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Abstract

This paper describes a novel inpainting algorithm that is capable of filling in holes in overlapping texture a
toon image layers. This algorithm is a direct extension of a recently developed sparse-representation-bas
decomposition method called MCA (morphological component analysis), designed for the separation of
combined texture and cartoon layers in a given image (see [J.-L. Starck, M. Elad, D.L. Donoho, Image
position via the combination of sparse representations and a variational approach, IEEE Trans. Image
(2004), in press] and [J.-L. Starck, M. Elad, D.L. Donoho, Redundant multiscale transforms and their app
for morphological component analysis, Adv. Imag. Electron Phys. (2004) 132]). In this extension, missing p
naturally into the separation framework, producing separate layers as a by-product of the inpainting proces
posed to the inpainting system proposed by Bertalmio et al., where image decomposition and filling-in stag
separated as two blocks in an overall system, the new approach considers separation, hole-filling, and de
one unified task. We demonstrate the performance of the new approach via several examples.
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1. Introduction

Filling-in ‘holes’ in images is an interesting and important inverse problem with many applica
Removal of scratches in old photos, removal of overlaid text or graphics, filling-in missing bloc
unreliably transmitted images, scaling-up images, predicting values in images for better compress
more, are all manifestations of the above problem. In recent years this topic attracted much inter
many contributions have been proposed for the solution of this interpolation task. Common to thes
techniques is the understanding that classic interpolation methods (such as polynomial-based app
are not satisfying; indeed nonlinear strategies and local adaptivity seem crucial.

Among the numerous approaches to fill in holes in images, variational methods are very att
these were pioneered by Guillermo Sapiro and his collaborators [6,20,21], and followed by Ch
Shen [7]. These techniques were coinedInpainting as a reminder of the recovery process muse
experts do for old and deteriorating artwork. In their work, Sapiro et al. motivate the filling-in algor
by geometrical considerations: one should fill in by a smooth continuation of isophotes. This pr
leads to one or another nonlinear partial differential equation (PDE) model, propagating inform
from the boundaries of the holes while guaranteeing smoothness of some sort. In a series of publ
the geometric principle has been implemented through several different PDEs, aiming to get th
convincing outcome.

The variational approach has been shown to perform well on piecewise smooth images. H
below we call such imagescartoons, and think of them as carrying only geometric information. R
images also contain textured regions, and variational methods generally fail in such settings.
other hand, local statistical analysis and prediction have been shown to perform well at filling in
content [3,13,29].

Of course real images contain both geometry and texture; they demand approaches that work
ages containing both cartoon and texture layers. In addition, approaches based on image segme
labeling each pixel as either cartoon or texture—are to be avoided, since some areas in the imag
contributions from both layers. Instead, a method of additively decomposing the image into layers
be preferred, allowing a combination of layer-specific methods for filling in.

This motivated the approach in [2]. Building on the image decomposition method by Vese,
and others [1,28], the image was separated into cartoon and texture images. The inpainting w
separately in each layer, and the completed layers were superposed to form the output image. T
decomposition, a central component in this approach, was built on variational grounds as well, ex
the notion of total-variation [23], based on a recent model for texture images by Meyer [22]. An in
ing feature of this overall system is that even if the image decomposition is not fully successful, th
inpainting results can be still quite good, since the expected failures are in areas where the assig
cartoon/texture contents is mixed, where both inpainting techniques perform rather well.

In previous papers we presented an alternative approach to layer decomposition, optimizing t
sity of each layer’s representation [25,26]. The central idea is to use two adapted dictionaries, one
to represent textures, and the other to represent cartoons. The dictionaries are mutually incoher
leads to sparse representations for its intended content type, while yielding nonsparse repres
on the other content type. These are amalgamated into one combined dictionary, and the basi
denoising (BPDN) algorithm [8] is relied upon for proper separation, as it seeks the combined s
solution, which should agree with the sparse representation of each layer separately. This algori
shown to perform well, and was further improved by imposing total-variation (TV) regularization
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additional constraint. A nice feature to this algorithm is its ability to handle additive noise as a
content type, and separate the given image into three components, achieving denoising as a by-

Naturally, one could deploy such a separation technique in the block diagram strategy of [2],
ing an alternative inpainting algorithm. However, separation-by-sparsity offers a fundamentally di
strategic option,integrated inpainting. Indeed, in this paper we propose an inpainting algorithm cap
of filling in holes in either texture or cartoon content, or any combinations thereof. This new algo
extends the sparsity-seeking layer separation method of [25,26] mentioned above. In effect, w
that missing pixels fit naturally into the layer-separation framework. As a result, layer separatio
denoising of the image are integral by-products of the inpainting process.

As opposed to the inpainting system proposed in [2], where the image decomposition and the fi
stages were separated, our approach recombines the two ingredients in one. Our model is gener
several desirable features:

(1) The image is allowed to include additive white noise;
(2) The image is allowed to have missing pixels; and
(3) The image is assumed to be a sparse combination of atoms from the two dictionaries.

Whereas the two first features refer to the measurements of the problem, as manifested in the lik
function, the last one plays the role of regularization, proposing a prior knowledge on the unknown

The inpainting method proposed in [18,19] is closely related to our technique, being also ba
sparse representations. Our method seems to offer substantial advantages, including: (i) the use o
overcomplete representations which are better suited for typical image content; (ii) a global treat
the image, rather than a local block-based analysis; (iii) a coherent modeling of the overall proble
optimization, rather than the presentation of a numerical scheme; and, perhaps most important o
the ability to treat overlapping texture and cartoon layers, due to our separation abilities. We will
to these issues in more depth after describing our algorithm in Section 3.

In the next section we briefly describe the image separation method as presented in [25,26].
tion 3 we show how this should be extended to treat missing parts, and discuss the numerical a
that should be employed for the solution of the new optimization task posed. We describe some
mental results in Section 4 and conclude in Section 5.

2. Image decomposition using the MCA approach

Let the input image, containingN total pixels, be represented as a 1D vector of lengthN by lexi-
cographic ordering. To model imagesXt containingonly texture, we assume that a matrixTt ∈ MN×L

(where typicallyL � N ) allows sparse decomposition, written informally as

Xt = Ttαt , αt is sparse. (1

Here sparsity can be quantified by any of several different quasi-norms including the�0 norm ‖α‖0 =
#{i: α(i) �= 0} and�p-norms‖α‖p = (

∑ |α(i)|p)1/p with p < 1, with small values of any of these ind
cating sparsity. Sparsity measured in�0 norm implies that the texture image can be a linear combina
of relatively few columns fromTt .
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There are two more technical assumptions. First, localization: the representation matrixTt is such
that if the texture appears in parts of the image and is otherwise zero, the representation is stil
implying that this dictionary employs a multi-scale and local analysis of the image content. Second
herence:Tt should not be able to represent cartoon images sparsely. We require that when (1) is
to images containing cartoon content, the resulting representations are nonsparse. Thus, the d
Tt plays a role of a discriminant between content types, preferring texture geometry.

Turn now to the geometric layer. Converse to the above, we assume there is a dictionaryTn, such that a
cartoon imageXn is sparsely represented by the above definition. We further assume that texture
are represented very nonsparsely byTn, and also assume that the analysis applied by this dictionary
multi-scale and local nature, enabling it to represent localized pieces of the desired content.

For an arbitrary imageX containing both texture and piecewise smooth content (superposed o
mented), we propose to seek a sparse representations over the combined dictionary containingTt

andTn. If we work with the�0 norm as a definition of sparsity, we need to solve{
α

opt
t , αopt

n

} = argmin
{αt ,αn}

‖αt‖0 + ‖αn‖0 subject to: X = Ttαt + Tnαn. (2)

It would be very desirable to obtain the solution of this optimization task. Intuitively, it should le
a successful separation of the image content, withTtαt containing the texture andTnαn containing the
cartoon. This expectation relies on the assumptions made earlier aboutTt andTn being able to sparsel
represent one content type while being highly noneffective in sparsifying the other.

While sensible as a general goal, the problem formulated in Eq. (2) is nonconvex and see
intractable. Its complexity grows exponentially with the number of columns in the overall dictionary
basis pursuit (BP) method [8] suggests the replacement of the�0-norm with an�1-norm, thus leading to
a tractable convex optimization problem, in fact being reducible to linear programming:{

α
opt
t , αopt

n

} = argmin
{αt ,αn}

‖αt‖1 + ‖αn‖1 subject to: X = Ttαt + Tnαn. (3)

Interestingly, recent work has shown that, for certain dictionaries and for objects that have suffi
sparse solutions, the BP approach can actually produce the sparsest of all representations [9,10

If the image is noisy it cannot be cleanly decomposed into sparse texture and cartoon lay
therefore propose a noise-cognizant version of BP{

α
opt
t , αopt

n

} = argmin
{αt ,αn}

‖αt‖1 + ‖αn‖1 subject to: ‖X − Ttαt − Tnαn‖2 � ε. (4)

This way, the decomposition of the image is only approximate, leaving some error to be absor
content that is not represented well by both dictionaries. The parameterε stands for the noise level i
the imageX. Alternatively, the constrained optimization in (4) can be replaced by an unconstr
penalized optimization. Both noise-cognizant approaches have been analyzed theoretically, p
conditions for a sparse representation to be recovered accurately [11,27].

Also useful in the context of sparsity-based separation is the imposition of a total variation
penalty [23]. This works particularly well in recovering piecewise smooth objects with pronou
edges—i.e., when applied to the cartoon layer. It is most conveniently imposed as a penalty in
constrained optimization:{

α
opt
t , αopt

n

} = argmin‖αt‖1 + ‖αn‖1 + λ‖X − Ttαt − Tnαn‖2
2 + γ TV{Tnαn}. (5)
{αt ,αn}
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Here the total variation of an imageI , TV(I ) is essentially the�1 norm of the gradient. Penalizing wit
TV forces the imageTnαn to have a sparser gradient, and hence to be closer to a piecewise smooth
More on TV and how to use it can be found in [23].

As to the actual choice ofTt andTn, our approach in this work is to choose known transforms.
texture content we may use transforms such as local DCT, Gabor or wavelet packets (oscillato
to fit texture behavior). For the cartoon content we can use wavelet, curvelet, ridgelets, contourl
there are several more options. In both cases, the proper choice of dictionaries depends on th
content of the image to be treated. At this writing, the best choice of transform will depend on the
experience; choices made may vary from one image to another. For numerical reasons, we res
choices to dictionariesTt andTn that have fast forward, inverse, and adjoint transforms. More detai
these issues can be found in [25,26].

Figure 1 illustrates the layer separation result for theBarbara image, as obtained by the abo
described algorithm. Many more such results are given in [25,26]. This separation was obtaine
the curvelet transform with five resolution levels atTn, and 50% overlapping discrete cosine transfo
with a block size 32× 32 asTt .

Fig. 1. The originalBarbara image (top), the separated texture (bottom left), and the separated cartoon (bottom rig
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3. Image inpainting using MCA

Assume that the missing pixels are indicated by a diagonal ‘mask’ matrixM ∈ MN×N . The main
diagonal ofM encodes the pixel status, namely ‘1’ for an existing pixel and ‘0’ for a missing one. T
in the model (5) we can incorporate this mask by

{
α

opt
t , αopt

n

} = argmin
{αt ,αn}

‖αt‖1 + ‖αn‖1 + λ
∥∥M(X − Ttαt − Tnαn)

∥∥2
2 + γ TV{Tnαn}. (6)

This way, we desire an approximate decomposition of the input imageX to texture and cartoon part
Ttαt andTtαt , respectively, and the fidelity of the representation is measured with respect to the e
measurements only, disregarding missing pixels. The idea is that onceTtαt and Tnαn are recovered
those represent entire images, where holes are filled in by the two dictionaries’ basis functions.

Interestingly, if we simplify the above model by using a single unitary transformT, the model become

X̂ = T · αopt = T · argmin
α

{‖α‖1 + λ
∥∥M(X − Tα)

∥∥2
2

} = argmin
Z

{∥∥THZ
∥∥

1 + λ
∥∥M(X − Z)

∥∥2
2

}
, (7)

and this is essentially the model underlying the method presented in [18,19]. In his work, Gu
describes an iterated numerical scheme that effectively minimizes the above function. While the
model leads to a simpler inpainting method, it is a weaker version of the one proposed here in Eq
several reasons:

• The model in (6) uses general overcomplete representations. This allows to better match
image content by choosing the transform to strengthen the sparsity assumption, which is at t
of the two methods.

• Using a pair of dictionaries, the algorithm can cope with the combination of linearly combined t
and cartoon content overlapped in the image.

• The total-variation penalty in (6) suppresses the typical ringing artifacts encountered in using
transforms. This can be crucial near sharp edges, where ringing artifacts are strongly visible.

• While the above models (both) consider the image as a whole, the approach taken in [18,19]
and block-based. Thus, multi-scale relations that exist in the image and could be exploited a
looked. Still, the formulation of (7) allowsT to be chosen as an orthonormal multi-scale transf
that operates on the entire image (e.g., wavelet), and then improved results could be obtaine

On the other hand, we should mention that Guleryuz’s block-based approach is much simpler t
one proposed here, and so has a strong appeal despite the above drawbacks.

Returning to the model in (6), instead of solving this optimization problem directly and finding
representation vectors{αopt

t , α
opt
n }, let us reformulate this problem so as to get the texture and the ca

images,Xt andXn, as our unknowns. The reason behind this change is the obvious simplicity c
by searching lower-dimensional vectors—representation vectors are much longer than the ima
represent for overcomplete dictionaries as the ones we use here.

DefiningXt = Ttαt , givenXt we can recoverαt asαt = T+
t Xt + rt wherert is an arbitrary vector in

the null-space ofTt . A similar structure exists forXn = Tnαn, with a residual vectorrn in the null-space
of Tn. Put these back into (6) we obtain
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{
X

opt
t ,Xopt

n

} = argmin
{Xt ,Xn,rt ,rn}

‖T+
t Xt + rt‖1 + ‖T+

n Xn + rn‖1 + λ
∥∥M(X − Xt − Xn)

∥∥2
2 + γ TV{Xn}

subject to: Tt r t = 0, Tnrn = 0. (8)

The termsT+
t Xt andT+

n Xn are overcomplete linear transforms of the imagesXt andXn, respectively.
For tight frames, these are equivalent to the multiplication by the adjoint of the original dictionarTt

andTn.
In the spirit of the simplification done in [26], we assumert = rn = 0. Thus we find a suboptima

solution to the problem posed in (8). The resulting minimization task becomes

min{Xt ,Xn} ‖T+
t Xt‖1 + ‖T+

n Xn‖1 + λ
∥∥M(X − Xt − Xn)

∥∥2
2 + γ TV{Xn}. (9)

There are several ways to justify this choice ofrt = rn = 0 made above:

• The function minimized in (9) could be perceived as a simplified upper-bound function to th
in (8). Indeed, per every choice of the pair{Xt,Xn}, the value of the function in (9) is higher tha
the one obtained in (8) when optimized with respect tort andrn. Replacing the original objectiv
with an upper bound of it makes sense here, since the new formulation is much easier to s
it’s unknowns are of substantially smaller dimension. A crucial question that remains is ho
could the optimal solutions{Xt,Xn} be, when passing from (8) to (9). While we do not explici
answer this question here, we show experimentally that the solutions obtained from (9) are o
Also, the next explanations shed some light on the fact that the two are expected to be quite
general.

• Interestingly, it is relatively easy to see that if the dictionariesTt andTn are square and nonsing
lar matrices (leading to a complete, rather than overcomplete, representations), then (8) and
equivalent, implying that the choicert = rn = 0 loses nothing. Similarly, if the�1-norms in (8) and
(9) are replaced with�2 norms, the two formulations are again equivalent, regardless of the d
nary sizes. When we depart from those two simplified cases and consider�1-norm and overcomplet
representations, we know that the two are different, but expect this difference to be relatively
The reason is that we are interested in the imagesXt andXn, and not their representations. Whilert

andrn may be different from zero, their effect on the final outcome is reduced as we multiply b
dictionariesTt andTn to obtain the separated images.

• The formulation in (9) has a solid Bayesian interpenetration, independent of the source form
in (8). The new problem format has maximum a posteriori probability structure, with a log-likeli
term being‖M(X − Xt − Xn)‖2

2, and prior terms for the cartoon and the texture parts. The p
are analysis-based, with a promotion of sparsity of the filtered images,T+

t Xt andT+
n Xn. In addition,

spatial piece-wise smoothness in the cartoon image is promoted by the TV term. Note, howev
this change implies a change in the sparsity assumption underlying our method.

The algorithm we use to solve this optimization problem is based on the block-coordinate-rela
method with some required changes due to the nonunitary transforms involved, and the additio
term [4,25]. Also, the mask matrixM should be taken into consideration. The MCA algorithm is gi
below:
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1. Initialization:
– Choose parameters: Lmax—threshold factor, N—number of iterations,

and the parameters λ,γ .
– Initialize Xn = X and Xt = 0.
– Set δ = λ · Lmax.

2. Perform N times:
Part A—Update Xn with Xt fixed:

– Calculate the residual R = M(X − Xt − Xn).
– Calculate the curvelet transform of Xn + R: αn = T+

n (Xn + R).
– Soft threshold the coefficient αn with the δ threshold and obtain α̂n.
– Reconstruct Xn by Xn = Tnα̂n.

Part B—Update Xt with Xn fixed:
– Calculate the residual R = M(X − Xt − Xn).
– Calculate the local-DCT transform of Xt + R: αt = T+

t (Xt + R).
– Soft threshold the coefficient αt with the δ threshold and obtain α̂t .
– Reconstruct Xt by Xt = Tt α̂t .

Part C—TV penalization:
– Apply TV correction by

Xn = Xn − µ
∂TV{Xn}

∂Xn

= Xn − µ∇ ·
( ∇Xn

|∇Xn|
)

(see [23] for more details about this derivative). The parameter µ is
chosen either by a line-search minimizing the overall penalty function,
or as a fixed step-size of moderate value that guarantees convergence.a

3. Update the threshold by δ = δ − λ/N .
4. If δ > λ, return to Step 2. Else, finish.

a This is wereγ influences the algorithm’s outcome.

The numerical algorithm for minimizing (9).1

As can be seen, by replacing the mask matrix by the identity operator we obtain the very sa
gorithm as proposed in [25,26] for the task of image decomposition. Thus, this algorithm is a
modification of the separation one proposed earlier.

The rationale behind the way the mask is taken into account here is the following: suppose th
several rounds we have a rough approximation ofXt andXn. In order to updateXn we assume thatXt

is fixed and compute the residual imageR = M(X − Xt − Xn). In existing pixels (where the mask valu
is ‘1’) this residual has a content that can be attributed to texture, cartoon, and/or noise content
missing pixels (where the mask is ‘0’) the residual value is forced to zero by the multiplication wi
mask. Thus, the imageR + Xn does not contain holes. An analysis of this image—transforming
curvelet coefficients, nulling small entries, and reconstructing it—is able to absorb some of the c

1 Notice that in turning from the formulation (9) to the algorithm described here, we have changed the role ofλ. In the
algorithm is it used as a weight that multiplies the�1-norm terms. This change was made to better fit the soft-thresho
description, and it has no impact on the way the problem formulation acts.
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content that exists inR. This way the updatedXn takes some of the cartoon content that exists in
residual, and the new residual image energy becomes smaller.

In the language of numerical optimization, the above algorithm could be described as a
coordinate descent algorithm, where one image (sayXt ) is fixed while the other (sayXn) is updated,
and vice-versa. Within each such update stage there are two parts (disregarding the TV treatme
first minimizes the penalty‖M(X − Xt − Xn)‖2

2 by assigningXnew
n ← Xold

n + M(X − Xt − Xold
n ). This

causes this penalty to be nulled,

∥∥M
(
X − Xt − Xnew

n

)∥∥2
2 = ∥∥M

(
X − Xt − Xold

n − M
(
X − Xt − Xold

n

))∥∥2
2 = 0,

sinceM2 = M. The second part decreases the penalty‖T+
n Xn‖1 while maintaining proximity betwee

the outcome and the updatedXn. This is achieved by soft-thresholding. Merged together, these two
cause a decrease in the overall penalty as a function ofXn, if the thresholding is moderate enough. T
same applies to the update ofXt .

Why should this work?

In this section we started from the desire to fill-in missing pixels in an image, and concluded w
claim that a proper way to achieve this goal is the solution of the minimization problem posed in
the path from the objective to its solution, we have used various assumptions and conjectures,
which the overall inpainting process is doomed to fail. Let us list those assumptions and show ho
build the eventual inpainting algorithm:

• Sparse and overcomplete model assumption: We assume that an image could be modeled as a s
linear combination of atom images. Furthermore, we assume that general images could be d
as such sparse compositions over two dictionaries, one responsible for the texture and the o
the cartoon content. These assumptions are at the roots of this work. We cannot justify such
theoretically, and in fact, it is unclear whether this is at all possible. Instead, we can rely on
years’ results on the role of sparsity and over-completeness in signal and image processin
respect to the wavelet transform, and its advanced versions such as the curvelet [24], and m
can also pose these as assumptions we build upon, and see whether the results agree.
An additional assumption here is the existence of such two dictionaries for the cartoon and the
and our ability to get them. In this work we have chosen specific known transforms, exploiting
known tendency to sparse compositions. Further work is needed to replace this stage by a
method that evaluates the dictionaries from examples. As above, the results of the MCA alg
will either support such assumptions or stand as a contradiction.

• Sparsity can be handled with �1: Considering the above assumptions as true, we need to fin
sparsest representation that fits the data. This process, as posed in (2), is known asatomic decom-
position. Since this is a complex combinatorial problem, it has been relaxed with an�1 formulation.
Results gathered in the past four years support such a relaxation, with a reasonable guarante
cessful recovery of the desired representation, if it is sparse enough to begin with. Repres
work along these lines can be found in [5,10–12,15,17,27], where both the exact and the nois
are considered.
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• Treatment of missing samples: Missing pixels in the image are handled by the weight matrixM
introduced in Eq. (4). Considering a simplified version of (4), without the TV term and with an
decomposition rather than an inaccurate one, we get

αopt = argmin
α

‖α‖1 subject to: MX = MTα. (10)

The core question remains: assuming that there is indeed a sparseα such thatX = Tα, will the
formulation in (10) be successful in recovering it? How does this depend on the sparsity ofα and the
amount of missing pixels marked inM? Clearly, ifα is recovered successfully, then by multiplicati
by the dictionary we get the filling-in effect we desire.
These questions and their generalization to the approximate representation case (where the c
MX = MTα is replaced by a penalty‖MX − MTα‖2

2) can be analyzed. Putting things into persp
tive, the constraint in (10) essentially statesX̃ = T̃α, where we definẽX = MX andT̃ = MT. This
linear set of equations has a subset of the rows in the originalX = Tα. Thus, previous analysis i
the study of uniqueness of sparse representations and equivalence when using�1 are all applicable
Thus, a study of the decay of the mutual incoherence as a function of the rows removed c
of help here (see [5,10,12,17]). We will not show this study here (we are currently working o
problem and we hope to show some theoretical results soon). Instead we demonstrate the
behavior of the above problem via a synthetic experiment.
We use a maximally incoherent two random and orthonormal dictionariesT = [�,�] of size 64×
128 [5]. We use a random and sparse representationα with n ∈ [1,10] nonzero entries in random

Fig. 2. A synthetic experiment showing the relative error in the recovery of missing samples as a function of their numbk and
the original representation’s cardinalityn. The overlaid curves are the contour plot of the same data, showing a growth t
the bottom right corner. The masked area corresponds to a perfect recovery.
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locations and with zero mean Gaussian i.i.d. entries, and computeX = Tα. We generate a rando
missing pattern ofk samples withk ∈ [0,32] missing samples, and solve (10). Finally, we comp
the obtained resultTαopt to the original signalX, using the following formula:‖X−Xopt‖2

2/(‖X‖2
2 −

‖Xopt‖2
2). Since the noncanceled entries inX are unaffected and are the same as those inXopt, the

denominator in the above measure gives the energy of the missing values. Thus, the error ob
a relative error, being 1 for a simple interpolation that fills the missing values by zeros.
Figure 2 presents this relative error as a function ofk (the number of missing samples) andn (the
original number of nonzeros in the representation). Per every(k, n) pair a set of 1000 experimen
were performed and averaged. As can be seen, for sparse enough representations and w
enough number of missing samples, the process yields perfect recovery (the top left maske
The results deteriorate as the two grow, but as can be seen, even for‖α‖0 = 10 and 32 missing sam
ples, the relative error is still reasonable, being approximately 0.14. As was said above, a theoretic
analysis of this behavior is currently under study.

• From synthesis to analysis formulation: The last brick in the wall of assumptions made to solve
inpainting problem, is the transition from the formulation posed in (8) to (9). Several explanati
justify this change have been already given. Further work is required to relate the two formu
and bound the difference between their solutions.

4. Experimental results

We present here six experiments demonstrating the separation, inpainting, and denoising obt
these experiments we have used the following parameters:λ = 1, Lmax = 255,N ∈ [30,200] (number of
iterations), andγ ∈ [0.5,2]. Note that the computational complexity of the MCA inpainting proces
governed mostly by the number of iterations (inner and outer)NLmax and the complexity in applying th
two forward and the inverse transforms.

Experiment 1. Synthetic noiseless: Figure 3 shows theAdar image with two cases of missing data (lef
TheAdar image is a synthetic combination of cartoon and texture (see [25,26] for more details
results of the MCA-inpainting method using curvelet and global DCT are shown in Fig. 3 (right).
results show no trace of the original holes, and look near-perfect.

Experiment 2. Synthetic with additive noise: In order to show that the proposed algorithm is capabl
denoising as a by-product of the separation and inpainting, we added a zero mean white Gauss
(σ = 10) to the imageAdar and then applied the MCA algorithm. Figure 4 shows the inpainting re
and the residual. Notice that the residual is almost feature-less, implying that the noise was r
successfully, without taking true texture of cartoon content.

Experiment 3. Barbara: Figure 5 presents theBarbara image and its inpainting results for two di
ferent patterns of missing data as before. The MCA-inpainting method applied here used Wave
homogeneous decomposition level Wavelet Packets to represent the cartoon and the texture, res
Again, the results show no trace to the original holes, and look natural and artifact-free.
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Fig. 3. Two syntheticAdar images (top and bottom left) with combined cartoon and texture, and imposed missing pixe
results of the MCA inpainting are given in the top and bottom right.

Experiment 4. Random mask: Figure 6 presents theBarbara image and its filled-in results for thre
random patterns of 20%, 50%, and 80% missing pixels. The unstructured form of the mask ma
reconstruction task easier. These results are tightly related to the removal of salt-and-pepper noi
ages. As before, the MCA-inpainting method applied here used Wavelet and Wavelet Packets to r
the cartoon and the texture respectively, and again, the results look natural and artifact-free.
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Fig. 4. MCA inpainting results for theAdar image (with two missing pixels masks—curves (top) and text (bottom)) cont
nated by additive noise. Left: The inpainting result. Right: The residual.

Experiment 5. Growing mask: Figure 7 presents theBarbara image and its filled-in results for thre
patterns of missing pixels (9 blocks of size 8× 8, 16× 16, and 32× 32 pixels). As before, the MCA
inpainting method applied here used Wavelet and Wavelet Packets to represent the cartoon
texture, respectively. We see that as the regions of missing pixels grow, the recovery deterior
expected, and smooth behavior is enforced.
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Fig. 5. TwoBarbara images (top and bottom left) and imposed missing pixels. The results of the MCA inpainting are
in the top and bottom right.

Experiment 6. WMAP data: Figure 8 shows real WMAP cosmic microwave background (CMB) d
(see http://lambda.gsfc.nasa.gov/product/map for more details about this data), and imposed
values (uniform gray areas represent missing data). Such masking is frequently encountered
cosmic data gathering, due to foreground components contamination. The CMB field is known
stationary random field. We have used the global-DCT and the wavelet transform in our MCA-inpa
method and the results are shown in Fig. 8.
in
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given
Fig. 6. ThreeBarbara images with 20%, 50%, and 80% missing pixels (right). The results of the MCA inpainting are
on the left.
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Fig. 7. ThreeBarbara images with three patterns of missing pixels—9 blocks of size 8× 8, 16× 16, and 32× 32 pixels
(right). The results of the MCA inpainting are given on the left.
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Fig. 8. WMAP cosmic microwave data and missing values. Upper left: Original image with missing data. Upper right:
of the MCA inpainting. Bottom left: A large band of missing data have been imposed to the original image. Bottom rig
MCA inpainting result.

5. Discussion

In this paper we have presented a novel method for inpainting—filling holes in an image. Our m
is based on the ability to represent texture and cartoon layers as sparse combinations of atom
determined dictionaries. The proposed approach is a fusion of basis pursuit with the total-va
regularization scheme, allowing missing data and automatically filling in missing pixels.

Further theoretical work should attempt to document the performance of the method in filling in
ing samples when the object truly has a sparse representation. It seems urgent to make a thorou
of the approximations used in proceeding from the original model to the numerical solution. Both
are in our current research agenda.
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