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Abstract

The Earth Mover’s distance was first introduced as a
purely empirical way to measure texture and color simi-
larities. We show that it has a rigorous probabilistic in-
terpretation and is conceptually equivalent to the Mallows
distance on probability distributions. The two distances are
exactly the same when applied to probability distributions,
but behave differently when applied to unnormalized distri-
butions with different masses, called signatures. We discuss
the advantages and disadvantages of both distances, and
statistical issues involved in computing them from data. We
also report some texture classification results for the Mal-
lows distance applied to texture features and compare sev-
eral ways of estimating feature distributions. In addition,
we list some known probabilistic properties of this distance.

1. Introduction

The Earth Mover’s distance (EMD) was first introduced
by Rubneret al. for color and texture images [11, 12].
This distance can be applied to distributions of points (e.g.,
colors or texture features) as long as the space of points
is equipped with some similarity measure. Rubneret
al. demonstrated that it works well for image retrieval [11].
In addition, it was shown that the EMD outperforms many
other texture similarity measures when used for texture clas-
sification and segmentation [9]. The EMD has many attrac-
tive properties – to some extent it mimics the human per-
ception of texture similarities, it allows for partial matches,
and there exist efficient algorithms for computing it. How-
ever, so far there has been almost no theoretical justification
for the EMD.

The concept of EMD is not new, although implemen-
tations and applications vary. The match distance for his-

tograms of pixel intensities introduced in [13] in 1983 and
its multidimensional extension [14] are based on the same
idea of matching the closest values. And there is an equiva-
lent metric on probability distributions known as Mallows,
or Wasserstein, distance, which has a clear probabilistic in-
terpretation. It was introduced in the statistical literature in
1972 by [7], but it had also independently appeared a little
earlier in the physics and probability literatures, and some
date it all the way back to the 1940s [10]. For the case of
two distributions with equal masses, the EMD is exactly the
same as the Mallows distance. The case of unequal masses
is not formally covered by the Mallows distance as all prob-
ability distributions are normalized to have total mass 1. In
this case, the EMD and Mallows behave differently, and one
may have an advantage over the other depending on the con-
text; this issue will be discussed in detail in section 2.2.

This paper is organized as follows: in section 2, we
define the EMD and Mallows distances, demonstrate their
equivalence for the case of equal masses and discuss the
differences for the case of unequal masses. In section 3, we
discuss how the Mallows distance can be computed from
data, including the special case of one-dimensional data
which does not require solving the optimization problem.
Section 4 presents some empirical results for texture classi-
fication, comparing several ways of applying the Mallows
distance to textures. Section 5 concludes with a summary,
and the Appendix lists some mathematical properties of the
Mallows distance.

2. Comparing the Earth Mover’s and Mallows
distances

2.1. Definitions and equivalence

Let us start with the formal definitions of the two dis-
tances. The Earth Mover’s distance is defined for ”sig-
natures” of the form{(x1, p1) . . . , (xm, pm)}, where xi



is the center of data clusteri and pi is the number of
points in the cluster. The signatures are not normalized,
so the total masses of two signatures may not be equal.
Given two signaturesP = {(x1, p1), . . . , (xm, pm)} and
Q = {(y1, q1), . . . , (yn, qn)}, the EMD is defined in terms
of an optimal flowF = (fij), which minimizes

W (P, Q, F ) =
m∑

i=1

n∑
j=1

fijdij

wheredij = d(xi, yj) is some measure of dissimilarity be-
tweenxi and yj , e.g., the Euclidean distance inRd. In
the EMD terminology,W (P, Q, F ) is the work required to
move earth from one signature to another. The flow(fij)
must satisfy the following constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (1)
n∑

j=1

fij ≤ pi, 1 ≤ i ≤ m (2)

m∑
i=1

fij ≤ qj, 1 ≤ j ≤ n (3)

m∑
i=1

n∑
j=1

fij = min(
m∑

i=1

pi,

n∑
j=1

qj) (4)

Once the optimal flowf∗ij is found, the Earth Mover’s dis-
tance betweenP andQ is defined as

EMD(P,Q)=

∑m
i=1

∑n
j=1 f∗ijdij∑m

i=1

∑n
j=1 f∗ij

(5)

Now let us switch to statistical terminology and intro-
duce the Mallows distance.X andY are now random vari-
ables with distributionsP andQ in Rd, respectively. The
Mallows distance betweenP andQ can in general be de-
fined by a minimum of the expected difference betweenX
andY , taken over all joint probability distributionsF for
(X, Y ) such that the marginal distribution ofX is P and
the marginal ofY is Q:

Mp(P, Q) = min
F
{(EF‖X − Y ‖p)1/p : (X, Y ) ∼ F

X ∼ P, Y ∼ Q}.

Herep can be any number greater or equal to 1, but the most
interesting cases arep = 1 andp = 2. ‖ · ‖ is usually taken
to be the Euclidean orL1 vector norm. For the definition to
make sense, the distributionsP andQ must have finitep-th
moments (E[‖X‖p] < ∞ andE[‖Y ‖p] < ∞).

Now let us write out this definition for the case of two
discrete distributionsP = {(x1, p1), . . . , (xm, pm)} and
Q = {(y1, q1), . . . , (yn, qn)}. Note that signatures can
always be converted to proper probability distributions by

normalizing the weights to add up to 1. We need to mini-
mize the expectation underF = (fij), the joint distribution
of X andY :

EF‖X − Y ‖p =
m∑

i=1

n∑
j=1

fij‖xi − yj‖p =
m∑

i=1

n∑
j=1

fijdij.

The distributionF is subject to the following constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (6)
n∑

j=1

fij = pi, 1 ≤ i ≤ m (7)

m∑
i=1

fij = qj, 1 ≤ j ≤ n (8)

m∑
i=1

n∑
j=1

fij =
m∑

i=1

pi =
n∑

j=1

qj = 1. (9)

Constraints 6 and 9 ensure thatF is indeed a distribution
and are the same for the EMD flow (since bothP andQ are
proper probability distributions with total mass 1, 4 is the
same as 9). Moreover, as long asP andQ have the same to-
tal mass, the EMD constraints 2 and 3 are forced to become
equalities in order to satisfy 4. As noted in [11], for signa-
tures with the same total mass the EMD is a true metric on
distributions, and it isexactlythe same as the Mallows dis-
tance (note that normalizing signatures with the same mass
to have total mass 1 does not affect their EMD).

2.2. The case of unequal total masses

Figure 1. The difference between distribu-
tions and signatures: same data, different
normalization

When the two signatures have different masses, the EMD
does something truly different from Mallows. Let us start
with a toy example: suppose we have two sets of data,
X = {1, 4}, andY = {1, 2, 3, 4}. If we normalize these



to have total mass 1, then each point inX has weight1/2,
each point inY has weight1/4, and it is easy to check that
the joint distribution ofX and Y that gives mass1/4 to
pairs(1, 1), (1, 2), (4, 3), (4, 4) and 0 to all others satisfies
the constraints and solves the optimization problem. If we
use theL1 norm to measure the ground distance and set
p = 1, thenM1(X, Y ) = EMD(X, Y ) = 1/2. However,
if we use signatures and give every point weight 1 (so that
the total mass ofX is 2 and the total mass ofY is 4), it is
easy to see that EMD(X, Y ) = 0 (one can either compute
it directly or note thatX is a subset ofY and the EMD al-
lows for partial matching). Arrows on Figure 1 show how
the points are matched in both cases.

From the statistical point of view, this property of the
EMD is probably a disadvantage. In the toy example above,
even ifY contained a thousand other points with very dif-
ferent values, the distance betweenX andY would still be
0, so just two points from a sample of a thousand would
determine the distance. However, there exist other non-
statistical contexts where partial matches may be appropri-
ate, such as image retrieval. Nevertheless, since the EMD
allows for matching any part of the distribution, no mat-
ter how small, partial matches may be spurious, especially
if the sizes of the two signatures being compared are very
different. It is quite possible that textures would produce
spurious matches. (Note that the excellent EMD texture
classification results reported in [9] were obtained by com-
paring signatures of the same size, so partial matching was
never a problem.) Also, the EMD on signatures is not in-
variant to weight scaling, unless both signatures are scaled
by the same factor. So if, for example, one of the two texture
patches is duplicated to produce a larger image, the distance
between the two textures will change. Partial matching is a
computationally efficient and convenient way to search a
large image for a small match, but it should be used with
caution, especially outside the image retrieval context.

3. Computing the Mallows distance from data

In practice, the distributions which we want to compare
are unknown, so the distance between them cannot be com-
puted exactly. In the texture framework, for example, if we
believe that two textures have “true” feature distributionsP
andQ, then our goal is to estimate the distanced(P, Q).
However, we do not knowP andQ, so one way to estimate
the distance would be to construct some distribution esti-
matesP̂ andQ̂ from data and estimated(P, Q) byd(P̂ , Q̂).
The triangle inequality implies that

|d(P, Q)− d(P̂ , Q̂)| ≤ d(P̂ , P ) + d(Q̂, Q),

so if the distribution estimateŝP andQ̂ are good, then the
distance will also be estimated accurately. This is not the

only possible way to estimate the distance, but it is rather
natural.

It is important to distinguish between the issues of pick-
ing the right distance for the problem (e.g., Mallows orχ2

or L1) and estimating the distributions well from the avail-
able data (by a fixed-bin histogram, adaptive-bin histogram,
signature, or some other method). There is an abundance
of statistical literature on how to estimate distributions; the
choice depends on the amount of available data, the dimen-
sionality of the data, and the questions about the distribution
one needs to answer. Once the distributions are estimated,
one must make another choice on how to measure the dis-
tance between them, which again depends on the problem.
There are no a priori reasons for these two issues to be con-
nected, other than perhaps computational complexity.

In theory, the Mallows distance can be computed for
any probability distribution, discrete or continuous; in prac-
tice, it is convenient to use optimization algorithms for the
transportation problem [5], so the distributions need to be
discrete. The optimization problem can be stated espe-
cially compactly if we have two samples of the same size
X = {x1, . . . , xn} andY = {y1, . . . , yn} and use the em-
pirical distribution function as our estimate (i.e., give every
point weight1/n and do not bin). Then the Mallows dis-
tance between empirical distributions is

Mp(X, Y ) =

(
1
n

min
(j1,...,jn)

n∑
i=1

‖xi − yji‖p

)1/p

(10)

where the minimum is taken over all possible permuta-
tions of {1, . . . , n}. In this case it is convenient to use
the Hungarian algorithm for the optimal assignment prob-
lem [4], a special case of the transportation problem. If the
observations are one-dimensional, the optimization prob-
lem can be solved explicitly: letx(1) ≤ . . . ≤ x(n) and
y(1) ≤ . . . ≤ y(n) be the sorted vectorsX andY ; then the
Mallows distance is just theLp vector distance between the
sorted vectors:

Mp(X, Y ) =

(
1
n

n∑
i=1

|x(i) − y(i)|p
)1/p

.

It is interesting to note that the match distance on one-
dimensional “unfolded histograms” for texture intensities
[13] and its multidimensional extension [14] can be written
in the form of equation 10. Both of them are nothing but the
Mallows distance applied to the empirical distributions.

If we have two samples of unequal sizesm andn, it is
still possible to apply the Hungarian algorithm by replicat-
ing each observation so that both samples have the size of
the least common multiple ofm andn. Of course it only
makes sense to do so if the least common multiple ofm and
n is not too large; otherwise in practice one bins the distri-



butions or applies the general algorithm to the rectangular
matrix.

Using an adaptive binning technique like signatures has
some attractive properties. The way the signatures are con-
structed for textures – clustering filter responses into a few
clusters and then computing the frequency of each cluster
– corresponds to the concept of textons in the sense of [6].
There textons were defined as frequently occurring filter re-
sponses, or texture prototypes, and texton distributions were
estimated by the same technique as the one used for tex-
ture signatures in [11], i.e., clustering filter responses and
computing cluster frequencies. Both [6] and [11] demon-
strate that the distributions of textons provide an accurate
and compact way to describe textures. However, one must
be aware that even though this approach does not depend on
a fixed bin size, there are still artifacts from the choice of the
clustering algorithm, the number of clusters, etc. Using the
empirical distributions, on the other hand, does not involve
any additional algorithms or parameters, and it may lead to a
more accurate estimate of the distance between distributions
(if it is computationally feasible to use the whole sample).
However, the dimension of the data should also be taken
into account: one-dimensional data is special, since it only
requires sorting, but in dimensions 2 and higher it may be
necessary to coarsen the distribution estimates if the trans-
portation problem algorithm becomes slow. There is some
empirical evidence that for the EMD-based texture classi-
fication estimating high-dimensional distributions may be
avoided altogether [9]. We discuss this in more detail in the
next section.

4. Experimental results

Extensive empirical evidence on the usefulness of the
EMD for texture analysis and image retrieval has already
been published [11, 12, 9]; therefore we chose not to con-
duct large-scale experiments. Instead, we tested the use of
the empirical distribution as an estimate on the relatively
small MeasTex texture database [8], which consists of 16
Brodatz textures [2]. Following the benchmarking strat-
egy of [9], we extracted sets of 16 random non-overlapping
blocks from each texture, with sizes16 × 16, 32 × 32,
64×64, and128×128. Then for each sample size we com-
puted the average classification rate by the “leave-one-out”
method (cross-validation in statistical terminology). This
means leaving out each image in turn, computing its dis-
tance to all the other images, and assigning it to the class
of its nearest neighbor. The classification error rate is then
estimated by the percentage of incorrectly assigned images.

First we describe how the Mallows distance can be ap-
plied to pixel intensities. The texture synthesis method of
[3] suggests that the appearance of texture is largely deter-
mined by the joint distribution of pixel intensities in a win-

dow of a suitable size. It is also consistent with the idea
that filter responses determine texture appearance, since
the joint distribution of pixel intensities in the filter sup-
port window determines the distribution of filter responses.
The sample windows were created by sampling at random
a fixed number (300) of overlapping square texture patches
from each image. The ground distance between patches was
measured as the sum of squared differences of pixel intensi-
ties. This method produces reasonable classification errors
(12% on the128× 128 size), although it seems so simple-
minded that one would not expect it to work at all. How-
ever, the methods based on filter responses are a lot better,
and this example is intended only as an illustration.

Estimating the Mallows distance between distributions
of filter responses can be done in two ways: using the one-
dimensional marginals (distributions of individual filter re-
sponses) or the joint distribution of all filter responses. If
one uses the empirical distributions rather than binned his-
tograms, for the one-dimensional marginals all one needs
to do is sort the vectors, which can be done very fast.
On the other hand, the Hungarian algorithm needed for
the joint distributions becomes slow for large images, and
using empirical distributions is no longer feasible. The
“curse of dimensionality” is also an issue, because the high-
dimensional joint distribution is harder to estimate that the
one-dimensional marginals. (The number of filters in our
experiments is 40, all of them first or second derivatives of a
2-D Gaussian at different scales and orientations.) We have
done a small number of experiments with joint distributions
and found that using the marginals of filter responses gives
better classification results and is faster to compute. This
agrees with results in [9], where using marginals of filter
responses rather than the joint distribution also produced
somewhat more accurate classification. For these reasons,
we only report detailed Mallows distance results for the
marginals of filter responses, comparing four methods of
estimating the distribution: empirical distribution (no bin-
ning), coarse fixed-bin histogram (16 bins), fine fixed-bin
histogram (256 bins), and adaptive-bin histogram where re-
sponses are clustered into 16 bins by ak-means type al-
gorithm. In all cases, the Mallows distance between two
textures is the sum of the distances between individual filter
marginals, the vector norm isL1, andp = 2. These results
are presented in Table 1.

The results confirm what one might expect – the empiri-
cal distribution function contains the most information and
consistently does better than other estimates. The adaptive-
bin histogram is nearly as good and requires less memory,
but takes longer to compute, so the choice should depend
on the particular application. The fixed-bin histograms per-
form substantially worse. Finally, the larger the image size,
the easier the classification problem, and for128× 128 tex-
tures all methods perform reasonably well. One should keep



Distribution Image size
estimate 16 32 64 128
Empirical 35.94 5.86 1.56 0
Adaptive hist. 36.33 8.20 1.56 0
Coarse hist. 45.31 12.50 4.69 1.17
Fine hist. 51.95 28.91 14.06 7.03

Table 1. Texture classification results: per-
cent misclassified

in mind, however, that on a larger database the differences
we see on small images may show on large image sizes as
well.

5. Summary and conclusions

In this paper we demonstrated the connection between
the Earth Mover’s distance and Mallows distance on distri-
butions, which has a clear probabilistic interpretation. The
solid theoretical foundation may be helpful for further un-
derstanding of why Earth Mover’s distance performs so well
for various vision tasks and for establishing its properties.
We also discussed different methods of estimating the dis-
tributions and advantages and disadvantages of using un-
normalized signatures. A few experimental results were
presented as an illustration of the methods. It is our hope
that the computer vision community will find it useful to be
aware of the statistical theory and issues behind this suc-
cessful but so far mostly empirical technique.
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A Mathematical properties of the Mallows
distance

This appendix lists some of the Mallows distance prop-
erties that have been studied in the statistical literature. A



more detailed and mathematical treatment of these proper-
ties can be found in [1]. Unless stated otherwise,p ∈ [1,∞)
and all distributions have finitep-th moments.

1. Mp is a metric, i.e.,

(i) Mp(F, G) = 0 if and only if F = G,

(ii) Mp(F, G) = Mp(G, F ),

(iii) Mp(F, G) ≤ Mp(F, H) + Mp(H, G).

2. Convolution property forp = 2: if
∫

x dFi(x) =∫
x dGi(x) for i = 1 . . . n, then

M2
2 (F1 ∗ . . . ∗ Fn, G1 ∗ . . . ∗Gn) ≤

n∑
i=1

M2
2 (Fi, Gi).

The ∗ stands for convolution of cumulative distribu-
tion functions, soF1 ∗ . . . ∗ Fn is the distribution of
the sum of independent random variables with distri-
butionsF1, . . . , Fn. This property is stronger than the
triangle inequality.

3. Mp(Fn, F )→ 0 if and only if

(i) Fn → F weakly, that is,Fn(x) → F (x) for
everyx at whichF is continuous, and

(ii)
∫ ‖x‖pdFn(x) → ∫ ‖x‖pdF (x).

4. If X1, . . . , Xn are independent observations from a
distribution F , and Fn is their empirical distribu-
tion, i.e., Fn(t) = 1/n

∑n
i=1 1(Xi ≤ t), then

Mp(Fn, F )→ 0.

5. If F andG are distributions on the real line, then

Mp(F, G) =
(∫ 1

0

|F−1(t)−G−1(t)|pdt

)1/p

.

The casep = 1 is especially simple because

∫ 1

0

|F−1(t)−G−1(t)|dt =
∫ ∞

−∞
|F (t)−G(t)|dt.


