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I. Introduction

The Monge-Kantorovich problem (MKP) has been the center of attention
of many specialists in various areas of mathematics for a long timemditterential
geometry (see [7], [50] and the references there); functional analysis [25], [34];
infinite-dimensional linear programming [6], [46], [40], 100]; probability theory
[82], [84], [79], [20]; mathematical statistics [91], 141], [54]; information theory
and cybernetics [5], [94], [96]; statistical physics 10], [69]; the theory of dynami-
cal systems [145]; and matrix theory [52], [109], [113]. Currently, it is now
appropriate to talk about the MKP as being a whole range of problems with
applications to many mathematical theories that seem different at first glance.
Entire schools have been formed developing different offshoots of the MKP by
making use of diversified mathematical language.

It is very difficult to encompass thoroughly all of the problems and results
in the MKP, which apparently forms an epoch in the development of a consider-
able range of mathematics. This review article discusses the contemporary state
of the MKP mainly paying attention to the probability aspects of the problem.
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648 s.T. RACHEV

2. Statement of the Monge-Kantorovich Problem

This section should be viewed as an introduction to the MKP and its related
problems. There are five known versions of the MKP.

2.1. Monge optimization problem. In 1781, Monge formulated the following
problem (see [112], [59], [60], [87], [24], [50]) in studying the most efficient way
of transporting soil.

Split two equally large volumes into infinitely small particles and then associate
them with each other so that the sum ofproducts of these paths of the particles to
a volume is least. Along what paths must the particles be transported and what is
the smallest transportation cost?

For the significance of this problem in the development of differential
geometry, see [7].

2.2. Kantorovich’s mass transference problem. The abstract form of
Kantorovich’s problem is as follows.

Suppose that P1 and P2 are two Borel probability measures given on a separable
metric space (s.m.s.) (U, d) and (P1, P2) is the space of all Borel probability
measures P on U U with fixed marginals P(. P(. U) and P2(" )-- P2( U " ).
Evaluate the functional

(2.1) 5c(P1, P2) inf { ftt c(x, y)P(dx, dy): P (P1, P2)},
where c(x, y) is a given continuous non-negative function on U U.

We shall call the functional (2.1) Kantorovich’s functional.
The measures P and P2 may be viewed as the initial and final distribution

of mass and (P, P2) as the space of admissible transference plans. If the
infimum in (2.1) is realized for some measure P* (P, P2), then P* is said to
be the optimal transference plan. The function c(x, y) can be interpreted as the
cost of transferring the mass from x to y.

Problem 2.2 was first formulated and studied by Kantorovich for a compact
U and c- d (see [23], [24]). It was shown that

(2.2) Ma(PI, P2)= a(P1, P),

where a is the Kantorovich metric in the space u of Borel probability measures
on (U, d), namely,

a(P"P2)=sup { fv fd(P1-P2) fLipl,, (U)},
(2.3)

Lip,. (U) {f: U + R’: If(x)-f(Y)l <= ad(x, y), x, y U, sup If(x)l < }.
xU

Problem (2.2) with a continuous cost function on any compact space U was
studied by Levin [30]-[33] and Levin and Milyutin [34] (see also [6], [46]).

Kantorovich’s formulation differs from the Monge problem in that the class
(P, P2) is broader than the class of one-to-one trnasference plans in Monge’s
sense (see [6], [50]). Sudakov [50] showed that if the measures P and P2 are
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given on a bounded subset of a finite-dimensional Banach space and are absolutely
continuous with respect to Lebesgue measure, then there exists an optimal
one-to-one transference plan.

In the case of a Polish (complete, separable, metric) space, the dual relation
(2.2) is proved in the papers of Szulga [134], [135], Fernique [80], Hub6rt ([54]
where d is a bounded metric), and Dudley-De Acosta [57]. Kantorovich’s
theorem for an arbitrary s.m.s. U may be stated as follows (see [43], [44]).

Let be the class of all functions c(x, y) H(d (x, y)), x, y U, where the
function H belongs to the class 1 of all nondecreasing continuous functions
on [0, oo) for which H(0)= 0 and which satisfy Orlicz’ condition

cu sup {H(2t)/ H( t): > 0} <

We also write Yg2 for the subset of all convex functions in 1 and 2 for the set
{H d: H YG}.

Theorem 1. Let c@_ and Mc(PI, P2) be given by (2.1). Let

Lip (U) /(f, g) U [Cip, U)]x2: f(x)+ g(y) <= c(x, y), x, y U1
>O

and

83(P1, P2)=sup{f fdPl+ f gdP2: (f,g)Lip (U)}.u u

(i) If t c(x, a)(P1 + P:)(dx) < oo for some a U, then

(2.4) dc(P1, P:)= fJc(P1, P2).

(ii) If Jr; d(x, a)(P + P2)(dx) < oo for some a U, then

(2.5) Md(P1, P2)= Jd(P1, P2),

where @d is given by formula (2.3).
If P1 and Pa are tight measures, then the infimum in (2.1) is attained.
Recall that a measure P is said to be tight if for any positive e there is a

compact set K such that P(K)> 1-e (see, for example, [79]).
The proof of Theorem is based on the idea in the proof of the more general

Theorem 3 given below.
The theorem implies that if 91 is a class of pairs (f, g) of measurable functions

satisfying f(x) + g(y) <- c(x, y) for all x, y U and 9.1 D Lip (U), then

(P,, P:) =sup { fufdPl + fu g dP2: (f, g) 9.1)
(see also [143] for U a Polish space and [100] for (U, d) an arbitrary space).

Dobrushin 10] proved that if c(x, y) I{x y} is the indicator metric, then
in a metric (not necessarily separable) space (U, d)

(2.6) c(P1, P2) sup {[PI(A) P2(A)I: A ( U)},

where (U) is a (r-algebra of Borel sets.
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Relations (2.2), (2.4)-(2.6) furnish a complete description of the minimal
metrics

(2.7) Ip(P,, PE)=inf{p(P): P (P1, P2)}, 0<--P <--c,
with respect to functionals called compound probability metrics (see [14], 20])

(P) d(x,y)P(dx, dy) O<p<oo, p’=min(1,1/p),
xU

o(e= {x e yte(x, aye,
UxU

def

(P)=esssupd(x, y) inf{e >0: P(d(x, y)> e) =0}.

It will be recalled that a s.m.s. (U, d) is called universally measurable (u.m.) if
any measure P e (U) is tight. If U, d) is u.m., then the functionals 1, 0 N p N m,
are metrics by viue of the Frchet-Strassen theorem on the existence of a
measure with given marginal distributions (see [83], [63], [72], [53], [133],
[48]-[50], [57], [132], [93], [153]). The problem of finding 1, p > 1, is known
as Dudley’s problem [79]. The dual relations for (2.7) when 0Np<m follow
from the representations (2.2), (2.4)-(2.6); the relation

l(Pl, P2) =inf{e > 0: PI(A)P2(A),Ae(U)},

A {x: d(x, A) < e}

(see [77], [79], [38], [21]) is a simple consequence of Strassen’s theorem

(2.8) inf {((P): P e (P, P2)} (P, P2),

where ((P) inf {e > 0: P(d(x, y) > e) < e} is the Ky Fan (Fan’ Tsi) distance
and (P, P2) is the L6vy-Prokhorov distance (see [13], [36], [133], [77], [79],
[86], 135]). Dobrushin’s theorem (2.6) also follows from Strassen’s theorem (see
[37]). In addition, (2.6) is a direct consequence of relation (2.5) of Theorem 1
in a s.m.s. U, dp), 0 p 1, if p 0 (see 14]).

We now consider the topological structure of the functionals (2.1). Strassen’s
theorem (2.8) shows that a metric which is minimal with respect to distance in
probability induces weak convergence. Hence, it is natural to expect that the
metrics lp, 0<p<, would also possess striking topological propeies.
Kantorovich and Rubinshtein [27] showed that l d induces weak convergence
when U is a compact space. Dudley [76], [79] (see also [54]) considers essentially
the metric d of (2.3) with a bounded metric d and establishes the topological
equivalence of and v in a s.m.s.U. Dobrushin [10] proved that the weak
convergence of the sequence {P,, n 1,2,. .}c to Pe (P, P) and the
relation

lim sup d(x, a)I{d(x), a)> m}P,(dx-=O
3U

lead to lim, l(P, P) =0 (see [57] for the special case of a Banach space U).
The next asseion generalizes the results of Kantorovich-Rubinshtein, Dobrushin
and Dudley on the topological structure of the functionals in a s.m.s.U.
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Theorem 2. Let

Then

(2.9)

c1 and f c(x,a)P,,(dx)<,
u

n-O, 1,...

lim M(P,,, Po) OCVP. -* Po, lim c(x, b)(P,,-Po)(dx)=O

for some (and therefore for any) b U.
Theorem 2 is proved in [117], [43] and the special cases of it: H(t)= p,

p->_l, in [11], [116]; p>-l, d a bounded metric, in [93]; and p-2, U-R1,
d (x, y) Ix y] in 111]. The proof of (2.9) is based on a relation between minimal
metrics (see [14]). Generalizations of (2.9) were considered in [43], [45]. For
any Po t: (U a Polish space), the space of measures {P: Mc(P, Po)<Oo} is
complete with respect to the metric functional Me, Cl (see [10], [41], [43]).
In particular, the space {P: lp(P, Po) < cx3} is complete with respect to lp, 0<= p <_- oo

(see [93 for 1 -<_ p -< oo, Po(a} 1).
In 1957, Kantorovich and Rubinshtein (see [26], [27]) studied the problem

of transferring masses in the case the transit conveyances have been resolved,
i.e., of determining the quantity

(2.10) M’c(P1, P2) inf {Ic,t: c(x, y)Q(dx, dy)" Q ’(P,P2)},
where the space of admissible conveyances ’(P, P2) consists of all bounded
non-negative Borel measures on U U satisfying

Q(A x U)- Q( U A) PI(A)- PE(A)

for all A 23(U). For U a compact space and c(x, y) an arbitrary continuous
cost function, Levin and Milyutin [34] proved the dual relation

(2.11) M’(P, P2)- 3’(P1, P2),

where

3’(P,,P2)-=sup{I fd(P1-P2)’f: U->R’,f(x)-f(Y)<-c(x,y),x,Y U}.
u

The relation (2.11) continues to hold if U is a s.m.s., c(x,y)-
d(x, y)T(d(x, a), d(y, a)), where a is some fixed point of U and T(t, s) T(s, t)
is a continuous function on (t >-0, s >-0) which is non-decreasing in this region
in both its arguments and strictly positive everywhere with the possible exception
of the lines =0 and s=0 (see [43] and [79] (for T-= 1)). Clearly, Mc>-A’ and
if c-d, then Mc M’c (see [27] for U compact and [57] for U Polish). Levin
[31] proved that if (U,d) is compact, c(x,x)=O, c(x,y)>-O, and c(x,y)+
c(y,x)>O for xy, then Mc=M’ if and only if c(x,y)+c(y,x)=d(x,y). In the
following example, the differences between the functionals sgc and M’ are
especially noticeable.
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EXAMPLE. Let U R and c(x, y) ]x-y]h(max (Ix- a[., [y- a[), where
h(t) is a nondecreasing non-negative continuous function on the half-line [0, c).
Then

’(P, e=)- I_ IF(x)- F(x)lh(lx- al) dx,

(P,, P)= c(F-(’(t), F’(t)) dt,

where F is the distribution function corresponding to P and F-1 is its inverse,
j= 1,2.

The functional " is frequently used in mathematical-economic models (see
[46], [34], [144], [155]) but it is not applied in probability problems. Observe
however the following relationship between the Fortet-Mourier metric and rela-
tion (2.11). In 1953, Fortet and Mourier [82] introduced a metric which is
topologically equivalent to lp, p-> 1 (see [76]-[79], [116], [117], [43]) given by

tp(P,,P2)=sup{ I fd(P1-P2) "fp}
U

and

P=--(g" U->R suprl-Psup{lg.(x)...’g(Y)
r>_.l d(x,y)

"xy, d(x, a)<=r,d(y, a)<= r} <- 1}
and a is a fixed point ofthe s.m.s.U. The functional Mp has a dual representation
of the form (2.11),

Mp(P1, P2)= inf { I Dp(x,y)P(dx, dy)’P’(P,P)},
UU

Dp(x, y)=- d(x, y) max [1, dP-’(x, a), dP-’(y, a)], x,yU.

2.3. Gini’s measure of discrepancy. Already at the beginning of this century,
the following question arose among probabilists: What is the proper way to
measure the degree of difference between two random quantities (see the review
article [101])? Specific contributions to the solution of this problem, which is
closely related to Kantorovich’s problem 2.2, were made by Gini (see [88]-[92]),
Hoeffding [98], Fr6chet [84] and by their successors (see [4], [35], [56], [61]-[68],
[70]-[72], [81], [97], [102]-[111], [113], [115], [120]-[128], [131], [136], [138],
[140]). In 1914, Gini [88], [89] introduced the concept of "simple measure of
discrepancy" which coincides with Kantorovich’s metric d(U= R1, d(x, y)--
Ix-yl). Namely, Gini [88]-[90] studied the functional

(2.12) 7{(F,, F2)=- inf { IR [x- yl dF(x, y): F (F, F)}
in the space of one-dimensional distribution functions (d.f.) F and F. In
(2.12), (F1, F2) is the class of all two-dimensional d.f. F with fixed marginal
distributions Fl(X) F(x, ) and F2(x) F(, x), x R a. Gini and his students
devoted a great deal of study to the properties of the sample measure of dis-
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crepancy, Glivenko’s theorem and goodness-of-fit tests in terms of Y{ (see [61],
[63]-[66], [70]-[72], [81], [88]-[92], [97], [103]-[106], [110], [115], [122]-[127]).
Of especial importance in these investigations was the question of finding explicit
expressions for the measure of discrepancy and its generalizations. Thus in 1943,
Salvemini [123] showed that

(2.13) Yf(F, F) f

_
lF(x)- F2(x)l dx

in the class of discrete d.f. and Dall’Aglio [70] extended (2.13) to all of ft.
Formula (2.13) was proved and generalized in many ways (see for example, [27],
[4], [22], [14], [142], [21], [79], [38], [118], [67]-[68], [136]). For example, by
virtue of the Hoettding-Fr6chet inequalities (see [98], [83])

_F(x, y) <-_ F(x, y) <-_ F(x, y), F e r(F1, EL),

if(x, y) max {Fl(x) + FE(y) 1, 0},

/(x, y)--min {El(x), F2(y)},

any convex non-negative function o on R satisfies the relations

(2.14)

x,y R1,

inf q dF" F (F, F) q dl= (F-(u)- F(u)) du,
R R

R R

,,o(F-fa(u)- F-l(1 u)) du

(see [68], [136]). In particular,

lp(P1, P2) [F-(t)-Fl(t)lp dt p>- 1,

(see [98], [84], [107], [62] for p=2 and [63], [70], [72] for p->_ 1) and

loo(P, P2)= sup {IF-(l(x)-Fl(x)]" x[0, 1]}

(see [39]). The metric 12 (see [83], [84]) is sometimes called Fr6chet distance
(see [71]-[73]). Let *(F1, F2) denote the subset of ff(F, F)_) of two-dimensional
d.f. for which the infimum in (2.12) is attained. If H ff(F, F2) and H(x, x)
(x,x),xR, then He ff*(F1, F2) (see [72], [22]). The following example
shows that the class *(F1, F2) need not be a singleton set.

EXAMPLE. Let F and F2 be discrete d.f. for which there exist a positive e

and points x2 > x and Y2 > Yl such that

Fl(X, +0) Fl(X, -0) >_- e and F2(y, +0)- F2(y,-0) >= e, i= 1, 2.

Then the measure /3 induced by / has a positive mass e at the points (xi, yi),
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1, 2. Let P be a discrete measure on R2 defined by the conditions-

and

P{(x,, y,)} P{(x,, y,)}- e,

P{(xl, Y2)} P{(Xl, Y2)} 4- e,

P{(x2, y,)} P{(x2, Y2)} + e

PI(x,y)}=P{(x,y)}

i= 1,2,

at all remaining points. Such a measure exists (cf. [136]) and its d.f. F belongs
to ff*(F1, F2).

Other examples are discussed in Sudakov’s paper [50].
The problem of describing the set of all optimal transference plans was

studied in [23]-[24], [50], [74]-[75]. We point out that obtaining explicit
expressions for the Kantorovich metric in the multi-dimensional case U R",
n > 1, is an open question. We mention two results on the evaluation of 12(P, Q),
where P and Q are normal distributions in R" with the means/Zp and/zo and
real covariance matrices Ep and Eo.

(i) If EpE< <?Ep, then (see [73])

inf{f IIx-yll’(dx, dy)" - e (P, Q)}
R

I1. o11/ tr (Ep + Eo 2(,p,o)l/2),
where

IIx yll Ix,- y,I =,
i=1

x=(x,... ,x,), y= (yx,." ",y,,)R".

(The condition E’Eo =Y-’QY-’P was not assumed to hold in [73] but as Shortt
noted (in a private communication) without this condition the derivation of the
formula is not legitimate.)

(ii) inf{I IIx-yll213(dx, dy)" ,h (P, Q)}
R2n

II. QII/ tr (Ep +Q 2("pEQ/p)1/2,

where IIx-yll,=E,=, Ix,-y,I (see [93]).
The question of estimating the Kantorovich metric arises in many problems

on the stability of stochastic models (see [14]-[20], [141]-[142]) but it is of
especial interest in solving the problem of the uniqueness of a Gibbsian random
field and in problems of phase transitions in statistical physics (see [8]-[10],
[69], [5], [51], [55], [146]-[152], [154]), in particular, where U R" and d(x, y)

In [11], [14], [16]-[20], [141]-[142], an estimate is gi,en for the Kantorovich
metric with the help of the first pseudomoment when U is a Banach space with
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I(P, Q)=inf{I IIx-yll’(dx, dy)" P (P, O)}uu

<= Vl(P, Q)= I Ilxll P- QI dx.
u

The next three estimates refine the upper bound when U R" and I1" I1" .
For n 1, they become equalities.

(i) Let P and Q have the densities p and q. Then

where

II(P,Q)<-a,(P,Q),

al(P, Q) Ilxll (p- q)(xl/t,. ., x,/t)t--1 dt dXl" dx <= Vl(P, Q).

(ii) Let (p,- q,)(xl, ., x,) R"-’ (P q)(x, ", X,) dx,+a dx,. Then
(see [42])

where

c2(P, Q)= I
j_

ll(P Q) <- a:(P, Q),

f’ (P, ql)(Xl) dx, dtl

+ (Pi- qi)(x,," ., xi) dx d6
i=2 R

+ (- q(x,,..., x ax t Xl... ax_ (, .
(iii) In the one-dimensional case, the Kantorovich metric

’is attained" on the pair of random variables X*= F-(V) and Y*= G-(V),
where V is a uniformly distributed random variable in (0, 1). In the multi-
dimensional case, the Kantorovich metric has the form

Y{(P, Q) inf{E.IIX-Yll: * e ’(f, G)},

where F and G are the respective d.f. of measures P and Q and "(F, G) is
the space of all 2n-dimensional d.f. with fixed marginal distributions

(x,..., x,, ,..., )= F(Xl,"’, x,),

(,. ., , x,,. ., x,) G(x,, x,)(Xl, ", x, R).
The following estimate is due to Kalashnikov. Let the random vectors X=
(X,..., X,) and Y= (Y, ., Y,) have respective d.f. F and G. t (x)= P
(X < x), (x+ Xl, ", x) P (X+ < x+lX1 x, ., X x) and define
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functions similarly for the vector Y. Let V1,’’’, V, be independent r.v.
distributed uniformly on (0, 1). Let

x,* -’(v,), x* -’(v.; x,*), ..., x,* -(v; x,*, ., x,*_,),

V, -1(V1), Y2* -’(V2; Y*), ", y.. -I(v.; Y*, ., Y.*-I).

Then the random vectors X*= (X*,..., X,*) and Y*= (Y*, , Y*) have d.f.
F and G and hence

’{(P, Q)-<- EIIX*- V*ll.
In the case II" II- II" II and U= R", the following lower bound exists for

’((P, Q). Let the measure P have one-dimensional marginal d.f. F,. , Fn and
Q the marginal d.f. G, , Gn. Then ,r(p, Q) _>_ E, -oo IFi(x) G,(x)l dx, and
equality is attained when P is uniquely determined by the collection F1," ", F,
and Q by the collection G1,..., G, (see [136], [140]).

2.4. Ornstein distance. Let U, d) be a s.m.s, and let d,., a [0, oo], be the
analogue of the Hamming metric U", namely,

d,,(x, y) d’(x,, y,) x (Xl," ", x,) e U",
i=l

y= (y,... ,y,) U", 0< a <o, a =min (1, l/a),

1
I{xiyi},d,,o(X, y)

n i=

1
d.,oo(x, y) max {d(x, y,)" i= 1,. ., n}.

n

For any Borel probability measures P and Q on U", define the following
analogue of the Kantorovich distance"

The distance D,,o is known among specialists in the theory of dynamical systems
and coding theory as Ornstein’s d-distance (see [114], [94]-[96], [145]). In [94]
(see also [136]), a generalization of the Ornstein distance is considered called
the iS-distance which coincides with D,,. In information theory, the Kantorovich
metric DI,1 is known as the Vassershtein (sometimes L6vy-Vassershtein) distance
(see [5], [10], [136]). It is possible to show that

(2.15)
D,,,,(P,Q)=sup{ Ifd(P-Q) "f:UN-R’ L,,,,(f)<l }
L., (f) sup {If(x) -f(Y)[/d,,,,, (x, y), x # y, y U"}

for all a [0, oo) (see Theorem 3 below).

2.5. Multi-dimensional Kantorovieh problem. Consider the following prob-
lem which generalizes all of the preceding statements.
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Let P {Pi, i= 1,. , N} be the set ofprobability measures given on a s.m.s.
(U, d) and let (P) be the space of all Borel probability measures P on the direct
product UN withfixed projections Pi on the ith coordinates, 1, , N. Evaluate
the functional

(2.16) (P) inf c dP: P e (P)
U

where c is a given continuous function on U (see [40], [109], [128], [136]).
This transport problem of infinite-dimensional linear programming is of

interest in its own right in problems of stability of stochastic models (see [11],
[141], [22], [40]). This is related to the fact that if {pO,..., p}, i= 1,2, are
two sets of probability measures on (U, d) and P(= Px... xP are their
products, then the value of the Kantorovich functional

(1) =inf[f dP: Pc.(p p(2)) c* (p(1), p(2))
U2N

C$(X1, XN, Yl, YN)= ((Cl(X1, Yl), CN(XN, YN)),

x, yie U, i= l, N,

where (0 is some continuous function on R, coincides with

(1)A.(P1 "’, P), p2) ", p))

=inf{f c*dP’P(PI),...,P),P:),.., p(N2)}ux2N

When U= R1, the following theorem of Lorentz (see [109],. [128], [136],
[40]) establishes an explicit representation for the functional At(P). A function
W: RE-> R is said to be 2-antitone if

W(x, y) + W(x’, y) W(x, y’) W(x’, y) <- 0 for all x <_- x’, y _-< y’.

A function W: RN-> R 1, N-> 2, is said to be N-antitone if W is 2-antitone in
any two of its arguments (for different examples of N-antitone functions, see
[68], [136], [40]). Let the probability measure Pi have a d.f. Fi, i-1,..., N,
and let H(x)- min {F(x)" i- 1,..., N}. Then any continuous N-antitone func-
tion W satisfies the relation (see [136])

WdI=Aw()
R

if and only if at least one of the following two conditions holds"
(a) W >- h for some continuous function h satisfying

hdP <o, Pe (P);
R

(b) sup WdPl" P ())} < oo.
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3. Multi-Dimensional Kantorovich Theorem

In this section we shall prove the duality theorem for the multi-dimensional
Kantorovich problem and we shall study the topological structure ofthe functional
(2.16).

For brevity, will denote the space t: of all Borel probability measures
on a s.m.s. (U, d). Let S(S>_-2) be an integer and let IIbll (b R", m (2)) be
a monotone seminorm I1" [1, i.e., [1. is a seminorm in R" with the following
property: if 0< b< b’, i= 1,..., m, then II’ll - I1"11. For example,

Ilbll= rs Ib Ip’i.,.,_-, ,,, IIll-max(Ib, l: i-1,. mt, Ilbll-lY,_-, b,I and I111=
cir.,=, b,l’ + If_," b,l,,],/,,,=+ p_->l. Foranyx (x,. .,x)eU let

(x)- lid(x,, x), d(xl, x3), , d(x1, xm), d(x2, x3), , d(xm_,, x)ll.
Let/3_ (p,..., pro) be a finite set of measures in and let

(3.1) (P)=inf DdP: Pe(P)
U

where D()= H((x)), x e U and H e .
Let be the space of all measures in for which Iv H(d(x, a))P(dx) <

a e U. For any Uo c__ U define the class Lip (Uo) U >o Lip. (Uo), where
Lip.(Uo) {f: U - R" If(x)-f(Y)l--< d(x, y) for all x, y
Uo} < oo}.

N
Define the class (Uo) {f= (f," ,fv): Y,=, f(x,) _-< D (x,,. ., xm) for

x, e Uo, f e Lip (Uo), 1,. ., N} and for any class 9.1 of vectors f (f,. ., fv)
of measurable functions, let

(P, g) sup f, dP,:
i=l U

and hence the following inequality holds"

(3. (_>- (; (U.
The next theorem (an extension of Kantorovich’s theorem to the multi-
dimensional case) shows that exact equality holds in (3.2).

Theorem 3. For any s.m.s. (U, d) and for any set /;=(P,..., P),
,i=l,. .,N,

(3.3) (/3) K(/;; IN(U)).

If the set P consists of tight measures, then the infimum is attained in (3.1).

PROOF. I. Suppose first that d is a bounded metric in U and let

0,(x,, y) sup {ID(x, ", x)- D(y, ., Y)I" x y e U,
(3.4)

j=l,...,N,ji}

for x, y e U, 1, , N. Since H is a convex function, 0, ",0 are bounded
metrics. Let Uo U and let N(Uo) be the space of all collections f (f,- ,f)
of measurable functions on Uo such that f(x) +. +f(x) N D(x,. , x),
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Xl,’’ ", xn Uo. Let @"(Uo) be a subset of (’(Uo) of collections f for which
If(x) -f(y)[ =< p,(x, y), x, y Uo, 1,. ., N. We wish to show that if Pi(Uo) 1,
i= 1,. ., N, then

(3.5) K(/3; @’(Uo)) K(/3; @"(U)).

Let f @’(Uo). We define sequentially the functions

f(xl) inf {D(Xl, ., XN)--f(x2) fN(XN)"

x,..., x Uo), x U,

if2(x) inf (D(x,..., x) -(x) -f3(x3) fN(X)"

x, U, x, , x Uo}, x_ U,. ,
f*(x) inf {D(x,..., x) -(x) f*N-(X-)"

X, , XN-1 U}, XN U.

The collection f*= (J’i, ,J’*) belongs to the set ("(U) and f =>f(x) for all
i= 1,. , N and x Uo. Hence, Y,=I t,f, dP,<-E,= Jt, dP which implies the
inequality

(3.6) K(P; (’(Uo))-<_ K(P; "(Uo))

from which (3.5) clearly follows.

CASE 1. Let U be a finite space with the elements ul,’", un. From the
duality principle in linear programming, we have

! D(u,,,...,ui)Tr(i,,...,AD(/3) inf
il= iN=l

7r(il,’’’,iN)-->0, E zr(il,’’’,iN) =P,(u,k),k=I,’’’,N1
)

=sup 2 f(u,)P(u,)" 2 f(u.)<--D(u,, uN), Ul," UNe U
i=lj=l j=l

K(/3; (’(U)).

Therefore (3.6) implies the chain of inequalities

K(/3; (U)) _-> K(/3; "(U)) ->_ K(/3; ’(U)) _-> AD(/3),

from which (3.3) follows by virtue of (3.2).

CASE 2. Let U be a compact set. For any n-1,2,..., choose disjoint
non-empty Borel sets A1,"" ", A,. of diameter less than 1/n whose union is U.
Define a mapping h" U U, {ul," , Urn,,} such that h,,(Ai) u, 1," , m,,.
According to (3.5), we have for the collection /3, (P1 hl, PN h) the
relation
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If f(’(U), then _,i=lfi(hn(ui))<=D(u, u,)+K/n, where the constant K
is independent of n and ul,..., un U. Hence, from (3.7) we have

(3.8) K(P,;(’(U,,))<-K(P;(’(U))+K/n.

According to Case 1, there exists a measure P") (/3,) such that

DdP(")=K(,,;’(U,,)).(3.9)
u

Since Pi h converges weakly to P, i= 1,..., N, the sequence {Pn, n
1,2,...} is weakly compact. Let P* be a limit of it in the sense of weak
convergence. From (3.8) and (3.9) it follows that

D dP* <= K(P; (’( U)).
U

CASE 3. Let (U, d) be a bounded s.m.s. Since

H(d(x, a))P,(dx) <
U

the convexity of H and (3.4) imply that

p,(x, a)P,(dx)<oo, i= 1,..., N.
U

Let the P be tight measures. Then for each n 1, 2,... there exists a compact
set K, such that

(3.10) sup f (l+pi(x, a))P(dx)<l/n.
l’i<=N ] U\K

For any A e 3(U), put

P,(A)=P(AfqK)+P(U\K)(A), /3 (PI,,"" ", PN,),
where

1, aA,
6,,(A)=

O, aA,

is the indicator function of the set A. By (3.5),

K(P,,; (’(K,, U{a}))

(3.11) <=sup{ I f(x)P(dx)+ f p(x,a)Pi(dx)’f(g(U)}
i= U U\K

_-< K(/3; ((U)) +N n.

According to Case 2, there exists a measure P(") (/3) such that

DdP(")<=K(,,;(’(K,,U{a}).(3.12)
t

We then obtain (3.3) from relations (3.11) and (3.12) similarly to Case 2.
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Now let P,..., Ps be measures that are not necessarily tight (see [79],
[40]). Let U be the completion of U. To any positive e, choose the largest set A
such that d(x,y)>=e/2 for all xy, x,yA. The set A is countable: A=
{Xl, X2,"" "}. Let A,,={x U: d(x,x,,)<e/2<=d(x, xs) for all j< n} and let A,=
A, f’l U. Then A,, n 1,2,..., are disjoint Borel sets in U and A,, n 1,2,...,
are disjoint sets in U of diameter less than e. Let Pi be the measure generated
on U by Pi, i= 1,..., N. Then for Q=(P,..., Ps) there exists a measure
/2 e (Q) such that

D d/2 K(Q; 65(U)).

Let P.,,(B) P(BfqA,,) for all B(U), i= 1,..., N. To any multiple index
m=(m,..., ms), m= 1,2,..., i= 1,..., N, define the measure (see [79],
[40])

],A, CmPl,ml X" X Ps,m,
where the constant C is chosen so that [d,m(Am, X" X A,,,,) li(A,,,, x x Am,,).
Let/x Em J’J’m" Then/x (/3) and, to each positive e,

/z(@(y,..., Ys)> a + 2e Ilell)--- E {]zm(Aml X A,,,,)" @(x, ,Xu)>

=< fi((y,,.." ,ys)> a),

where e is a unit vector in R’. Since H(t) is strictly increasing and D(x)=
H(?(x)),

D(x)/z(dx) /z(@(x) > t) dH(t)
U

-<- /2((x) > t) dH(t+2elle[I)+g(2ellell)

From the Orlicz condition, it follows that for any positive p, the inequality

IU (H(D(x) + 2e ell) D(x))/2(dx)

=< sup (H(t + 2e lie]I) H(t)" [0, 2pile]I]}

" 1 E H(d(x, a))I{d(x, a) > p/ N}P,(dx)
i--1 U

holds, where el is a constant independent of e and p. As e o 0 and p o o, we obtain

lim sup D dx <_- D de K(Q; IN(U)) K(P; ((U)).
O [j j
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II. Let U be any s.m.s. Suppose that P,,. ., PN are tight measures. For any
n 1, 2, , define the bounded metric d, nd/(n + d). Write D, (x,,. , xN)
H(lld,(x , , do(x , , x )ll). According to part
I of the proof, there exists a measure P(") (/3) such that

(3.13) D. dP(")= K(/5; (( U, d,)).

Since P("), n 1, 2,..., is a uniformly tight sequence, on passing to a sub-
sequence if necessary, we may assume that P") converges weakly to pO) (/3).
By Skorokhod’s theorem (see [47], [77], [79]), there exist a probability space
(f,/z) and a sequence {Xk, k-0, 1,’" "} of N-dimensional random vectors
defined on (f,/z) and assuming values on U. Moreover, for any k 0, 1,- .,
the vector Xk has distribution p(k) and the sequence X,, X2,’" converges
/z-almost everywhere to Xo. According to (3.13), we have K(P; @(U, dk))
Dk(X) dtx D(Xo) dtx. Hence

K(/3; ((U)) -> lim K(/3; ( U, dk)) >= Ao(/3),
koo

which by virtue of (3.2) implies (3.3). The theorem is proved.
As already mentioned, the multi-dimensional Kantorovich theorem can be

interpreted naturally as a criterion for the closeness of n-dimensional sets of

p.robability measures. Let (Ui, di) be a s.m.s., and Pi, Qi u,, i= 1,. , n. Write
P= (PI,""", P,), 0 (QI, Q,), P, Q,e @u, and A(x, y)
H([[d,(x,,y,),..’,d,(x,,y,)I]), where x=(x,,...,x,) and y(y,,...,y,)e
U1 x... x U, 9 and [[, is a monotone seminorm in R". The analogue of the
Kantorovich distance in @ @u, x... x u. is defined as follows:

(3.14) ,(/5, () inf y A(x,y)P(dxdy)" Pe3(fi, (),
x

where (P, Q) is the space of all probability measures on 92 9 with fixed
one-dimensional marginal distributions P1,""", P,, Q,," ", Q,. The Orlicz con-
dition implies that n satisfies the following analogue of the triangle inequality:

t[32) CH[,H(ffI, 1133)+ OH (113, 1132) 1.

If H(t)= p, p-> 1, then P is the usual metric in . Copying the proof of
Theorem 3, we can obtain the following duality theorem for /_/.

Corollary 1. If u, H(d (x, ai)) (Pi + Qi)(dx) < o for some ai Ui,
1, n, then

(3.15)
i=1

f dp,+ f g, dP’f,g,Lip(Ui),
ui

1," , n,
i=1

f/(xi) -]" g’(Y’) <= A(x, y), x, y 9,1}.
If and are sets of tight measures, then the infimum is attained in (3.14).
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In the special case H(t)=tp, Ilbll=l,__ b,I, we have the following
expression for the metric R RH.

then
Corollary 2. If t, di x, ai Pi + Qi dx < o for some ai Ui, 1,. ., n,

9 i=1

U

d,(P,, Q,).
i=1

The representation (3.16) is a direct consequence of both (3.15) and the
one-dimensional Theorem 1.

The distance n assigns a natural metric structure in and an important
q,uest,ion is that of finding criteria for the convergence of collections of measures
P in terms of ,n. Let us state a multi-dimensional analogue of the Kan-
torovich-Rubinshtein theorem.

Corollary 3. Let ff(k)_(pk), p(,k)) o, k=0, 1,. ., and let

H(d(x,, a,))Pk)(dx,)<oc, i= 1,’’’, n, k=O, 1,....
Ui

Then limk_on(ff)(k), /3())-> 0 if and only if, for all i= 1,..., n,

and f H(d(x,,ci))(Pl"*)-P))(dx,)-->O, m->o,p,.) p(O)_i
Ui

for some (and hence for all) ci Ui.
To conclude, we turn our attention to the relationship between Theorem 3

and the multi-dimensional Strassen theorem.

Theorem 4. (See [40].) Suppose that (U, d) is a s.m.s.,

(3.17) ’’(/x) inf {a > 0"/z((x) > a)<a}

is the Ky Fan functional in t:, and

II(P) inf{a >0; PI(B1)+"" "+ P_,(Bs_,)
(3.18)

-<- PN(B)+a + S-2forallB1,.. ", BN-I (U)}

is the Prokhorov functional in N, where B={xv U: (xl,..., xN)<=a for
some x B1, , XN-1 BN-1}. Then

(3.19) inf {’/(/z)" Ix(P)}=II(P),

and if is a set of tight measures, then the infimum is attained in (3.17).
This theorem was proved by Schay [130] in the case of a Polish space. From

(3.3) and (3.19) follows the next inequality relating the functional K(/3) and the
Prokhorov functional (3.18) in the multi-dimensional case" for any H , M> 0
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and a U,

(3.20)
II(/)H(II(/)) -< K() -< H(II(/))+ ClH(M)I-[(ff)

+ c2 E g(d(x,, a))I(d(x,, a) > N)P,(dx,),
i=1 U

where c2 QI, l= [log2 (A,,N2)]+ 1, Cl Nc2, Ix] is the integral part of x and
Am=maxl<=j<_m {11(il,""", im)ll, ik=O, k#j, ij= 1}.

We point out that (3.20) easily leads to the assertion in Corollary 3 to
Theorem 3.

4. Applications of the Monge-Kantorovich Problem

As was clarified in the preceding sections, the MKP studies natural metrical
structure--the Kantorovich functional c and minimal metrics lp that have good
metrical and topological properties. Thus, for example, the minimal structure of
c and lp (Theorem 1) is especially useful in problems of stability of stochastic
models (see [11]-[20], [141]-[142], [3], [22], [10], [54]). It is natural to use the
topological structure of the functionals c and lp (Theorem 2) in the limit-type
theorems assuring weak convergence plus convergence of moments such as
theorems for moments (see [1], [28], [58]) and global limit theorems (see [29]).

In this section, we shall study the Glivenko-Cantelli theorem, a functional
limit theorem, and the stability of queueing systems (QS) in terms of the func-
tionals and lp. These of course do not exhaust the possible applications of
Theorem 1 in the area of stochastics but they do describe a wide spectrum of
the possible applications of the theorem.

4.1. Glivenko-Cantelli theorem. Let (U, d) be a s.m.s, and let t be the set
of all probability measures on U. Let X1, X2, be a sequence of r.v. with values
in U and with respective distributions P1, P2," t. For any n => 1, define the
"empirical measure"

g. x, +" + ax.)/ n

and "average" measure

P. (P,+...+P,)/n.

Let Mc be the functional (2.1), where C((1. We now state the well-known
theorems of Fortet-Mourier [82], Varadarajan [137], and Wellner [ 139] in terms
of relying on Theorem 2.

Theorem (Fortet-Mourier). If P P2 IX and Co(X, y)=
d(x, y)/(l + d(x, y)), then co(ix,, ix)-->O almost surely (a.s.) as n-->.

Theorem (Varadarajan). If P P2 tx and c (c @1) is a bounded
function, then c(ix,, Ix) 0 a.s. as n

Theorem (Wellner). If P1, P2, is a tight sequence, then co(ix,, Pn) - 0 a.s.
as n-->.

The following theorem extends the results of Fortet-Mourier, Varadarajan
and Wellner to the case of an arbitrary functional c, c
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and
Theorem 5. Suppose that sl, $2 is a sequence of measurable operators in U

Di sup {d(s,x, x)" x U},

Li=sup {d(s,x, sy)/d(x, y)" x # y,x, y e U},

O min Di, (Li + 1)o(3X,, Pi), 1 ], 1, 2,. ..
Let Y/=si(X), Q be the distribution of , Q,=(QI+" .+Q,)/n and
(6y, +... + 6y.)/n. If Q, Q2, is a tight sequence,

(4.1) On=(O1W’’’WOn)/nO a.s., n,

c 1 and for some a U

I(4.2) lira sp c(x,a)I{d(x,a)>M}(+P)(dx)=Oa.s.,

then (, P) 0 a.s. as n .
PROOF. From Wellner’s theorem (see [139], and also [79], Theorem 8.3)

and (2.5), it follows that lim(, 0)=0 a.s. We next estimate d(, P)
obtaining

(, P.) (, Q)+(B,+...+B.)/n,(4.3)

where

Bi=sup{ f [f(si(x))-f(x)](x,-Pi)(dx)’f:U->R 1,
u

f(x)- If(Y)] <= Co(X, y), x, y UI
Bi satisfies the estimate B-<2 min (L1, 1, 4(Li + 1)Mco(X,, Pi)). According to (4.1),
Mo(/Zn, Pn)->0 a.s. as n-->. By Theorem 1 and Strassen’s theorem (2.8), it is
possible to derive these inequalities" for any positive M,

(4.4)

and

’("’ P"-) -<- o(,., P -< (.P. +
1 + -a’(/z,,, P,,) 1 + ’(/z.,/5.)

(/z.,/5.) _< H(vr(.,/3.)) + 2c.’a’(., ,,)H(M)
(4.5)

I+ c c(x, a)I{d(x, a) > M}(+ P,)(dx),
u

where r is the Lvy-Prokhorov metric. (For a derivation of relations such as
(4.4) and (4.5), see [14].) From (4.1), (4.4) and (4.5), it follows that s(, P)--, 0
a.s. as n->.

Corollary 1. If c (c ) is a bounded function and t9 --> 0 a.s., then
4c Ix,, P, -> O a.s. as n -> o.

Corollary 1 is. a consequence of Wellner’s theorem when si(x)= x, x U.
The following example shows that the conditions imposed in Corollary 1 are
actually weaker as compared to the conditions of Wellner’s theorem.
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EXAMPLE. Let (U, I1" II) be a separable normed space. Let Xk U, IIxll > k2,
k 1, 2, , and let Xk xk a.s. If we put Sk(X) X Xk, then Q, 6o and O, 0
a.s. Thus Sgc(/X,, P,)= 0 a.s. but Pn is not a tight sequence.

In the following we shall assume that P1 P2 /x. In that event, the
Glivenko-Cantelli theorem can be stated as follows in terms of sCc and lp.

Corollary 2. LetC and tc(x,a)iz(dx)<o. Then c(tz,,tx)-O a.s. as
n - o. In particular, if

dP(x, a)lx(dx)<oo, 0<p<oe,
u

then
Corollary 2 was proved for the case p 1 by Fortet and Mourier [82], for

p-> 1 in 116], and for the general case in 117], [43]. Theorem 1 gives an explicit
representation of the functionals Sgc, c e 2, when U R (see (2.14)). Corollary
2 may be formulated in this case as follows.

Corollary 3. Let c2, U=R, and d(x,y)=lx-yI. Let Fn(x) be the
empirical distribution function corresponding to the theoretical distribution function
F(x) with c(x, O) dF(x) finite. Then

C(F-’(x), F-l(x)) dx -0 a.s.

In particular, if

I lxlp dF(x) < co, p >_ 1,

then

fo’ lF-’(x) F-’(x)]p dx --, 0 a. s.

Corollary 3 was proved earlier for the cases p 1 in [82]; p 2, F(x)= x,
x e [0, 1] in [82]; and p 2, F(x) a continuous strictly increasing function in
[127]; for the general case, see [116], [117] and [43].

A consequence of the Fortet-Mourier theorem (see [76], Theorem 7, and
[79], Theorem 8.4) is Ranga Rao’s result 119]: for any class of equicontinuous
and uniformly bounded functions,

(4.6) sup{ I fd(lz,-tx) ;flt}O a.s., noo.
u

In many problems (see, for example [68] and the references cited there), it is
natural to study the closeness of/x to/x in terms of the functional

r/x(/x.,/x)=sup{f f f gdlx" (f,g)W},
u u

where ; is some class of pairs of measurable functions on U. Theorem 2 and
Corollary 2 to Theorem 5 furnish the convergence of g, to/x in terms of r/at.
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Corollary 4. Let H be a continuous non-negative function such that
lim,_.o sup {H(s)" 0---s <- t} =0 and there exist a point to and Hoe for which
H(t)= Ho(t) fort >= to. Let c= H dand t c(x, a)P(dx) < o. Then rl(ln, i)O
a.s. as n o, where is the class of all pairs of measurable functions (f, g) for
which f(x) + g(y) <-_ c(x, y), x, y U.

We study next the estimation of the convergence speed in the Glivenko-
Cantelli theorem in terms of c. Estimates of this sort are useful if one has to
estimate not only the speed of convergence of the distribution n to/z in weak
metrics but also the speed of convergence of their moments. Thus, for example,
if Elp(tX,,lx)=o(p(n)), n-o, for some p(0, c), then Theorem 1 and
Strassen’s theorem (2.8) imply that (E(Tr(/x,, tx))(P+I/p’= o ((n)), n o, where
p’= max (1, p) (see [14], [21]) and by Minkowski’s inequality it follows that

dP(x, a)tx,,(dx) d"(x, a)iz(dx)
u

=o((n))

for any point a U.
We shall estimate Ec(/z,,/z) in terms of the e-entropy of the measure /.t

as was suggested by Dudley in [78] (see also [85]). Let N(/x, e, 8) be the smallest
number of sets of diameter at most 2e whose union covers U except for a set
Ao with/z(Ao) =< 8. Using Kolmogorov’s definition of the e-entropy of a set U,
we call log N(/x, e, e) the e-entropy of the measure (see [78]). The next theorem
was proved by Dudley [78] for c Co.

Theorem 6. Let c H d l and H( t) th( t), where O < t <= l and h( t)
cr(x, a)(dx)<oforsomer> 1is a nondecreasingfunction on [0, ). Let fly t

and a U.
(a) If there exist numbers k >= 2 and K < o such that

(4.7) N(tz’ e 1/o e k/(k-2))< ge-k

then

(4.8) Ec(/x,, )-<_ Cn--l/r>/k,
where C is a constant depending just on a, k and K.

(b) If h(O) > 0 and, for some positive Cl and 8,

(4.9) N(Iz, e l/o, 1/2) >_ Cle-k
then there exists a C2 C2(/, such that

(4.10) E(/xn,/x)-> c2n-/k.

THE PROOF OF THEOREM 6 is based on [78] and the inequality

(4.11) .(/x, ,)-<2H(N)(/x, ,)+2cn / c(x, a)I{d(x, a)> N/E}(/z + ,)(dx),

where co- d/(l+ d), N> 0 and /z and , are arbitrary measures on t. If
(U,d)=(Rd, II’ll), m -- llxll  (dx) where y=ktd/[(ka-d)(k-2)],
ka > d, k> 2, then requirement (4.7)is satisfied. If(U, d)=(Rk, I1" II), where ka
is an integer and is an absolutely continuous distribution, then condition (4.9)
is satisfied.. The estimate E(/..,/x) -<_ cn-/k is exact as to order when h(0) 0,
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ka is an integer, U Rk and/ is an absolutely continuous distribution having
uniformly bounded moments fl, r > 1, and mr, y > 1.

4.2. Functional central limit theorem. Let :nl, c,2,""", nk, n 1, 2,’’’, be
a double sequence of independent r.v. with d.f. Fnk, k 1," ", k, obeying the
condition of limiting negligibility

(4.12) lim max
lkk

and the conditions

k

(4.13) E:,k 0, EsCk
2 2=r>0, r. =0.

k=l

Let ’.o 0 and nk nl --" + .k, 1 <= k <--_ k., and form a random polygonal line
’n(t) with vertices (t.k,D.k) (see [36]). Let P., from the space of probability
measures defined on (C[0, 1], ][x[] sup {[x(t)[: e [0, 1]}) be the distribution of
st.(t) and let W be a Wiener measure in C[0, 1]. On the basis of Theorem 2, we
can state the following version of the Donsker-Prokhorov theorem for the
functional

Theorem 7. Suppose that conditions (4.12) and (4.13) hold and that
EH([:,kl)<, k=l,2,...,kn, n=I,2,...,H6Y(1. Then the convergence
sgc(P,,, W)- O, n c, is equivalent to the fulfillment of the Lindeberg condition

(4.14) lim Ii X
2 dF,k(X)=O, e>0,

k=l

and the Bernshtein condition

(4.15) u-.lim limsup,_ k= fl,l> H(lx[)dF"k(X)=O"

PROOF. By Theorem 3.1 of [36], the necessity of (4.14) is a straightforward
consequence of Theorem 2. Let us prove the necessity of (4.15). Define the
functional b" C[0, 1] R by the relation b(x)=x(1). Since, for any N> 2x/,

P(llff.II > t) dg(t)<_ecH P(l’.,ol-> t) dH(t),
N N/2

it follows that EH(IInlI)< for all n 1,2,.... By Theorem 2, the relations
P, W and H(IlxlI)(P- W)(dx)-O hod as n- and since for any N

Eg(Ib(,)l)I{lb(,)l> N}-<-2 P(llff.ll > t) dg(t), N,= g-’(g(g)/2),
N

we have P,o b-’ _v Wo b-’ and H(IIxlI.)(P, b-’- Wo b-’)(dx)O as n-oo.
By virtue of Theorem 1 of [28], the necessity of condition (4.15) has been proved.
The sufficiency of (4.14) and (4.15) is proved in a similar way.

Corollary I (Bernshtein). Let 1, 2, be a sequence ofindependent r.v. such
that E2 b and Eli]p . o0, 1, 2," ", p > 2. Let B,, b +" + b,,, ,
+. + ,, and let the sequence B-/2,j 1, 2, , satisfy the limiting negligibil-
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ity condition. Let X,( t) be the random polygonal line with vertices (Bk/ B,,, B-l/2k
and let P,, be its distribution. Then the convergence

(4.16) lp(P,, W)-->O,

is equivalent to the fulfillment of the condition

(4.17) lim n/= EII o.
i=1

The following statement may be called the Bernshtein-Kantorovich invari-
ance principle.

Corollary 2. Suppose that c, c’ , the series scheme {nk} satisfies the condi-
tions of Theorem 7, and conditions (4.14) and (4.15) hold. Then ,(P, b-l,
Wo b-1)-0 as n for any functional on C[0, 1] for which N(b; c, c’)=
sup {c’(b(x), b(y)/c(x, y): x

Let c’( t, s) H’(It- sl) and t, s R. Consider thefollowing examples offunc-
tionals b with finite N(b c, c’).

(a) IfH H’ and b has a finite Lipschitz form

IlbllL sup {Ib(x)-b(y)l/llx-yll: xrS y, x, y C[0, 1]} <,

then N(b; c, c’) < 0. Functionals such as these are bl(x) x(a), a [0, 1]; b2(x)
max {x(t)" t[0, 1]}; b3(x)= Ilxll and b4(x) J’o (x(t)) at, where I111 < 1.

(b) Let H(f)=tp and H’(t)=tp’, 0<p<p’. Then N(b/P’; c, c’)<cx3 and
N(b4; c, c’) <o3 if

Iq(x) q(Y)l <- IIx- yll/’, x, y c[o, 1].

We state one further consequence of Theorem 7.
Let the series scheme {S,k} satisfy the conditions of Theorem 7 and let

r/,(t) ’,k for (t,(k_ t,k), k 1," ", k,, r/,(0) 0. Let P, be the distribution
of r/,. The distribution P, belongs to the space of probability measures defined
on the Skorokhod space D[0, 1] (see [2]).

Corollary 3. The convergence c(P,, W)--> 0 as n--> o is equivalent to the
fulfillment of (4.14) and (4.15).

4.3. Stability of queueing systems. As a model example of the applicability
of Kantorovich’s theorem in the stability problem for queueing systems, we
consider the stability of the system GIGIII. (A detailed discussion of this
problem and its generalizations is presented in Kalashnikov and Rachev’s paper:
"A characterization of queueing system models and its stability," which will be
published in the collection" Stability of Stochastic Models, VNIISI, Moscow,
1984.) Sequences of non-negative r.v. {e,},__o and {s,},=o are treated as sequences
of the lengths of the time intervals between the n-th and (n + 1).st arrivals and
the service times of the n-th arrival, respectively. Define the recursive sequence

(4.18) Wo=0, W,+l=max(w,+s,-e,,O), n=l,2,....

The quantity w, may be viewed as the waiting time for the n-th arrival to begin
to be serviced. Introduce the notation: ej.k (% ek), S.k (S, Sk), k >j,
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e-(eo, el,’’ "), and s-(So, Sl," "). Along with the model defined by relations
(4.18), we consider a sequence of analogous models by indexing it with the letter
r (r_-> 1). Namely, all quantities pertaining to the r-th model will be designated
in the same way as the model (4.18) but will have a superscript r: er), sr), w,
and so on. It is convenient to regard the value r (which can be omitted) as
corresponding to the original model. All of the random variables are assumed
to be defined on the same probability space. For brevity, functionals depending
just on the distributions of the r.v. X and Y will be denoted by (X, Y).

For the system G[ G111o in question, define for k >_- 1 non-negative functions
Ck on (R k, Ilxll), [[(X1,""", x)ll =Ix,l/’’ "/lxl, as follows:

Ck(:,""", :, r/,""", r/k)= max [0, rlk--k, (r/k-- k) + (r/--- :k-1),

’’, (-)+’’- +(1- :,)].

It is not hard to see that (k(en-k,n-1, Sn-k,n-1) is the waiting time for th n-th arrival
under the condition that W,-k O.

Let c 1. The system G[G[I[ is uniformly stable with respect to thefunctional
Mc on finite time intervals if, for every positive T, the following limit relation holds:

8(r)( T; Me) -= sup max [(k(en,n+k-l,Sn,n+k-1), (k(e(en,n+k-1, "-n,n+k-1)]’(r)
n>=O l_k<-T

(4.19)
0 as ro.

The relation (4.19) means that the largest deviation between the variables
W,+k and’,v (r,+k, k 1, T, converges to zero as r - if at time n both compared
systems are free, and for any positive T this convergence is uniform in n.

Theorem 8. Iffor each r 1, 2, , the sequences e(r) and s(r are indepen-
dent,, then

(4.20)

o(r)r)(T; d) <- cn sup dc(en.n+T_l, "n,n+T-1)
n--O

()+ cH sup Sc(Sn,n+T_l, Sn,n+T_
n>__O

Corollary 1. Under the assumptions of Theorem 8, for any p
(r),,(r) )+sup lp(Sn,n+T_l, Sn,n+T_l)(4.21) r)(T; lp)<Sup Ip(e,,..+_l, ,,,,,+T-,

n__>0 n=>0

From (4.20) and (4.21), it is possible to derive an estimate of the stability
of the system GIGIlloo in the sense of (4.19). It can be expressed in terms of the

(r),,(r and s from and respec-deviations of the vectors gn,n+T-1 n,n+T--1 en,n+T- Sn,n+T-1,
tively. Such deviations are easy to estimate if we impose additional restrictions
on e(r and s(r, r 1, 2,. .. For example, when the terms of the sequences are
independent, the following estimates hold:

.+T--1
..(r)Mc(e...+ T--l, en,n+ T-l) N CqH E Mc(ej, er)), q [log2 T] + 1,

j=n

n+T-1
(r) r-l) " E lp( e, e}r)) 0 < p <lp.en,n+ n,n+

j=n
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which can be even further simplified when the terms of these sequences are
identically distributed. On the basis of (4.20) and (4.21), it is possible to construct
stability estimates for the system that are uniform over the entire time axis (see
[11], [12], [15], [22], [99], [3]).

To conclude, the author considers it his accepted duty to thank Academician
Yu. V. Prokhorov for suggesting that this review paper be written. The author
offers his thanks to Academician L. V. Kantorovich and to R. L. Dobrushin, V.
M. Zolotarev and V. N. Sudakov for stimulating discussions relating to the content
of the article. The author expresses his thanks to the governing body of the
Mathematics Institute of the USSR Academy of Sciences and the Probability-
Theoretic Section for the beautiful working conditions allotted to him.
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