero distance d(vi, vj) = 0. If this distance is ever used inappropriately,
we might end up with a triangle with a side of zero length, which might in turn imply
an infinity of possible positions for the next atom. We recall that, for any v > K, strict
simplex inequalities ΔK−1(Uv) > 0 in dimensionK−1 are necessary for discretization,
as they avoid unwanted affine dependencies (see, e.g., Figure 3.7). By contrast, if
ΔK(Uv ∪ {v}) > 0 hold, then we have a K-simplex with nonzero volume, which has
two possible orientations in RK ; in other words, the two possible positions for xv are
distinct. If ΔK(Uv∪{v}) = 0, however, then there is just one possible position for xv.
Thus, to preserve discretization, zero distances can never occur between pairs vi, vj
fewer than K atoms apart, but they may occur for |i − j| = K; in this case there is
no branching at level max(i, j).
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Re-orders make it possible to consider only non-NMR distances for discretization.
More precisely, over each set of three adjacent predecessors, only one is related by
an interval distance; this interval, however, is not due to experimental imprecision
in NMR, but rather to a molecular property of torsion angles; in particular, we can
compute lower and upper bounds to these intervals, as mentioned above [129]. The
number of discretization steps of these intervals is usually heuristically set so that it
becomes smaller than the resolution scope of NMR experimental techniques [180]. We
refer to such intervals as discretizable. A new, very recent development in this direction
replaces the discretization of interval distances with Clifford algebra computations,
which reduce the loss of the precision resulting from discretizing intervals [3].

3.5.3. Discrete Search with Interval Distances. The interval BP (iBP) [129] is
an extension of the BP algorithm that is able to manage interval data. The main idea
is to replace, in the sphere intersections necessary for computing candidate atomic
positions, a sphere by a spherical shell. Given a center c ∈ RK and an interval d =
[dL, dU ], the spherical shell centered at c w.r.t. d is SK−1(c, dU )� SK−1(c, dL). With
K = 3, the intersection of two spheres and a spherical shell gives, with probability 1,
two disjoint curves in 3D space (see Figure 3.23). The discretization is still possible if
some sample distances are chosen from the interval associated with the curves [180].

Similar to the basic BP algorithm, the two main components of iBP are the
branching and the pruning phases. In the branching phase, we can have three different
situations, depending on the distance d(i − 3, i) (see Figure 3.22). If d(i − 3, i) = 0,
the current atom i has already appeared previously in the order, which means that
the only feasible position for i is the same as i− 3. If d(i− 3, i) is a precise distance,
then three spheres are intersected, and only two positions are found with probability 1.
Finally, if d(i−3, i) is a discretizable interval [dLi−3,i, d

U
i−3,i], as specified in section 3.5.2,

we choose D values from the interval. This yields a choice of 2D candidate atomic
solutions for i.

If the discretization order in Figure 3.22 is employed for solving NMR instances,
(precise) distances derived from the chemical composition of proteins are used for
performing the discretization, whereas interval distances from NMR experiments are
used for pruning purposes only. The consequent search tree is no longer binary: every
time a discretizable interval is used for branching, the current node has at most 2D

dL

dU

Fig. 3.23 The intersection of two spheres with a spherical shell.
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subnodes. The advantage is that the generation of the search tree is not affected by
experimental errors caused by the NMR machinery.

In order to discretize instances related to entire protein conformations, it is nec-
essary to identify a discretization order for all side chains for the 20 amino acids that
can be involved in the protein synthesis. This is a nontrivial task, because side chains
have more complex structures with respect to the part that is common to each amino
acid, and they may contain many atoms. However, side chains can be of fundamen-
tal importance in the identification of protein conformations, because many distances
obtained by NMR experiments may regard hydrogen atoms contained in side chains.
First efforts toward extending the BP algorithm so that it can calculate the whole 3D
structure of a protein, including its side chains, can be found in [193].

4. Engineering Applications. In this section, we discuss other well-known ap-
plications of DG: wireless networks, statics, dimensionality reduction, and robotics.
In wireless networks, mobile sensors can usually estimate their pairwise distance by
measuring how much battery they use in order to communicate. These distances are
then used to find the positions of each sensor (see section 4.1). Statics is the field of
study of the equilibrium of rigid structures (mostly man-made, such as buildings or
bridges) under the action of external forces. A well-known model for such structures
is the bar-and-joint framework, which is essentially a weighted graph. The main prob-
lem is that of deciding whether a given graph, with a given distance function on the
edges, is rigid or not. An associated problem is that of deciding whether a given graph
models a rigid structure independently of the distance function (see section 4.2).

4.1. Wireless Sensor Networks. The position of wireless mobile sensors (e.g.,
smartphones, identification badges, and so on) is, by its very definition, local to the
sensor carrier at any given time. Notwithstanding, in order to be able to properly route
communication signals, the network routers must be aware of the sensor positions, as
they adapt routes, frequencies, and network ID data accordingly. The information
available to solve this problem is given by the fact that mobile sensors are always
aware of their neighboring peers (to within a certain radius r of their positions, which
we shall assume constant) as well as the amount of battery charge they use in order to
communicate with other sensors in their neighborhood. It turns out that this quantity
is strongly correlated with the Euclidean distance between the communicating sensors
[197]. Moreover, certain network elements, such as routers and wireless repeaters, are
fixed, hence their positions are known (such elements are called anchors or beacons).
The problem of determining the sensor positions using these data was deemed to be
important at the very inception of wireless networks [232, 77]. There are several good
reasons why global positioning system (GPS) enabled devices may not be a valid
alternative: they are usually too large, they consume too much power, and they need
a line of sight with the satellites, which may not always be the case in practice (think,
for example, of localizing sensors within a building) [197]. This problem is formalized
as the WSNL (see item 14 in the list of section 1.2).

In wireless sensor networks, K ∈ {2, 3}. The 3D case might occur when a single
network is spread over several floors of a building, or whenever a mobile battlefield
network is parachuted over a mountainous region. Moreover, because the realiza-
tion represents a practically existing network, an important question is to determine
the amount of data that suffices for the graph to have a unique realization in RK .
This marks a striking difference with the application of DG techniques to molecular
conformation, where molecules can exist in different isomers.
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The earliest connections of WSNL with DG are an SDP formulation [63] for a
relaxation of the problem where the Euclidean distance between two sensors is at most
the corresponding edge weight, and an in-depth theoretical study of the WSNL from
the point of view of graph rigidity [73] (see section 4.2).

4.1.1. Unique Realizability. In [73, 8], the WSNL is defined to be solvable if the
given graph has a unique valid realization, a notion also known as global rigidity. A
graph is globally rigid if it has a generic realization x and for all other realizations
x′, x is congruent to x′. For example, if a graph has a K-trilateration order, then
it is globally rigid: comparing with DVOP orders, where each vertex is adjacent to
K predecessors, the additional adjacency makes it possible to identify at most one
position in RK where the next vertex in the order will be placed, if a position for
all predecessors is already known. Any graph possessing a K-trilateration order is
called a K-trilateration graph. Such graphs are globally rigid and can be realized in
polynomial time by simply remarking that the BP algorithm would never branch on
such instances.

A graph G = (V,E) is redundantly rigid if (V,E � {e}) is rigid for all e ∈ E. It
was shown in [103, 45] that G is globally rigid for K = 2 if and only if either G is
the 2-clique or the 3-clique, or G is 3-connected and redundantly rigid. Hendrickson
conjectured in [94] that these conditions would be sufficient for any value ofK, but this
was disproved by Connelly [44]. He also proved, in [45], that if a generic framework
(G, x) has a self-stress (see section 4.2.1) ω : E → R such that the n×n stress matrix,
with (u, v)th entry (−ωuv) if {u, v} ∈ E,

∑
t∈δ(v) ωut if u = v, and 0 otherwise, has

rank n−K − 1, then (G, x) is globally rigid in any dimension K [45]. This condition
was also proved to be necessary in [83]. Some graph properties ensuring global rigidity
for K ∈ {2, 3} are given in [4]. A related problem, that of choosing a given subset of
vertices to take the role of anchors such that the resulting sensor network is uniquely
localizable (see section 3.2.4), is discussed in [76]. Several results on global rigidity
(with particular attention to the case K = 2) are surveyed in [105]. In particular, it
is shown in [105, Thm. 11.3] that Henneberg type II steps (replace an edge {u,w} by
two edges {u, v} and {v, w}, where v is a new vertex, then add new edges from v to
K− 1 other vertices different from u,w) are related to global rigidity in a similar way
that Henneberg type I steps (see section 4.2.3) are related to rigidity: if a globally
rigid graphH is derived from a graph G with at leastK+2 vertices using a Henneberg
type II step in RK , then G is also globally rigid.

There is an interesting variant of unique localizability which yields a subclass of
DGP instances that can be realized in polynomial time, up to a given ε > 0 toler-
ance. Recall that the DGP is strongly NP-hard [198] in general. Moreover, it remains
NP-hard even when the input is a unit disk graph (see section 4.1.4) [8] and there
exists no randomized efficient algorithm even when it is known that the input graph is
globally rigid [9]. The problem becomes tractable under the equivalent assumptions of
K-unique localizability (a sort of unique localizability for fixed K) [157] and universal
rigidity [245] (see section 3.2.4). Specifically, a graph is K-uniquely localizable if (i) it
has a unique realization x : V → RK ; (ii) it has a unique realization y� : V → R� for all
� > K; and (iii) for all v ∈ V, � > K, we have y�v = (xv ,0), where 0 is the zero vector in
R�−K . Anchors play a crucial role in ensuring that the graph should be globally rigid in
RK : the subgraph induced by the anchors should yield a generic globally rigid frame-
work in RK , and thus the set of anchors must have at leastK+1 elements. Under these
assumptions, a polynomial algorithm (exploiting the SDP formulation and its dual) for
realizingK-uniquely localizable graphs, up to a given tolerance, was described in [157].
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4.1.2. Semidefinite Programming. Most of the recent methods addressing the
WNSL make use of SDP techniques. This is understandable in view of the relationship
between DG and SDP via Theorem 2.2, and because the PSDMCP is actually a special
case of the general SDP feasibility problem (see section 2.6.1). We also mention that
most SDP methods can target DGP variants where the edge weight d maps into
bounded intervals, not only reals, and are therefore suitable for applications where
distance measurements are not precise.

We believe [106] is the first reference in the literature that proposes an SDP-based
method for solving MCPs (specifically, the PSDMCP). In [2], the same approach is
adapted to a slightly different EDMCP formulation. Instead of a partial matrix, an
n×n predistance matrix A is given, i.e., a matrix with zero diagonal and nonnegative
off-diagonal elements. We look for an n×n EDM D that minimizes ‖H ◦ (A−D)‖F ,
where H is a given matrix of weights, ◦ is the Hadamard product, and ‖ · ‖F is the

Frobenius norm (‖Q‖F =
√∑

i,j≤n q2ij). An optional linear constraint can be used

to fix some of the values of D. A reformulation of the constraint “D is an EDM”
to X � 0 is derived by means of the statement that D is an EDM if and only if D
is negative semidefinite on the orthogonal complement of the all-one vector [85, 187]
(see section 3.4.4). In turn, this is related to Theorem 2.2.

In [32, 63], interestingly, the connection with SDP is not given by Theorem 2.2,
but rather because the WSNL variants mentioned in these papers make use of convex
norm constraints which are reformulated using linear matrix inequalities (LMIs). For
example, if there is a direct communication link between two nodes u, v ∈ V , then
‖xu − xv‖ ≤ r, where r is a scalar threshold given by the maximum communication
range, can be reformulated to the LMI(

rI2 xu − xv

(xu − xv)
�

r

)
� 0,

where I2 is the 2× 2 identity matrix.
Biswas and Ye proposed in [25] an SDP formulation of the WSNL problem which

then gave rise to a series of papers [22, 26, 23, 21, 24] focusing on algorithmic exploita-
tions of their formulation. In the spirit of [141], this can be derived from the “classic”
WSNL feasibility formulation below by means of a sequence of basic reformulations

∀{u, v} ∈ E (‖xu − xv‖2 = duv),

∀u ∈ A, v �∈ A ({u, v} ∈ E → ‖au − xv‖ = duv),

where A ⊆ V is the set of anchors whose positions {au | u ∈ A} ⊆ RK are known
a priori. Let X be the K × n decision variable matrix whose vth column is xv. The
authors remark that

• for all u < v ∈ V , ‖xu − xv‖2 = euv
�X�Xeuv, where euv = 1 at component

u, −1 at component v, and 0 elsewhere;
• for all u ∈ A, v ∈ V , ‖au − xv‖2 = (au; ev)

�
[IK ;X ]

�
[IK ;X ](au; ev), where

(au; ev) is the column (K + n) vector consisting of au on top of ev, with
eV = 1 at component v and 0 elsewhere, and [IK ;X ] is the K × (K + n)
matrix consisting of IK followed by X ;
• [IK ;X ]

�
[IK ;X ] =

( IK X

X� X�X

)
, a (K + n)× (K + n) matrix denoted by Z;

• the scalar products of decision variable vectors in X�X (rows of X� by
columns of X) can be linearized, replacing each xuxv by yuv, which results
in substituting X�X by an n× n matrix Y = (yuv) such that Y = X�X .
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This yields the following formulation of the WSNL:

∀{u, v} ∈ E euv
�Y euv = d2uv,

∀u ∈ A, v �∈ A ({u, v} ∈ E → (au; ev)
�
Z(au; ev) = d2uv),

Y = X�X.

The SDP relaxation of the constraint Y = X�X , which is equivalent to requiring
that Y has rank K, consists in replacing it with Y −X�X � 0, which is equivalent
to Z � 0. The whole SDP can be written in terms of the indeterminate matrix Z as
follows, using MATLAB-like notation to indicate submatrices:

Z1:K,1:K = IK ,(4.1)

∀u, v ∈ V �A ({u, v} ∈ E → (0; euv)(0; euv)
� • Z = d2uv),(4.2)

∀u ∈ A, v ∈ V �A ({u, v} ∈ E → (au; ev)(au; ev)
� • Z = d2uv),(4.3)

Z � 0,(4.4)

where • is the Frobenius product. This formulation was exploited algorithmically in a
number of ways. As mentioned in sections 4.1.1 and 3.2.4, solving the SDP formulation
(4.1)–(4.4) yields a polynomial-time algorithm for the DGP on uniquely localizable
graphs (see section 3.2.4). The proof uses the dual SDP formulation to (4.1)–(4.4) in
order to show that the interior point method for SDP yields an exact solution [157,
Cor. 1] and the fact that the SDP solution on uniquely localizable graphs has rank
K [157, Thm. 2]. Another interesting research direction employing (4.1)–(4.4) is the
edge-based SDP (ESDP) relaxation [231]: this consists in relaxing (4.4) to only hold
on principal submatrices of Z indexed by A. To address the fact that SDP and ESDP
formulations are very sensitive to noisy data, a robust version of the ESDP relaxation
was discussed in [183] (see section 3.2.4).

Among the methods based on formulation (4.1)–(4.4), those in [26, 24] are par-
ticularly interesting. They address the limited scaling capabilities of SDP solution
techniques by identifying vertex clusters where embedding is easier, and then match
those embeddings in space using a modified SDP formulation. The vertex clusters
cover V in such a way that neighboring clusters share some vertices (these are used to
“stitch together” the embeddings restricted to each cluster). The clustering technique
is based on permuting columns of the distance matrix (dij) to try to pool the nonzeros
along the main diagonal. The partial embeddings for each cluster are computed by
first solving an SDP relaxation of the quadratic system in equation (3.10) restricted
to edges in the cluster, and then applying a local NLP optimization algorithm that
uses the optimal SDP solution as a starting point. When the distances have errors,
there may not exist any valid embedding satisfying all the distance constraints. In
this case, it is likely that the SDP approach (which relaxes these constraints any-
way) will end up yielding an embedding x′ that is valid in a higher-dimensional
space RK′

, where K ′ > K. In such cases, x′ is projected onto a realization x in
RK . Such projected embeddings usually exhibit clusters of close vertices (none of
which satisfies the corresponding distance constraints), due to correct distances in
the higher-dimensional space being “squeezed” to their orthogonal projection into the
lower-dimensional space. In order to counter this type of behavior, a regularization
objective function max

∑
i,j∈V ||xi − xj ||2 is added to the feasibility SDP.

In [111, 110], Krislock and Wolkowicz also exploit the SDP formulations of [2]
together with vertex clustering techniques in order to improve the scaling abilities of
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SDP solution methods (see also section 3.2.4). Their facial reduction algorithm identi-
fies cliques in the input graph G and iteratively expands them using a K-trilateration
order (see section 3.3). Rather than “stitching together” pieces, as in [24], the theory
of facial reduction methods works by considering the SDP relaxation of the whole
problem and showing how it can be simplified in the presence of one or more cliques
(be they intersecting or disjoint). The computational results of [111] show that the
facial reduction algorithm scales extremely well (graphs up to 100,000 vertices were
embedded in R2). A comparison with the BP algorithm (see section 3.3.5) appears
in [127, Table 6]. The BP algorithm is slightly less accurate (the most common LDE
values are O(10−12) for BP and O(10−13) for facial reduction) but much faster (BP
takes between 1% and 10% of the time taken by facial reduction).

4.1.3. Second-Order Cone Programming. A second-order cone programming
(SOCP) relaxation of the WSNL was discussed in [226]. The NLP formulation (3.1)
is first reformulated as follows:

(4.5)

min
∑

{u,v}∈E

zuv,

∀{u, v} ∈ E xu − xv = wuv,
∀{u, v} ∈ E yuv − zuv = d2uv,
∀{u, v} ∈ E ‖wuv‖2 = yuv,

u ≥ 0.

Next, the constraint ‖wuv‖2 = yuv is relaxed to ‖wuv‖2 ≤ yuv. The SOCP relaxation
is weaker than the SDP one (4.1)–(4.4), but scales much better (4000 vs. 500 vertices).
It was abandoned by Tseng in favor of the ESDP [183], which is stronger than the
SOCP relaxation but scales similarly.

4.1.4. Unit Disk Graphs. Unit disk graphs are intersection graphs of equal circles
in the plane, i.e., vertices are the circle centers, and there is an edge between two
vertices u, v if their Euclidean distance is at most twice the radius. Unit disk graphs
provide a good model for broadcast networks, with each center representing a mobile
transmitter/receiver and the radius representing the range. In [41], it is shown that
several standard NP-complete graph problems are just as difficult on unit disk graphs
as on general graphs, but that the maximum clique problem is polynomial on unit disk
graphs (the problem is reduced to finding a maximum independent set in a bipartite
graph). In [33], it is shown that even recognizing whether a graph is a unit disk graph
is NP-hard. A slightly different version of the problem, consisting in determining
whether a given weighted graph can be realized in R2 as a unit disk graph of given
radius, is also NP-hard [8]. From the point of view of DG, it is interesting to remark
that the DGP, restricted to sufficiently dense unit disk graphs and provided a partial
realization is known for a subset of at least K+1 vertices, can be solved in polynomial
time [157]. If the graph is sparse, however, the DGP is still NP-hard [9].

The study of unit disk graphs also arises when packing equal spheres in a subset
of Euclidean space [46]; the contact graphs of the sphere configuration are unit disk
graphs.

4.2. Statics. Statics is the study of forces acting on physical systems in static
equilibrium. This means that the barycenter of the system undergoes no linear accel-
eration (we actually assume the barycenter to have zero velocity), and that the system
does not rotate. Geometrically, with respect to a frame of reference, the system un-
dergoes no translations and no rotations. The physical systems we are concerned with
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are bar-and-joint structures, i.e., 3D embodiments of graph frameworks (G, x), where
G is a simple weighted undirected graph and x is a valid realization thereof: joints are
vertices, bars are edges, and bar lengths are edge weights. The placement of the struc-
ture in physical space provides a valid realization of the underlying graph. Because
we suppose the structures to be stiff, they cannot undergo reflections either. In short,
the equivalence class of a rigid graph framework modulo congruences is a good repre-
sentation of a structure in static equilibrium. Naturally, the supporting bar-and-joint
structures of man-made constructions such as houses, buildings, skyscrapers, bridges,
and so on must always be in static equilibrium, for otherwise the construction would
collapse.

Statics has been a field of study ever since humans have had roofs over their heads.
The main challenge is the estimation of reaction forces that man-made structures
have to provide in order to remain in static equilibrium under the action of external
forces. In 1725, Varignon published a textbook [227] that implemented ideas he had
sketched in 1687 about the application of systems of forces to different points of static
structures. By the mid-1800s there was both an algebraic and a graphical method
for testing rigidity of structures. Because of the absence of computing machinery, the
latter (called graphical statics) was preferred to the former [49, 196, 97]. Cremona
proposed a graphical axiomatization of arithmetic operations in [50], whose purpose
was probably to give an implied equivalence between the two methods. J. C. Maxwell
worked on both methods, publishing his results in 1864: the graphical result in [159]
and the algebraic result in [160].

The link between statics and DG is rigidity, which we have seen to be a funda-
mental idea in the conception of efficient and reliable mixed-combinatorial algorithms
for the DGP and its variants. Furthermore, since statics is the most ancient appli-
cation field related to DG, it contains many of its historical roots and seminal ideas
(this is clear when looking at the drawings contained in the tables in the early books
mentioned above). Accordingly, in this section we present a summary of rigidity in
statics.

4.2.1. Infinitesimal Rigidity. Since statics is mainly concerned with the physical
3D world, we fix K = 3 for the rest of this section. Consider a function F : V → R3

that assigns a force vector Fv ∈ R3 to each point xv ∈ R3 of a framework (G, x). If
the framework is to be stationary, the total force and torque acting on it must be
null to prevent translations (assuming a zero initial velocity of the barycenter) and
rotations. This can be written algebraically [191, 218] as

∑
v∈V

Fv = 0,(4.6)

∀i < j ≤ K
∑
v∈V

(Fvixvj − Fvjxvi) = 0.(4.7)

A force F satisfying (4.6)–(4.7) is called an equilibrium force (or, equilibrium load).
Applied to bar-and-joint structures, equilibrium forces tend to compress or extend
the bars without moving the joints in space. Since bars are assumed to be stiff (or,
equivalently, the graph edge weights are given constants), the corresponding reaction
forces at the endpoint of each bar should be equal in magnitude and opposite in
sign. We can define these reaction forces by means of an edge weighting ω : E →
R representing the amount of force in each bar per unit length (ω is negative for
bar tensions and positive for bar compressions). Stiffness of the structure translates
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algebraically to a balance of equilibrium force and reaction:

(4.8) ∀u ∈ V Fu +
∑

v∈N(u)

ωuv(xu − xv) = 0.

A vector ω ∈ Rm satisfying (4.8) is called a resolution, or resolving stress, of the
equilibrium force F [191]. If F = 0, then ω is a self-stress.

For the following, we introduce (squared) edge functions and displacements. The
edge function of a framework (G, x) is a function φ : RnK → Rm given by φ(x) =
(‖xu − xv‖ | {u, v} ∈ E). We denote the squared edge function (‖xu − xv‖2 | {u, v} ∈
E) by φ2. The edge displacement of a framework (G, x), with respect to a displace-
ment y : [0, 1]→ Rnk, is a continuous function μ : [0, 1] → Rm given by μ(t) =
(‖yu(t) − yv(t)‖ | {u, v} ∈ E). We denote the squared edge displacement (‖yu(t) −
yv(t)‖2 | {u, v} ∈ E) by μ2.

Equation (4.8) can also be written as

(4.9)
1

2
(dφ2)

�
ω = −F,

where dφ2 is the matrix whose {u, v}th row encodes the derivatives of the {u, v}th
component of the squared edge function φ2(x) with respect to each component xvi

of x. Observe that the {u, v}th row of this matrix contains only the six nonzero
components 2(xui− xvi) and 2(xvi− xui) for i ∈ {1, 2, 3} (see [191, p. 13]). If we now
consider (4.9) applied to a displacement y of x, differentiate it with respect to t and
evaluate it at t = 0, we obtain the linear system ωA = 0, where A = 1

2dφ2, i.e., the
homogeneous version of (4.9).

Consider now a squared edge displacement μ2(t) with respect to a flexing y of
the framework (G, x). By definition of flexing, we have μ2(t) = (d2uv | {u, v} ∈ E) for
all t ∈ [0, 1]. Differentiating with respect to t, we obtain the scalar product relation

2(yu(t)−yv(t)) · ( dyu(t)
dt − dyv(t)

dt ) = 0 (because the edge weights duv are constant w.r.t.
t) for all {u, v} ∈ E. Evaluating the derivative at t = 0 yields

(4.10) ∀{u, v} ∈ E (xu − xv) · (αu − αv) = 0,

where α : V → R3 is a map that assigns initial velocities αv = dxu

dt |0 to each v ∈ V .
We note that the system (4.10) can be written as Aα = 0 [81, Thm. 3.9]. We therefore
have the dual relationship ωA = 0 = Aα between α and ω.

By definition, (G, x) is infinitesimally rigid if α only encodes rotations and trans-
lations. The above discussion should give an intuition as to why this is equivalent
to stating that every equilibrium force has a resolution (see [81, 191, 218] for a full
description). Indeed, infinitesimal rigidity was defined in this dual way by Whiteley
[233] (who called it static rigidity). The matrix A above is called the rigidity matrix
of the framework (G, x). Notice that when a valid realization x is known for G, then
even those distances for {u, v} �∈ E can be computed for G: when the rows of A are
indexed by all unordered pairs {u, v}, we call A the complete rigidity matrix of (G, x).

Infinitesimal rigidity is a stricter notion than rigidity: all infinitesimally rigid
frameworks are also rigid [81, Thm. 4.1]. Counterexamples to the converse of this
statement, i.e., rigid frameworks which are infinitesimally flexible, usually turn out to
have some kind of degeneracy: a flat triangle, for example, is rigid but infinitesimally
flexible [191, Ex. 4.2]. In general, infinitesimally rigid frameworks in RK (for some
integerK > 0) might fail to be infinitesimally rigid in higher-dimensional spaces [201].
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4.2.2. Graph Rigidity. An important practical question to be asked about rigid-
ity is whether certain graphs give rise to infinitesimally rigid frameworks just because
of their graph topology, independent of their edge weights. Bar-and-joint frameworks
derived from such graphs are extremely useful in architecture and construction en-
gineering. An important concept in answering this question is that of genericity: a
realization is generic if all its vertex coordinates are algebraically independent over
Q. Because the algebraic numbers have Lebesgue measure zero in the real numbers,
this means that the set of nongeneric realizations has Lebesgue measure zero in the
set of all realizations.

Rigidity and infinitesimal rigidity are defined as properties of frameworks, rather
than of graphs. It turns out, however, that if a graph possesses a single generic rigid
framework, then all its generic frameworks are rigid [6, Cor. 2]. This also holds for
infinitesimal rigidity [7]. Moreover, rigidity and infinitesimal rigidity are the same
notion over the set of all generic frameworks [7, sect. 3]. By genericity, this implies
that in almost all cases it makes sense to speak of a “rigid graph” (rather than a rigid
framework). The Graph Rigidity Problem asks, given a simple undirected graph
G, whether it is generically rigid. Notice that the input, in this case, does not involve
edge weights. For example, any graph is almost always flexible for large enough values
of K unless it is a clique [6, Cor. 4].

We remark as an aside that, although genericity is required for laying the theoret-
ical foundations of graph rigidity (see the proof of [81, Thm. 6.1]), in practice it is too
strong. For an edge weighting to be algebraically independent overQ, at most one edge
weight can be rational (or even algebraic). Since computers are usually programmed
to only represent rational (or at best algebraic) numbers, no generic realization can be
treated exactly in any practical algorithmic implementation. The conceptual require-
ment that genericity is really meant to convey is that an infinitesimally rigid generic
realization will stay rigid even though the edge weighting is perturbed slightly [201].
The definition given by Graver in [87] is more explicit in this sense: a realization
is generic if all the nontrivial minors of the complete rigidity matrix have nonzero
value. Specifically, notice that the polynomials induced by each minor are algebraic
relations between the values of the components of each vector in the realization. Nat-
urally, asking for full algebraic independence with respect to any polynomial in Q

guarantees Graver’s definition, but in fact, as Graver points out [88], it is sufficient
to enforce algebraic independence with respect to the system of polynomials induced
by the nontrivial minors of the rigidity matrix (see also section 3.3.2).

Generic graph rigidity can also be described using the graphic matroid M(G) on
G: a set of edges is independent if it does not contain simple cycles. The closure of
an edge subset F ⊆ E contains F and all edges that form simple cycles with edges
of F . We call the edge set F rigid if its closure is the clique on the vertices incident
on F . A graphical matroid M(G) is an abstract rigidity matroid if it satisfies two
requirements: (i) if two edge sets are incident to fewer than K common vertices, the
closure of their union should be the union of their closures; and (ii) if two edge sets are
incident to at least K common vertices, their union should be a rigid edge set [201].
Condition (i) loosely says that if the two edge sets are not “connected enough,” then
their union should give rise to flexible frameworks in RK , as the common vertices can
be used as a “hinge” in RK around which the two edge sets can rotate. Condition
(ii) says that when no such hinges can be found, the union of the two edge sets gives
rise to rigid graphs. If the only resolution to the zero equilibrium force is the zero
vector, then the complete rigidity matrix has maximum rank (i.e., it has the maximum
possible rank over all embeddings in RnK), and its rows naturally induce a matroid
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on the complete set of edges {{u, v} | u �= v ∈ V }, called the rigidity matroid of the
framework (G, x). It was shown in [87] that if x is generic, then the rigidity matroid
is abstract.

4.2.3. Some Classes of Rigid Graphs. Euler conjectured in 1766 that all graphs
given by the edge incidence of any triangulated polyhedral surface are rigid in R3.
This conjecture was proven true for special cases but eventually disproved in general.
Cauchy proved in 1813 that the conjecture holds for strictly convex polyhedra [37],
Alexandrov proved in 1950 that it holds for convex polyhedra [1], and Gluck proved
in 1975 that it also almost always holds for any triangulation of a topological sphere
[81]. The general conjecture was finally disproved by Connelly in 1977 [43] using a
skew octahedron.

This does not mean that there are no purely topological characterizations of rigid
graphs. In 1911, Henneberg described two local procedures (or “steps”) to construct
new, larger rigid graphs from given rigid graphs [97] (if a given graph can be “de-
constructed” by using the same procedures backwards, then the graph is rigid). The
Henneberg type I step is as follows: start with a K-clique and add new vertices adja-
cent to at least K existing vertices. This defines a vertex order known as Henneberg
type I order (see section 1.1.2). The Henneberg type II step is somewhat more in-
volved, and we refer the interested reader to the extensive account of Henneberg and
Henneberg-like procedures found in [218]. Here follows a philological note on Hen-
neberg type I orders: although they are always referred to [97], they were actually
first defined in a previous book by Henneberg [96, p. 267]. However, a picture with
a Henneberg type I order in R2 appeared one year earlier, in 1885, in [195, Fig. 30,
Pl. XV].

Limited to R2, a characterization of all rigid graphs G in R2 was described by
Laman in 1970 [116]: |E| = 2|V | − 3 and for every subgraph (V ′, E′) of G, |E′| ≤
2|V ′|− 3. Equivalent but more easily verifiable conditions were proposed in [154, 188,
217]. Unluckily, such conditions do not hold for R3. For K > 2, no such complete
characterization is known as yet; an account of the current conjectures can be found
in [234, 104], and a heuristic method was introduced in [210].

4.3. Other Applications. DG is not limited to these applications. For example,
an application to the synchronization of clocks from the measure of time offsets be-
tween pairs of clocks is discussed in [205]. This, incidentally, is the only engineering
application of the DGP1 we are aware of. The solution method involves maximizing
a quadratic form subject to normalization constraints; this is relaxed to the maxi-
mization of the same quadratic form over a sphere, which is solved by the normalized
eigenvector corresponding to the largest eigenvalue. Another application is the local-
ization and control of fleets of autonomous underwater vehicles (AUVs) [11]. This
is essentially a time-dependent DGP, as the delays in sound measurements provide
an estimate of AUV-to-AUV distance and an indication of how it varies in time. We
remark that GPS cannot be used underwater, so AUVs must resurface in order to
determine their positions precisely. A third application to the quantitative analysis
of music and rhythm is discussed in [59].

In the following sections, we briefly discuss two other important engineering appli-
cations of DG: dimensionality reduction by means of MDS and robotics, specifically
inverse kinematic calculations. In the former, we aim to find a projection in the
plane or the space which renders the graph visually as close as possible to the higher-
dimensional picture (see section 4.3.1). In the latter, the main issue is to study how
a robotic arm (or system of robotic arms) moves in space in order to perform certain
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tasks. Known distances include those from a joint to its neighboring joints. The main
problem is that of assigning coordinate values to the position vector of the farthest
joint (see section 4.3.2).

4.3.1. Dimensionality Reduction. Multidimensional Scaling (MDS) [31, 74, 68]
is a dimensionality reduction tool in data analysis for representing measurements of
dissimilarity among pairs of objects as distances between points in a low-dimensional
space in such a way that the given dissimilarities are well approximated by the dis-
tances in that space. The choice of dimension is arbitrary, but the most frequently
used dimensions are 2 and 3. MDS methods differ mainly according to the distance
model, but the most usual model is the Euclidean one (in order to represent correla-
tion measurements, a spherical model can also be used). Other distances, such as the
�1 norm (also called the Manhattan distance) are used [5, 246]. The output of MDS
provides graphical displays that allow decision makers to discover hidden structures
in complex data sets.

MDS techniques have been used primarily in psychology. According to [109], the
first important contributions to the theory of MDS are probably [213, 214], but they
did not lead to practical methods. The contributions to the MDS methods are due
to the Thurstonian approach, summarized in Chapter 11 of [223], although the real
computational breakthrough was due to Shepard [202, 203, 204]. The next important
step was taken by Kruskal [112, 113], who put Shepard’s ideas into a formal setting
in terms of optimization of a least squares function. Two important contributions
following the Shepard and Kruskal works are [35] and [216].

Measurements of dissimilarity among n objects can be represented by a dissimi-
larity matrix D = (dij) [69]. The goal of MDS is to construct a set of points xi ∈ RK

(for i ≤ n and K low, typically K ∈ {2, 3}) corresponding to those n objects such
that pairwise distances approximate pairwise object dissimilarities (also see the APA
method in section 3.4.4). MDS is complementary to principal component analysis
(PCA) [107, 84] in the following sense. Given a set X of n points in RH (with H
“high”), PCA finds a K-dimensional subspace of RH (with K “small”) on which to
project X in such a way that the variance of the projection is maximum (essentially,
PCA attempts to avoid projections where two distant points are projected to be very
close). PCA might lose some distance information in the projection, but the remain-
ing information is not distorted. MDS identifies a K-dimensional subspace τ of RH

which minimizes the discrepancy between the original dissimilarity matrix D of the
points in X and the dissimilarity matrix D′ obtained by the projection on τ of the
points in X . In other words, MDS attempts to represent all distance information in
the projection, even if this might mean that the information is distorted.

MDS and PCA methods can be considered classical approaches to dimensionality
reduction [138] in the domains of computational topology and geometry. However,
the nonlinear structures presented in many complex data sets are invisible to MDS
and PCA. Two different methods that are able to discover such nonlinearities are
Isomap [219] and Laplacian eigenmaps [13]. The Isomap, motivated by manifold
learning [155], tries to preserve the intrinsic geometry of the data by exploring geodesic
distances, and the Laplacian eigenmaps, motivated by spectral graph theory [19], are
based on the Laplacian matrix of the graph associated with the problem.

4.3.2. Robotics. Kinematics is the branch of mechanics concerning the geometric
analysis of motion. The kinematic analysis of rigid bodies connected by flexible joints
has many similarities with the geometric analysis of molecules, when the force effects
are ignored.
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The fundamental DG problem in robotics is known as the inverse kinematic prob-
lem (IKP—see item 15 in the list of section 1.2). Geometric constructive methods
can be applied to solve the IKP [78], but algebraic techniques are more suitable to
handle more general instances. Reviews of these techniques in the context of robotics
and molecular conformation can be found, for example, in [179, 72, 189]. There are
three main classes of methods in this category: those that use algebraic geometry,
those based on continuation techniques, and those based on interval analysis.

In general, the solution of the IKP leads to a system of polynomial equations. The
methods based on algebraic geometry reduce the polynomial system to a univariate
polynomial, whose roots yield all solutions of the original system [158, 34]. Con-
tinuation methods, originally developed in [192], start with an initial system, whose
solutions are known, and transform it into the system of interest, whose solutions are
sought. In [224], using continuation methods, it was shown that the inverse kinemat-
ics of the general 6R manipulator (an arm system with six rotatable bonds with fixed
lengths and angles [101]) has 16 solutions; more information can be found in [230].

One type of interval method applied to IKP is related to the interval version of the
Newton method [186], and others are based on the iterative division of the distance
space of the problem [144]. An interesting method in the latter class [220] essentially
consists in solving a EDMCP whose entries are intervals (see sections 2.6 and 2.6.2).
When the distance matrix is complete, the realization of the selected points can be
carried out in polynomial time (see, e.g., [209, 65]). In order to determine the values
for the unknown distances, in [185] a range is initially assigned to the unknowns and
their bounds are reduced using a BP technique, which iteratively eliminates from the
distance space entire regions which cannot contain any solution. This elimination
is accomplished by applying conditions derived from the theory of DG. This BP
technique is different from the BP algorithm discussed in sections 3.3 and 3.5, as
the search space is continuous in the former and discrete in the latter. Another
BP scheme for searching continuous space is described in [244]. This is applied to
molecular conformational calculations related to computer-assisted drug design.

5. Conclusion. Euclidean distance geometry is an extensive field with major bio-
logical, statistics, and engineering applications. The foundation of its theory was laid
around a century ago by mathematicians such as Cayley, Menger, Schoenberg, Blu-
menthal, and Gödel. Recent extensions, targeting the inverse problem of determining
a distance space given a partial distance function, contribute further mathematical as
well as applied interest to the field. Because of the breadth and maturity of this field,
our survey makes no claim to completeness; furthermore, we admit to a personal bias
toward applications to molecular conformation. We have striven, however, to give the
reader a sufficiently informative account of the most useful, interesting, and beautiful
results of Euclidean DG. Obviously, scientific progress was made while this survey
was being written. We refer the reader to [173] for very recent advances.
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St. John, Therese Malliavin, Benôıt Masson, Michael Nilges, and Maxim Sviridenko
for coauthoring some of the papers we wrote on different facets of this topic. We are
grateful to Leandro Martinez for useful discussions, and to three anonymous referees
for carefully checking and improving this paper. We also wish to thank Chiara Bellasio
for providing inspiring dishes, a pleasant atmosphere, and lots of patience and support
during many working sessions in Paris.

D
ow

nl
oa

de
d 

06
/1

2/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS 61

REFERENCES

[1] A. Alexandrov, Convex Polyhedra, Gosudarstv. Izdat. Tekhn.-Theor. Lit., Moscow, 1950 (in
Russian).

[2] A. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix comple-
tion problems via semidefinite programming, Comput. Optim. Appl., 12 (1999), pp. 13–30.

[3] R. Alves, A. Cassioli, A. Mucherino, C. Lavor, and L. Liberti, Adaptive branching
in iBP with Clifford algebra, in Proceedings of the Workshop on Distance Geometry
and Applications, A. Andrioni, C. Lavor, L. Liberti, A. Mucherino, N. Maculan, and
R. Rodriguez, eds., Universidade Federal do Amazonas, Manaus, 2013, pp. 65–69.

[4] B. Anderson, P. Belhumeur, T. Eren, D. Goldenberg, S. Morse, W. Whiteley, and

R. Yang, Graphical properties of easily localizable sensor networks, Wireless Networks,
15 (2009), pp. 177–191.

[5] P. Arabie, Was Euclid an unnecessarily sophisticated psychologist?, Psychometrika, 56
(1991), pp. 567–587.

[6] L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978),
pp. 279–289.

[7] L. Asimow and B. Roth, The rigidity of graphs II, J. Math. Anal. Appl., 68 (1979), pp. 171–
190.

[8] J. Aspnes, T. Eren, D. Goldenberg, S. Morse, W. Whiteley, R. Yang, B. Anderson,

and P. Belhumeur, A theory of network localization, IEEE Trans. Mobile Comput., 5
(2006), pp. 1663–1678.

[9] J. Aspnes, D. Goldenberg, and R. Yang, On the computational complexity of sensor net-
work localization, in Algorithmic Aspects of Wireless Sensor Networks, S. Nikoletseas and
J. Rolim, eds., Lecture Notes in Comput. Sci. 3121, Springer, Berlin, 2004, pp. 32–44.

[10] L. Auslander and R. MacKenzie, Introduction to Differentiable Manifolds, Dover, New
York, 1977.

[11] A. Bahr, J. Leonard, and M. Fallon, Cooperative localization for autonomous underwater
vehicles, Internat. J. Robotics Res., 28 (2009), pp. 714–728.

[12] A. Barvinok, Problems of distance geometry and convex properties of quadratic maps, Dis-
crete Comput. Geom., 13 (1995), pp. 189–202.

[13] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data rep-
resentation, Neural Comput., 15 (2003), pp. 1373–1396.

[14] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds
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[164] J. Moré and Z. Wu, Global continuation for distance geometry problems, SIAM J. Optim.,
7 (1997), pp. 814–836.
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