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Abstract

This paper is a survey of the second smallest eigenvalue of the Laplacian of a graph G, best-known as
the algebraic connectivity of G, denoted a(G). Emphasis is given on classifications of bounds to algebraic
connectivity as a function of other graph invariants, as well as the applications of Fiedler vectors (eigenvectors
related to a(G)) on trees, on hard problems in graphs and also on the combinatorial optimization problems.
Besides, limit points to a(G) and characterizations of extremal graphs to a(G) are described, especially
those for which the algebraic connectivity is equal to the vertex connectivity.
© 2006 Elsevier Inc. All rights reserved.

AMS classification: 05C50

Keywords: Laplacian of graph; Algebraic connectivity; Vertex and edge connectivities; Bounds for the algebraic con-
nectivity; Fiedler vectors; Limit points; Extremal graphs; Laplacian integral graphs

1. Introduction

The Laplacian matrix of a graph and its eigenvalues can be used in various areas of mathematics,
mainly discrete mathematics and combinatorial optimization, with interpretation in several phys-
ical and chemical problems. The adjacency matrix and its eigenvalues have been investigated
more than the Laplacian matrix, see [6,14,17,18], and according to Mohar [64] the Laplacian
eigenvalues are more intuitive and much more important than the spectrum of the adjacency
matrix.
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Among all eigenvalues of the Laplacian of a graph, one of the most popular is the second
smallest, called by Fiedler [25], the algebraic connectivity of a graph. Its importance is due to
the fact that it is a good parameter to measure, to a certain extent, how well a graph is connected.
For example, it is well-known that a graph is connected if and only if its algebraic connectivity is
different from zero.

Recently, the algebraic connectivity has received much more attention, see [11,25,30,34,59—
61,64,65] for surveys and books; [31,33,48,55,58,68,71] for application on trees; [5,26,27,21,
24.,34,63,64,67] for applications on hard problems in graph theory: the expanding properties of
graphs, weighted graphs, absolute algebraic connectivity, isoperimetric number, genus and other
invariants of a graph; [41,72] for the study of the asymptotic behavior of algebraic connectiv-
ity for random graphs; [4,13,26,28,44,54,63,64] for applications on combinatorial optimization
problems: the problem of certain flowing process, the maximum cut problem and the traveling
salesman problem.

Besides, the algebraic connectivity is of relevance to the theory of elasticity [72], to the corre-
spondence between continuous and discrete mathematics (an inequality for continuous analogue
of the algebraic connectivity in compact Riemannian manifolds was obtained by Cheeger [10]),
and to an investigation of a bandwidth-type problem using the spectral parameter by Mohar [64].
Also, Ghosh and Boyd [29] describe a method to maximize the second smallest eigenvalue over
the convex hull of the Laplacian of graphs in a particular family which is a convex optimization
problem. The eigenvectors corresponding to the algebraic connectivity, called Fiedler vectors,
are also of interest. Motivated by Fiedler [26], these eigenvectors have received a lot of attention
recently, see [21,48,49]. According to Barnad et al., as cited by Merris [62], Fiedler vectors are
used in algorithms for distributed memory parallel processors, as well the algebraic connectivity
and Fiedler vectors for trees have been studied extensively [31,33,48].

More recently, the limit points of Laplacian spectra, and so of the algebraic connectivity, have
been a subject of interest [37,45,69]. Finally, at the beginning of this millenium, the character-
ization of extremal graphs that satisfy certain maximal and minimal invariants seems to place a
great emphasis on graph theory research. Hence, this could not be different with respect to the
algebraic connectivity, as described in [4,22,47,49].

In this paper, new results are treated with greater attention and results are considered as new
if they do not appear either in the classic article by Fiedler [25] or in one the following surveys:
Mohar [65] and Merris [61].

This survey is developed through the following sections: Section 2 relates two classic theorems,
Matrix-tree and Courant-Fisher, from which have come the concept and properties of a(G).
Section 3 describes expressions for a(G) where G is a graph obtained from graph operations, and
the algebraic connectivity of graphs in special families. In Section 4, a classification of bounds for
a(G) in terms of other invariants is given; Section 5 approaches applications of algebraic connec-
tivity to ordering trees, to expanding graphs and a(G)-variations. Also, it describes applications
of Fiedler vectors to combinatorial optimization problems; Section 6 relates the limit points and
extremal graphs to a(G). Characterizations of graphs for which the algebraic connectivity is equal
to the vertex connectivity are the subject of Section 7.

2. Algebraic connectivity of simple and weighted graphs

The Laplacian matrix L(G) is frequently used to enumerate spanning trees of a graph G,
according to one of the oldest theorems in Graph Theory, Theorem 2.1, whose proof can be found
in Biggs, [6].
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Theorem 2.1 (Matrix-Tree Theorem). Let u and v be vertices of a graph G, and let L(G)(u, v)
be the submatrix obtained from L(G) by deleting row u and column v. Let u(T) be the number
of spanning trees of G. Then, | det L(G),v)| = u(T).

The spectrum of the Laplacian of G is the sequence of its eigenvalues S(L(G)) = (Aq, ...,
An—1, An), given in non-increasing order, A = --- > A,—1 = A,. Since L(G) is a semidefinite
positive singular matrix, then A, = 0 and as an immediate consequence of the Matrix-Tree The-
orem A,_1 = 0 if and only if G is a disconnected graph. It is possible to obtain the same result
by the well known Perron—Frobenius Theorem, [17,30], applied to the matrix (n — 1)1 — L(G),
where [ is the identity matrix. Because of that, Fiedler [25] called A, the algebraic connectivity
of G, denoted a(G) = X,,_1. It is related to several important graph invariants and it has been
extensively investigated. Most of the results related to a(G) with other invariants of graphs are
consequences of the well-known Courant-Fisher Theorem [25].

Theorem 2.2. Let 0 be the null vector and 1 be the vector such that each of its coordinates is
equal to 1. Since 1 is an eigenvector for A, = 0, then,
(L(G)v, v)

G =
a(G) v#£0,v11 (v, v)

Fiedler [26] extended this result to a weighted graph with non-negative values on the edges.
The generalized Laplacian matrix Ac(G) of a weighted graph G, where C is its cost matrix, for
which ¢;; = ¢j; is the weight (or the cost) of the edge (v;, v;), is

—cij i#j,0G,J)eE,
Ac(G) =10 i#j, G j)¢E,
et 1F -
Another way to describe A¢(G) is by means of its quadratic form:
(Ac(G)X. X) = Y cijlxi — x>,
(i,j)eE
where X = (x1, x2, ..., x,) and the sum is over the pairs i < j for which {v;, v;} is an edge of
G. See, [60].

The second smallest eigenvalue ac(G) will be analogously called algebraic connectivity of

G, because of the following proposition:

Proposition 2.1. Let G = (V, E) be a connected graph valuated with positive weights c;;. Then
the algebraic connectivity of G is positive and equal to the minimum of the function

2
Z([,J‘)gE cij(xi —xj)

2 9
Z(i,j)eE,i<j (xi —xj)
over all non-constant n-tuples x = (x;).

px)=n

In Fiedler [27] we can find the definition of the absolute algebraic connectivity of a weighted
graph G = (V, E) as the maximum of algebraic connectivities for all non-negative valuations of
G whose average value on the edges of G is one. The absolute algebraic connectivity a(G) is
formally defined as

a(G) = max a(Gc), (2.1)
Ce?(G)

€v
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over the set ¥(G) of all non-negative valuations of G such that

> cik=IEl. 2.2)

(i,k)€E
Since the (0, 1)-valuation satisfies (2.2) and thus belongs to (G), we have
a(G) < a(G). 2.3)

In his paper [27], Fiedler introduced the notion of the absolute center of gravity of G,,, when G,
is a metric space assigned to G as every point M in G, for which a function

S(X) =Y d*(X. k) (2.4)
keV
attains to minimum. The distance d (X, k), where X is a point on the edge (i, k) can be determined
by its distances x1 and x; from i and k which x; > 0, xo > 0, x; 4+ xo = 1. The distance between
two vertices in V is defined as usual.
For variance of G, we call the following number:

v(G) = ; min S(X), 2.5)
n—1XxeG,

where n is the number of vertices of G.

Based on the notions, Fiedler, in the same paper, solves completely the problem of finding a(7')
where T is a tree. He proves that the absolute algebraic connectivity of a tree T is the reciprocal
of the variance of T':

1

w(T)’
Since of the introduction of the absolute algebraic connectivity and its characterization for trees,

the only one result found in the literature is due to Kirkland and Pati [50]. They present an upper
bound on d(G) as a function of n and the vertex connectivity of G. See [50] for more details.

2.6)

3. Algebraic connectivity of graphs obtained from operations

The use of operations on graphs in order to determine invariants has been a useful technique.
The same technique is applied to the algebraic connectivity. The unary and binary, or more general,
k-ary operations which are considered here are: the complement of G; the removal of an edge from
G the removal of some vertices from G and the addition of an edge to G as unary operations, and
an edge-union of graphs; the cartesian product of graphs; the decomposition of vertex set and the
directed sum of graphs as binary or k-ary operations. The union and join operations are defined
later. All these operations are well-known and their definitions, as used here, can be found in
[6,30,39,36]. Table 3.1 displays, in the left column, the unary and binary operations of graphs G,
G1 and G and, the relations between their algebraic connectivities are in the right column.

The are several popular graphs for which their algebraic connectivity is known. The first one,
in Theorem 3.1, gives the algebraic connectivity when G is a k-regular graph, [6]. Since a(G) is
determined as a function of the second smallest eigenvalue of the adjacency matrix of G, Theorem
3.1 provides a bridge between the eigenvalues of the Laplacian of G and those of its adjacency
matrix, known as the eigenvalues of graph.

Theorem 3.1. Let G be a k-regular graph and 6,1y be the second smallest eigenvalue of G.
Then a(G) =k — 9(”_1).
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Table 3.1

Relations between a(G) and a(G;), where G; is a component of some operation

Operations Relations of a(G) and a(G;),i = 1,2
The complementary graph G of G a(G) =n— i

G obtained by removal of an edge from G a(Gy) < a(G)

G obtained by removal of k vertices from G a(G) <a(Gy) +k

G| obtained by adding an edge of G a(G) <a(Gy) <a(G)+2
Edge-union of G = G| U G, a(G1) +a(Gr) = a(G)
Cartesian product G = G| x G a(G) = min{a(G1); a(Gy)}

G and G, obtained from V (G)-decomposition a(G) < minf{a(G1) + |Val; a(Gp) + | V1 1}
Direct sum G = G| P G, a(G) +a(Gy) < a(G1 P Gy)
Table 3.2

Graphs for which a(G) are known

Graph G Algebraic connectivity, a(G)
Complete graph a(Kp)=n

Path a(Py) =2(1 —cos )

Cycle a(Cp) = 2(1 — cos 27”)

Bipartite complete graph a(Kp,q) = min(p, q)

Star Ky 4,9 > 1 a(Kyq) =1

Cube m-dimension a(Cby) =2

Petersen Graph a(P)=2

Using the theorem above we can obtain the exact expressions for the algebraic connectivity
of complete graphs, cycles, bipartite complete graphs, cube graphs, Petersen graph and others.
Some of these values can be seen in Table 3.2.

Concerning trees we can give a result due to Grone et al. [34].

Theorem 3.2. If T # K1 ,—1 is a tree on n > 6 vertices then a(T) < 0.49.

From this result, we conclude that, for every tree T, except for Ko where a(K3) = 2, a(T)
belonging to interval (0, 1]. Besides, there is a large gap between the algebraic connectivity of
a star equal to 1 and that of any other tree on n > 6 vertices which is unable to reach 0.49, see
Table 3.2 and Theorem 3.2.

4. Bounds to algebraic connectivity

There are several bounds to the algebraic connectivity related to other parameters of a graph. So,
we group them in distinct classes: The first one By = {n, m, §(G), 4(G), «(G), e(G)} contains
the following basic invariants of G: the vertex number n, the edge number m; the minimal
degree §(G), the maximal degree A4(G), the vertex connectivity « (G) and the edge connectivity
e(G);thesecondclass B, = {diam(G), «(G), g(G)} contains the diameter diam(G), the maximal
independence number o (G), and the genus g(G) of G. Finally, some non-usual parameters, which
will be defined later, belong to the last class By = {m(G), u(v), p(S)}. They are, respectively,
m(G), the mean distance of G; u(v), the average of the degrees of all vertices of G adjacent to
v € V and, p(S), the edge density of subsets S C V. Tables 4.1-4.3 display the bounds of a(G)
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Table 4.1

Bounds to a(G) related with basic invariants in B

Authors Bounds of a(G)

(i) Fiedler [25] For G # K;,a(G) <n—2

(ii) Fiedler [25] 28(G) —n+2 < a(G) < 258(G)

(iii) Fiedler [25] a(G) < «(G) < e(G) < 8(G)

(iv) Fiedler [25] 2¢(G)(1 —cos Z) < a(G)

(v) Fiedler [25] 2(cos(% —cos2Z))k(G) — 2cos (1 — cos T)A(G) < a(G)
(vi) Belhaiza et al. [4] For G # K;;,a(G) < |[—1+ V14 2m]

as functions of invariants in By, By and Bs, respectively. In each table, the references are listed
in the left column while their expressions are shown in the right.

In Table 4.1, while we owe to Fiedler [25] all the first bounds to algebraic connectivity, (i)—(v),
which are related to basic invariants, the last bound, (vi), was obtained by Belhaiza et al. [4] with
the help of a computer system. It is worth pointing out that computers are increasingly being used
in Graph Theory in order to: (i) determine the numerical value of graph invariants; (ii) enumerate
graphs, taking into account several constraints and exploiting symmetry, see McKay [56,57];
(iii) generate graphs, display, modify and study many parameters through interactive approach.
The pioneer system of graphs in the last category was developed by Cvetkovi¢ and Kraus [16],
Cvetkovi¢ and Simi¢ [19] and was followed by Grafitti by Fajtlowicz and DeLLaVina, see Larson
[51]. A new generation of systems is NewGraph System developed by Stevanovic et al. [73] and
AutoGraphiX (AGX) system developed at GERAD, Montréal since 1997 [8,9,4]. This was the
system used by Belhaiza et al. [4] to get the last bound on Table 4.1 which is sharp for all m > 2.

Table 4.2 displays the bounds on algebraic connectivity related to diameter, maximal inde-
pendence number and genus of G. For definitions, see [20,30]. In this table, the lower-bound (i)
and the upper-bound (v) are some of the most classic for a(G). This last one was obtained by
McKay and proved by Mohar [64] who also improved the bound (ii) obtaining the result (vii). The
Boshier’s bound leads us to see that large graphs of bounded genus and with bounded maximal
degree have small algebraic connectivity. In order to prove (x), Molitierno [67] used the concept
of the isoperimetric number. He also applies a result concerning the determination of graphs G
and G3 such that G is a join of them, G = G Vv G, given by Kirkiland et al. [47]. The join
operation and the isoperimetric number will be defined later.

The next theorem due to Grone et al. [34] give a special lower-bound for a tree as a function
of its diameter.

Theorem 4.1. If T is a tree with diameter diam(T') then

a(T) <2 (1 — cos <+>> .
diam(T) + 1

A rooted Bethe tree %4, i is an unweighted rooted tree of k levels in which the vertex root has
degree d, the vertices in level 2 to level (k — 1) have degree (d + 1) and the vertices in level k
are pendant. If d = 2, %, i is a balanced binary tree of k levels. Molitierno et al. [68] obtained



N.M.M. de Abreu / Linear Algebra and its Applications 423 (2007) 53-73 59

Table 4.2

Bounds on a(G) related to invariants in By

Authors Bounds of a(G)

(i) Fiedler [25] a(G) < n—a(G)

(i) Alon and Milman [2] diam(G) < 2;‘((60)) log, n2

(iii) Boshier [7] If g is a genus of G such that n > 18(g + 2)2 then

4(G) < 682AG)

= @73(g+2)

(iv) Chungetal. [12] diam(G) < %mm— )
02 11 =a®)
(v) Mohar [64] m <a(G)
(vi) Mohar [64] diam(G) < rM In(n — 1)]
(vii) Mohar [64] IfgeRandp > 1,
. A 2_
diam(G) < ’V\/ r(é) / 7/34‘3] + 17 [logg g—‘

G
(viii) Chang [11] a(G) < 1 V“((G)) (1 - 520y + Ty
(ix) Molitierno [67] Let k > 1 be the genus of G and let py = \_7"'7 Vlz"'“kj

If G = K; such that ¢ is the largest number of vertices
that can be embedded on surface Sy, then a(G) =
Otherwise, a(G) < py — 1

(x) Molitierno [67] If G is a planar graph (the genus k = 0), then a(G) < 4
Moreover, equality holds if and only if G = K4 or G = K3 2 »

(xi) Molitierno [67] For some positive integer c, if any of the equalities holds:
k=c(12c—1);k=c(12c+1);k = @4c—1)Bc—1)
and k = (4c + 1)(3c + 1), then a(G) < py
for all non-complete graphs G of genus k

quite tight upper and lower bounds on the algebraic connectivity of %3 . These bounds are in
(4.1) and (4.2) as follows:

1
a(Barr) < 4.1)
(2% =2k +3) — #5
and
1
) > .
a(ﬂz,k) = (2k okt 2) _ 2k—\f2(2k—1—2k*') 1 (4 2)

%—1-4/22F1-1)  3—-2v2cos(3%7)
Rojo and Medina [71] obtain quite tight upper and lower bounds on the algebraic connectivity of
the general case of Bethe tree according to the respective inequations (4.3) and (4.4):
d—1)?

a(Bax) < (4.3)
d* — 2k —2)d + 2k — 1) — SBE=D
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Table 4.3
Bounds to a(G) related to invariants in B3
Authors Bounds of a(G)
(i) Mohar [63] 5 + 152 < (1= DG < T ey
(ii) Mohar [65] Let p(X) be the density of X € V and Ey the edge cut-set related to X
Then a(G) < minycy p(X), where Ey is an edge-cut set of G related to X
(iii) Merris [62] Let b(G) = maxyey {m(G) +d(v)}. Then n — b(G) < a(G)
and
Has) > 1
a\Ad.k) 2
T @k — 2k — 1)(d — 1) — d  @EREED L
(d—1)2( ( )( ) “/_+ dkf%_H )+ (d+1)—2v/d cos 57
“4.4)

The tree %, i, k, is obtained by the union of two Bethe trees %4 x, and %4 , having a common
vertex root. The last authors prove that a(%g i, k,) = a(%a k). Consequently, the bounds given
by (4.3) and (4.4) also are bounds to a(%4 k, k,)-

Letus consider two conjectures generated by Grafitti system: Wow Conjecture 584 and Wow
Conjecture 636. Both of them are proved by Zhang [74]. The first one gives an upper-bound for
the algebraic connectivity of the complement of a tree as a function of its maximal independence
number and the other refers to those parameters where G is a non-trivial graph.

Theorem 4.2;Let T beatree of ordern and o (T) its independence number. If T is the complement
of T, then a(T) > n — 2(x(T)).

Theorem 4.3. Let G be a non-trivial graph of order n and G be its complement. Then a(G) >

n_;‘ o with equality if and only if o is a factor of n and G has o components equal to K 1.

Table 4.3 displays the bounds of a(G) related to invariants in B3. The mean distance, m(G),
is the average of all distances between distinct vertices of G; (v) is the average of the degrees of
the adjacent vertices to v, for each v € V and, p(S) is the edge density of S, for § € V. Finally,
for S a subset of vertices and Eg the edge cut-set of G related to S, the edge density of S is given
by

[VIIEs|
p(S) = ———c-
ISIIV =S|

Since each expression in Table 4.3 depends on the determination of vertex subsets of a graph,
then it is hard to calculate.

Closing this section, it is interesting to mention an upper bound on the algebraic connectivity
of graphs with many cutpoints. Let G be a graph with k cutpoints. Kirkland [43] builds an upper
bound on a(G) for the case that 1 < k < % and characterizes graphs which attain that bound. An
year later, he [44] completes his investigation with a tight upper bound on a(G) in terms of n and
k where k > 7. The technique used in his more recent paper relies on the analysis of the various
connected components which arise from the deletion of a cutpoint v and all edges incident in it.

For more details see [43,44].
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5. Some applications of algebraic connectivity

There are several problems where we can apply a(G). Among them we describe something
about ordering trees, isoperimetric or conductance number, expanding graphs, the use of Fiedler
vectors on combinatorial optimization problems and a(G)-variations.

Ordering trees: Cvetkovic et al. [15] outlined some approaches to ordering graphs by their
spectra. Grone and Merris [31,33,58] found several results defining distinct ordering of trees.
We chose one to show the technique they used in order to compare a pair of trees according to
a(G). Let1 <s <t <n—2.Atreeis called a T (s, t)-tree when it has n = s 4 ¢t 4 2 vertices
and exactly two adjacent and non-pendant vertices # and v such that they are connected to s and ¢
pendant vertices, respectively. Proposition 5.1, proved by Grone and Merris [33], leads to a partial
order in the class of T (s, t)-trees.

Proposition 5.1. Letn = s 4+t + 2 be fixed and L(T (s, t)) be the Laplacian matrix of a T (s, t)-
tree with algebraic connectivity a(T (s, t)). The unique eigenvalue of L(T (s, t)) less than unity
is exactly a(T (s, t)). Furthermore, for every s, 1 <s < % a(T (s, t)) is a strictly decreasing
function of s.

Figs. 1 and 2 display two T (s, f)-trees. The first one has s = 3 and the second, s = 5.
According to Proposition 5.1, a(T (3, 8)) > a(T (5, 6)). In fact, we have a(7T (3, 8)) = 0.27706
and a(7T (5, 6)) = 0.25361, [33].

Although several results obtained by Grone and Merris [33] provided distinct partial orders
by a(T) on different subclasses of trees, their results are not enough to give us a total ordering
on the set of all trees. For example, the tree 77, Fig. 3, has a(77) = 0.296 and another, Tg,
Fig. 4, has a(Tg) = 0.268. Since the results from Grone and Merris are not enough to justify
the inequality a(73) < a(T7), finding a total ordering of trees by a(G) is still an open prob-
lem.

Fig. 1. T(3,8) is the T' (s, t)-tree, when s = 3 and ¢ = 8.

Fig. 2. T (5, 6) is the T'(s, t)-tree, when s = 5 and ¢t = 6.



62 N.M.M. de Abreu / Linear Algebra and its Applications 423 (2007) 53-73

Fig. 3. T7 with a(T) = 0.296.

0 O O O 0
Fig. 4. Tree Tg with diam(7y) = 4 and a(7g) = 0.268.

Fig.5. T withdiam(T) = 6 and a(T) = 0.198, on the left, versus 7’ with diam(7’) = Sand a(T’) = 0.186, on the right.

Until 1990, it was thought that a(T') decreases as the diameter increases. Grone and Merris
[33] gave some counter-examples for this conjecture in their paper [33]. We chose one of them
to display here. See T and 7' on Fig. 5.

The isoperimetric number, edge-cutset and max cut problem: Let G = (V, E)and S C V.
We have 88 = {(u, v) € E/u € Sand v € V — S} as an edge-cutset of G. This set can be useful
to a network problem when the network is modelled by a graph. In this case, it is necessary to
find a minimal 3S. The parameter isoperimetric number, also known as the conductance number,
is based on the cardinalities of S and 85

. . 88|
i(G) =min —, |S<2
scv |S]
Since the idea of a link between all vertices of a graph is shared with the algebraic connectivity
and the isoperimetric number we can hope that there are some bounds related to them. Table 5.1
shows several inequalities which involve these invariants.

To close this part, we present an upper bound to the algebraic connectivity related to the
cardinality of the largest component of a subgraph of G obtained from the removal a vertex cutset
of G. This result was proved by Merris and Grone [32].

Theorem 5.1. Let S be a vertex cutset of G such that the largest component of G — S has order
k. Then, a(G) <k + 1.

The Max-Cut Problem, M C P, is a well-known N P-hard problem belonging to combinatorial
optimization and, so, it is very important to have bounds to it. As a decision problem M C P can
be defined as: Given a graph G = (V, E) and an integer k, is there a partition of V into V| and
Vs such that there are at least k edges in E between V| and V,. The algebraic connectivity was
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Table 5.1

Bounds to a(G) related to conductance number

Authors Bounds of a(G)

(i) Mohar [63] 4“6 <i(G)

(ii) Mohar [65] i(G) < Va(G)24(G) — a(G))
(iii) Berman and Zhang [5] a(G) < A(G) — Y A(G)? —i(G)?
(iv) Alon and Milan [2] a(G) < %

used by Mohar and Poljak [66], in order to obtain an upper-bound to M C P according to Theorem
5.2. See [65,70].

Theorem 5.2. Let M C(G) be the number of edges in maximal cut in G and G be the complement
e
of G. Then, MC(G) < =149,

Fiedler vectors, edge-cutset and bandwith problem: Fiedler vectors, also known as char-
acteristic valuations, are eigenvectors of L(G) with respect to a(G). Let Y be a Fiedler vector
and u a vertex of G. We say that u is a characteristic vertex of G if and only if Y («) = 0 and if
there is a w € V, w adjacent to u such that Y (w) # 0. An edge {u, w} is a characteristic edge
of G when Y (1) - Y (w) < 0. The collection of all characteristic vertices and characteristic edges
of G at Y is called the characteristic set of G related to Y and denoted Sy. A Perron-branch
at Sy is a connected component of G — Sy with the smallest eigenvalue of the corresponding
principal submatrix of L(G) at most a(G). Gy is the valuated connected graph G by Y where
the coordinates of a Fiedler vector Y are assigned to edges of G. Fiedler [26] shows that the
characteristic valuations are able to determine particular edge-cutsets of a graph constituted by
only two connected components. See Theorem 5.3.

Theorem 5.3. Let Gy be a valuated connected graph by Y where Y = (y;), 1 <i <n, isa
Fiedler vector of G with 1,2, ..., nvertices. If y; #+ 0, 1 < i < n, then the set of all edges (i, j)
for which y; - yi < 0 forms a cut of G with only two blocks.

The weights of vertices in a graph G in Fig. 6 are the coordinates of a Fiedler vector ¥ =
(—0.205, —0.761, —0.001, —0.081, 0.354, 0.287, 0.407). Each coordinate y; is related to the ver-
tex i in the graph above and on the left. Each edge of the edge cutset, which is below and on the
left, has a negative value. According to Theorem 5.3, the graph on the right obtained by removing
the edges of the cutset has just two blocks.

Juvan and Mohar [42] discussed how Fiedler vectors can be used in the optimal labelling
problems known as the bandwidth problems. It is required to arrange the vertices of a graph G in
a linear order vy, vy, ..., v, in a such a way that the edges will not have too long jumps, that is, if
(vi, vj) is an edge of G then |i — j| should be small. A reasonably good ordering is obtained by
ordering the vertices of G related to the coordinates of a Fiedler vector Y:

v<u & yp <y, uvev.

The algebraic connectivity is useful for this problem since the average square of jumps for any
linear ordering of vertices of G obeys the inequality given by the Proposition 5.2 by Juvan and
Mohar [42].
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edge cutset y, ¥< 0

Fig. 6. An instance for Theorem 4.3.

Proposition 5.2. Let G be a graph and e = (v, v;) € E anedge of G. If jump(e) = |i — j| then
. 2_
> eer (Gump(e))* > a(G) M.

Algebraic connectivity variations: Kirkland [45] characterizes all graphs in which spectral
integral variation occurs in two places by adding an edge. Also, he discusses the case where one
of the changed eigenvalues is just a(G). Barik and Pati [3] posed the problem of characterizing
graphs in which spectral variation occurs in one place by adding an edge where the changed
eigenvalue is exactly a(G) which increases by 2. Their results are based on the Fiedler vector of
G and Perron-branches of G at S, the characteristic set with respect to Y.

The next theorem, see [3], characterizes a small family of graphs for which the multiplicity of
a(G) is equal to one and the spectral variation occurs in only one place.

Theorem 5.4. Let G be a connected graph and i and j be two non-adjacent vertices in G. Let
a(G) have multiplicity one. The spectral variation occurs in one place by adding the edge (i, j)
where the changed eigenvalue is a(G) if and only if G = K,, — {(i, j)}.

For example, let G = K4 — e be a complete graph without an edge e. Its spectrum is S(G) =
{4,4, 2,0}, where the multiplicity of a(G) = 2 is one. It is well-known that the spectrum of K4
is {4, 4, 4, 0} and, consequently, a(G) = 4 and only one eigenvalue was changed.

Barik and Pati [3] also considered the case where the multiplicity of a(G) is equal 2 and
spectral integral variation of G occurs in one place by adding an edge between i and j where
again the changed eigenvalue is algebraic connectivity.

Theorem 5.5. Let G be a connected graph and i and j be two non-adjacent vertices in G. The
spectral integral variation of G occurs in one place by adding the edge (i, j) where a(G) is the
changed eigenvalue if and only if G = G* U (G + {i} + {j}), where G* is a graph of order k,
1 <k < n—2,whilea(G*) = (2 — k —n) and G| is any graph on (n — k — 2) vertices.

Expansion properties of graphs: According to Alon [1] the Laplacian spectrum of a graph, in
particular the algebraic connectivity, appears more naturally in the study of expanding properties
of graphs than eigenvalues of adjacency matrix. In general,expanders are graphs with certain high
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connectivity properties and they can be constructed from graphs known as c-magnifiers, which
are highly connected. They are used in the construction of networks. For more details, see [1].
The proposition below gives a necessary condition for a graph to be a c-magnifier [1]. For this,
the algebraic connectivity of graph has an upper-bound as a function of c. On the other hand,
when c is given a specific function of a(G) then G is a c-magnifier.

22
4+42¢2°

Proposition 5.3. Let G be a graph. If G is a c-magnifier then a(G) >

% then G is a c-magnifier.

Conversely, if

C =
6. Limit points and extremal graphs to a(G)

In this section we present two directions of research. One concerns the limits to certain
parameters of graphs sequenced by the cardinalities of their vertex sets. The other concerns
the extremal graphs which satisfy certain properties or constraints with respect to graph invari-
ants.

The limit points for a(G): The study of the limit points of the eigenvalues of graphs was
initiated by Hoffman [40], followed by Kirkland [45], and then Guo [37] who gives a for-
mal definition to it with respect to a(G): A real number r is a limit point for the algebraic
connectivity if there is a sequence of graphs (Gp)nen such that the sequence of their respec-
tive algebraic connectivities (a(G,))nen converges to r, and a(Gy) # a(Gy,), when n + m.
He found the two largest limit points for algebraic connectivity of trees as guess in Theorem
6.1.

Theorem 6.1. Let (T,,),en be a sequence of trees. The largest limit point of a ((T,,))nen is 3_2‘/5,

while the second largest limit point of a ((T;)))nen is 2 — V3.

Kirkland, in his paper [45], proved that each non-negative real number is a limit point for
some sequence of algebraic connectivities. Also, he characterized the limit points for (a(7;,)nen),
where (T,,)nen is a sequence of trees. In the same paper, he applied a different technique from
Guo [37] to find the k-largest limit point of (a(7},))nen-

Fora, b € % ,Limaetal. [52] defined a new class of graphs called (a,b)-linear, denoted L (a, D).
Let n be the number of vertices and m be the number of edges of a graph G. We say that G is an
(a, b)-linear graphif and only if m = an — b andn > 2b. There is important characteristic for this
class: the union of L(a, b) taken over all a, b € %, constitutes the category of all simple graphs.
Also, there is an equivalent definition for an (a, b)-linear graph as a function of the average degree

of G,d(G) = M The ceiling of d(G) is equal to 2a while 2b is given as a multiple of the
difference between d(G) and its ceiling. For more details consult [52,69]. Oliveira et al. [69] built
sequences of (a, b)-linear connected graphs (G, ),en, Where A(G,,) is bounded by a constant, for
every n € N. In their paper [69] the authors show that the correspondent sequence of diameters
(d(Gp))nen diverges while its correspondent sequence of algebraic connectivities (a(Gy)), € N
converges to zero.

Theorem 6.2. Let (G,), € N be an increasing sequence of (a, b)-linear connected graphs such
that there is k € N, foralln € N, 1 < A(G,) < k. If the sequence of diameters (d(Gp,))nen is
a monotonic non-decreasing sequence then the sequence of algebraic connectivities (a(G,))nen
converges to zero.
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The extremal graphs for a(G): According to Godsil and Royle [30] graphs with small values
of a(G) tend to be elongated graphs of large diameter with bridges, whereas graphs with larger
values of a(G) tend to be rounder with smaller diameter and large girth and connectivity.

We approach the extremal graphs through minimizing and maximizing the algebraic connec-
tivity.

Minimizing graphs: For certain families of graphs, certain of these graphs are known to be
extremal with respect to min a(G). Some of these cases are described below.

Let T (k, €, d) be the tree on n vertices built by taking a path on vertices 1, 2, . . ., d, and adding
k pendant vertices adjacent to vertex 1 and ¢ pendant vertices adjacent to vertex d. Fallat and
Kirkland [21] gave an extremal tree among all trees T (k, £, d) with respect to a(G).

Theorem 6.3. Among all trees on n vertices with fixed diameter d + 1, the minimum algebraic
connectivity is attained by T (k, k, d), where k = I'%]. In this case, T (k, k, d) is unique up to
isomorphism.

We can find the extremal cubic graphs with minimum a(G) in Godsil and Royle [30]. They
consider two cases: (i) whenn > 10 and n = 2 mod 4, and (ii) whenn > 12 and n = Omod 4. In
Fig. 7 an instance for each case is given.

Fallat et al. [22] called the lollipop graph, denoted C, s, a connected unicyclic graph on n
vertices such that its cycle has length s and satisfies the following property: there are at most 2
connected components at each vertex on the cycle, and the component not including the vertices
on the cycle (if it exists) is a path with length n — s.

The girth of a graph is the length of its shortest cycle. An acyclic graph has infinite girth.
Fallat and Kirkland [21] show in Theorem 6.4 that the algebraic connectivity of lollipop graphs
minimizes the algebraic connectivity among all graphs with given girth.

Theorem 6.4. Among all connected graphs on n vertices with fixed girth s, the algebraic con-
nectivity is minimized by the lollipop graph Cp, ;.

Fallat and Kirkland [21] posed the following conjecture: Each minimizer for graphs on n
vertices with girths s is isomorphic to a lollipop graph C, 5. In the same paper, they proved this
conjecture for s = 3. Some years after, Fallat et al. [22] extended the proof for n > 3s — 1. In
both cases a(G) > a(Cp.s) and the equality holds if and only if G is isomorphic to Cy, 5. The
conjecture for n < 3s — 1 is apparently still opened.

Fig. 7. The graph above refers to case (i) and, the other refers to case (ii).
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Fig. 8. A (9, 3, 4)-path-complete graph.

Belhaiza et al. [4] used the AG X-system in order to find connected graphs G # K,, with mini-
mum algebraic connectivity. All graphs found by AG X can be defined as follows: Letn, m, t, p €
N,withl << (n—2)and 1 < p <n—1t— 1. A graph with n vertices and m edges such that

—t)n—t—-1 —t)n—t—-1
(n—0)n )+t<m<(n )(n )+(n_2)
2 2
iscalled an (n, p, t)-path-complete graph, denoted PC,, , , if and only if the three conditions hold:
(i) the maximal clique is K,,—;; (ii) ithas apath P,y = [vg, v1, ..., vs] suchthatvg € K;,—; N Pr4

and vy is joined to K,,—; by p edges; (iii) there are no other edges.

These graphs constitute an almost unknown family described by Soltés [4]. Also they were con-
sidered by Harary [39] who proved that (n, p, t)-path-complete graphs are (non-unique) connected
graphs with maximum diameter among all graphs with n vertices and m edges.

Fig. 8 shows an instance to PCy, p;, whenn =9; p =3 andt = 4.

The AG X-system raises the following conjecture: The connected graphs G + K, with mini-
mum algebraic connectivity are all PC,_ p ; graphs. Belhaizaetal. [4] did not prove this conjecture,
although they proved some partial results.

Fornandt € N, 1 <t <n —2,letG(n, m;(r)) be afamily of connected graphs with n vertices
andm,(r) edges, wherefort <r <n —2,G € G(n, m;(r)) has, exactly, m;(r) = w +
r edges. Propositions 6.1-6.3 describe these partial results.

Proposition 6.1. Among all G € G(n, m1) with A(G) =n — 1, a(G) > a(PCy.1,1).

Proposition 6.2. For every G € G(n,m1) with §(G) > % + g and, 1 < p<n—2, then
a(G) = a(PCn,p,l) =p.

Proposition 6.3. For every G € G(n, my) such that §(G) > % thena(G) =2 1 2 a(PCy p2).

Maximizing graphs: Take d to be even and let P; 4 be the tree obtained from a path on vertices
1,2,...,d + 2 by adding ¢ pendant vertices to vertex % and n — £ — d — 2 pendant vertices to
vertex #.

Fallat and Kirkland [21] proved that trees like P; 4 have the maximal algebraic connectivity

among all trees with a certain diameter.

Theorem 6.5. Among all trees on n vertices with fixed diameter d + 1, the maximum a(G) is
attained by Py 4, where d = n —d — 2. In this case, Py ,_q—2 is unique up to isomorphism.
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In the next theorem Fallat and Kirkland [21] gave the graph which maximize a(G) when G is
an unicycle graph.

Theorem 6.6. The unique unicycle graph on n vertices with girth 3 of maximum algebraic con-
nectivity is the graph Ky ,—1 + {e} for which a(K ,—1 + {e}) = 1.

Fallat et al. [23] consider the class of unicycle graphs on n vertices with girth g. Over that
class, for a fixed g, they show that there is a natural number N such that for each n > N, the
maximizing graph consists of a cycle with length g with n — g pendant vertices adjacent to a
common vertex on the cycle.

In order to find extremal graphs for the maximum of a(G), Belhaiza et al. [4] used AG X. They
obtained graphs with many edges whose structures are easy to understand if we consider their
complements, see Theorem 6.7.

Theorem 6.7;Let m 2 2. There is a graph G # K, with m edges and maximum a(G), whose
complement G is the disjointed union of K3, P3, K> and K.

The authors proved Theorem 6.7 based on the classic result from Merris [60] related to the
complement of a graph G [4].

7. Characterizing graphs for which a(G) = «(G)

It is well-known that, for any graph the algebraic connectivity is at most equal to the vertex
connectivity (item (iii) on Table 4.1). So, it is natural to investigate graphs for whicha(G) = « (G).
First we review the definitions of the union and join of graphs.

If Gy = (V1, E1) and G, = (Va, E») are two graphs on disjoint sets of vertices, their union
is G1 + G, = (Vi1 U Va, E1 U E»). The join G1 Vv G is a graph G obtained from G| + G, by
adding new edges from each vertex in G to every vertex of G».

Theorem 7.1 due to Kirkland et al. [47] characterizes graphs for which a(G) = «(G), based
on the join operation.

Theorem 7.1. Let be a connected non-complete graph with n vertices. Then a(G) = «(G) if and
only if G can be written as G1 Vv Gy, where G is a disconnected graph on n — k(G) vertices
and G» is a graph on k (G) vertices and a(G3) 2 2k (G) — n.

From a graph G, Kirkland et al. [47] give practical conditions to determine graphs G and G2
(if it is possible) such that G = G| Vv Ga:

e Let G be the complement of G. If G is connected, it is impossible to have G| and G, such
that G = G Vv G, and a(G) = «(G);

e If G is a non-connected graph, let S;, 1 < i < ¢, be its connected component. It can be verified
that the only possibility for G is one of these S;.

e Ifeach S; is connected, then G does not satisfy G = G1 V G». Otherwise, thereis j, 1 < j < ¢,
such that S_J is disconnected and has the largest number of vertices among all S; for which S;
is disconnected. Do G| = S_] and G the induced subgraph on the vertices of G — G1. Then,
G =GV G
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Fig. 9. G is not a Hakimi graph.

Fig. 10. Hg is a Hakimi-graph.

For given natural numbers n and m, Harary [39] defines the set of graphs G, , = {G is a
connected graph with n vertices and m edges: n < m < @}. He shows that, for n > 3, there
is a subclass H, ,, € Gy, such that if H € Hj 5, then «(H) = e(H) = maxgeg,, ,, €(G) =
maxgeg,,, €(G). Besides, given n and k, he makes a construction of a k-connected graph, called
a (k,n)-Harary graph that belongs to H, ,, and has the fewest possible edges. For more details,
see Gross and Yellen [35].

The algorithm S o/ of Hakimi [38], based on Harary’s construction, builds graphs H € H,, ,,
when n and m are given. We call each graph obtained from # .o/ a Hakimi graph. The set of all
Hakimi graphs is HHj, .

A o/ begins with n and m € N satisfyingn < m < @ and a trivial graph G (E = ). The
goal is to share the edges between all n vertices in order to have a graph as well-balanced as
possible. See [38] for details.

Forafixedn,letusdefine HH,, = UHH,, ;,,suchthatn < m < @.Ofcourse, if H € HH,,
the equality k (H) = e(H) holds.

Although Theorem 7.1 gives necessary and sufficient conditions for a graph G have
a(G) = k(G), it does not consider the condition that k(G) = e(G). So, this result is not
enough to guarantee the maximality of a(G). Lima et al. [53] characterize extremal Hakimi
graphs with respect to the minimum number of edges among all graphs in HH,,
such that a(H) = k(H) = e(H). Fig. 9 displays a graph G which is not a Hakimi graph, but
has a(G) = «(G) = 4. However, e(G) = 5. In this case, a(G) is not the maximal algebraic
connectivity among all algebraic connectivities of graphs in Gg 4. On the other hand, the
6-regular graph in Fig. 10 is a Hakimi graph which belongs to HHg and has a(H) = «(H) =
e(H) =6.
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Table 7.1

Algebraic and vertex connectivities in HH7

m 7 8 9 10 11 12 13

k(G) 2 2 2 2 3 3 3

a(G) 0.753 0.753 1.000 1.586 2.139 2.325 2.340

m 14 15 16 17 18 19 20

k(G) 4 4 4 4 5 5 5

a(G) 3.198 3.198 3.382 4.000 5.000 5.000 5.000
Table 7.2

Algebraic and vertex connectivities in HHg

m 8 9 10 11 12 13 14 15 16 17
k(G) 2 2 2 2 3 3 3 3 4 4
a(G) 0.586 0.586 0.764 1.268 2.000 2.000 2.104 2.244 2.586 2.586
m 18 19 20 21 22 23 24 25 26 27
k(G) 4 4 5 5 5 5 6 6 6 6

a(G) 2.764 3.268 4.000 4.152 4.198 4.586 6.000 6.000 6.000 6.000

Lima et al. [53] proved Lemma 7.1 and Theorem 7.2. These results give extremal graphs in
H,..» which can also be obtained through # .</. So, they are also Hakimi graphs.

Lemma 7.1. Let n be given and let H € HH,, with L@J edges. If n is even, k(H) =n — 2
and, ifnis odd, k(H) = n — 3. For each x, there is only one graph in HH,, for which k (H) takes
these values.

Theorem 7.2. Let H* € HH, with |"%2 | edges. Then, a(H*) = k(H*) = e(H*) = §(H*)
and for every H € HH,, with m = L@J — 1thena(H) < a(H).

A graph which satisfies Theorem 7.2 is called an extremal Hakimi graph, denoted H, ,. It has
the minimal number of edges among all graphs in HH,, such that a(H) = «(H).

For a fixed n, a Hakimi graph in HH,, has n vertices and m edges such thatn < m <
Tables 7.1 and 7.2 list values of algebraic connectivity and vertex connectivity for all graphs in
HH7 and HHg, respectively.

In Table 7.1, we observe that from m > 17, a(H) achieves the maximum value a(H) and
its value is equal to the vertex connectivity for every H € HH7. In Table 7.2, for H € HHyg, it
same happens from m > 24. Through these examples, we can see that a(H) is equal to « (H)
form > L@J , according to Lima et al. [53]. Moreover, these authors show that, for each n,
H, , is a Laplacian integral that is, it has its Laplacian spectrum as an integer subset. They also
proved that if x edges are inserted on H, ,, 0 < x < %, the resultant graph Hy , € HH,, is an
integrally completable Laplacian graph, that is, each graph H, , also has its Laplacian spectrum
as an integer subset. Finally, according to Kirkland [46] and also proved by Lima et al. [53], the
connectivity parameters of these graphs satisfy a(Hy ,) = «(Hy ) = e(Hy ).

This survey ends with another important characterization of graphs for which a(G) = «(G),
given by Kirkland et al. [47]. Their result is based on the notion of group inverse and it is in
Theorem 7.3.

nn—1) 1
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1

Z(LE) = - max > s — s

( G) 21<i,j<n | L8 Jss |
1<s<n

where LﬁG is the group inverse of the Laplacian matrix of G, L(G).

Theorem 7.3. Let G # K, be a connected graph on n vertices with n > (k(G)*. Then, a(G) =

k(G) if and only if kK (G) = y(lLﬁ 5
G
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