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ABSTRACT

The Morphological Component Analysis (MCA) is a a new method which allows us to separate features contained
in an image when these features present different morphological aspects. We show that MCA can be very useful
for decomposing images into texture and piecewise smooth (cartoon) parts or for inpainting applications. We
extend MCA to a multichannel MCA (MMCA) for analyzing multispectral data and present a range of examples
which illustrates the results.
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1. INTRODUCTION

The task of decomposing signals into their building atoms is of great interest for many applications. In such
problems a typical assumption is made that the given signal is a linear mixture of several source signals of more
coherent origin. These problems have drawn a lot of research attention in last years. Independent Component
Analysis (ICA) and sparsity methods are typically used for the separation of signal mixtures with varying degrees
of success. A classical example is the cocktail party problem where a sound signal containing several concurrent
speakers is to be decomposed into the separate speakers. In image processing, a parallel situation is encountered
for example in cases of photographs containing transparent layers.

A dictionary D being defined as a collection of waveforms (ϕγ)γ∈Γ, the general principle consists in repre-
senting a signal s as a “sparse” linear combination of a small number of basis elements ϕγ such that:

s =
∑

γ

aγϕγ (1)

or as an approximate decomposition

s =

m∑

i=1

aγi
ϕγi

+ R(m). (2)

Given s and the dictionary atoms, an important question is the atom-decomposition problem, where we seek
the representation coefficients alphai. While this is generally a hard task (combinatorial complexity), pursuit
methods to approximate the desired coefficients are available.

The Matching Pursuit1, 2 method (MP) uses a greedy algorithm which adaptively refines the signal approxi-
mation with an iterative procedure:

• Set s0 = 0 and R0 = 0.

• Find the element αkϕγk
which best correlates with the residual.
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• Update s and R:

sk+1 = sk + αkϕγk

Rk+1 = s− sk+1. (3)

In the case of non orthogonal dictionaries, it has been shown3 that MP may spend most of the time correcting
mistakes made in the first few terms, and therefore is suboptimal in terms of sparsity.

The Basis Pursuit method3 (BP) is a global procedure which synthesizes an approximation s̃ to s by mini-
mizing a functional of the type

‖s− s̃‖2`2 + λ · ‖α‖`1 subject to s̃ = Φα. (4)

Among all possible solutions, the chosen one has the minimum l1 norm. This choice of l1 norm is very important.
An l2 norm, as used in the method of frames,4 does not preserve sparsity.3

In many cases, BP or MP synthesis algorithms are computationally very expensive. We present in this paper
an alternative to these approaches, the MCA method (Morphological Component Analysis) which can be seen
as a kind of Basis Pursuit method in which i) our dictionary is a concatenation of sub-dictionaries which is
associated to a transformation with fast forward and adjoint implementations, and ii) any kind of constraint can
be easily imposed on the reconstructed components.

Section 2 presents the MCA approach. Section 3 and section 4 show respectively how MCA can be used for
texture separation and inpainting. Two extensions to multichannel MCA are proposed in sections 5 and 6.

2. IMAGE DECOMPOSITION USING THE MCA APPROACH

2.1. Model Assumption

Assume that the data s is a linear combination of K parts, s =
∑K

k=1 sk, where each sk represents a different
type of signal to be decomposed. Our model assumes the following to hold true:

1. For every possible signal sk, there exists a dictionary (which can be overcomplete), Φk ∈MN×Lk (where
typically LA � N) such that solving

α
opt
k = Argmin

α
‖α‖0 subject to: sA = ΦAα (5)

leads to a very sparse solution (i.e. ‖αopt
k ‖0 is very small). The definition in the above equation is essentially

the overcomplete transform of sk, yielding a representation αk.

2. For every possible signal sl, solving for k 6= l

α
opt
l = Argmin

α
‖α‖0 subject to: sl = Φkα (6)

leads to a very non-sparse solution. This requirement suggests that the dictionary Φk is distinguishing
between the different types of signals to be separated.

Thus, the dictionaries Φk play a role of discriminants between the different content types.

Finally, we consider only dictionaries Φk which have a fast transformation Tk (αk = Tksk) and reconstruction
Rk (sk = Rkαk).



2.2. The MCA concept

For an arbitrary signal s containing K layers as a linear combination, we propose to seek the sparsest of all
representations over the augmented dictionary containing all Φk. Thus we need to solve

{αopt
1 , . . . , α

opt
K } = Arg min

{α1,..., αK}

K∑

k=1

‖αk‖0 (7)

subject to: s =
K∑

k=1

Φkαk.

This optimization task is likely to lead to a successful separation of the signal content, based on the assump-
tions made earlier about Φk being very efficient in representing one phenomenon and being highly non-effective
in representing the other signal types.

While sensible from the point of view of the desired solution, the problem formulated in Equation (7) is
non-convex and hard to solve. Its complexity grows exponentially with the number of columns in the overall
dictionary. The Basis Pursuit (BP) method3 suggests the replacement of the `0-norm with an `1-norm, thus
leading to a solvable optimization problem (Linear Programming) of the form

{αopt
1 , . . . , α

opt
K } = Arg min

{α1,..., αK}

K∑

k=1

‖αk‖1 (8)

subject to: s =
K∑

k=1

Φkαk.

Interestingly, recent work has shown that for sparse enough solutions, the BP simpler form is accurate, also
leading to the sparsest of all representations.5–8

A solution for the first problem could be obtained by relaxing the constraint in Equation (8) to become an
approximate one. Thus, in this new form, we seek to solve

{αopt
1 , . . . , α

opt
K } = Arg min

{α1,..., αK}

K∑

k=1

‖αk‖1 + λ

∥∥∥∥∥s−

K∑

k=1

Φkαk

∥∥∥∥∥

2

2

. (9)

We should note here that the choice of `2 as the error norm is intimately related to the assumption that the
residual behaves like a white zero-mean Gaussian noise. Other norms can be similarly introduced to account for
different noise models, such as Laplacian (`1), uniformly distributed noise (`∞), and others.

Another complicating factor is the length L of the representation vector αall. If for example L = 100N (im-
plying a redundancy of factor 100), it means that storing and manipulating the solution of this problem requires
a memory of 100 the input data size. Instead of solving this optimization problem, finding the representation
vectors {αopt

1 , . . . , α
opt
K }, let us reformulate the problem so as to get the K signal types, {s1, . . . , sK}, as our

unknowns. This way, if we return to the example mentioned above, we seek K images rather than 100. The
functional to minimize is now:

{sopt
1 , . . . , s

opt
K } = Arg min

{s1,..., sK}

K∑

k=1

‖Tksk‖1 + λ

∥∥∥∥∥s−

K∑

k=1

sk

∥∥∥∥∥

2

2

. (10)

and the unknowns become images, rather then representation coefficients. For this problem structure there
exists a fast numerical solver called the Block-Coordinate Relaxation Method, based on the shrinkage method.9

This solver requires only the use of matrix-vector multiplications with the unitary transforms and their inverses.
See10 for more details. We note that the same algorithm can be applied with non-unitary transforms although



theoretical validation may require more challenging analysis than in the block-unitary case. In practice, block
coordinate methods work well in the non-unitary cases we have explored.

Finally one important aspect of working on the signals rather than on the coefficients is the possibility to
add constraints on each individual signal sk. The MCA method consists in minimizing

{sopt
1 , . . . , s

opt
K } = Arg min

{s1,..., sK}

K∑

k=1

‖Tksk‖1 + λ

∥∥∥∥∥s−
K∑

k=1

sk

∥∥∥∥∥

2

2

+
K∑

k=1

γkCk(sk). (11)

where Ck implements constraints on component sk.

2.3. Algorithm

We have chosen an approximation to our true minimization task, and with it managed to get a simplified
optimization problem, for which an effective algorithm can be proposed. The algorithm we use is based on the
Block-Coordinate-Relaxation method,10 with some required changes due to the non-unitary transforms involved.
The algorithm is given below:

1. Initialize Lmax, number of iterations, and threshold δ = λ · Lmax.

2. Perform J times:

3. Perform K times:

Update of sk assuming all sl, l 6= k, are fixed:

– Calculate the residual r = s −
∑K

l=1,l6=k
sl

– Calculate the transform Tk of sk + r and obtain αk = Tk(sk + r).
– Soft threshold the coefficient αk with the δ threshold and obtain α̂k.

– Reconstruct sk by sk = Rkα̂k.

– Apply the constraint correction by sk = sk − µγ
∂Ck{sk}

∂sk

.

– The parameter µ is chosen either by a line-search minimizing the overall

3. Update the threshold by δ = δ − λ.

4. If δ > λ, return to Step 2. Else, finish.

The numerical algorithm for minimizing (11). ∗.

In the above algorithm, soft thresholdong is used due to our formulation of the `1 sparsity penalty term.
However, as we have explained earlier, the `1 expression is merely a good approximation for the desired `0 one,
and thus, replacing the soft by a hard threshold towards the end of the iterative process may lead to better
results.

We chose this numerical scheme over the Basis Pursuit interior-point approach in ,3 because it presents two
major advantages:

• We do not need to keep all the transformations in memory. This is particularly important when we use
redundant transformations such the un-decimated wavelet transform or the curvelet transform.

• We can add different constraints on the components. As we shall see next, Total-Variation on some of
the content types may support the separation task, and other constraints, such as positivity, can easily be
added as well.

∗Notice that in turning from the formulation (11) to the algorithm described here, we have changed the role of λ. In the
algorithm it is used as a weight that multiplies the `1-norm terms. This change was made to better fit the soft-thresholding
description, and it has no impact on the way the problem formulation acts.



Noise Consideration

The case of noisy data can be easily considered in our framework, and merged into the algorithm such that we get
a separation between components and an additive noise n: s =

∑K
k=1 sk + n. We can normalize each transform

Tk such that for a given noise realization n with zero-mean and a unit standard deviation, αk = Tkn has also
a standard deviation equal to 1. Then, only the last step of the algorithm changes. By replacing the stopping
criterion δ > λ by δ > aσ, where σ is the noise standard deviation and a ≈ 3, 4. This ensures that coefficients
with an absolute value lower than aσ will never be taken into account.

2.4. Example

Figure 1 illustrates the separation results in the case where the input image (256× 256) contains only lines and
isotropic Gaussians. In this experiment, we have initialized Lmax to 20, and δ to 2 (10 iterations). Two transform
operators were used, the isotropic undecimated wavelet transform and the ridgelet transform. The first is well
adapted to the detection of the isotropic Gaussians due to the isotropy of the wavelet function,11 while the second
is optimal to represent lines.12 Figure 1 represents respectively the original image, the reconstructed image from
the à trous wavelet coefficient, and the reconstructed image from the ridgelet coefficient. The addition of both
reconstructed images reproduces the original one.

Figure 1. Left, original image containing lines and Gaussians. Middle, reconstructed image for the à trous wavelet

coefficient, bottom right, reconstructed image from the Ridgelet coefficients.

The above experiment is synthetic and through it we validate the proper behavior of the numerical scheme
proposed. While being synthetic, this experiment has also high relevance for astronomical data processing where
stars look like Gaussians and where images may also contain anisotropic features (dust emission, supernovae
remnants , filaments, . . . ). Separation of these components is very important for the analysis of this type of
images.

3. TEXTURE SEPARATION USING MCA

An interesting and complicated image content separation problem is the one targeting decomposition of an image
to texture and piece-wise-smooth (cartoon) parts. Such separation finds applications in image coding, and in
image analysis and synthesis (see for example 13).

A theoretic characterization of textures proposed recently by Meyer14 was used by Vese and Osher ,15 and
Aujol et al.16 for the design of such image separation algorithms, and these pioneering contributions awaken this
application field. The approach advocated by Vese and Osher 15 is built on variational grounds, extending the
notion of Total-Variation.17

Here we demonstrate that the is capable of separating these image content types, and as such poses an
alternative method to the variational one mentioned above. More on this approach can be found in .18, 19



For the texture description, the DCT seems to have good properties due to the natural periodicity. If the
texture is not homogeneous, a local DCT should be preferred. Characterizing the cartoon part of the image
could be done in various ways, depending on the image content. For images containing lines of a fixed size, the
local ridgelet transform will be a good dictionary candidate. More generally the curvelet transform represents
well edges in images, and could be a good candidate as well. In our experiments, we have chosen images with
edges, and decided to apply the texture/signal separation using the DCT and the curvelet transform.

Assume hereafter that we use the DCT for the texture - denoted D - the curvelet transform for the natural
scene part, denote C. Returning to the separation process as posed earlier, we have two unknowns - sd and sc

(K = 2)- the texture and the piecewise smooth images. The optimization problem to be solved is20:

min
{sd, sc}

‖Dsd‖1 + ‖{Csc‖1 + λ ‖s− sd − sc‖
2
2 + γTV {sc} . (12)

In this optimization problem we support the choice of the cartoon dictionary by adding another penalty term
based on the Total-Variation on the cartoon image part.

Figure 2. Left, the original Barbara image; midlle, the separated texture, and right, the separated cartoon.

Figure 2 illustrates the layer separation result for the Barbara image, as obtained with the algorithm described
above. Many more such results are given in .18, 19 This separation was obtained using the curvelet transform
with five resolution levels of the curvelet transform C, and 50% overlapping discrete cosine transform D with a
block size 32× 32.

4. IMAGE INPAINTING USING MCA

Filling–in ‘holes’ in images is an interesting and important inverse problem with many applications. Removal of
scratches in old photos, removal of overlayed text or graphics, filling–in missing blocks in unreliably transmitted
images, scaling–up images, predicting values in images for better compression, and more, are all manifestations
of the above problem. In recent years this topic has attracted much interest, and many contributions have
been proposed for the solution of this interpolation task. A common feature of these many techniques is the
understanding that classical interpolation methods (such as polynomial-based approaches) are not satisfactory;
indeed nonlinear strategies and local adaptivity seem crucial. Among the numerous approaches to fill in holes in
images, variational methods are very attractive; these were pioneered by Guillermo Sapiro and his collaborators
,21–23 and followed by .24 These techniques were coined Inpainting as a reminder of the recovery process museum
experts use for old and deteriorated artwork.

Based on MCA, an inpainting algorithm has been proposed 20 which is capable of filling in holes in either
texture or cartoon content, or any combinations thereof. This new algorithm extends the sparsity–seeking layer
separation method of18, 19 mentioned above. In effect, missing pixels fit naturally into the layer-separation
framework. As a result, layer separation and denoising of the image are integral by-products of the inpainting
process.



Figure 3. Three Barbara images with 20%, 50%, and 80% missing pixels (right). The results of the MCA inpainting are

given on the left.



Assume that the missing pixels are indicated by a diagonal ‘mask’ matrix M ∈ MN×N . The main diagonal
of M encodes the pixel status, namely ‘1’ for an existing pixel and ‘0’ for a missing one. Then model (11) can
be modified to incorporate this mask as in

min
{sd, sc}

‖Dsd‖1 + ‖{Csc‖1 + λ ‖M [s− sd − sc]‖
2
2 + γTV {sc} . (13)

Clearly, replacing the mask matrix by the identity operator leads to the very same algorithm as proposed in18, 19

for the task of image decomposition. Thus, this algorithm is a simple modification of the separation one proposed
earlier. In the algorithm, the only required modification consists in multiplying the residual by M after each
residual estimation.

The rationale behind the way the mask is taken into account here is the following: suppose that after several
rounds we have a rough approximation of sd and sc. In order to update sd we assume that sc is fixed and
compute the residual image r = M(s − sc − sd). In existing pixels (where the mask value is ‘1’) this residual
has a content that can be attributed to texture, cartoon, and/or noise content. On the missing pixels (where
the mask is ‘0’) the residual value is forced to zero by the multiplication with the mask. Thus, the image r + sd

does not contain holes. An analysis of this image – transforming it to curvelet coefficients, zeroing small entries,
and reconstructing it – is able to absorb some of the cartoon content that exists in r. This way the updated
sd takes some of the cartoon content that exists in the residual, and the new residual image energy becomes
smaller. More details and experiments can be found in.20

Experiment - Random Mask: Figure 3 presents the Barbara image and its filled-in results for three random
patterns of 20%, 50%, and 80% missing pixels. The unstructured form of the mask makes the reconstruction
task easier. These results are tightly related to the removal of salt-and-pepper noise in images. As before, the
MCA-inpainting method applied here used Wavelet and Wavelet Packets to represent the cartoon and the texture
respectively, and again, the results look natural and artifact-free.

5. MULTICHANNEL MCA

5.1. Blind Source Separation

Blind Source Separation (BSS) is a problem that occurs in multi-dimensional data processing. The overall goal
is to recover unobserved signals, images or sources S from mixtures X of these sources observed typically at the
output of an array of sensors. The simplest mixture model would take the form:

X = AS (14)

where X , S and A are matrices of respective sizes nc×n, ns×n and nc×ns. Multiplying S by A linearly mixes
the ns sources into nc observed processes. Independent Component Analysis methods were developed to solve
the BSS problem, i.e. estimate A and S, relying mostly on the statistical independence of the source processes.
Although independence is a strong assumption, it is plausible in many practical cases.

Algorithms for blind component separation and mixing matrix estimation depend on the model used for
the probability distributions of the sources.25 In a first set of techniques, source separation is achieved in a
noise-less setting, based on the non-Gaussianity of all but possibly one of the components. Most mainstream
ICA techniques belong to this category : Jade,26 FastICA, Infomax.27

In a second set of blind techniques, the components are modeled as Gaussian processes, either stationary
or non stationary and, in a given representation, separation requires that the sources have diverse, i.e. non
proportional, variance profiles. The Spectral Matching ICA method (SMICA) 28 considers in this sense the case
of mixed stationary Gaussian components and goes beyond the above model (Eq. 14) by taking into account
additive instrumental noise N :

X = AS + N (15)

Moving to a Fourier representation, the point of SMICA is that colored components can be separated based on
the diversity of their power spectra.



5.2. MMCA

Many papers have recently proposed that sparsity could be used to build alternative source separation meth-
ods.29, 30 Following this idea, we extended MCA to deal with multichannel data (MMCA) leading to a powerful
separation algorithm.

As before, we assume that each source sk is well represented (i.e. sparsified) by a given transform, but now,
the observed data X are no longer the sum of sources, but a set of nc linear combinations of the ns sources:

Xl =
∑ns

k=1 Ak,lsk, where l = 1 . . . nc, A is the mixing matrix and, here, sk is the 1× n array of the kth source
samples. The solution S = {s1, . . . , sns

} and A is obtained as

{sopt
1 , . . . , sopt

ns
, Aopt} = Arg min

{s1,..., sns
}

ns∑

k=1

1

λk

‖skTk‖1 + ‖X −AS‖
2
2 (16)

Unfortunately, this criterion suffers from several drawbacks and particularly from an indeterminacy attached
to the model structure. For instance, assuming that the simple scale transform occurs: A← ρA then an inverse
scaling of the source matrix such that S ← 1

ρ
S leaves the error minimization constraint unchanged whereas the

sparsity measure is deeply altered by the same scale factor 1
ρ
. Consequently, the minimization of this criterion

will probably lead to trivial solutions : A → ∞ and S → 0 (the sparsity term can be minimized as desired as
long as ρ tends to +∞).

The multichannel extension of the MCA algorithm must therefore take into account this lack of scale in-
variance by introducing artificially this essential property. Practically, lack of scale invariance can be solved by

normalizing each column of A at each iteration (ak+
← ak−

‖ak−‖2

) and propagating the scale factor ‖ak−‖2 to the

corresponding source sk and threshold λk such that sk
+ ← ‖ak−‖2sk

− and λk
+ ← ‖ak−‖2λk

−.

The model structure can be simplified by decomposing the product AS by a sum of elementary products of
directions and sources as follows:

X =
∑

k=1,...,ns

aksk (17)

Introducing the k-th residual, Dk = X −
∑

j 6=k ajsj (corresponding to the part of the data unexplained by

the other couples {aj , sj}j 6=k), the minimization of the whole criterion 16 is equivalent to jointly minimizing the
set of elementary criteria :

{sopt
k , akopt

} = Argmin
{sk, ak}

‖skTk‖1 + λk

∥∥Dk − aksk

∥∥2

2
(18)

Estimating jointly couples of directions and sources is also widely interesting as it avoids the computation of

matrix inverses given that the vector products akT
ak or sksk

T found in the algorithm are just scalars. If we also
assume that the covariance matrix Γn of noise is known, the criterion is now written as below:

{sopt
k , akopt

} = Argmin
{sk, ak}

‖skTk‖1 + λkTrace{(Dk − aksk)Γ−1
n (Dk − aksk)T } (19)

Zeroing the gradient with respect to sk and ak of this criterion leads to the following coupled equations:





sk = 1
akT Γ−1

n ak

(
akT

Γ−1
n Dk −

1
2λk

Sign(skTk)TT
k

)

ak = 1
sksk

T Dksk
T

(20)



It appears that, considering a fixed ak, the source process sk is estimated by soft-thresholding a transformed

“coarse version” s̃k = 1
akT Γ−1

n ak
akT

Γ−1
n Dk with threshold 1

λk

. Then, considering a fixed sk, the update on

ak follows from a simple least squares linear regression. In comparison to the algorithm in29 which uses a
single sparsifying transform and a quadratic programming technique, our method considers more than just one
transform and a shrinkage-based optimization. The MMCA algorithm is then given below :

1. Initialize Lmax, number of iterations, and threshold ∀k δk = λk · Lmax.

2. Perform J times:

3. For k = 1, . . . , ns:

Normalization and propagation for scale invariance:

nak = ‖ak‖2, ak = ak

nak

, sk = naksk and δk = nakδk

Estimation of sk assuming all sl, l 6= k and al are fixed:

– Calculate the residual Dk = X −
∑

l=1,l6=k
alsl

– Projection of the residual s̃k = 1

akT
Γ
−1

n ak
akT

Γ−1

n Dk

– Calculate αk = s̃kTk.

– Soft threshold the coefficients αk with the δk threshold and obtain α̂k.

– Reconstruct sk by sk = α̂kRk.

Estimation of ak assuming all sl and al
l6=k , are fixed:

– Estimation of ak by ak = 1

sksk
T

Dksk
T .

3. Update the threshold by δk = δk − λk.

4. If δk > λk, return to Step 2. Else, finish.

The numerical algorithm for minimizing (18).

Figure 4. Simulated data. Left, the original source and right, the three observed channels. Each channel is a linear

combination of the two sources plus some Gaussian noise.

Figure 4 shows on its left two simulated sources, the first containing four bumps and the second a sine, and
on the right, three simulated observed channels. Gaussian noise was added to each channel and the resulting
mixtures are shown on the right. Figure 5 shows the reconstructed sources using two methods, JADE (see 26)
on the left, and MMCA on the right.

This algorithm brings a very strong and robust solution as long as the MCA hypothesis is verified (sources
are sparsified in different bases) i.e. for morphologically diverse sources. Actually source separation is merely a



Figure 5. Left, reconstructed sources using JADE. Right, reconstructed sources using MMCA.

question of diversity. On the one hand standard ICA methods aim at enforcing the independence of the estimated
sources and suffer from a certain lack of robustness in the presence of noise. On the other hand MMCA performs
well even in the presence of noise for morphologically different sources. Next we describe an extension of MMCA
coined ICA-MCA which aims at getting the most of both ICA and MMCA.

6. INDEPENDENT AND SPARSE SOLUTION: THE ICA-MCA METHOD

In this section we introduce a brand new method coined ICA-MCA devised to separate independent sources
in the presence of noise, considering a more general model for the sources according to which each source si

(i = 1 . . . n) is a sum of Ki components:

si =

Ki∑

k=1

ci,k (21)

And the observed data are:

Xl =

n∑

i=1

Ai,lsi =

ns∑

i=1

Ai,l

Ki∑

k=1

ci,k (22)

The previous MMCA model corresponds to the case where K1 = . . . = Kn = 1. As before, we assume that
each component ci,k is sparsified using a given transform Ti,k. Ti,k is the transform associated to the k-th
component of the ith source. Nothing here forces the transforms related to a given source to be different from
those related to another one. For instance, we can have T1,k = . . . = Tn,k, in the case where the two different
sources contain the same morphological components.

We make at this point the additional assumption that A is square and of full rank. It seems easier then
to estimate a demixing matrix B rather than a mixing matrix. This way, we avoid the issues raised by the
bilinearity AS. Finally we seek to solve the following minimization problem:

{copt
1,1 , . . . , c

opt
1,K1

, . . . , c
opt
ns,1, . . . , c

opt
ns,Kns

, Bopt} = Arg min
{s1,..., sns

}

ns∑

i=1

Ki∑

k=1

1

λk

‖ci,kTi,k‖1 + ‖BX − S‖
2
2 (23)

ICA-MCA takes advantage of both ICA, which enforces the statistical indepedance of the estimated sources,
and MCA, which gives more contrast between the sources as it extracts the essence of each one. The ICA-MCA
algorithm is given below :



1. Perform J times.

Data projection:

– Project the data S̃ = B̃X

MCA Decomposision :

– ∀ k = 1 . . . ns calculate αk = skTk.

Update of the demixing matrix using an ICA-kind update rule assuming that all the {αk}k=1,...,ns

are fixed.

The numerical algorithm for minimizing (23).

In a few words, the ICA-MCA is divided into three steps:

1. Project the data to get a “coarse estimation” of the source: this minimizes the quadratic part of the
criterion described above.

2. Apply MCA to each “coarse” source in ordre to achieve a sparse decomposition of each estimated source,
thus eliminating all kind of redundancies.

3. Update the estimated demixing matrix B using an ICA-update rule to enforce the statistical independence
of the sources as in 27 where the update of the demixing matrix is achieved by a few steps of the natural
gradient of the likelihood of B.

Experiment - : Figure 6 shows two simulated observed channels (a gaussian noise of variance 0.03 was added
to each channel), obtained from a mixture of two sources shown in Figure 7 top left and top right. Both sources
contain sinusoids and bumps. Figure 7 middle left and right shows the ICA-MCA reconstructed sources and
Figure 7 bottom left and right shows the reconstructed sources using the JADE method. In this experiment, we
have initialized J to 20 iterations. The sources were decomposed on the Dirac basis (T1 was the identity matrix)
and using the DCT. One can notice that the low amplitude sinusoid of source 1 is not detected by JADE. The
ICA-MCA method achieves such a detection quite well.

Figure 8 left shows the simulated (4) and reconstructed (using ICA-MCA) coefficients of source 1. On
the right, the simulated (4) and reconstructed (using ICA-MCA) coefficients of source 2. Each decomposition
is achieved on the whole dictionnary : samples 0 to 149 correspond to the Dirac basis and samples 150 to 299
correspond to the DCT basis. Due to the scale indeterminacy discussed previously, only their relative amplitudes
of the coefficients are significant.

We further assess the quality of the separation by computing the angular error between the original demixing
matrix B(0) and the estimated one B. Estimating the first direction with JADE leads to an angular error of 1.13
and 0.73 degrees for the first and the second directions respectively. ICA-MCA leads to an angular error of 0.13
and 0.45 degrees. REFERENCES
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