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Abstract Given a simple, undirected graph G = (V ,E) and a weight function w :
E → Z

+, we consider the problem of orienting all edges in E so that the maximum
weighted outdegree among all vertices is minimized. It has previously been shown
that the unweighted version of the problem is solvable in polynomial time while the
weighted version is (weakly) NP-hard. In this paper, we strengthen these results as
follows: (1) We prove that the weighted version is strongly NP-hard even if all edge
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weights belong to the set {1, k}, where k is any fixed integer greater than or equal to 2,
and that there exists no pseudo-polynomial time approximation algorithm for this
problem whose approximation ratio is smaller than (1 + 1/k) unless P = NP; (2) we
present a new polynomial-time algorithm that approximates the general version of the
problem within a ratio of (2−1/k), where k is the maximum weight of an edge in G;
(3) we show how to approximate the special case in which all edge weights belong
to {1, k} within a ratio of 3/2 for k = 2 (note that this matches the inapproximability
bound above), and (2 − 2/(k + 1)) for any k ≥ 3, respectively, in polynomial time.

Keywords Graph orientation · Degree · Approximation algorithm ·
Inapproximability · Maximum flow · Scheduling

1 Introduction

Let G = (V ,E,w) be a simple, undirected, edge-weighted graph, where V , E

and w denote the set of vertices of G, the set of edges of G, and a positive in-
tegral weight function w : E → Z

+, respectively. An orientation � of G is an
assignment of a direction to each edge {u,v} ∈ E, i.e., �({u,v}) is either (u, v)

or (v,u). Given an orientation � of G, the weighted outdegree of a vertex u is
d+
�(u) = ∑

{u,v}∈E:
�({u,v})=(u,v)

w({u,v}).
In this paper, we consider the problem of finding an orientation of an input graph G

such that the maximum weighted outdegree among all vertices is minimum, taken
over all possible orientations of G. To specify different classes of edge weight func-
tions, we formally define the problem as follows.

Problem: S-MINIMUM MAXIMUM OUTDEGREE (S-MMO)
Input: A simple, undirected, edge-weighted graph G = (V ,E,w),

where w is a positive integral weight function of the form
w : E → S and where S is a set of allowed weights.

Output: An orientation � of G that minimizes maxu∈V {d+
�(u)}.

The most general case of S-MMO with no restrictions on the weight function,
except that it must be a positive integral function, is denoted by Z

+-MMO. In this
paper, we assume that S is of the form S = {1,2, . . . , k}, where k is a positive integer.
(The running times of our algorithms will depend on k.) We also study a special case
in which the range of w is restricted to a positive integer set S = {1, k} with k ≥ 2.

Throughout this paper, given an instance of S-MMO, we set n = |V | and m = |E|.
The weighted outdegree d+

�(u) of a vertex u is also called the outdegree of u for
short. For any orientation � of G, the value of � is defined to be maxu∈V {d+

�(u)}.
We use OPT(G) or �∗ to denote the optimal value for G, i.e., the minimum of
maxu∈V {d+

�(u)} taken over all possible orientations � of G. A graph orientation
algorithm ALG is called a σ -approximation algorithm and ALG’s approximation ratio
is σ if ALG(G)/OPT(G) ≤ σ holds for every graph G, where ALG(G) is the value
of the solution obtained by running ALG on input G.
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1.1 Motivation

Graph orientations which minimize the maximum outdegree can be used to con-
struct efficient dynamic data structures for graphs that support fast vertex adjacency
queries under a series of edge insertions and edge deletions (Brodal and Fagerberg
1999). Also, S-MMO can be viewed as a variation of the art gallery problem (see,
e.g., Chv́atal 1975; O’Rourke 1987), load balancing problems, or unrelated parallel
machine scheduling (see, e.g., Lenstra et al. 1990; Pinedo 2002). In particular, the
polynomial time (in)approximability of the latter problem has been intensively stud-
ied. Refer to Sect. 6.1 for a further discussion on the relation between S-MMO and
scheduling.

Graph orientation itself is a quite basic, natural, and important problem in graph
theory and combinatorial optimization; see, e.g., Chap. 61 of Schrijver (2003) and the
short survey in Asahiro et al. (2007). As an example, it is known that any planar graph
has an orientation with value at most 3 and an acyclic orientation with value at most 5,
and such orientations can be found in linear time (Chrobak and Eppstein 1991). How-
ever, most previous studies focus on problems related to orientations satisfying some
special graph properties such as high connectivity, small diameter, no cycles, small
difference between the indegree and outdegree of each vertex, etc. (Biedl et al. 2005;
Fomin et al. 2004; Kára et al. 2005), and very few studies consider orientations which
minimize the maximum outdegree (or equivalently, indegree) (Asahiro et al. 2007;
Kowalik 2006; Venkateswaran 2004).

1.2 Previous results and summary of new results

Previous work has shown that S-MMO can be solved in polynomial time if all edge
weights are identical (Asahiro et al. 2007; Kowalik 2006; Venkateswaran 2004).
More precisely, the fastest known algorithm for {k}-MMO runs in O(m3/2 · log(�∗

1))

time, where �∗
1 denotes the optimal value of {1}-MMO (Asahiro et al. 2007).

On the other hand, S-MMO is (weakly) NP-hard in the general case (Asahiro et
al. 2007). For any subgraph H of G, let V (H) and E(H) denote the vertex set
of H and the edge set of H , respectively. A (2 − 1/�L(G)�)-approximation al-
gorithm for Z

+-MMO with O(m2) running time was presented in Asahiro et al.
(2007), where L(G) is the maximum density among all subgraphs of G, that is,
L(G) = maxH⊆G{∑{u,v}∈E(H) w({u,v})/|V (H)|}. No inapproximability results for
S-MMO were previously known.

In this paper, we study S-MMO from the viewpoint of polynomial-time approx-
imability and inapproximability. First, Sect. 2 introduces some additional notation
and terminology needed to describe our results. Then, in Sects. 3.1–3.4, we present
four new polynomial-time approximation algorithms named MAJORITY, CYCLE-
CANCELING, REFINED CYCLE-CANCELING, and LARGE-k. (Although MAJOR-
ITY has the same running time and a worse approximation ratio than CYCLE-
CANCELING, we have included the description of MAJORITY because it provides
a simple way to illustrate some key ideas used in the design and analysis of CYCLE-
CANCELING and REFINED CYCLE-CANCELING.) Section 4 shows how to improve
the running times of our first three approximation algorithms. Next, we give a re-
duction from At-most-3-SAT(2L) in Sect. 5 which proves the strong NP-hardness of
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{1, k}-MMO for k ≥ 2 and also yields the first non-trivial lower bound on the ap-
proximation ratio, under the assumption P 
= NP. Finally, in Sect. 6, we discuss the
relation between S-MMO and scheduling and state some open problems. Our new
results are summarized below.

– {1, . . . , k}-MMO has a (2 − 1/k)-approximation algorithm with running time
O(m3/2 · logn · logk · log�∗ + m2) [Algorithm CYCLE-CANCELING in Sect. 3.2
together with Corollary 1 in Sect. 4].

– The special case {1, k}-MMO where k ≥ 3 has a (slightly better) (2 − 2/(k + 1))-
approximation algorithm, also with running time O(m3/2 · logn · logk · log�∗ +
m2) [Algorithm REFINED CYCLE-CANCELING in Sect. 3.3 together with Corol-
lary 1 in Sect. 4].

– {1, k}-MMO admits a 1+n/(2k)-approximation algorithm which runs in O(m3/2 ·
logn) time [Algorithm LARGE-k in Sect. 3.4]. This is useful for instances with
k � n.

– {1, k}-MMO for any fixed k ≥ 2 is strongly NP-hard [Theorem 6 in Sect. 5].
– For any fixed integer k ≥ 2, no pseudo-polynomial time algorithm for {1, k}-MMO

achieves an approximation ratio smaller than 1 + 1/k, unless P = NP [Theorem 7
in Sect. 5]. This implies that there is no polynomial time approximation algorithm
for Z

+-MMO with approximation ratio less than 3/2, unless P = NP. This also
means that, for k = 2, Algorithm CYCLE-CANCELING is optimal with respect to
the approximation ratio.

Note that the 2 − 1/�L(G)�-approximation ratio from Asahiro et al. (2007) and
the new 2 − 1/k one are incomparable; sometimes the former is better than the latter,
and vice versa. For example, there exist instances where the former algorithm outputs
a 5/3-ratio solution while the latter achieves the ratio 3/2 (see Fig. 6 in Asahiro et al.
2007).

2 Preliminaries

From here on, we assume that the vertices in G are lexicographically ordered. We
denote an undirected edge with endpoints u and v, where u < v in lexicographic
order, by eu,v or simply {u,v}. A directed edge (or arc) from a vertex u to a vertex v

is written as (u, v). The directed graph defined by an orientation � of G is denoted
by �(G) = (V ,�(E),w). A directed path of length l from a vertex v0 to a vertex vl

in �(G) is a set of arcs {(vi−1, vi) ∈ �(E) | i = 1,2, . . . , l}, also represented by
the sequence 〈v0, v1, . . . , vl〉 for simplicity. In particular, a directed path satisfying
vl = v0 is called a directed l-cycle. For any directed path P = 〈v0, v1, . . . , vl〉, the
directed path obtained by traversing P in its reverse order is denoted by P , i.e., P =
〈vl, vl−1, . . . , v0〉.

Next, for any u ∈ V , let �(u) = {v | {u,v} ∈ E} denote the set of neighbors of u.
For any orientation � of G, define the set of neighbors of u under � as ��(u) = {v |
{u,v} ∈ E and �({u,v}) = (u, v)}. We call any vertex u∗ whose weighted outdegree
is maximum in � critical, and also say that u∗ is a critical vertex with respect to �.
Let wmax be the maximum weight among all edges in E and let W be the total weight
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of all edges in E. Every orientation has the following trivial lower bound caused by
the maximum weight edges:

Proposition 1 (Asahiro et al. 2007) For any undirected weighted graph G and any
orientation � of G, the value of � is at least wmax.

Finally, we introduce three basic operations named REVERSE, UP-TO-ROOTS,
and SOLVE-1-MMO which will be used later in this paper.

– REVERSE does the following: Given an orientation � of G and a directed
path P = 〈u0, u1, . . . , ul〉 in �(G), update � by replacing P with P , i.e., let
�(eui,ui+1) = (ui+1, ui) for i = 0, . . . , l − 1. We call this operation REVERSE-
CYCLE if u0 = ul . Note that if P is a directed cycle and all w(eui,ui+1)’s are equal,
then the outdegree of every vertex remains unchanged.

– UP-TO-ROOTS determines an orientation � for a given simple, undirected for-
est G as follows: First fix an arbitrary root node for each tree in G. Then, for every
edge e, orient �(e) towards the root node of the tree containing e.1

– SOLVE-1-MMO outputs an optimal orientation of a given graph with identical
edge weights. SOLVE-1-MMO can be implemented to run in O(m3/2 · log(�∗

1))

for {k}-MMO time (Asahiro et al. 2007). (Here, the log factor comes from a binary
search.)

3 Approximation algorithms

We now present the details of our four new approximation algorithms for S-MMO.
The first two, MAJORITY and CYCLE-CANCELING, work for any S = {1, . . . , k},
whereas the last two, REFINED CYCLE-CANCELING and LARGE-k, are designed for
the special case where S is of the form S = {1, k}.

3.1 Majority voting algorithm

In this subsection, we give a simple 2-approximation algorithm named MAJORITY.
Although MAJORITY can be considered a variation of the Lenstra-Shmoys-Tardos
algorithm (Lenstra et al. 1990), which is based on LP-rounding and has an approxi-
mation ratio of 2, MAJORITY is combinatorial and provides some basic intuition for
the algorithms presented in later subsections. Furthermore, according to Corollary 1
in Sect. 4, MAJORITY is much faster than the Lenstra-Shmoys-Tardos algorithm.

Algorithm MAJORITY is presented in Fig. 1. It works as follows. First, replace
each edge e = {u,v} in G with w(e) edges of weight 1 between u and v, so that an
undirected multigraph G′ with W = ∑

e∈E w(e) edges is obtained. Next, find an opti-
mal orientation �′ of G′. (In �′, for each {u,v} ∈ E, some replicated edges of {u,v}
may be oriented from u to v while others are oriented from v to u.) Then, decide an

1Observe that OPT(G) = wmax if G is a forest, i.e., a graph that does not contain any cycles. (It is easy
to see that the UP-TO-ROOTS operation finds an optimal solution for forests (Asahiro et al. 2007).) Thus,
the bound in Proposition 1 is optimal for this case.
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Algorithm MAJORITY

1. For graph G, construct G′ by replacing each edge e with w(e) edges of
weight 1.

2. Find an optimal orientation �′ of G′ by using SOLVE-1-MMO.
3. Decide the orientation � of G according to (1) for each edge in G.
4. Return �.

Fig. 1 Algorithm MAJORITY

orientation � of G by majority voting. More precisely, let fu→v and fv→u denote
the number of edges oriented from u to v and from v to u, respectively, in �′. Since
G is simple, fu→v + fv→u = w(eu,v) holds. The orientation � of the original G is
determined in the following manner: For each eu,v ∈ E, assign

�(eu,v) :=
{

(u, v), if fu→v ≥ fv→u,

(v,u), otherwise.
(1)

(By the definitions above, the direction is determined according to the lexicographic
order in case of a tie.)

Theorem 1 For any S = {1, . . . , k}, Algorithm MAJORITY approximates S-MMO
within a ratio of 2 and runs in O(W 3/2 · log�∗) time.

Proof First, consider the running time. Steps 1, 2 and 3 take O(W), O(W 3/2 · log�∗)
and O(W) time, respectively, the total running time of MAJORITY is O(W 3/2 ·
log�∗).

Next, consider the approximation ratio. The outdegree of any vertex u under
� is

∑
v∈��(u) w(eu,v) = ∑

v∈��(u)(fu→v + fv→u). Let u∗ be a critical vertex
with respect to �. Then ALG(G) = ∑

v∈��(u∗)(fu∗→v + fv→u∗), and OPT(G) ≥
OPT(G′) ≥ ∑

v∈�(u∗) fu∗→v ; since �′ is a relaxed orientation of G, the optimal value
of G′ is a lower bound on the optimal solution of G. Hence,

ALG(G)

OPT(G)
≤ ALG(G)

OPT(G′)
≤

∑
v∈��(u∗)(fu∗→v + fv→u∗)

∑
v∈�(u∗) fu∗→v

≤
∑

v∈��(u∗) 2 · fu∗→v
∑

v∈��(u∗) fu∗→v

= 2.

The last inequality holds since � is decided by majority voting. The approximation
ratio is 2. �

The analysis is tight, as the example in Fig. 2 demonstrates: The value of the
optimal solution for the instance G is k, while a possible output of MAJORITY is 2k,
as shown in Fig. 2(d).
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Fig. 2 A worst-case example for MAJORITY: (a) an instance G, (b) an optimal orientation of G, (c) an
optimal orientation �′ of G′, and (d) a possible output of MAJORITY based on (c)

Algorithm CYCLE-CANCELING

1. For graph G, construct G′ by replacing each edge e with w(e) edges of
weight 1.

2. Find an optimal orientation �′ of G′ by using SOLVE-1-MMO.
3. Decide the (partial) orientation � of G according to (2), and obtain G�′ =

(V ,F�′).
4. If there exists a directed l-cycle in G�′ where l ≥ 3, apply REVERSE-CYCLE

and go to Step 3.
5. For undecided edges of �, apply UP-TO-ROOTS to G�′ .
6. Return �.

Fig. 3 Algorithm CYCLE-CANCELING

3.2 Cycle canceling algorithm

Here, we describe an algorithm named CYCLE-CANCELING which improves MA-
JORITY; its approximation ratio is 2 − 1/k. In fact, CYCLE-CANCELING also uses
the same basic idea of replacing each weighted edge by a number of unweighted
edges and computing an optimal solution for the resulting unweighted multigraph.
However, it then decides the orientation of each edge in a different manner.

CYCLE-CANCELING is listed in Fig. 3. In the first and second steps of the algo-
rithm, do as MAJORITY; construct G′ (replicate each edge) and then find an optimal
orientation �′. After that, decide a partial orientation of the original problem by

�(eu,v) :=

⎧
⎪⎨

⎪⎩

(u, v), if fv→u = 0,

(v,u), if fu→v = 0,

−, otherwise,

(2)

where − means “not decided yet”. Note that the direction of the edges decided by
this operation is essentially the same as the one of �′; the value of the orientation
does not change.
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Next, we introduce a new operation, cycle cancelation, which updates the orien-
tation to a more desirable one without changing the outdegree of any vertex. To this
end, we construct another undirected graph G�′ = (V ,F�′), where F�′ = {eu,v ∈
E | fu→v 
= 0 and fv→u 
= 0 in �′}. From G�′ , we find an l-cycle with l ≥ 3, say
C = 〈v1, v2, . . . , vl, v1(≡ vl+1)〉, if one exists. (From here on, when we mention l-
cycles with l ≥ 3, we just say “cycles” for simplicity, because we do not consider
2-cycles in this paper.) Let c = min{fvi→vi+1 | i = 1, . . . , l}, which is a positive inte-
ger, by the definition of F�′ . Then, we go back to G′ and �′ and apply REVERSE-
CYCLE with size c to C; since there exist c cycles of 〈v1, v2, . . . , vl, v1(≡ vl+1)〉 on
G′ under �′, we can reverse the direction of the edges along the c cycles. It should
be noted that the outdegree (or the indegree) of each vertex in the resulting directed
graph is equal to the one under �′; it is still an optimal orientation in G′ and can be
updated as �′. For this new �′, we apply (2), then go back to the beginning of this
paragraph. Since at least one edge {vi, vi−1} on the cycle C satisfies fvi→vi+1 = 0 by
the REVERSE-CYCLE, the new F�′ is strictly smaller than the old F�′ ; this step ends
in at most m − 2 iterations.

After a number of (or possibly zero) iterations of the above procedure, G�′ be-
comes a forest, and we set F := G�′ . Note that all the edges of F are not decided yet
by (2). The cycle cancelation itself implies that there always exists an optimal solu-
tion �′ for the relaxed problem such that �′ has no cycles in F . Then, we have the
simple disjoint tree structure, for which we can apply the UP-TO-ROOTS operation
to decide the orientation of all the remaining edges.

Theorem 2 For any S = {1, . . . , k}, Algorithm CYCLE-CANCELING approximates
S-MMO within a ratio of (2 − 1

k
) and runs in O(W 3/2 · log�∗ + m2) time.

Proof We first consider the running time of CYCLE-CANCELING. Steps 1 and 2 have
the same time complexity as MAJORITY, i.e., O(W 3/2 · log�∗) time. Each iteration
of Step 3 takes O(m) time, and each iteration of Step 4 takes O(m) time by the depth
first search, and these steps can be iterated at most m − 2 times. Step 5 takes O(m)

time. In total, the running time is O(W 3/2 · log�∗ + m2).
Next, we analyze the approximation ratio. Let u∗ be any critical vertex in G with

respect to �, i.e., a vertex with maximum weighted outdegree in �. We shall prove
that d+

�(u∗) ≤ (2 − 1
k
) · OPT(G). First of all, note that OPT(G) ≥ k by Proposition 1

and also that OPT(G) ≥ OPT(G′) = d+
�′(x∗) ≥ d+

�′(u∗), where x∗ is any critical
vertex with respect to �′. Let F ∗ be the forest of rooted trees produced by UP-TO-
ROOTS in Step 5. There are two possible cases to consider after the iterations of
Steps 3 and 4:

1. u∗ is a root in F ∗:2 In this case, we immediately have d+
�(u∗) ≤ d+

�′(u∗) because
zero or more of u∗’s outgoing edges in �′ are reversed to obtain �, but none of its
incoming edges in �′ is reversed in Step 5. Then, recall that d+

�′(u∗) ≤ OPT(G)

by the above.

2This case also handles the possibility that u∗ is an isolated vertex in G�′ .
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Fig. 4 A worst-case example
for CYCLE-CANCELING: (a) an
instance G, (b) an optimal
orientation of G, (c) an optimal
orientation �′ of G′, and (d) a
possible output of
CYCLE-CANCELING based
on (c)

2. u∗ is not a root in F ∗: In this case, let p denote the parent of u∗ and C the set of
children of u∗ in F ∗, respectively. Clearly, we have d+

�(u∗) = d+
�′(u∗)+fp→u∗ −

∑
v∈C fu∗→v ≤ d+

�′(u∗) + fp→u∗, which yields

d+
�(u∗)

OPT(G)
≤ d+

�′(u∗) + fp→u∗

OPT(G)
≤ d+

�′(u∗)
d+
�′(u∗)

+ fp→u∗

k
≤ 1 + k − 1

k
= 2 − 1

k
,

where the last inequality holds since fp→u∗ + fu∗→p ≤ k and fu∗→p ≥ 1.

In both cases, d+
�(u∗) is within the desired bound. �

Figure 4 shows a worst-case example of CYCLE-CANCELING for an instance of
{1,3}-MMO whose approximation ratio is 5/3 = 2 − 1/3. This construction can be
modified in a straightforward way to produce worst-case examples for general k,
which means that the analysis of Theorem 2 is tight.

Remark By Theorem 2, the approximation ratio of CYCLE-CANCELING for k = 2
is 3/2. This is actually the best possible in polynomial time for k = 2 (unless P = NP),
as we shall prove in Sect. 5.

3.3 Refined cycle canceling algorithm

We now consider the special case of S-MMO in which S = {1, k} for k ≥ 3, and
show that it can be approximated even more efficiently than by Algorithm CYCLE-
CANCELING. The new algorithm is called REFINED CYCLE-CANCELING and is out-
lined in Fig. 5. The main idea is to show that if all edge weights in G are either 1 or k,
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Algorithm REFINED CYCLE-CANCELING

1.–4. Execute Steps 1 to 4 of CYCLE-CANCELING.
5. While there exists a leaf node u connecting to v such that fu→v ≥ fv→u in

F = (V ,F ), let �(eu,v) := (u, v) and remove eu,v from F .
6. For undecided edges of �, apply UP-TO-ROOTS to F .
7. Return �.

Fig. 5 Algorithm REFINED CYCLE-CANCELING

a slight modification to CYCLE-CANCELING allows us to compute a stronger lower
bound on an optimal solution which then yields an improved approximation ratio.

As mentioned in the previous section, the cycle cancelation itself provides an op-
timal solution for the relaxed problem with a tree property. Here, we focus on Step 5
of CYCLE-CANCELING, in which the naive application of UP-TO-ROOTS with arbi-
trary roots gives a worst-case example (as shown in Fig. 4); this causes the approxi-
mation ratio to be 2 − 1/k. The reason is that some vertices having large outdegrees
under the orientation �′ are not suitable for being roots; if such a vertex is set to be a
root, its outdegree will distribute to its neighbors so that the neighbors have large out-
degrees under � compared to under �′. To avoid this situation, Algorithm REFINED

CYCLE-CANCELING proceeds as follows.
First execute Steps 1 to 4 of CYCLE-CANCELING, and obtain a forest F . If there

exists a leaf node u in F such that fu→v ≥ fv→u holds for its neighbor v, we fix
the orientation of eu,v as (u, v) and remove eu,v from F (i.e., �(eu,v) := (u, v) and
F = (V ,F ) with F := F \ {eu,v}). Repeat this operation until no leaf node u satisfies
fu→v ≥ fv→u where v is the neighbor node of u. Then, the algorithm applies UP-
TO-ROOTS.

While Algorithm CYCLE-CANCELING simply applies UP-TO-ROOTS operations
to the obtained forests, REFINED CYCLE-CANCELING decides the orientation of
edges connected to leaves according to the values of f ’s for the leaves and their par-
ents, and then applies UP-TO-ROOTS. Note that this modification does not depend
on S and does not make the solution worse, though it might be difficult to show that it
has an improved approximation ratio. We can, however, show a better approximation
ratio for the special case S = {1, k}.

Theorem 3 For any S = {1, k} where k ≥ 3, Algorithm REFINED CYCLE-CANCEL-
ING approximates S-MMO within a ratio of (2− 2

k+1 ) and runs in O(W 3/2 · log�∗ +
m2) time.

Proof It is easy to see that adding Steps 5 and 6 to Algorithm CYCLE-CANCELING

in Sect. 3.2 does not increase the asymptotic running time. Therefore, the running
time is O(W 3/2 · log�∗ + m2).

To analyze the approximation ratio of REFINED CYCLE-CANCELING, we proceed
similarly as in the proof of Theorem 2. Let u∗ be any critical vertex in G with respect
to �, and let F ∗ be the forest of rooted trees produced by UP-TO-ROOTS in Step 6.
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Recall that OPT(G) ≥ k and OPT(G) ≥ OPT(G′) ≥ d+
�′(u∗). There are two main

cases:

1. u∗ is a node which satisfies the condition in Step 5: Then, since fp→u∗ ≤ k
2 for

the parent p of u∗,

d+
�(u∗)

OPT(G)
≤ d+

�′(u∗) + fp→u∗

OPT(G)
≤ d+

�′(u∗)
d+
�′(u∗)

+ fp→u∗

k
≤ 1 + k/2

k
= 3

2
.

2. u∗ is a node which did not satisfy the condition in Step 5:
(a) If u∗ is a root in F ∗, then d+

�(u∗) ≤ d+
�′(u∗) ≤ OPT(G) as before, and we are

done.
(b) If not, consider the tree T in F ∗ that contains u∗. Let p be the parent of u∗

in T and let 〈u1, u2, . . . , u�〉 be the path between any two leaves u1 and u�

in the undirected version of T . Since u1 and u� satisfy fu1→u2 < fu2→u1

and fu�→u�−1 < fu�−1→u�
, there must exist an intermediate node ui such that

fui−1→ui
< fui→ui−1 and fui→ui+1 ≥ fui+1→ui

. Next, because all edges in T

have weight k, we know that fv→w + fw→v = k for every edge {v,w} in T ,
which means that fui→ui−1 > k/2 and fui→ui+1 ≥ k/2. Thus, the outdegree
of ui is at least fui→ui−1 + fui→ui+1 > k, i.e., OPT(G′) ≥ k + 1. Plugging in
this stronger lower bound gives us

d+
�(u∗)

OPT(G)
≤ d+

�′(u∗) + fp→u∗

OPT(G)
≤ d+

�′(u∗)
d+
�′(u∗)

+ fp→u∗

k + 1

≤ 1 + k − 1

k + 1
= 2 − 2

k + 1
.

Since 2 − 2
k+1 ≥ 3/2 for k ≥ 3, the approximation ratio is 2 − 2

k+1 for k ≥ 3. It
should be noted that the approximation ratio of REFINED CYCLE-CANCELING for
k = 2 is 3/2 (same as CYCLE-CANCELING) because then Step 6 is not executed. �

Figure 6 shows a worst-case example of REFINED CYCLE-CANCELING for
{1,3}-MMO. Since this example is also extendable to general {1, k}-MMO, the analy-
sis of Theorem 3 is tight.

3.4 Approximation algorithm for large k

This subsection presents a simple approximation algorithm named LARGE-k for
{1, k}-MMO which is suitable when k � n. Its approximation ratio is 1 + n

2k
and

its running time does not depend on k or W . The algorithm is described in Fig. 7.
The next theorem states the approximation ratio of Algorithm LARGE-k.

Theorem 4 For any S = {1, k}, Algorithm LARGE-k approximates S-MMO within a
ratio of (1 + n

2k
) and runs in O(m3/2 · logn) time.
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Fig. 6 A worst-case example for REFINED CYCLE-CANCELING: (a) an instance G, (b) an optimal
orientation of G, (c) an optimal orientation �′ of G′, and (d) a possible output of REFINED CY-
CLE-CANCELING based on (c)

Algorithm LARGE-k

1. For the given graph G, construct two graphs G1 = (V ,E1) and Gk = (V ,Ek),
where E1 and Ek are the sets of edges with weight 1 and k, respectively.

2. Apply operation SOLVE-1-MMO to G1 and Gk independently, and let �′
1

and �′
k be the returned optimal solutions.

3. Let � be the composite orientation of �′
1 and �′

k for the whole graph G.
4. Return �.

Fig. 7 Algorithm LARGE-k

Proof The running time is O(m3/2 · logn) because SOLVE-1-MMO is called twice
in Algorithm LARGE-k, and both log(�∗

1(G1)) and log(�∗
1(Gk)) are O(logn). Next,

ALG(G)

OPT(G)
=

maxv∈V {d+
�′

1
(v) + d+

�′
k

(v)}
OPT(G)

≤
maxv∈V {d+

�′
1
(v)} + maxv∈V {d+

�′
k

(v)}
OPT(Gk)

= OPT(G1) + OPT(Gk)

OPT(Gk)
≤ n/2

k
+ 1,

since OPT(G) ≥ OPT(Gk) ≥ k and since n/2 is a trivial upper bound for OPT(G1)

derived from the complete graph with n vertices. �
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4 Polynomial-time computation of {1}-MMO for G′

In this section, we develop a technique for making Algorithms MAJORITY, CYCLE-
CANCELING, and REFINED CYCLE-CANCELING polynomial-time algorithms. Re-
call from the previous section that in these algorithms, we solve {1}-MMO for the
graph G′, which is generated from G by replacing each edge e with w(e) edges of
weight 1, as a sub-procedure. Although {1}-MMO for G = (V ,E) can be solved
in O(|E|3/2 log |V |) time by the algorithm of Asahiro et al. (2007), {1}-MMO(G′)
requires O(W 3/2 · log�∗) time, which is pseudo-polynomial time (that is, it is not
necessarily polynomial in the length of the input). However, the information actually
needed by MAJORITY, CYCLE-CANCELING, and REFINED CYCLE-CANCELING is
not the orientation itself but the values fu→v and fv→u. This section explains how
to compute these values in polynomial time. The modified algorithm is presented in
Fig. 10.

To find the values fu→v and fv→u efficiently, instead of explicitly constructing G′
and applying SOLVE-1-MMO, we first solve a relaxed version of S-MMO where the
orientation of any edge may be fractional, meaning that its weight may be distributed
among both directions as (positive) non-integers. For example, an edge {u,v} in G

with weight 6 might be oriented as (u, v) with weight 3.6 and (v,u) with weight 2.4.
The optimal solution to relaxed S-MMO can be obtained by solving a series of max-
imum directed flow problems as follows. Given the graph G = (V ,E,w) and a pos-
itive integer �tmp , construct a flow network NG = (VN ,AN , cap), where VN =
V ∪ E ∪ {s, t}, AN = {(s, e) | e ∈ E} ∪ {(e, vi), (e, vj ) | e = {vi, vj } ∈ E} ∪ {(v, t) |
v ∈ V }, and

cap(a) =
⎧
⎨

⎩

w(e), if a = (s, e),

w(e), if a = (e, v),

�tmp, if a = (v, t).

Figures 8 and 9 show an example of a graph G and its corresponding network NG.
Since NG has only integral capacities, the flow integrality theorem (Cormen et al.
1990) ensures that the maximum flow value in NG is an integer. It is straightforward
to transform a maximum flow solution of NG into a solution for relaxed S-MMO
with value at most �tmp . By applying a binary search on �tmp , we can thus obtain
an optimal solution for the relaxed version of the problem.

Next, we need to ensure that the obtained optimal orientation for relaxed S-MMO
is always integral. (In general, an optimal orientation for relaxed S-MMO may not be
integral even though the maximum flow value �opt itself is an integer.) Therefore, in
the description of Algorithm MODIFIED SOLVE-1-MMO(G′) in Fig. 10, Steps 2, 3
and 4 have been added to ensure the integral flow property; the next paragraph ex-
plains in detail how this works. Note that we can skip Steps 2 to 4 if we employ a
maximum flow algorithm in Step 1 which always outputs an integral optimal solu-
tion (such as the one by Goldberg and Rao 1998); however, we include these steps
in the description of the algorithm for completeness so that it works for any selected
maximum flow algorithm in Step 1.

The idea is simple. If we obtain a non-integral flow after Step 1, we adjust it to
a solution of 1-MMO(G′), in which both fu→v and fv→u should be integral for any
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Fig. 8 A graph G

Fig. 9 The network NG

constructed from G in Fig. 8

Algorithm MODIFIED SOLVE-1-MMO(G′)

1. Find an optimal orientation for relaxed S-MMO on G by solving maximum
directed flow problems in NG while doing a binary search to find �∗. Set
fu→v and fv→u for every {u,v} ∈ E.

2. Construct G∗ = (V ,E∗), where E∗ = {(u, v) | fu→v − �fu→v� > 0}}. If
E∗ = ∅, goto Step 5.

3. For a directed l-cycle C in G∗ where l ≥ 3, apply REVERSE-CYCLE to C

with size min(u,v)∈C{fu→v − �fu→v�} to update fu→v for every (u, v) ∈ C,
and goto Step 2. If no cycle in G∗, goto Step 4.

4. For G∗, apply UP-TO-ROOTS as described above.
5. Return �′ as fu→v and fv→u for all {u,v} ∈ E.

Fig. 10 Algorithm MODIFIED SOLVE-1-MMO(G′ )

{u,v} ∈ E. For this purpose, we use REVERSE-CYCLE and UP-TO-ROOTS again.
From the obtained solution �∗ of relaxed S-MMO(G), we construct a directed graph
G∗ = (V ,E∗), where E∗ = {(u, v) | fu→v − �fu→v� > 0}. Note that if G∗ contains
no edge, �∗ is an integral optimal solution for relaxed S-MMO(G), that is, an optimal
solution for 1-MMO(G′). Since G∗ is a bidirectional graph, G∗ contains a directed
l-cycle with l ≥ 3, is a (bidirectional) forest, or empty. If G∗ contains a directed l-
cycle C, we can update �∗ so as to delete C by applying REVERSE-CYCLE to C

with size c = min(u,v)∈C{fu→v − �fu→v�} as in Sect. 3.2. By a similar argument,
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we obtain a forest after at most m applications of REVERSE-CYCLE. Then we apply
UP-TO-ROOTS that makes �∗ integral; that is, from u on the forest to its parent p,
update fu→p := �fu→p� and fp→u := �fp→u�. This does not increase the value of
�∗ by the following reason: For node u on the forest, let f (u) = ∑

v∈�(u)�fu→v�,
and p be the parent of u on the forest. Then the weighted outdegree of u under �∗
before applying UP-TO-ROOTS is f (u)+∑

v∈�(u)(fu→v −�fu→v�) ≤ �opt . Due to
the integrality of f (u) and �opt, we have f (u) ≤ �opt −1. After the UP-TO-ROOTS,
the weighted outdegree of u becomes at most f (u) + (fu→p − �fu→p�) + (fp→u −
�fp→u�) = f (u) + 1 ≤ �opt. By these, we can obtain an optimal orientation of 1-
MMO(G′) from any optimal orientation of relaxed S-MMO(G).

Finally, we consider the time complexity of Algorithm MODIFIED SOLVE-1-
MMO(G′). Step 1 can be done in O(m3/2 · logn · logk · log�∗) time by a maxi-
mum flow algorithm (Goldberg and Rao 1998) while doing a binary search for �∗.
Steps 2, 3 and 4 are not needed in this case (if executed, they would take O(m2) time)
because the adopted maximum flow algorithm always returns an integral flow. Thus,
the computations take O(m3/2 · logn · logk · log�∗) time in total.

Theorem 5 Algorithm MODIFIED SOLVE-1-MMO(G′) computes the fu→v and
fv→u values of all the edges for {1}-MMO of G′ in O(m3/2 · logn · logk · log�∗)
time.

Corollary 1 The running time of algorithm MAJORITY can be improved to O(m3/2 ·
logn · logk · log�∗). Also, the running times of algorithms CYCLE-CANCELING and
REFINED CYCLE-CANCELING can be improved to O(m3/2 · logn · logk · log�∗ +
m2).

Remark We can obtain a strongly polynomial-time algorithm by adopting another
maximum flow algorithm such as King et al. (1994) instead of Goldberg and
Rao (1998) in Algorithm MODIFIED SOLVE-1-MMO(G′). Then the running times
of MAJORITY, CYCLE-CANCELING, and REFINED CYCLE-CANCELING become
O(m3 · log2+1/ logn n).

5 Inapproximability results

It was shown in Asahiro et al. (2007) that S-MMO is NP-hard by a reduction from the
PARTITION problem, which has a pseudo-polynomial time algorithm. This implies
that S-MMO was only known to be weakly NP-hard. Also, no previous results about
the inapproximability of S-MMO exist. In this section, we provide a proof of the
strong NP-hardness of S-MMO which also yields inapproximability results. More
precisely, we give a reduction from a variation of the 3-SAT problem, At-most-3-
SAT(2L), to {1, k}-MMO for any fixed integer k ≥ 2.

At-most-3-SAT(2L) is a restriction of 3-SAT where each clause includes at most
three literals and each literal (not variable) appears at most twice in a formula. It
can easily be proved that At-most-3-SAT(2L) is NP-hard by using problem [LO1] on
p. 259 of Garey and Johnson (1979).
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Fig. 11 Reduction from At-Most-3-SAT(2L) to {1, k}-MMO

The reduction from At-most-3-SAT(2L) to {1, k}-MMO is as follows. Given
a formula φ of At-most-3-SAT(2L) with g variables {v1, . . . , vg} and h clauses
{c1, . . . , ch}, we construct a graph Gφ including gadgets that mimic (a) literals,
(b) clauses, and (c) a special gadget:

(a) Each literal gadget consists of two vertices labeled by vi and vi and one
edge {vi, vi} between them, corresponding to variable vi of φ. The weight
of {vi, vi} is k.

(b) Each clause gadget is one vertex (called a clause vertex) labeled by cj , corre-
sponding to clause cj of φ. The clause vertex cj is connected by edges of weight 1
to at most three vertices in the literal gadgets that have the same labels as the lit-
erals in the clause cj . For example, if c1 = x ∨ y appears in φ, then vertex c1 is
connected to vertices x and y. See Fig. 11.

(c) The special gadget is a cycle of k vertices and k edges where each edge of the cy-
cle has weight k.3 For each clause, if it consists of one (two or three, respectively)
variable(s), then its clause vertex is connected to k (k − 1 or k − 2, respectively)
arbitrary vertices in the special gadget by edges of weight 1. Hence, the degree
of every clause vertex is exactly k + 1.

Lemma 1 For the above construction of Gφ , the following holds:

(i) If φ is satisfiable, then OPT(Gφ) ≤ k.
(ii) If φ is not satisfiable, then OPT(Gφ) ≥ k + 1.

Proof To prove (i), suppose there exists a satisfying truth assignment for φ. From the
assignment, we construct an orientation of Gφ with value OPT(Gφ) ≤ k. If vi = true
in the assignment, the edge {vi, vi} is oriented from vi to vi ; otherwise, from vi to vi .
So far, the outdegree of every vertex associated with the literals of true and false
assignments is 0 and k, respectively. We call the vertices associated with literals of

3In case k = 2, we prepare a cycle of 3 vertices as an exception to keep the simple property of the graph.
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true (resp., false) assignments true (resp., false) vertices. (For example, in Fig. 11,
if the variable x = false in the truth assignment then the upper leftmost vertex x is a
false vertex and the second leftmost vertex x is called a true vertex.) For every clause
vertex cj , we select one edge connected to a true vertex and orient it towards cj , and
orient the remaining k edges away from cj . This orientation of the edges does not
increase the outdegree of false vertices or any extra true vertex; it is still at most k.
Since every literal appears at most twice in φ, the outdegree of true vertices in the
literal gadgets is at most two. Finally, edges belonging to the special gadget can be
oriented cyclically. Thus, the maximum outdegree of Gφ is at most k.

Next, we prove (ii) by showing that if Gφ has an orientation whose maximum
outdegree is at most k then φ is satisfiable by constructing the satisfying truth assign-
ment. If an edge in the ith literal gadget vi is oriented from vi to vi then we assign
vi = false; otherwise, vi = true. Since every clause vertex is connected to the literal
gadgets and special gadgets by k + 1 edges, and every edge between a clause gadget
and the special gadget must be oriented towards the special gadget (if not, the maxi-
mum outdegree of the special gadget would be at least k + 1), it follows that for each
clause vertex cj , there must be at least one edge directed towards cj from a vertex v

in a literal gadget, and v must therefore be a true vertex. This means that the above
truth assignment satisfies all clauses in φ. �

From Lemma 1, we immediately obtain:

Theorem 6 {1, k}-MMO for any fixed k ≥ 2 is strongly NP-hard.

Corollary 2 Z
+-MMO is strongly NP-hard.

In addition, the (in)satisfiability gap of Lemma 1 directly yields the next theorem
and corollary.

Theorem 7 {1, k}-MMO, where k ≥ 2 is fixed, has no pseudo-polynomial time algo-
rithm with approximation ratio less than 1 + 1/k, unless P = NP.

Corollary 3 Z
+-MMO has no pseudo-polynomial time algorithm with approxima-

tion ratio less than 3/2, unless P = NP.

6 Concluding remarks

6.1 Relation to scheduling

As mentioned in Sect. 1.1, one application of the minimization of the maximum out-
degree is scheduling. For an undirected graph, let us consider the vertices as the
machines and the edges as the jobs. Then S-MMO can be regarded as a special
case of the job assignment problem (Pinedo 2002) in which the minimization of the
maximum outdegree means to minimize the finishing time of all the jobs. From the
viewpoint of scheduling, our problem has some restrictions: (1) each job must be as-
signed to exactly one of two predetermined machines, and (2) the processing time of
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each job does not depend on the machines. Therefore, S-MMO is a special case of
scheduling on unrelated parallel machines, or R||Cmax in standard notation: given a
set J of jobs, a set M of machines, and the time pij ∈ Z

+ taken to process job j ∈ J

on machine i ∈ M , its goal is to find an assignment of all jobs to the machines so
as to minimize the makespan, i.e., the maximum processing time of any machine.
Lenstra et al. (1990) gave a polynomial-time 2-approximation algorithm based on
the LP-formulation for the general version of R||Cmax and a ratio 3/2 inapproxima-
bility result (see also Schuurman and Woeginger 1999). Alternatively, S-MMO can
be regarded as a variant of scheduling on identical parallel machines, in which each
job can be processed by any of the machines and the processing time pij of job j on
machine i is fixed to be pj , independent of i. This problem has an FPTAS (Horowitz
and Sahni 1976), which contrasts with our inapproximability results for S-MMO.
Another interesting difference concerns the set of processing times, or the weight set:
R||Cmax has a polynomial-time algorithm for the special case where the weight set
is {p,q} with q = 2p, but S-MMO remains NP-hard even if all edge weights belong
to {p,q} with q = 2p (this is possible because S-MMO corresponds to R||Cmax with
weight set {p,q,∞}).

Observe that the 3/2-inapproximability result of Lenstra et al. (1990) cannot be ap-
plied directly to the restricted assignment variant in which every job can be processed
on a constant number of machines. In S-MMO, each job associated with an edge
can be assigned only to one of the two machines associated with the two vertices of
that edge. Moreover, their inapproximability proof requires the assumption that the
processing time of each job may vary depending on which machine it is processed
on. Thus, their inapproximability result does not apply to our case, and in this sense,
our result provides a stronger inapproximability bound.

6.2 Open problems

Several open problems remain. One concerns the gap between the polynomial-time
approximability and inapproximability of {1, k}-MMO. For k = 2, they coincide, but
in the current result, the gap between 2−2/(k+1) and 1+1/k increases for larger k.
On the other hand, for very large k, it is easy to get a better approximation ratio,
as shown in Sect. 3.4. To further investigate that relationship would be interesting.
Another topic is to design faster strongly polynomial-time approximation algorithms
with a good approximation ratio.

Also, what is the time complexity of {k}-MMO? SOLVE-1-MMO was shown in
Asahiro et al. (2007) to solve {k}-MMO in O(m3/2 · log(�∗

1)) time, but we believe
that faster methods may be possible, e.g., by avoiding the binary search. A faster
algorithm for {k}-MMO would immediately imply a faster implementation for Algo-
rithm LARGE-k in Sect. 3.4, for example.

Finally, are there any graph classes besides forests which admit polynomial-time
exact solutions? On the negative side, it seems that the techniques in Sect. 5 can
be extended to prove that {1, k}-MMO (and thus also Z

+-MMO) remain hard to
approximate even if restricted to planar graphs or if restricted to bipartite graphs.
We are currently working on resolving this issue. The problem also seems NP-hard
for series-parallel graphs, which would imply that Z

+-MMO on bounded treewidth
graphs is NP-hard since series-parallel graphs have treewidth at most 2.
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