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Abstract. Our main interest in this paper is nonlinear approximation. The basic
idea behind nonlinear approximation is that the elements used in the approximation
do not come from a fixed linear space but are allowed to depend on the function being
approximated. While the scope of this paper is mostly theoretical, we should note that
this form of approximation appears in many numerical applications such as adaptive
PDE solvers, compression of images and signals, statistical classification, and so on.
The standard problem in this regard is the problem of m-term approximation where
one fixes a basis and looks to approximate a target function by a linear combination of
m terms of the basis. When the basis is a wavelet basis or a basis of other waveforms,
then this type of approximation is the starting point for compression algorithms. We
are interested in the quantitative aspects of this type of approximation. Namely, we
want to understand the properties (usually smoothness) of the function which govern
its rate of approximation in some given norm (or metric). We are also interested in
stable algorithms for finding good or near best approximations using m terms. Some
of our earlier work has introduced and analyzed such algorithms. More recently, there
has emerged another more complicated form of nonlinear approximation which we
call highly nonlinear approximation. It takes many forms but has the basic ingredient
that a basis is replaced by a larger system of functions that is usually redundant. Some
types of approximation that fall into this general category are mathematical frames,
adaptive pursuit (or greedy algorithms), and adaptive basis selection. Redundancy on
the one hand offers much promise for greater efficiency in terms of approximation
rate, but on the other hand gives rise to highly nontrivial theoretical and practical
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problems. With this motivation, our recent work and the current activity focuses on
nonlinear approximation both in the classical form of m-term approximation (where
several important problems remain unsolved) and in the form of highly nonlinear
approximation where a theory is only now emerging.

1. Introduction

The idea of replacing a complex object (target function) by a simpler one (approx-
imant) is widely spread and successfully used in many areas of science, including
computational mathematics. A specific feature of contemporary theoretical and
practical problems is huge and unstructured data sets, which cannot be handled
without replacing them by simpler objects. One more new feature, which is im-
portant for our motivation, is that now we cannot limit ourselves to the use of
well-organized and well-structured approximation tools. For example, in signal
processing the most popular means of approximation are wavelets and the system
of Gabor functions {ga,b(x − c), ga,b(x) := eiax e−bx2

, a, c ∈ R, b ∈ R+}. The
Gabor system gives more flexibility in constructing an approximant but is not an
orthogonal system. Moreover, it is a redundant (not minimal) system. Thus, in
order to address the contemporary needs of computational mathematics we should
consider a very general model. As such a model we choose a Banach space X
with elements as target functions and an arbitrary system D of elements of this
space as an approximating system. Clearly, in such generality this setting may
cover more or less everything. However, in order to obtain meaningful results on
approximation we need to impose some restrictions on the Banach space and on
the approximating system. The next question is how should an approximant look
and how should we measure its complexity? The present dominating approach is
to form an approximant as a linear combination of m terms from a given system D.
Such an approximant is called an m-term approximant with regard (with respect)
to D. We assign a theoretical (idealized) complexity m to an m-term approximant.
It is clear that in some cases the number of terms of an approximant reflects accu-
rately the computational complexity of an approximant. For instance, this happens
when all elements of D have approximately the same computational complexity.
Another argument in favor of using m as a measure of complexity is that there is
no other characteristic of an approximant at the level of generality we are working
now. Introducing the concept of best m-term approximation

σm( f,D) := inf
gj ∈D,cj ; j=1,...,m

∥∥∥∥∥ f −
m∑

j=1

cj gj

∥∥∥∥∥ , (1.1)

we obtain the lower bound for the accuracy of any method providing m-term
approximation. The fundamental problem is how to construct a good m-term ap-
proximant. It is known (see, for instance, [13]) that a problem of simultaneous
optimization over many parameters (as in (1.1)) is a very difficult problem. Let us
also note that even if we managed to solve (1.1) this solution has the following
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disadvantage. The optimal elements, say, gm
1 ( f ), . . . , gm

m ( f ), may depend on m
and, therefore, when we go from m to m + 1 we need to recalculate all m + 1
elements.

We would like to have an algorithm (see Remark 1.1 below, concerning the
term algorithm) of constructing m-term approximants that adds at each step only
one new element from D and keeps elements of D obtained at the previous steps.
Clearly, we are looking for good algorithms which at a minimum converge for
each target function. It is not obvious that such an algorithm exists in a setting
at the above level of generality (X , D are arbitrary). It turns out that there is
one fundamental principal that allows us to build good algorithms both for arbi-
trary redundant systems and for very simple well-structured bases like the Haar
basis. This principal is the use of a greedy step in searching for a new element
to be added to a given m-term approximant. The common feature of all algo-
rithms of m-term approximation discussed in this survey is the presence of a
greedy step. By a greedy step, in choosing an mth element gm( f ) ∈ D to be used
in an m-term approximant, we mean one which maximizes a certain functional
determined by information from the previous steps of the algorithm. We obtain
different types of greedy algorithms by varying the above-mentioned functional
and also by using different ways of constructing (choosing coefficients of the lin-
ear combination) the m-term approximant from already found m elements of the
dictionary.

We begin this survey in Section 2 by discussing the classical setting of linear
approximation. This section will serve as a comparison when we discuss nonlinear
methods. In Sections 3 and 4 we begin our discussion of nonlinear approximation
and greedy algorithms. We initiate the discussion in the most general settings to
illustrate how far the theory can be pushed when working in complete generality.
In Section 3 we consider the case of Hilbert spaces and in Section 4 the case of
Banach spaces. In particular, we discuss there some general convergence results
for greedy-type algorithms. These results can be used in two ways. First, suppose
we have a given system D and want to build m-term approximants with regard to
it. Then if the system D is complicated enough to be treated as a general system
we can use one of the greedy-type algorithms from Sections 3 and 4. The general
theory guarantees convergence of those algorithms. Clearly, each system can be
treated as a general system, but it does not make sense to do this when a system is
simple and more specific and possibly more accurate methods can be used. Second,
suppose we are studying convergence of some algorithm and we can identify this
algorithm as a greedy-type algorithm with regard to some system D. Then the
general theory provides the convergence.

The way of presenting results in this survey is from the most general setting
(Sections 3 and 4) to the less general setting of specific redundant systems (Sec-
tions 5 and 6) to the case of well-studied systems like bases and even further to
concrete bases (wavelet bases, the trigonometric system) (Section 7). It is clear
that for a narrower set of systems we can prove stronger results. The reader will
see that tendency in this survey.
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We believe this survey could be useful for people interested in computations.
We know that some of the theoretical algorithms (Thresholding Greedy Algorithm
(TGA), Pure Greedy Algorithm (PGA), Weak Greedy Algorithm (WGA)), dis-
cussed in this survey, have been implemented successfully in numerical problems
of signal/image processing and statistics. We hope that this survey will promote
further practical implementation of new ideas and methods developed in nonlin-
ear approximation. With possible numerical applications in mind, we will clearly
distinguish between constructive and nonconstructive methods of approximation.
We will also address the questions of stability and simplicity of approximation
methods.

This survey can be considered as a complement to the survey on nonlinear
approximation written by R. A. DeVore [14]. We refer the reader interested in a
detailed discussion of numerical applications of nonlinear approximation to the
survey [14]. Our survey has a double purpose. On one hand, we try to present
new ideas and concepts generated recently in nonlinear approximation in a way
understandable to a wide audience of mathematicians. Section 2 is included for
this purpose. Other sections also contain historical remarks that help to understand
the motivation and the general spirit of results. Open problems, listed at the end of
each section (2–11), may also serve this purpose. On the other hand, in addition to
conceptual results, we have also included some recent results of a more technical
nature which are addressed mostly to mathematicians working in approximation
theory. In some cases these results are the first steps in solving important and
difficult problems. We hope that this material combined with the list of open
problems will stimulate further intensive development of nonlinear approximation.

Let us now proceed to a more systematic introduction of concepts of nonlinear
approximation. We begin with the case where approximation takes place in a Ba-
nach space X equipped with a norm ‖·‖ := ‖·‖X . We formulate our approximation
problem in the following general way. We say a set of functions D from X is a
dictionary if each g ∈ X has norm one (‖g‖X = 1) and the closure of Span D
coincides with X . We let �m(D) denote the collection of all functions (elements)
in X which can be expressed as a linear combination of at most m elements of D.
Thus each function s ∈ �m(D) can be written in the form

s =
∑
g∈�

cgg, � ⊂ D, #� ≤ m,

where the cg are real or complex numbers. In some cases, it may be possible to
write an element from�m(D) in this form in more than one way. The space�m(D)

is not linear: the sum of two functions from �m(D) is generally not in �m(D).
For a function f ∈ X we define its approximation error

σm( f,D)X := inf
s∈�m (D)

‖ f − s‖X ,

and for a function class F ,

σm(F,D)X := sup
f ∈F

σm( f,D)X .
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The classical example of this type of approximation is the case X = L p([0, 2π ])
and D = B is an orthogonal basis for X . In particular, B can be taken as the
trigonometric system T := {eikx , k ∈ Z} or the Haar system properly normalized.
The first results on error estimates in m-term approximation showed an advantage
of m-term approximation over approximation by polynomials of order m. R. S. Is-
magilov [35] studied m-term trigonometric approximation of individual functions,
namely, the Bernoulli kernels

Fr (x) = 2
∞∑

k=1

k−r cos(kx − rπ/2).

He proved that

σm(F2, T )L∞ ≤ Cεm
−6/5+ε

with arbitrary ε > 0. It is known that the best approximation Em(·)L∞ by trigono-
metric polynomials of order m in the L∞-norm has the asymptotic order Em(F2)L∞
 1/m. Further results in m-term trigonometric approximation showed the ad-
vantage of this type of nonlinear approximation over linear approximation. For
many traditional pairs of function class F and orthogonal system B the orders of
σm(F,B)X are now known. Investigation of the case F = Br

θ (Lq) (standard Besov
class), B = T , and X = L p was completed in [17]. This investigation required a
new technique (see [17] and [42]) which uses deep results from finite-dimensional
geometry. Thus this is an example of interaction between the theory of nonlinear
m-term approximation and contemporary functional analysis. We discuss these
results in Section 2.

In Sections 3 and 4 we discuss a theory of highly nonlinear m-term approxi-
mation. This theory is not complete yet, even in the case of a Hilbert space. We
concentrate on an important problem of finding good methods of m-term approxi-
mation in the case of general dictionary D and on studying their efficiency. Let us
begin this discussion in the special case of a Hilbert space with the inner product
〈·, ·〉. We define first the Pure Greedy Algorithm (PGA) in Hilbert space H . We
describe this algorithm for a general dictionary D. If f ∈ H , we let g( f ) ∈ D
be an element from D which maximizes |〈 f, g〉|. We will assume for simplicity
that such a maximizer exists; if not suitable modifications are necessary (see Weak
Greedy Algorithm (WGA) in Section 3) in the algorithm that follows. We define

G( f,D) := 〈 f, g( f )〉g( f )

and

R( f,D) := f − G( f,D).

Pure Greedy Algorithm (PGA). We define R0( f,D) := f and G0( f,D) := 0.
Then, for each m ≥ 1, we inductively define

Gm( f,D) := Gm−1( f,D) + G(Rm−1( f,D),D),

Rm( f,D) := f − Gm( f,D) = R(Rm−1( f,D),D).
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In Section 3 we consider the problem of efficiency of PGAs with regard to
general dictionaries in Hilbert space. In spite of very general assumptions on the
system D, surprisingly, there are nontrivial convergence results (see Theorems 3.1
and 3.4) and also nontrivial estimates of the rate of convergence (see Subsection
3.2) of PGAs.

Remark 1.1. In this survey, we discuss only theoretical aspects of the efficiency
of m-term approximation and possible ways to realize this efficiency. The above-
defined “greedy algorithm” gives a procedure to construct an approximant which
turns out to be a good approximant. The procedure of constructing a greedy ap-
proximant is not a numerical algorithm ready for computational implementation.
Therefore, it would be more precise to call this procedure a “theoretical greedy
algorithm” or “stepwise optimizing process.” Keeping this remark in mind we,
however, use the term “greedy algorithm” in this paper because it has been used
in previous papers and has become a standard name for procedures like the above
and for more general procedures of this type (see, for instance, [14], [18]). Fol-
lowing [24] we call an algorithm “incremental” if at step m we add at most one
more element ϕm ∈ D and approximate by linear combination c1ϕ1 +· · ·+ cmϕm .
We use the term “greedy type” for an incremental algorithm with ϕm chosen to
maximize a given functional F( fm−1, g) over g ∈ D with fm−1 the residual after
the (m − 1)th step of the algorithm. The form of F(·, ·) determines the kind of
greedy algorithm. We use the term “weak greedy” for an incremental algorithm
with ϕm satisfying a weaker condition than maximizing the given functional. For
instance,

F( f τm−1, ϕm) ≥ tm sup
g∈D

F( f τm−1, g), 0 ≤ tm ≤ 1.

The sequence τ := {tk}∞k=1 is called the “weakness” sequence.

We note that the PGA is known under other names in different areas of research.
In statistics it was introduced in [31] for a special dictionary (ridge functions
dictionary, see Section 6) under the name “projection pursuit regression.” In signal
processing PGA is known under the name “matching pursuit” (see [57], [13], [8]).

It is clear that for an orthonormal basis B of a Hilbert space H we have, for
each f ,

‖ f − Gm( f,B)‖ = σm( f,B). (1.2)

There is a nontrivial classical example of a redundant dictionary, having the same
property: PGAs realize the best m-term approximation for each individual function.
We describe that dictionary now. Let � be a set of functions from L2([0, 1]2) of
the form u(x1)v(x2) with the unit L2-norm. Then for this dictionary and H =
L2([0, 1]2) we have, for each f ∈ H ,

‖ f − Gm( f,�)‖ = σm( f,�). (1.3)
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This result and related results will be discussed in Section 5. In Section 6 we discuss
one more classical redundant dictionary, namely, the dictionary R consisting of all
normalized ridge functions, i.e., functions w(x), x ∈ R

d , that can be represented
in the form w(x) = g((x, e)), where g is a univariate function and its argument
(x, e) is the scalar product of x and a unit vector e ∈ R

d . This dictionary and the
PGA with regard to it play an important role in statistics (see [31], [34], [36]).

Much less is known about greedy algorithms with regard to general redundant
dictionaries in the case of a general Banach space X . We discuss next two versions
of generalization of PGAs from a Hilbert space H to a Banach space X (see
Section 4 for details). The first one is a straightforward generalization of PGAs.
We call it a PGA or X -Greedy Algorithm when we want to indicate a Banach
space. For a given X and D we define G( f,D, X) := α( f )g( f ) where α( f ) ∈ R

and g( f ) ∈ D satisfy (we assume existence) the relation

min
α∈R,g∈D

‖ f − αg‖ = ‖ f − α( f )g( f )‖.

X -Greedy Algorithm. We define R0( f,D, X) := f and G0( f,D, X) := 0.
Then, for each m ≥ 1, we inductively define

Rm( f ) := Rm( f,D, X) := Rm−1( f ) − G(Rm−1( f ),D, X),

Gm( f,D, X) := Gm−1( f,D, X) + G(Rm−1( f ),D, X).

The second version of a PGA in a Banach space is based on the concept of
a peak functional (norming functional). We call it the Dual Greedy Algorithm
(DGA). Let a dictionary D in X be given. Take an element f ∈ X and find a peak
functional Ff , i.e., a functional such that ‖Ff ‖X ′ = 1 and Ff ( f ) = ‖ f ‖X . The
existence of such a functional follows from the Hahn–Banach theorem. Now the
basic step of a PGA is modified to the following. Assume that there exists gf ∈ D
such that

|Ff (gf )| = max
g∈D

|Ff (g)|.

We take this gf and solve one more optimization problem: find a number a such
that

‖ f − agf ‖X = min
b

‖ f − bgf ‖X .

We put

G D( f,D) := agf , RD( f,D) := f − agf .

Repeating this step m times we get G D
m ( f,D) as an approximant and RD

m ( f,D) as
a residual. Some results on greedy algorithms in Banach spaces are presented in
Section 4.

We discussed above best m-term approximation with regard to a dictionary
D in a Banach space X . The sequence {σm( f,D)X } gives the lower estimates of
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accuracy for any sequence of operators Am that map X into �m(D) where, as
above, �m(D) is the set of all functions in X which can be expressed as a linear
combination of at most m elements from D. Thus, the sequences {σm( f,D)X } and
{σm(F,D)X } may serve as the target accuracies in constructing approximating
operators Am . It is clear that the best operator (if it exists) gives the error

‖ f − Am( f,D)‖X = σm( f,D)X , (1.4)

(see, e.g., (1.2) and (1.3)). We identify a sequence of operators {Am}∞m=1 as an
algorithm A. We call an algorithm A := {Am}∞m=1 near best or near best for
individual functions if

‖ f − Am( f,D)‖X ≤ C(D, X)σm( f,D)X (1.5)

for all f ∈ X and all m = 1, 2, . . . . Similarly, we say that A is near best for a
function class F if we have, for any f ∈ F ,

‖ f − Am( f,D)‖X ≤ C(F,D, X)σm(F,D)X , m = 1, 2, . . . . (1.6)

It is clear that an algorithm Am satisfying (1.5) is excellent from the point of view
of accuracy: it provides near best approximation for every individual function and,
therefore, for any function class. The property (1.6) is weaker than (1.5) but is still
very good. The corresponding results for nonlinear approximation with regard to
a basis are discussed in Section 7.

Let a Banach space X with a normalized basis � = {ψk}∞k=1, ‖ψk‖ = 1,
k = 1, 2, . . . , be given. We consider the following theoretical greedy algorithm
that we call the Thresholding Greedy Algorithm (TGA). For a given element f ∈ X
we consider the expansion

f =
∞∑

k=1

ck( f )ψk .

Let an element f ∈ X be given. We call a permutation ρ, ρ( j) = kj , j = 1, 2, . . . ,
of the positive integers decreasing and write ρ ∈ D( f ) if

|ck1( f )| ≥ |ck2( f )| ≥ · · · .
In the case of strict inequalities, here D( f ) consists of only one permutation. We
define the mth greedy approximant of f with regard to the basis � corresponding
to a permutation ρ ∈ D( f ) by the formula

Gm( f, �) := G X
m( f, �) := G X

m( f, �, ρ) :=
m∑

j=1

ckj ( f )ψkj .

This is a simple algorithm which describes a theoretical scheme (it is not compu-
tationally ready) for m-term approximation of an element f . We call a basis � a
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greedy basis if the TGA with regard to � is a near best algorithm, i.e., it satisfies
(1.5). In Section 7 we formulate a result (see Theorem 7.1) which says that a
wavelet-type basis is a greedy basis for all L p, 1 < p < ∞. The following ques-
tion arises naturally. Why should we use wavelet-type bases? In order to answer
this question we consider an optimization problem in the spirit of the Kolmogorov
width.

Let D be a collection of dictionaries. The classical example of D is O =
{orthonormal bases on a given domain}. The optimization problem asks us to
find (if possible), for a given pair of a collection of dictionaries D and a function
class F , a dictionary D∗ ∈ D such that

σm(F,D∗)X  σm(F,D)X := inf
D∈D

σm(F,D)X .

This problem is interesting and important for theoretical investigation and also for
practical applications where we often want to have a dictionary D with a certain
structure (from a collection D) and do not want to stick to a particular one. In
Section 10 we discuss only theoretical aspects of this problem for the classical
example of D = O. We go even further (from optimal for a one class method to
optimal for a collection of classes method) and ask the following question. What
is a good basis for the multivariate approximation? We propose to use the concept
of universality to answer the above question. A universal dictionary D ∈ D is the
one which is optimal for all F from a given collection F of function classes. We
give a formal definition of this important concept.

Definition 1.1. Let two collections, F of function classes and D of dictionaries,
be given. We say that D ∈ D is universal for the pair (F,D) if there exists a
constant C which may depend on F , D, and X such that for any F ∈ F we have

σm(F,D)X ≤ Cσm(F,D)X , m = 1, 2, . . . .

This is a new concept in nonlinear approximation. The following observation
motivates our interest in this setting. In practice we often do not know the exact
smoothness class F where our input function (signal, image) comes from. Instead,
we often know that our function comes from a class with a certain structure, for
instance, an anisotropic Sobolev class. This is exactly the situation we are dealing
with in the universal dictionary setting. So, if for a collection F there exists a
universal dictionary D ∈ D, it is an ideal situation. We can use this universal
dictionary D in all cases and we know that it adjusts automatically to the best
smoothness class F ∈ F which contains the target function. Next, if a pair (F,D)

does not allow a universal dictionary we have a trade-off between universality and
accuracy. We discuss the universality results in Section 11.

Combining the ideas of near best approximation, the optimization problem for
a function class and a universality concept for a collection of function classes, we
describe a general way of finding a good basis. We suggest a three-step strategy to
find a good basis (dictionary) for nonlinear m-term approximation. The first step



42 V. N. Temlyakov

consists of solving an optimization problem for a given function class F , when we
optimize over a collection D of bases (dictionaries). The second step is devoted to
finding a universal basis (dictionary)Du ∈ D for a given pair (F,D) of collections:
F of function classes and D of bases (dictionaries). The third step deals with
constructing a theoretical algorithm that realizes near best m-term approximation
with regard to Du for function classes from F . We worked this strategy out in the
case of anisotropic function classes and the set of orthogonal bases (see [93]). The
results are positive. We constructed a natural tensor-product-wavelet-type basis
and proved that it is universal. Moreover, we proved that the TGA realizes near
best m-term approximation with regard to this basis for all anisotropic function
classes. We discuss these results in Section 11.

In Section 9 we discuss some results on how the entropy numbers εn(F, X) can
be used in estimating from below the quantities {σm(F, �)}. The idea of estimating
the Kolmogorov widths from below using the entropy numbers is well-known (see
[53], [7], [65]). We used this idea in [90] for estimating nonlinear best m-term
approximation. We proved that for good systems � the estimate

εn(F, X) � n−a(log n)b, a > 0, b ∈ R,

for the entropy numbers implies the same estimate for best m-term approximation:

σm(F, �)X � m−a(log m)b.

See Section 9 for more details.
Let us agree to denote by C various positive absolute constants and by C , with

arguments or indexes (C(q, p),Cr , and so on), positive numbers which depend
on the arguments indicated. For two nonnegative sequences a = {an}∞n=1 and
b = {bn}∞n=1 the relation (order inequality) an � bn means that there is a number
C(a, b) such that for all n we have an ≤ C(a, b)bn; and the relation an  bn means
that an � bn and bn � an . The sign � will be used for the sake of brevity in
estimates of various characteristics of functions which belong to the class involved.
In these cases we assume that constants in inequalities may depend on the class
but not on the function considered.

Notations are introduced in the text.

2. Approximation by Linear Methods. Some Remarks

2.1. Historical Remarks

In order to give the reader some ideas for comparing the quality of approxima-
tion methods we now discuss some classical results in approximation of periodic
functions. In this section we briefly discuss various classical approaches, created
in linear approximation, for the estimation of the quality of a method of approxi-
mation. We will use and refine these approaches in nonlinear approximation. We
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confine our discussion to the case of the approximation of periodic functions of a
single variable. The two main parameters of a method of approximation are accu-
racy and complexity. These concepts may be treated in various ways depending on
the particular problems involved. Here we will start from the classical idea about
the approximation of functions by polynomials. After Fourier’s article (1807) the
representation of a 2π -periodic function by its Fourier series became natural. In
other words, the function f (x) is approximately represented by a partial sum
Sn( f, x) of its Fourier series.

We will be interested in the approximation of a function f by a polynomial
Sn( f ) in some L p-norm, 1 ≤ p ≤ ∞. In the case p = ∞ we will assume that
we are dealing with the uniform norm. As accuracy of the method of approximat-
ing a periodic function by its Fourier partial sum we will consider the quantity
‖ f − S( f )‖p. The complexity of this method of approximation contains the two
following characteristics. The order of the trigonometric polynomial Sn( f ) is the
quantitative characteristic. The following observation gives us the qualitative char-
acteristic. The coefficients of this polynomial are found by the Fourier formulas
which means that the operator Sn is the orthogonal projection onto the subspace
of trigonometric polynomials of order n.

In 1854 Chebyshev suggested representing a continuous function f by its poly-
nomial of best approximation, namely by the polynomial tn( f ) such that

‖ f − tn( f )‖∞ = En( f )∞
def= inf

αk ,βk

∥∥∥∥∥ f (x) −
n∑

k=0

(αk cos kx + βk sin kx)

∥∥∥∥∥
∞
.

He proved the existence and uniqueness of such a polynomial. We will consider
this method of approximation not only in the uniform norm, but in all L p-norms,
1 ≤ p < ∞. The accuracy of the Chebyshev method can be easily compared with
the accuracy of the Fourier method:

En( f )p ≤ ‖ f − Sn( f )‖p.

However, it is difficult to compare the complexities of these two methods. The
quantitative characteristics coincide but the qualitative characteristics are different
(e.g., it is not difficult to understand that for p = ∞ the mapping f → tn( f ) is not
a linear operator). The Du Bois–Reymond example (1873) of a continuous function
f such that ‖ f − Sn( f )‖∞ → ∞ when n → ∞, and the Weierstrass theorem
which says that for each continuous function f we have En( f )∞ → 0 as n → ∞,
showed the advantage of the Chebyshev method in comparison with the Fourier
method from the point of view of accuracy. It is known that for each f ∈ L2(T)

the approximation with the error En( f )2 can be realized by the operator Sn of
orthogonal projection onto the space of trigonometric polynomials of order n. The
performance of operator Sn was studied thoroughly in all L p spaces, 1 ≤ p ≤ ∞.
It was proved that Sn provides almost optimal or close to optimal approximation
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for each f ∈ L p(T),

‖ f − Sn( f )‖p ≤ C(p)En( f )p, 1 < p < ∞,

‖ f − Sn( f )‖p ≤ C ln(n + 2)En( f )p, p = 1,∞.

The desire to construct methods of approximation which have the advantages
of the Fourier and Chebyshev methods led to the study of various methods of
summation of the Fourier series. The most important among them from the point
of view of approximation are the de la Vallée-Poussin, Fejér, and Jackson methods
which were constructed early in the twentieth century. All these methods are linear.
For example, the de la Vallée-Poussin method is the method of approximation of
a function f by the polynomial

Vn( f ) = 1

n

2n−1∑
l=n

Sl( f )

of order 2n − 1.
From the point of view of accuracy this method is close to the Chebyshev

method; de la Vallée-Poussin proved that

‖ f − Vn( f )‖p ≤ 4En( f )p, 1 ≤ p ≤ ∞.

From the point of view of complexity it is close to the Fourier method, and the
property of linearity essentially distinguishes it from the Chebyshev method.

We see that common to all these methods is the approximation by means of
trigonometric polynomials; however, the ways of constructing these polynomials
differ: orthogonal projections on the subspace of trigonometric polynomials of
fixed order, the operator of best approximation, and linear operators.

The approximation of functions by algebraic polynomials was studied in parallel
with that for trigonometric polynomials. We will now point out some results which
determined the style of investigation of a number of problems in approximation
theory. These problems are of interest even today.

De la Vallée-Poussin proved in 1908 that, for best approximations of the function
|x | in the uniform norm on [−1, 1] by algebraic polynomials of degree n, the
following upper estimate holds

en(|x |) ≤ C/n.

He raised the question of the possibility of an improvement of this estimate in the
sense of order. Bernstein (1912) proved that this order estimate is sharp. Moreover,
he then established the asymptotic behavior of the sequence {en(|x |)}:

en(|x |) = µ/n + o(1/n), µ = 0.282 ∓ 0.004.

These results initiated a series of investigations into best approximations of
individual functions which have special singularities.
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At this stage of investigation the natural conjecture arose that the smoother a
function, the more rapidly its sequence of best approximations decreases.

In 1911 Jackson proved the inequality

En( f )∞ ≤ Cn−rω( f (r), 1/n)∞,

where ω(g, t)p is the modulus of continuity of g in the L p-norm.
The relations which give upper estimates for the best approximations of a

function in terms of its smoothness are now called Jackson inequalities, and in a
wider sense such relations are called direct theorems of approximation theory.

As a result of Bernstein’s (1912) and de la Vallée-Poussin’s (1908, 1919) inves-
tigations we can formulate the following assertion which is now called the inverse
theorem of approximation theory. If

En( f )∞ ≤ Cn−r−α, 0 ≤ r integer, 0 < α < 1,

then f has a continuous derivative of order r which belongs to the class Lip α, that
is, f ∈ W r Hα . Thus, the results of Jackson, Bernstein, and de la Vallee-Poussin
show that functions from the class W r Hα , 0 < α < 1, can be characterized by the
order of decrease of its sequences of best approximations.

We remark that, at that time, classes similar to W r Hα were used in other areas of
mathematics for obtaining orders of decrease of various quantities. As an example
we formulate a result of Fredholm. Let f (x, y) be continuous on [a, b] × [a, b]
and let

max
x,y

| f (x, y + t) − f (x, y)| ≤ C |t |α, 0 < α ≤ 1.

Then for eigenvalues λ(Jf ) of the integral operator

(Jf ψ)(x) =
∫ b

a
f (x, y)ψ(y) dy

the following relation is valid for any ρ > 2/(2α + 1):

∞∑
n=1

|λn(Jf )|ρ < ∞.

The investigation of upper bounds of errors of approximation of functions from
a fixed class by some method of approximation began with an article by Lebesgue
(1910). In particular, Lebesgue proved that

sup
f ∈ Lipα

‖ f − Sn( f )‖∞  n−α ln n.

In 1936 Kolmogorov introduced the concept of width dn(F, X) of a class F
in a Banach space X (see Subsection 2.3 for details). This concept is designed
to find, for a fixed n and for a class F , a subspace of dimension n, optimal with
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respect to the construction of an approximating element as the element of best
approximation. In other words, the Kolmogorov width gives the lower bound for
the accuracy of Chebyshev methods, having the same quantitative characteristic
of complexity (the dimension of the approximating subspace). In analogy to the
concept of the Kolmogorov width, that is, to the problem concerning the best
Chebyshev method, the problems concerning the best linear method and the best
Fourier method were considered: Tikhomirov (1960) introduced the concept of
linear width and Temlyakov (1982) introduced the concept of orthowidth (Fourier
width). We discuss these widths in more detail later in this section. Here we remark
that from the point of view of orthowidth the Fourier operator Sn is optimal (in the
sense of order of approximation in the L p-norm) for all Sobolev classes W r

q with
1 ≤ q , p ≤ ∞, with the exception of the two cases q = p = 1 and q = p = ∞.

Keeping in mind the primary question about the selection of a good method of
approximation, we now draw some conclusions from this brief historical survey.

(1) The trigonometric polynomials were considered as a natural means of ap-
proximating periodic functions during the whole period of the development of
approximation theory.

(2) In approximation theory (as well as in other fields of mathematics) it turned
out that it is natural to unite functions with the same smoothness into a class.

(3) The subspaces of trigonometric polynomials have in many cases been ob-
tained as a solution of (optimization) problems on the most precise Chebyshev
method (Kolmogorov width), the linear method (linear width), and the Fourier
method (orthowidth) for the classes of smooth functions.

In the above-mentioned results one can see two different approaches in approx-
imation theory.

A. A method of approximation is fixed, for instance, the Fourier sums Sn(·),
and we study this method. We compare it with the best for individual functions or
for function classes (for more details, see Subsection 2.2). We look for a natural
class of functions for this method of approximation.

B. A function class is given, for instance, W r Hα , and we study the approx-
imation of functions in this class. We approximate functions from this class by
trigonometric polynomials and consider the optimization problem of widths of
this class. This results in a natural method of approximation of the given class.

Based on these remarks we may formulate the following general strategy for
investigating approximation problems. We note that this strategy turns out to be
most fruitful in those cases of linear approximation where we do not know a priori a
natural method of approximation. First, we determine what kind of methods we are
looking for (for instance, orthogonal projections on subspaces of fixed dimension).
Second, we formulate the corresponding optimization problem for a function class
which we are going to approximate (the orthowidth problem). Then we solve the
problem for this class in the most simple case of approximation in a Hilbert space
(L2). After that we study a method obtained and apply it to approximation in other
Banach spaces (L p). This strategy has also been used in nonlinear approximation.
Let us note that in addition to the above general strategy we will also need some
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specific features of the problem under consideration. For instance, it is known that
the multivariate approximation problems have some specific difficulties. One of
them is that there is no natural ordering of the multivariate bases that are obtained
as a tensor product of univariate bases, like the trigonometric system. Another
feature is that multivariate function classes may be anisotropic, i.e., smoothness
is characterized by a vector but not by a scalar as it was in the univariate case.
Anisotropy of function classes raises a question of finding methods independent
of anisotropy that are good for all anisotropic classes (see, for details, Section 11).

2.2. Approximation of Individual Functions

Let us consider a Banach space X with a basis � = {ψk}∞k=1, ‖ψk‖ = 1, k =
1, 2, . . . . For a given element f ∈ X we consider the expansion

f =
∞∑

k=1

ck( f )ψk

and the corresponding partial sums

Sn( f, �) :=
n∑

k=1

ck( f )ψk .

In order to understand the efficiency of approximating by Sn we introduce best
approximations with regard to Span{ψ1, . . . , ψn}:

En( f, �)X := inf
ak

∥∥∥∥∥ f −
n∑

k=1

akψk

∥∥∥∥∥
X

.

It is well-known (see [49]) that for a basis � the operator Sn is bounded as an
operator from X to X . Therefore, we have, for any f, g ∈ X ,

‖Sn( f, �) − Sn(g, �)‖X ≤ C(X, �)‖ f − g‖X ,

and, for any f ∈ X ,

‖ f − Sn( f, �)‖X ≤ C(X, �)En( f, �)X .

This means that the partial sums method provides near best approximation for any
individual f . Let us consider a classical example of � = T —the trigonometric
system and X = L p, 1 ≤ p ≤ ∞. The basis T is an orthonormal basis and,
therefore, the orthoprojector Sn realizes the best approximation in L2. By the
Riesz theorem (see [105]) we know that T is a basis for 1 < p < ∞ and thus the
Fourier sums realize near best trigonometric approximation in L p, 1 < p < ∞.
It is well-known that T is not a basis for L1 and L∞. In this case, we have the
Lebesgue inequality,

‖ f − Sn( f, T )‖p ≤ C ln(n + 2)En( f, T )p, p = 1,∞.
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An extra factor ln(2+n) is a slowly growing to infinity function on n but nonetheless
there are different settings where an attempt to get rid of ln(2 + n) was done. We
will mention some of them. One can replace the partial sum Sn( f, T ) by the de la
Vallée-Poussin operator

Vn( f, T ) := 1

n

2n−1∑
j=n

Sj ( f, T ).

This is not an orthoprojector anymore but one has the estimate

‖ f − Vn( f, T )‖p ≤ 4En( f, T )p, p = 1,∞,

that is good if {En( f, T )p} does not decrease fast (note that Vn( f, T ) is a trigono-
metric polynomial of degree 2n − 1). The following estimate was obtained by
Oskolkov [61], for p = ∞,

‖ f − Sn( f, T )‖∞ ≤ C
2n∑

j=n

Ej ( f, T )∞
j − n + 1

.

We also note that in the case of p = ∞ an extra ln(2 + n) appears not only in
the estimates for individual functions as above but also for function classes. We
present here some well-known results for the Sobolev classes

W r
q := { f : f (r−1)-absolutely continuous, ‖ f (r)‖q ≤ 1}.

Kolmogorov proved that

sup
f ∈W r∞

‖ f − Sn( f, T )‖∞ = 4

π2
(ln n)n−r + O(n−r ).

Favard, Akhiezer, and Krein (see [100]) proved the equality

sup
f ∈W r∞

En( f, T )∞ = Kr (n + 1)−r ,

with Kr as a number depending on the number r .
We discuss an interplay between the approximation of individual functions

and function classes. In this section we discuss certain aspects of the following
question. Suppose that F is a function class and that {δn(F)}∞n=1 is a corresponding
sequence of extremal quantities. In this section we take δn(F) := sup f ∈F δn( f ) to
be the supremum en(F) or En(F) of the best approximation in the uniform norm of
functions in F by algebraic (en(·)) or trigonometric (En(·)) polynomials of order
n. In Subsection 2.3 we will consider the case δn(F) = dn(F)—the sequence of
the Kolmogorov widths of the class F . We discuss the question of the extent to
which the sequence {δn(F)}∞n=1, which is connected with the whole function class
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F , characterizes the corresponding properties of individual functions in F . In this
section we discuss the question of the existence in F of a function f such that

lim
n→∞ δn( f )/δn(F) = 1.

The first result in this direction is apparently due to Lebesgue. In [48] he proved
the equality

sup
‖ f ‖∞≤M

En( f )∞ = M, n = 1, 2, . . . ,

where sup is taken over continuous functions. This equality in combination with
the Weierstrass theorem shows that in the class of all continuous functions bounded
by the number M there is no asymptotically extremal function.

Let us make a historical remark due to Nikol’skii (see [59]). S. N. Bernstein
discussed the role of function classes in constructive approximation in the opening
session of his seminar on Approximation Theory (Moscow, Spring 1945). His
general attitude to the role of studying the sequences of En(F) := sup f ∈F En( f )
for a given function class F was skeptical. One of his arguments was that the
sequence {En(F)} may not reflect the behavior of {En( f )} for any individual
f ∈ F , because usually the extremal function that realizes sup f ∈F En( f ) depends
on n. He formulated a problem of studying

sup
f ∈F

lim sup
n→∞

En( f )

En(F)
and sup

f ∈F
lim inf

n→∞
En( f )

En(F)

and their analogs for approximation by algebraic polynomials for some function
classes. In particular, he thought that the function |x | is an extremal function in
the sense of the above quantities in the class Lip11 for approximation by alge-
braic polynomials in the uniform norm. However, it turned out not to be the case.
S. M. Nikol’skii [59] proved in 1946 that for W r

∞ classes there is a function f ∈ W r
∞

such that

lim sup
n→∞

En( f )/En(W
r
∞) = 1.

It was proved in [73], [74] that for the class W r
∞ there exists a function f ∈ W r

∞
such that

lim
n→∞ En( f )/En(W

r
∞) = 1.

Further results and some generalizations are obtained in [76], [75]. It is interesting
to compare the above result with the following result of Oskolkov [60]

max
f ∈W 1∞

lim inf
n→∞

(
‖ f − Sn( f, T )‖∞

/
sup

f ∈W 1∞

‖ f − Sn( f, T )‖∞

)
= 1

2 .
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2.3. Approximation of Function Classes

We now give the definitions of widths of a class F in a space X . The Kolmogorov
width

dn(F, X) = inf
{ϕj }n

j=1

sup
f ∈F

inf
{cj }n

j=1

∥∥∥∥∥ f −
n∑

j=1

cjϕj

∥∥∥∥∥
X

.

The first result about widths, namely Kolmogorov’s result (1936),

d2n+1(W
r
2 , L2) = (n + 1)−r ,

showed that the best subspace of dimension 2n+1 for the approximation of classes
of periodic functions is the subspace of trigonometric polynomials of order n. This
result confirmed that the approximation of functions in the class W r

2 by trigonomet-
ric polynomials is natural. Further estimates of the widths d2n+1(W r

q , L p), 1 ≤ q,
p ≤ ∞, some of which are discussed here, showed that for some values of the
parameters q, p the subspace of trigonometric polynomials of order n is optimal
(in the sense of order) but for other values of q, p this subspace is not optimal.

The Ismagilov [35] estimate for the quantity dn(W r
1 , L∞) gave the first example

where the subspace of trigonometric polynomials of order n is not optimal. This
phenomenon was thoroughly studied by Kashin [39].

The linear width

λn(F, X) = inf
A:rankA≤n

sup
f ∈F

‖ f − A f ‖X .

The orthowidth (Fourier width)

ϕn(F, X) := d⊥
n (F, X) := inf

orthonormal system{ui }n
i=1

sup
f ∈F

∥∥∥∥∥ f −
n∑

i=1

〈 f, ui 〉ui

∥∥∥∥∥
X

.

All these widths have as a starting point a function class F . Thus in this setting we
choose a priori a function class F and look for optimal subspaces for approximation
of a given class. The following results are well-known [86]. We present these
results for r positive integers. Similar results hold for any r greater than some
α(q, p) ≤ 1, which is defined below in Theorem 2.1. Positive integers satisfy the
inequality r > α(q, p) for all 1 ≤ q, p ≤ ∞, except q = 1, p = ∞, where we
have α(1,∞) = 1. Thus in the case q = 1, p = ∞ we assume r > 1.

A. In the case 1 ≤ p ≤ q ≤ ∞ or 1 ≤ q ≤ p ≤ 2, one has

ϕn(W
r
q , L p)  λn(W

r
q , L p)  dn(W

r
q , L p)  n−r+(1/q−1/p)+ . (2.1)

B. In the case 1 ≤ q < p ≤ ∞, p > 2, one has

dn(W
r
q , L p)  n−r+(1/q−1/2)+ ,

λn(W
r
q , L p)  n−r+max(1/q−1/2,1/2−1/p),

ϕn(W
r
q , L p)  n−r+1/q−1/p.
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In Case A the classical trigonometric system provides the optimal orders for all
widths, except ϕn for q = p = 1,∞. Let us discuss a more interesting Case B for
a particular choice of q = 2 and p = ∞. We have

dn(W r
2 , L∞)  n−r , (2.2)

λn(W r
2 , L∞)  ϕn(W r

2 , L∞)  n−r+1/2. (2.3)

These relations show that if we drop the linearity requirement for the approximation
method we gain in accuracy a factor n−1/2. However, there is a big difficulty in
realization of the estimate (2.2). We know by Kashin’s result that there exists a
subspace realizing (2.2) but we do not know a way to construct it. Thus it is only
an existence theorem for now.

Let us discuss one more special case q = 1 and p = ∞. In this case we have

dn(W
r
1 , L∞)  λn(W

r
1 , L∞)  n−r+1/2 (2.4)

and

ϕn(W
r
1 , L∞)  n−r+1. (2.5)

Therefore, by (2.4), the best possible approximation (in the sense of order) can
be realized by a linear method, say, An . However, by (2.5), this linear method An

is certainly not an orthogonal projector. Moreover, by [86], it cannot satisfy even
the following much weaker restriction ‖An(eikx )‖2 ≤ C , k ∈ Z. This means that
the optimal linear operator An is unstable. A small change in some of the Fourier
coefficients of f may result in a big change of ‖An( f )‖2.

Let us make some conclusions now. In the Linear Approximation of W r
q in

L p the bottom line is given by ϕn(W r
q , L p) where the approximation method is

the simplest—orthogonal projection. Partial sums with regard to classical systems
provide an optimal error of approximation for this width. The trigonometric system
works for all 1 ≤ q, p ≤ ∞ except (q, p) = (1, 1), (∞,∞). The wavelet systems
(see [1]) work for all 1 ≤ q, p ≤ ∞. In the example of the pair (W r

1 , L∞) we
have seen that we need to sacrifice important and convenient properties of the
approximating operator in order to achieve better accuracy. In the example of
(W r

2 , L∞) we have seen that we need to pay even a bigger price for better accuracy
in a form of proving only an existence theorem instead of providing a constructive
method of approximation.

Let us continue the discussion from Subsection 2.2 on the interplay between
the approximation of individual functions and function classes. Let us first try to
associate with an individual function f a sequence of the Kolmogorov widths. It is
clear that the choice F[ f ] := { f } does not work because d1(F[ f ]) = 0 for each f .
The idea is to find a minimal reasonable class that contains f . In the periodic case
it is natural to associate with f (x) all translates f (x − y). Thus define F[ f ] :=
{ f (x − y), y ∈ T}. All known classes of periodic functions are shift invariant. In
such a case we have for f ∈ F that F[ f ] ⊂ F and dn(F[ f ], X) ≤ dn(F, X). We
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will present some results from [78]. For r ∈ Z+, α ∈ R+, denote

W r Hα
q := { f : f (r−1) − absolutely continuous},

‖ f (r)(x) − f (r)(y)‖q ≤ |x − y|α, x, y ∈ T}.

Theorem 2.1. Let 1 ≤ q ≤ p ≤ ∞ or 2 ≤ p ≤ q ≤ ∞. Then each class W r Hα
q

with 0 < α < 1 and r + α ≥ α(q, p) contains a function f such that

lim inf
n→∞ dn(F[ f ], L p)/dn(W

r Hα
q , L p) > 0.

We define here α(q, p) := (1/q − 1/p)+ for 1 ≤ q ≤ p ≤ 2, 2 ≤ p ≤ q ≤ ∞
and α(q, p) := max(1/q, 1

2 ) for 1 ≤ q ≤ p ≤ ∞, p > 2.

Let us consider one particular case, q = p = ∞, α = 1, that is not covered by
Theorem 2.1. As established by Tikhomirov [99], the values of the Kolmogorov
width in this case are given by approximations by trigonometric polynomials.
Results of Nikol’skii and this author mentioned in Subsection 2.2 show that each
class W r

∞ contains a function asymptotically extremal for the best approximation
by trigonometric polynomials. It turns out that the picture is different for the
asymptotic behavior of the widths dn(F[ f ], L∞).

Theorem 2.2. Any function f ∈ W r
∞, r > 1

2 , satisfies

dn(F[ f ], L∞) = o(dn(W
r
∞, L∞)).

It is interesting to note that for any periodic function f ∈ L p(T) we have

σm( f (x − y),�)p,∞ = dm(F[ f ], L p) ≤ σm( f, T )p. (2.6)

It is proved in [78] that for 1 ≤ q ≤ p ≤ ∞ one has

d ind
m (W r Hα

q , L p) := sup
f ∈W r Hα

q

dm(F[ f ], L p)

 dm(W
r Hα

q , L p)  m−r−α+(1/q−max(1/2,1/p))+ (2.7)

provided r +α > α(q, p) with α(q, p) defined in Theorem 2.1. We proved in [17]
that

σm(W
r Hα

q , T )p  m−r−α+(1/q−max(1/2,1/p))+ (2.8)

under the same assumption r + α > α(q, p). Relations (2.7) and (2.8) show that
for any pair of (q, p), 1 ≤ q ≤ p ≤ ∞, and for each function f ∈ W r Hα

q , the
trigonometric system T provides a subspace T (�), #� ≤ m, spanned by {eikx },
k ∈ �, such that

dm(F[ f ], L p) ≤ sup
y∈T

inf
t∈T (�)

‖ f (· − y) − t (·)‖p � d ind
m (W r Hα

q , L p).
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Open Problems
2.1. Construct a subspace realizing (2.2).
2.2. Does there exist f ∈ W r Hα

∞, 0 < α < 1, such that

dn(F[ f ], L1) � n−r−α?

3. Greedy Algorithms in Hilbert Spaces

Perhaps the first example of m-term approximation with regard to a redundant
dictionary was considered by E. Schmidt in 1907 [69] who considered the approx-
imation of functions f (x, y) of two variables by bilinear forms

m∑
i=1

ui (x)vi (y)

in L2([0, 1]2). This problem is closely connected with properties of the integral
operator

Jf (g) :=
∫ 1

0
f (x, y)g(y) dy

with kernel f (x, y). E. Schmidt [69] gave an expansion (known as the Schmidt
expansion)

f (x, y) =
∞∑

j=1

sj (Jf )ϕj (x)ψj (y), (3.S)

where {sj (Jf )} is a nonincreasing sequence of singular numbers of Jf , i.e., sj (Jf )

:= λj (J ∗
f Jf )

1/2, {λj (A)} is a sequence of eigenvalues of an operator A, and J ∗
f is the

adjoint operator to Jf . The two sequences {ϕj (x)} and {ψj (y)} form orthonormal
sequences of eigenfunctions of the operators Jf J ∗

f and J ∗
f Jf , respectively. He also

proved that ∥∥∥∥∥ f (x, y) −
m∑

j=1

sj (Jf )ϕj (x)ψj (y)

∥∥∥∥∥
L2

= inf
uj ,vj ∈L2, j=1,...,m

∥∥∥∥∥ f (x, y) −
m∑

j=1

uj (x)vj (y)

∥∥∥∥∥
L2

.

It follows from the Schmidt expansion that the above best bilinear approximation
can be realized by the PGA. This was observed and used in several papers (see
[66] for a history).

Another problem of this type which is well-known in statistics is the projection
pursuit regression problem. We formulate the related results in the function theory
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language. The problem is to approximate in L2(�), � ⊂ R
d is a bounded domain,

a given function f ∈ L2(�) by a sum of ridge functions, i.e., by

m∑
j=1

rj (ωj · x), x, ωj ∈ R
d , j = 1, . . . ,m,

where rj , j = 1, . . . ,m, are univariate functions. The following greedy-type algo-
rithm (projection pursuit regression) was proposed in [31]. Assume that functions
r1, . . . , rm−1 and vectors ω1, . . . , ωm−1 have been determined after m − 1 steps
of the algorithm. Choose at the mth step a unit vector ωm and a function rm to
minimize the error ∥∥∥∥∥ f (x) −

m∑
j=1

rj (ωj · x)

∥∥∥∥∥
L2

.

This is one more example of the PGA. The PGA and some other versions of greedy-
type algorithms have been intensively studied recently (see [4], [24], [13], [28],
[18], [19], [34], [36], [37], [67], [101], [88]–[98]). In this section we discuss the
PGA and some of its modifications which make them more ready for implementa-
tion. We call this new type of greedy algorithm a Weak Greedy Algorithm (WGA)
(see the Introduction for the definition of a PGA). Let a sequence τ = {tk}∞k=1,
0 ≤ tk ≤ 1, be given. Following [95] we define a WGA.

Weak Greedy Algorithm (WGA). We define f τ0 := f . Then for each m ≥ 1,
we inductively define:

(1) ϕτ
m ∈ D is any element satisfying

|〈 f τm−1, ϕ
τ
m〉| ≥ tm sup

g∈D
|〈 f τm−1, g〉|;

(2)

f τm := f τm−1 − 〈 f τm−1, ϕ
τ
m〉ϕτ

m;
(3)

Gτ
m( f,D) :=

m∑
j=1

〈 f τj−1, ϕ
τ
j 〉ϕτ

j .

We note that in a particular case tk = t , k = 1, 2, . . . , this algorithm was
considered in [36]. Thus, the WGA is a generalization of the PGA in the direction
of making it easier to construct an element ϕτ

m at the mth greedy step. We point out
that the WGA contains, in addition to the first (greedy) step, the second step (see
(2), (3) in the above definition), where we update an approximant by adding an
orthogonal projection of the residual f τm−1 onto ϕτ

m . Therefore, the WGA provides
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for each f ∈ H an expansion into a series (greedy expansion)

f ∼
∞∑

j=1

cj ( f )ϕτ
j , cj ( f ) := 〈 f τj−1, ϕ

τ
j 〉.

In general it is not an expansion into an orthogonal series but it has some similar
properties. The coefficients cj ( f ) of an expansion are obtained by the Fourier
formulas with f replaced by the residuals f τj−1. It is easy to see that

‖ f τm‖2 = ‖ f τm−1‖2 − |cm( f )|2.
We prove the convergence of a greedy expansion (see, for instance, Theorem 3.1)
and, therefore, from the above equality we get for this expansion an analog of the
Parseval formula for orthogonal expansions:

‖ f ‖2 =
∞∑

j=1

|cj ( f )|2.

If H0 is a finite-dimensional subspace of H , we let PH0 be the orthogonal
projector from H onto H0. That is, PH0( f ) is the best approximation to f from
H0. We let g( f ) ∈ D be an element from D which maximizes |〈 f, g〉|. We shall
assume for simplicity that such a maximizer exists; if not, suitable modifications
are necessary (see Weak Orthogonal Greedy Algorithm (WOGA) below) in the
algorithm that follows.

Orthogonal Greedy Algorithm (OGA). We define Ro
0( f ) := Ro

0( f,D) := f
and Go

0( f ) := Go
0( f,D) := 0. Then, for each m ≥ 1, we inductively define

Hm := Hm( f ) := Span{g(Ro
0( f )), . . . , g(Ro

m−1( f ))},
Go

m( f ) := Go
m( f,D) := PHm ( f ),

Ro
m( f ) := Ro

m( f,D) := f − Go
m( f ).

We remark that for each f we have

‖ f − Go
m( f,D)‖ ≤ ‖Ro

m−1( f ) − G1(Ro
m−1( f ),D)‖. (3.1)

Let a sequence τ = {tk}∞k=1, 0 ≤ tk ≤ 1, be given. Following [95] we define a
WOGA.

Weak Orthogonal Greedy Algorithm (WOGA). We define f o,τ
0 := f . Then

for each m ≥ 1 we inductively define:

(1) ϕo,τ
m ∈ D is any element satisfying

|〈 f o,τ
m−1, ϕ

o,τ
m 〉| ≥ tm sup

g∈D
|〈 f o,τ

m−1, g〉|;
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(2)

Go,τ
m ( f,D) := PH τ

m
( f ), where H τ

m := Span(ϕo,τ
1 , . . . , ϕo,τ

m );
(3)

f o,τ
m := f − Go,τ

m ( f,D).

It is clear that Gτ
m and Go,τ

m in the case tk = 1, k = 1, 2, . . . , coincide with
the PGA Gm and the Orthogonal Greedy Algorithm (OGA) Go

m , respectively. It is
also clear that the WGA and WOGA are more ready for implementation than the
PGA and the OGA.

The WOGA has the same greedy step as the WGA and differs in the construction
of a linear combination of ϕ1, . . . , ϕm . In the WOGA we do our best to construct
an approximant out of Hm := Span(ϕ1, . . . , ϕm): we take an orthogonal projection
onto Hm . Clearly, in this way, we lose a property of the WGA to build an expansion
into a series in the case of the WOGA. However, this modification pays off in the
sense of improving the convergence rate of approximation. To see this, compare
Theorem 3.9 for tk = 1, k = 1, . . . ,with (3.11). Also, we discuss below some other
greedy-type algorithms, where the greedy step of finding a maximizer (or weak
maximizer) is replaced by a thresholding step. We believe that such a modification
makes these algorithms easier to implement. However, we should note that these
new algorithms work only for f in the class A1(D) (see definitions and a discussion
below, after Theorem 3.9).

3.1. Convergence

Convergence is a fundamental question and we discuss it in detail for the most
general setting. The convergence of the PGA and the WGA with tk = t , 0 < t < 1,
was established in [36] and [68]. The first sufficient condition on τ which includes
sequences with lim infk→∞ tk = 0 was obtained in [95].

Theorem 3.1. Assume that
∞∑

k=1

tk
k

= ∞. (3.2)

Then, for any dictionary D and any f ∈ H , we have

lim
m→∞ ‖ f − Gτ

m( f,D)‖ = 0.

In [95] we reduced the proof of the convergence of the WGA with the weakness
sequence τ to some properties of l2-sequences with regard to τ . Theorem 3.1 was
derived from the following two statements proved in [95].



Nonlinear Methods of Approximation 57

Proposition 3.1. Let τ be such that, for any {aj }∞j=1 ∈ l2, aj ≥ 0, j = 1, 2, . . . ,
we have

lim inf
n→∞ an

n∑
j=1

aj/tn = 0.

Then, for any H , D, and f ∈ H , we have

lim
m→∞ ‖ f τm‖ = 0.

Proposition 3.2. If τ satisfies condition (3.2) then τ satisfies the assumption of
Proposition 3.1.

The following simple necessary condition

∞∑
k=1

t2
k = ∞

was mentioned in [95]. The first nontrivial necessary conditions were obtained in
[51]. We proved in [51] the following theorem:

Theorem 3.2. In the class of monotone sequences τ = {tk}∞k=1, 1 ≥ t1 ≥ t2 ≥
· · · ≥ 0, condition (3.2) is necessary and sufficient for the convergence of a WGA
for each f and all Hilbert spaces H and dictionaries D.

The proof of this theorem is based on a special procedure which we called
Equalizer. In [51] we gave an example of a class of sequences τ for which condition
(3.2) is not a necessary condition for convergence. We also proved in [51] a theorem
which covers Theorem 3.1.

Theorem 3.3. Assume that

∞∑
s=0

(
2−s

2s+1−1∑
k=2s

t2
k

)1/2

= ∞.

Then, for any dictionary D and any f ∈ H , we have

lim
m→∞ ‖ f − Gτ

m( f,D)‖ = 0.

We proved in [96] a criterion on τ for convergence of the WGA. To explain this
we need some notation.

We define by V the class of sequences x = {xk}∞k=1, xk ≥ 0, k = 1, 2, . . . , with
the following property: there exists a sequence 0 = q0 < q1 < · · · such that

∞∑
s=1

2s

�qs
< ∞ (3.3)
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and
∞∑

s=1

2−s
qs∑

k=1

x2
k < ∞, (3.4)

where �qs := qs − qs−1.

Theorem 3.4. The condition τ /∈ V is necessary and sufficient for convergence
of a WGA with weakness sequence τ for each f and all Hilbert spaces H and
dictionaries D.

The proof of the sufficient part of Theorem 3.4 is a refinement of the origi-
nal proof of Jones [36]. The study of the behavior of sequences an

∑n
j=1 aj for

{aj }∞j=1 ∈ l2, aj ≥ 0, j = 1, 2, . . . , plays an important role in the proof. It turns out
that the class V appears naturally in the study of the above-mentioned sequences.
We proved in [96] the following theorem:

Theorem 3.5. The following two conditions are equivalent

τ /∈ V, (C.1)

∀{aj }∞j=1 ∈ l2, aj ≥ 0, lim inf
n→∞ an

n∑
j=1

aj/tn = 0. (C.2)

We give a result on convergence of the WOGA now.

Theorem 3.6. Assume
∞∑

k=1

t2
k = ∞. (3.5)

Then, for any dictionary D and any f ∈ H , we have

lim
m→∞ ‖ f − Go,τ

m ( f,D)‖ = 0. (3.6)

Remark 3.1. It is easy to see that in the case D = B - orthonormal basis the
assumption (3.5) is also necessary for convergence (3.6) for all f .

Theorems 3.4 and 3.6 show that conditions on the weakness sequence for con-
vergence of the WGA and WOGA are different.

3.2. Rate of Convergence

For a general dictionary D we define the class of functions

Ao
1(D, M) :=

{
f ∈ H : f =

∑
k∈�

ckwk, wk ∈ D, #� < ∞ and
∑
k∈�

|ck | ≤ M

}
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and we define A1(D, M) as the closure (in H ) of Ao
1(D, M). Furthermore, we

define A1(D) as the union of the classes A1(D, M) over all M > 0. For f ∈
A1(D), we define the norm

| f |A1(D)

as the smallest M such that f ∈ A1(D, M).
It was proved in [18] that for a general dictionary D the PGA provides the

following estimate

‖ f − Gm( f,D)‖ ≤ | f |A1(D)m
−1/6. (3.7)

(In this and similar estimates we consider that the inequality holds for all possible
choices of {Gm}.) Paper [18] also contains an example of a dictionary D and an
element f such that (see Subsection 3.3 below)

‖ f − Gm( f,D)‖ > 1
2 | f |A1(D)m

−1/2, m ≥ 4. (3.8)

We proved in [45] a new estimate

‖ f − Gm( f,D)‖ ≤ 4| f |A1(D)m
−11/62 (3.9)

which improves a little the original one (see (3.7)).
E. Livshitz [50] proved that there exist δ > 0, a dictionary D, and an element

f ∈ H , f �= 0, such that

‖ f − Gm( f,D)‖ ≥ Cm−1/2+δ| f |A1(D) (3.10)

with a positive constant C . We developed and refined ideas from [50] in [98] and
proved the following lower estimate. There exist a dictionary D and an element
f ∈ H , f �= 0, such that

‖ f − Gm( f,D)‖ ≥ Cm−1/3| f |A1(D) (3.11)

with a positive constant C .
For the WGA we have the following estimate [95]:

Theorem 3.7. Let D be an arbitrary dictionary in H . Assume that τ := {tk}∞k=1
is a nonincreasing sequence. Then, for f ∈ A1(D, M), we have

‖ f − Gτ
m( f,D)‖ ≤ M

(
1 +

m∑
k=1

t2
k

)−tm/2(2+tm )

. (3.12)

In a particular case τ = t (tk = t , k = 1, 2, . . .), (3.12) gives

‖ f − Gt
m( f,D)‖ ≤ M(1 + mt2)−t/(4+2t), 0 < t ≤ 1.
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This estimate implies the following inequality

‖ f − Gt
m( f,D)‖ ≤ C1m−t/6| f |A1(D), (3.13)

with the exponent t/6 approaching 0 linearly in t . We proved in [98] that this
exponent cannot decrease to 0 at a slower rate than linearly.

Theorem 3.8. There exists an absolute constant b > 0 such that for any t > 0
we can find a dictionary Dt and a function ft ∈ A1(Dt ) such that

lim inf
m→∞ ‖ ft − Gt

m( ft ,Dt )‖mbt/| ft |A1(Dt ) > 0.

We formulate one result for the WOGA from [95]. In the case of the OGA this
theorem was proved in [18].

Theorem 3.9. Let D be an arbitrary dictionary in H . Then, for each f ∈
A1(D, M), we have

‖ f − Go,τ
m ( f,D)‖ ≤ M

(
1 +

m∑
k=1

t2
k

)−1/2

.

There is one more greedy-type algorithm which works well for functions from
the convex hull A1(D) := { f : | f |A1(D) ≤ 1} of D±, where D± := {±g, g ∈ D}.

There are several modifications of the Relaxed Greedy Algorithm (RGA) (see,
for instance, [4], [18]). Before giving the definition of the Weak Relaxed Greedy Al-
gorithm (WRGA) we make one remark which helps to motivate the corresponding
definition. Assume that Gm−1 ∈ A1(D) is an approximant to f ∈ A1(D) obtained
at the (m − 1)th step. The major idea of relaxation in greedy algorithms is to look
for an approximant at the mth step of the form Gm := (1−a)Gm−1 +ag, g ∈ D±,
0 ≤ a ≤ 1. This form guarantees that Gm ∈ A1(D). We now give the definition
of two versions of the WRGA.

Weak Relaxed Greedy Algorithm (WRGA). We define f τ,i0 := f and Gτ,i
0 :=

0 for i = 1, 2. Then for each m ≥ 1 we inductively define:

(1) ϕτ,1
m ∈ D± is any element satisfying

〈 f τ,1m−1, ϕ
τ,1
m − Gτ,1

m−1〉 ≥ tm‖ f τ,1m−1‖2 (3.14)

and

‖ϕτ,1
m − Gτ,1

m−1‖ ≥ ‖ f τ,1m−1‖. (3.15)

ϕτ,2
m ∈ D± is any element satisfying

〈 f τ,2m−1, ϕ
τ,2
m − Gτ,2

m−1〉 ≥ tm‖ f τ,2m−1‖2. (3.16)
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(2)

Gτ,1
m := Gτ,1

m ( f,D) := (1 − αm)G
τ,1
m−1 + αmϕ

τ,1
m ,

αm := 〈 f τ,1m−1, ϕ
τ,1
m − Gτ,1

m−1〉‖ϕτ,1
m − Gτ,1

m−1‖−2,

Gτ,2
m := Gτ,2

m ( f,D) := (1 − βm)G
τ,2
m−1 + βmϕ

τ,2
m ,

βm := tm

(
1 +

m∑
k=1

t2
k

)−1

for m ≥ 1.

(3)

f τ,im := f − Gτ,i
m , i = 1, 2.

We now formulate some theorems on convergence rates of greedy-type algo-
rithms WRGA for functions from A1(D, M).

Theorem 3.10. Let D be an arbitrary dictionary in H . Then, for each f ∈
A1(D), we have

‖ f − Gτ,i
m ( f,D)‖ ≤ 2

(
1 +

m∑
k=1

t2
k

)−1/2

, i = 1, 2. (3.17)

We note that in both versions of WRGAs the “greedy” steps (3.14) and (3.16) can
be easily checked because of their thresholding nature. We now discuss a question
of replacing “greedy” steps in WGAs and WOGAs by something similar to (3.14)
and (3.16). Let us begin with a WOGA. Inspecting the proof of Theorem 3.9 (see
[95, p. 222]) one realizes that the relation

|〈 f o,τ
m−1, ϕ

o,τ
m 〉| ≥ tm sup

g∈D
|〈 f o,τ

m−1, g〉| (3.18)

was used only for deriving the inequality

|〈 f o,τ
m−1, ϕ

o,τ
m 〉| ≥ tm‖ f o,τ

m−1‖2. (3.19)

Thus if we define a Modified WOGA (MWOGA) by replacing (3.18) by (3.19)
in Step (1) of the definition of a WOGA we get an analog of Theorem 3.9 for a
MWOGA.

Let us proceed to a modification of a WGA. Let a sequence τ = {tk}∞k=1,
0 ≤ tk ≤ 1, be given. We define a Modified Weak Greedy Algorithm (MWGA)
for f ∈ A1(D).

Modified Weak Greedy Algorithm (MWGA). We define f M
0 := f , ϕM

1 ∈ D
is any element satisfying

|〈 f M
0 , ϕM

1 〉| ≥ t1‖ f M
0 ‖2,



62 V. N. Temlyakov

and we set

f M
1 := f M

0 − 〈 f M
0 , ϕM

1 〉ϕM
1 .

Then for each m > 1 we inductively define:

(1) ϕM
m ∈ D is any element satisfying

|〈 f M
m−1, ϕ

M
m 〉| ≥ tm‖ f M

m−1‖2

(
1 +

m−1∑
k=1

|〈 f M
k−1, ϕ

M
k 〉|

)−1

;

(2)

f M
m := f M

m−1 − 〈 f M
m−1, ϕ

M
m 〉ϕM

m .

Proposition 3.3. Let τ = {tk}, 0 ≤ tk < 1, k = 1, 2, . . . , be a nonincreasing
sequence. For any f ∈ A1(D) there exists a realization of a MWGA. For any such
realization we have

‖ f M
m ‖ ≤

(
1 +

m∑
k=1

t2
k

)−tm/(4+2tm )

.

The proof of this proposition repeats the proof of Theorem 3.7 (see [95, Proof
of Theorem 5.1]).

Let us make one more remark on the numerical implementation of greedy-
type algorithms. We now know that after the modifications discussed above it is
sufficient for the implementation of each of the greedy-type algorithms (WRGA,
MWOGA, MWGA) to satisfy a thresholding-type inequality. However, the re-
maining problem is that we can only guarantee a realization of such algorithms
under the assumption f ∈ A1(D). In some problems this assumption is satisfied
automatically. In [8] the general procedure called “Basis Pursuit” was proposed for
finding a representation of f with a minimal �1-norm of coefficients. It is pointed
out in [8] that Basis Pursuit is a linear programming problem. Thus, one can use
the following two-step implementation strategy:

(1) For a given f find (or estimate) | f |A1(D) using Basis Pursuit;
(2) Consider f/| f |A1(D) ∈ A1(D) and use any of the above modified greedy

algorithms.

We present some results from [92] on r -greedy dictionaries.

Definition 3.1. Let r > 0 be given. We call a dictionaryD an r -greedy dictionary
for H if D possesses the property (G): for any f ∈ H such that

σm( f,D) ≤ m−r , m = 1, 2, . . . ,

we have

‖ f − Gm( f,D)‖ ≤ C(r,D)m−r , m = 1, 2, . . . .
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Definition 3.2. We sayD is aλ-quasi-orthogonal dictionary if, for any n ∈ N and
any gi ∈ D, i = 1, . . . , n, there exists a collection ϕj ∈ D, j = 1, . . . , M, M ≤
N := λn, with the properties

gi ∈ X M := Span(ϕ1, . . . , ϕM),

and for any f ∈ X M we have

max
1≤ j≤M

|〈 f, ϕj 〉| ≥ N−1/2‖ f ‖.

Theorem 3.11. Let a given dictionary D be λ-quasi-orthogonal and let 0 < r <

(2λ)−1 be a real number. Then for any f such that

σm( f,D) ≤ m−r , m = 1, 2, . . . ,

we have

‖ f − Gm( f,D)‖ ≤ C(r, λ)m−r , m = 1, 2, . . . .

Remark 3.2. It is clear that an orthonormal dictionary is a 1-quasi-orthogonal
dictionary.

Remark 3.3. Theorem 3.11 holds if the assumption thatD is λ-quasi-orthogonal
is replaced by the assumption thatD is asymptotically λ-quasi-orthogonal. In order
to get the definition of an asymptotically λ-quasi-orthogonal dictionary we replace
N in Definition 3.2 by N (n) and instead of N = λn we require

lim sup
n→∞

N (n)/n = λ.

Here are two examples of asymptotically λ-quasi-orthogonal dictionaries.

Example 3.1. The dictionary χ := { f = |J |−1/2χJ , J ⊂ [0, 1]}, where χJ is
the characteristic function of an interval J , is an asymptotically 2-quasi-orthogonal
dictionary.

Example 3.2. The dictionary P(r) that consists of functions of the form f =
pχJ , ‖ f ‖ = 1, where p is an algebraic polynomial of degree r − 1 and χJ is the
characteristic function of an interval J , is asymptotically 2r -quasi-orthogonal.

Example 3.3. For given µ, γ ≥ 1 a dictionary D is called (µ, γ )-semistable if
for any gi ∈ D, i = 1, . . . , n, there exist elements hj ∈ D, j = 1, . . . , M ≤ µn,
such that

gi ∈ Span{h1, . . . , hM}



64 V. N. Temlyakov

and for any c1, . . . , cM we have∥∥∥∥∥
M∑

j=1

cj hj

∥∥∥∥∥ ≥ γ−1/2

(
M∑

j=1

c2
j

)1/2

.

A (µ, γ )-semistable dictionary D is µγ -quasi-orthogonal.

3.3. Saturation Property of the Pure Greedy Algorithm

We consider in this subsection a generalization of the PGA. Take a fixed number
n ∈ N and define the basic step of the n-Dimensional Greedy Algorithm as
follows. Find an n-term polynomial

pn( f ) := pn( f,D) =
n∑

n=1

ci gi , gi ∈ D, i = 1, . . . , n,

such that (we assume its existence)

‖ f − pn( f )‖ = σn( f,D).

Denote

G(n, f ) := G(n, f,D) := pn( f ), R(n, f ) := R(n, f,D) := f − pn( f ).

n-Dimensional Greedy Algorithm. We define R0(n, f ) := f and G0(n, f ) :=
0. Then, for each m ≥ 1, we inductively define

Gm(n, f ) := Gm(n, f,D) := Gm−1(n, f ) + G(n, Rm−1(n, f )),

Rm(n, f ) := Rm(n, f,D) := f −Gm(n, f )= R(n, Rm−1(n, f )). (3.20)

It is clear that a One-Dimensional Greedy Algorithm is a PGA.
For a general dictionary D, and for any 0 < β ≤ 1, we define the class of

functions

Ao
β(D, M) :=

{
f ∈ H : f =

∑
k∈�

ckwk, wk ∈ D, |�|<∞ and
∑
k∈�

|ck |β ≤ Mβ

}
,

and we define Aβ(D, M) as the closure (in H ) of Ao
β(D, M). Furthermore, we

define Aβ(D) as the union of the classes Aβ(D, M) over all M > 0. For f ∈
Aβ(D), we define the “quasi-norm”

| f |Aβ (D)

as the smallest M such that f ∈ Aβ(D, M). The following general estimate for
the error in the approximation of functions f ∈ Aβ(D), β ≤ 1, was proved
in [18].
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Theorem 3.12. If f ∈ Aβ(D), β ≤ 1, then for α := 1/β − 1
2 , we have

σm( f,D) ≤ C | f |Aβ (D)m
−α, m = 1, 2, . . . , (3.21)

where C depends on β if β is small.

In [18] we gave an example which showed that replacing a dictionaryB, given by
an orthogonal basis, by a nonorthogonal redundant dictionary D may damage the
efficiency of the PGA. The dictionary D in our example differs from the dictionary
B by only one suitably chosen element g.

Let {hk}∞k=1 be an orthonormal basis in a Hilbert space H and let B = {hk}∞k=1
be the corresponding dictionary. Consider the following element

g := Ah1 + Ah2 + a A
∑
k≥3

(k(k + 1))−1/2hk

with

A := ( 33
89 )

1/2 and a := ( 23
11 )

1/2.

Then, ‖g‖ = 1. We define the dictionary D = B ∪ {g}.

Theorem 3.13. For the function

f = h1 + h2

which is in each space Aβ(D), 0 < β ≤ 1, we have

‖ f − Gm( f,D)‖ ≥ m−1/2, m ≥ 4. (3.22)

We proved in [92] that the n-Dimensional Greedy Algorithm, like the PGA has
a saturation property.

Theorem 3.14. For a given n and any orthonormal basis {hk}∞k=1 there exists
an element g such that for the dictionary D = g ∪ {hk}∞k=1 there is an element f
which has the property, for any 0 < β ≤ 1,

‖ f − Gm(n, f )‖/| f |Aβ (D) ≥ C(β)n−1/β(m + 2)−1/2.

Open Problems
3.1. Find the order of decay of the sequence

γ (m) := sup
f,D,{Gm }

(‖ f − Gm( f,D)‖| f |−1
A1(D)),

where sup is taken over all dictionaries D, all elements f ∈ A1(D)\{0}, and all
possible choices of {Gm}.

3.2. Is there a greedy-type algorithm realizing (3.21) for 0 < β < 1?
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4. Greedy Algorithms in Banach Spaces

In this section we present some results on greedy approximation with regard to re-
dundant dictionaries in Banach spaces. These results are fragmentary and should
be considered as an attempt to understand a role of redundancy and nonlinear-
ity in the general setting for Banach spaces. There are no general results on the
convergence of the X -Greedy Algorithm and the DGA. Some results about the
performance of DGAs can be found in [24] and [28]. It is proved in [24] (see
also [28]) that the assumption that X is a smooth Banach space is a necessary and
sufficient condition for the sequence {‖RD

m ( f,D)‖X } to be strictly decreasing for
each f ∈ X and all dictionaries D.

4.1. Uniformly Smooth Banach Spaces

Recently, we proved in [97] one general convergence result for the generalization
of the WOGA to Banach spaces. We call this generalization a Weak Chebyshev
Greedy Algorithm (WCGA). We will use the notation D± := {±g, g ∈ D} here.
Let a weakness sequence τ = {tk}∞k=1, 0 ≤ tk ≤ 1, be given.

Weak Chebyshev Greedy Algorithm (WCGA). We define f c
0 := f c,τ

0 := f .
Then for each m ≥ 1 we inductively define:

(1) ϕc
m := ϕc,τ

m ∈ D± is any element satisfying

Ff c
m−1

(ϕc
m) ≥ tm sup

g∈D±
Ff c

m−1
(g).

(2) Define

!m := !τ
m := Span{ϕc

j }m
j=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from !m .
(3) Denote

f c
m := f c,τ

m := f − Gc
m .

Let us give one more definition of a weak greedy-type algorithm. We will not
present results on it here.

Weak Dual Greedy Algorithm (WDGA). We define f D
0 := f D,τ

0 := f . Then
for each m ≥ 1 we inductively define:

(1) ϕD
m := ϕD,τ

m ∈ D± is any element satisfying

Ff D
m−1

(ϕD
m ) ≥ tm sup

g∈D±
Ff D

m−1
(g).
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(2) Define am as

‖ f D
m−1 − amϕ

D
m ‖ = min

a∈R

‖ f D
m−1 − amϕ

D
m ‖.

(3) Denote

f D
m := f D,τ

m := f D
m−1 − amϕ

D
m .

We now define the generalization for Banach spaces of the WRGA studied in
[95] in the case of Hilbert space.

Weak Relaxed Greedy Algorithm (WRGA). We define f r
0 := f r,τ

0 := f and
Gr

0 := Gr,τ
0 := 0. Then for each m ≥ 1 we inductively define:

(1) ϕr
m := ϕr,τ

m ∈ D± is any element satisfying

Ff r
m−1

(ϕr
m − Gr

m−1) ≥ tm sup
g∈D±

Ff r
m−1

(g − Gr
m−1).

(2) Find 0 ≤ λm ≤ 1 such that

‖ f − ((1 − λm)G
r
m−1 + λmϕ

r
m)‖ = inf

0≤λ≤1
‖ f − ((1 − λ)Gr

m−1 + λϕr
m)‖

and define

Gr
m := Gr,τ

m := (1 − λm)G
r
m−1 + λmϕ

r
m .

(3) Denote

f r
m := f r,τ

m := f − Gr
m .

Remark 4.1. It follows from the definition of a WCGA, a WDGA, and a WRGA
that the sequences {‖ f c

m‖}, {‖ f D
m ‖}, and {‖ f r

m‖} are nonincreasing sequences.

The term “weak” in these definitions means that at Step (1) we do not shoot
for the optimal element of the dictionary which realizes the corresponding sup but
we are satisfied with a weaker property than being optimal. The obvious reason
for this is that we do not know in general that the optimal element exists. Another,
practical reason is that the weaker the assumption the easier it is to satisfy it
and, therefore, easier to realize in practice. The WRGA provides incremental
approximants discussed in [24]. In [24] they also impose weaker assumptions (ε-
greedy) on an element of the dictionary rather than being optimal. For instance,
for a given sequence {εn}∞n=1, εn > 0, n = 1, 2, . . . , they take 0 ≤ αm ≤ 1 and
gm ∈ D satisfying

‖ f − ((1 − αm)Gm−1 + αm gm)‖ ≤ inf
0≤α≤1,g∈D

‖ f − ((1 − α)Gm−1 + αg)‖ + εm

instead of trying to find optimal elements. Their approach is different from ours.
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We discuss in this section the questions of convergence and the rate of conver-
gence for the two above-defined methods of approximation: WCGA and WRGA.
It is clear that in the case of WRGAs the assumption that f belongs to the closure
of the convex hull of D± is natural. We denote the closure of the convex hull of
D± by A(D) := A1(D). It has been proven in [95] (see Theorems 3.9 and 3.10
from Section 3) that in the case of the Hilbert space both algorithms, WCGA and
WRGA, give the approximation error for the class A(D) of the order

(
1 +

m∑
k=1

t2
k

)−1/2

.

We consider here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

( 1
2 (‖x + uy‖ + ‖x − uy‖) − 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness ρ(u) is an
even convex function satisfying the inequalities

max(0, u − 1) ≤ ρ(u) ≤ u, u ∈ (0,∞). (4.1)

It has been established in [24] that the approximation error of an algorithm analo-
gous to our WRGA with tk = 1, k = 1, 2, . . . , for the class A(D) can be expressed
in terms of a modulus of smoothness of a Banach space. Namely, if the modulus of
smoothness ρ of X satisfies the inequality ρ(u) ≤ γ uq , q > 1, then the error is of
O(m1/q−1). It has been proven in [97] that both algorithms, WCGA and WRGA,
provide approximation for the class A(D) in a Banach space X with modulus of
smoothness ρ(u) ≤ γ uq , 1 < q ≤ 2, of order

(
1 +

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
. (4.2)

We also proved (see [97]) that the WCGA converges for any f ∈ X and that the
WRGA converges for any f ∈ A(D) if τ satisfies the condition

∞∑
m=1

tmξm(ρ, τ, θ) = ∞. (4.3)

The sequences {ξm(ρ, τ, θ)} are defined as follows:
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Definition 4.1. Let ρ(u) be an even convex function on (−∞,∞)with the prop-
erty: ρ(2) ≥ 1 and

lim
u→0

ρ(u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and 0 < θ ≤ 1
2 we define ξm := ξm(ρ, τ, θ) as a

number u satisfying the equation

ρ(u) = θ tmu. (4.4)

In a particular case of ρ(u)  uq , 1 < q ≤ 2, relation (4.3) is equivalent to

m∑
k=1

t p
k = ∞, p := q

q − 1
. (4.5)

We gave in [97] an example which shows that (4.5) is a necessary condition for
the convergence of the WCGA in Banach spaces with a modulus of smoothness
of power type q for all D and f ∈ X .

It is well-known (see, for instance, [24, Lemma B.1]) that in the case X = L p,
1 ≤ p < ∞, we have

ρ(u) ≤
{

u p/p if 1 ≤ p ≤ 2,

(p − 1)u2/2 if 2 ≤ p < ∞.
(4.6)

It is also known (see [49, p. 63]) that, for any X with dim X = ∞, one has

ρ(u) ≥ (1 + u2)1/2 − 1

and, for every X , dim X ≥ 2,

ρ(u) ≥ Cu2, C > 0.

This limits power-type moduli of smoothness of nontrivial Banach spaces to the
case 1 ≤ q ≤ 2. The following theorem gives the rate of convergence of the
WCGA for f in A(D).

Theorem 4.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u) ≤ γ uq , 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1, tk ≤ 1,
k = 1, 2, . . . , we have for any f ∈ A(D) that

‖ f − Gc,τ
m ( f,D)‖ ≤ C(q, γ )

(
1 +

m∑
k=1

t p
k

)−1/p

, p := q

q − 1
,

with a constant C(q, γ ) which may depend only on q and γ .
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4.2. Finite-Dimensional Spaces

We discuss some results from [19] on X -Greedy Algorithms in a particular case of
finite-dimensional space X = R

n , equipped with one of the standard norms �p. The
reasons for our concentration on the finite-dimensional problems are as follows.
It is well-known how one can apply the finite-dimensional results in studying
the smoothness classes. Next, we are interested in understanding an interplay of
several parameters including a parameter measuring the redundancy of a system
D. In this subsection it will be more convenient for us to use systems D that are
not necessarily normalized. We note that the definition of an X -Greedy Algorithm
does not depend on the normalization of a system.

We use the standard notation R
n for the n-dimensional space of real vectors

and the �p-norm is defined as follows:

‖x‖p :=
(∑n

j=1 |xj |p
)1/p

, 1 ≤ p < ∞,

‖x‖∞ := maxj |xj |.
Let Bn

p denote the unit �p-ball of R
n .

First we give two theorems from [19] about the m-term approximation in R
n . In

this subsection, we shall consider m-term approximation in the �p-norm of certain
sets F ⊂ R

n . In Theorem 4.2, we use ideas from [42] to give a lower estimate
for m-term approximation in the �1-norm from a general dictionary to general sets
F ⊂ R

n . Lower estimates in the �1-norm automatically provide lower estimates
in the other �q -norms, q > 1 (see Corollary 4.1).

We let Voln(S) denote the Euclidean n-dimensional volume of the set S ⊂ R
n .

We recall that the volume of the unit ball Bn
p , 1 ≤ p ≤ ∞, in R

n can be esti-
mated by

Cn
1 n−n/p ≤ Voln(Bn

p) ≤ Cn
2 n−n/p, (4.7)

with C1,C2 > 0 absolute constants.

Theorem 4.2. If F ⊂ Bn
2 satisfies

Voln F ≥ K n Voln Bn
2 ,

for some 0 < K ≤ 1, then for any dictionary D, #D = N , we have

σm(F,D)1 ≥ C K 2n1/2 N−m/(n−m), m ≤ n/2.

with C > 0 an absolute constant.

Corollary 4.1. Let F and D be as in Theorem 4.2. For any 1 ≤ q ≤ ∞, we have

σm(F,D)q ≥ C K 2n1/q−1/2 N−m/(n−m), m ≤ n/2,

with C an absolute constant.
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Corollary 4.2. Let D be as in Theorem 4.2. For any 1 ≤ p, q ≤ ∞, we have

σm(Bn
p ,D)q ≥ Cn1/q−1/p N−m/(n−m), m ≤ n/2, (4.8)

with C an absolute constant.

Remark 4.2. In the case N = an and p = q, the lower bound in Corollary 4.2
can be replaced by Ca−2m .

We shall next consider upper estimates for σm(F,D)p. We begin with the fol-
lowing simple theorem:

Theorem 4.3. Let X be any n-dimensional Banach space and let B be its unit
ball. For any N there exists a system D ⊂ X , #D = N , such that

σm(B,D)X ≤ min(1, εm
N ), εN := 2

N 1/n − 1
. (4.9)

We now consider the �p-Greedy Algorithms, 1 ≤ p ≤ ∞ (see the Introduction
for the definition). In the case p = 2, the �p-Greedy Algorithm coincides with

the PGA. Then, G p
m(x) := G

�p
m (x,D) is an m-term approximation to x from D

which we call the mth-greedy approximant. We note that the best approximation
to x ∈ R

n from D is not necessarily unique and therefore G p
m(x) is not necessarily

unique. We define

γ̄ p
m (x,D)q := sup ‖x − G p

m(x,D)‖q ,

where the supremum is taken over all possible resulting G p
m(x,D). Similarly, we

define

γ p
m
(x,D)q := inf ‖x − G p

m(x,D)‖q ,

where the infimum is taken over all possible resulting G p
m(x,D). Thus, γ̄ measures

the worst possible error over all possible choices of best approximations in the
greedy algorithm and γ represents the best possible error.

More generally, for a class F ⊂ R
n , we define

γ̄ p
m (F,D)q := sup

f ∈F
γ̄ p

m ( f,D)q

with a similar definition for γ p
m
(F,D)q . In upper estimates for greedy approxima-

tion we would like to use γ̄ and for lower estimates γ .
Theorem 4.3 shows that for p = q and for each a > 1 there exists a dictionary

D, #D = bn , b = 2a + 1, such that

γ̄ p
m (Bn

p ,D)p ≤ a−m .
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However, the dictionary D in that theorem is not very natural or easy to describe.
This estimate and Remark 4.2 to Corollary 4.2 indicate that systems D with #D of
order Cn play an important role in m-term approximation in R

n . We proceed now
to study a natural family of such systems. We present results from [19].

Let M ≥ 3 be an integer and consider the partition of [−1, 1] into M disjoint
intervals Ii of equal length: |Ii | = 2/M , i = 1, . . . , M . We let ξi denote the
midpoint of the interval Ii , i = 1, . . . , M , and # := {ξi }M

i=1. We introduce the
system

VM := {x ∈ R
n : xj ∈ #, j = 1, . . . , n}.

Clearly #VM = Mn . We shall study in this section the �∞-Greedy Algorithm for
the systems VM .

Theorem 4.4. For any 1 ≤ q ≤ ∞, we have

γ̄∞
m (Bn

∞,VM)q ≤ n1/q M−m, m = 1, 2, . . . . (4.10)

We shall give results about the �1-Greedy Algorithm for the system V3. We
consider this system in detail for the following reasons. It is a simple system
which is easy to describe geometrically. Also, it is fairly easy to analyze the
approximation properties of this system. Moreover, it turns out that this system
gives a geometric order of approximation (see, e.g., Theorems 4.5 and 4.7) which
we know is the best we can expect for general dictionairies (see Corollary 4.2).

Theorem 4.5. We have the estimate

σm(Bn
1 ,V3)1 ≤ γ̄ 1

m(Bn
1 ,V3)1 ≤

(
1 − 1

k + 1

)m

(4.11)

where k := [log2(n + 1)].

The following lower estimate shows that (4.11) cannot be improved by replacing
log2(n + 1) by a slower growing function.

Theorem 4.6. Let n = 4k − 1, with k a positive integer. For any m ≤ 3k/8, we
have

γ 1
m
(Bn

1 ,V3)1 ≥ 1
2 .

We want to carry out an analysis similar to the above for the �2-Greedy Algo-
rithm (PGA) and the dictionary V3.

Theorem 4.7. Let k := [log2 n]. Then,

γ̄ 2
m(Bn

2 ,V3)2 ≤
(

1 − 1

k + 1

)m/2

, m = 1, 2, . . . . (4.12)
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The following theorem shows that in a certain sense the estimates of Theo-
rem 4.7 cannot be improved:

Theorem 4.8. Let n = 2k for some positive integer k. For any m ≤ k/2, we have

γ 2
m
(Bn

2 ,V3)2 ≥ 1
2 .

Theorem 4.3 gives the upper estimate for σm(Bn
2 ,D)2. In the particular case

#D = Cn , C > 3, this theorem guarantees the existence of D such that

σm(Bn
2 ,D)2 ≤

(
2

C − 1

)m

. (4.13)

It was proposed in [11] to pick adaptively from a set of bases a single basis that
is the “best basis.” In this setting it is interesting to compare the estimate (4.13)
with the following lower estimate in the problem of selection of optimal basis (see
[42]). For given K there exists a positive C(K ) such that for any set of S ≤ K n

bases B j , j = 1, . . . , S, in R
n we have, for each m < n/2,

sup
f ∈Bn

2

inf
j
σm( f,B j )2 ≥ C(K ).

Open Problems
4.1. Characterize Banach spaces X such that the X -Greedy Algorithm converges

for all dictionaries D and each element f .
4.2. Characterize Banach spaces X such that the DGA converges for all dictio-

naries D and each element f .
4.3. (Conjecture). Prove that the DGA converges for all dictionaries D and

each element f ∈ X in uniformly smooth Banach spaces X with modulus of
smoothness of fixed power type q , 1 < q ≤ 2 (ρ(u) ≤ γ uq ).

4.4. Find the necessary and sufficient conditions on a weakness sequence τ to
guarantee convergence of the WDGA in uniformly smooth Banach spaces X with
modulus of smoothness of fixed power type q, 1 < q ≤ 2 (ρ(u) ≤ γ uq ) for all
dictionaries D and each element f ∈ X .

4.5. Find the correct (in both parameters n and m) order of decay of the quantities

γ̄ p
m (Bn

p ,V3)p, γ p
m
(Bn

p ,V3)p, p = 1, 2.

5. Bilinear Approximation

In this section we discuss one particular case of a dictionary. Denote by � the
system of functions of the form u(x1)v(x2). It is clear that T 2 ⊂ �. It is also clear
that � is a very redundant system. We have already mentioned some results for
this system in the Introduction and in Section 3. All of those results concerned ap-
proximation in Hilbert space L2([0, 1]2) and it was convenient for us to normalize
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elements of � in L2 (what made the system � a dictionary in L2([0, 1]2)). In this
section we consider approximation by � in all L p, 1 ≤ p ≤ ∞, spaces. In order
to make the system � a dictionary in L p we need to normalize it in L p. We will
denote the normalized in the L p system � by �p. Most results of this section give
estimates for best m-term approximation. These results do not depend on the nor-
malization of � and for convenience in such a case we will use notation � without
an index p. In this section we concentrate only on the approximation of bivariate
functions from standard function classes. We note that the bilinear approximation
is now a well-established area and many estimates are proved in a general setting:
f is a function of 2d variables x = (x1, . . . , xd), y = (y1, . . . , yd); � is replaced
by �d := {u(x)v(y)}; L p is replaced by L p1,p2 , where

‖ f ‖p1,p2 := ‖‖ f (·, y)‖p1‖p2 .

The key role in bilinear approximation is played by the Schmidt formula (see
Section 3)

σm( f,�)2 =
( ∞∑

n=m+1

sn(Jf )
2

)1/2

. (5.1)

This formula implies in particular, for a > 0,

σm( f,�)2 � m−a ⇔ sn(Jf ) � m−a−1/2.

The following classes are well-known and important in studying integral operators.
We say that Jf belongs to the Schatten v-class Sv if∑

n

sn(Jf )
v < ∞.

The Schmidt formula (5.1) allows us to prove the following result:

Theorem 5.1. For any v < 2 we have

Jf ∈ Sv ⇔
∑

m

(σm( f,�)2m−1/2)v < ∞.

This theorem is an analog of the following theorem (see [18]) for an orthonormal
basis B for a Hilbert space H .

Theorem 5.2. For any β < 2 and any orthonormal basis B we have

f ∈ Aβ(B) ⇔
∑

m

(σm( f,B)m−1/2)β < ∞.

Theorem 5.2 is a generalization of Stechkin’s result [71] that corresponds to
β = 1 in Theorem 5.2. Let us present some general results for approximation
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in Banach spaces. As a corollary of these general results we will obtain error
estimates for approximation by � in L p. We recall that A1(D) is a convex hull
of D±. Similarly, to the definition of Aβ(D) in Subsection 3.3, we define Aβ(D)

in a Banach space X with a dictionary D. It is easy to derive (see an idea in [18,
Theorem 3.3]) from Theorem 4.1 the following statement:

Theorem 5.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u) ≤ γ uq , 1 < q ≤ 2. Then, for any f ∈ Aβ(D), 0 < β ≤ 1, we
have

σm( f,D)X ≤ C(X,D)m1/q−1/β | f |Aβ (D).

In a particular case, X = L p, 1 < p < ∞, D = �p, Theorem 5.3 gives the
estimate

σm( f,�)p ≤ C(p)mmax(1/p,1/2)−1/β | f |Aβ (�p). (5.2)

This inequality gives the error estimate of best m-term approximation in terms of
| f |Aβ (�p) which is not well-studied for p �= 2. We will present some results on
estimates for σm( f,�)p in terms of standard periodic Hölder–Nikol’skii classes
NHR1,R2

q1,q2
of functions of two variables. We define these classes in the following

way. First of all, we define the vector Lq1,q2 -norm as

‖ f (x1, x2‖q1,q2 := ‖‖ f (·, x2)‖q1‖q2 .

The class NHR1,R2
q1,q2

is the set of periodic functions f ∈ Lq1,q2([0, 2π ]2) such
that, for each lj = [Rj ] + 1, j = 1, 2, the following relations hold

‖ f ‖q1,q2 ≤ 1, ‖�lj , j
t f ‖q1,q2 ≤ |t |Rj , j = 1, 2,

where �
l, j
t is the lth difference with step t in the variable xj . In the case d = 1,

NHR
q coincides with the standard Hölder class H R

q .
The results from Section 2 (see (2.6)–(2.8)) indicate that the bilinear approxima-

tion of f (x − y) is closely connected with the Kolmogorov widths dm(F[ f ], L p)

and the best m-term approximation of f with regard to the trigonometric system.
If f ∈ H R

q , then f (x − y) ∈ NH(R,R)
q . We get from [82] that

σm(NH(R,R)
q ,�)p � m−R+(1/q−max(1/p,1/2))+ (5.3)

for 1 ≤ q ≤ p ≤ ∞ with R > R(q, p), R(q, p) = 2(1/q − 1/p) for 1 ≤ q ≤
p ≤ 2, and R(q, p) = 1/q + max(1/q, 1

2 ) for p > 2. Comparing (5.3) with (2.7)
we see that the upper estimates for the wider class NH(R,R)

q have the same order as
for the class { f (x − y), f ∈ H R

q }. Further results for anisotropic classes NH(R1,R2)
q1,q2

and their 2d-dimensional generalizations can be found in [82].
In the case 1 ≤ p ≤ q ≤ ∞ we have

σm(NH(R,R)
q ,�)p  m−R . (5.4)
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A nontrivial estimate in (5.4) is the lower estimate for p = 1, q = ∞. This estimate
and the generalizations of (5.4) are obtained in [84]. Let us now present the results
in approximation in the L2-norm for the general classes NH(R1,R2)

q1,q2
(see [82] and

[85]). We note that the study of σm(NH(R1,R2)
q1,q2

,�)p1,p2 is not complete. One of the
open problems in this area is given in Open Problem 5.7. Known results can be
found in [82] and [85]. Denote ηi := (1/qi − 1

2 )+, i = 1, 2.

Theorem 5.4. Let R1 ≤ R2 and R1 > η1, R2 > η2(1 − η1/R1)
−1. Then

σm(NH(R1,R2)
q1,q2

,�)2  m−R2(1−η1/R1), 1 ≤ q1, q2 ≤ ∞.

Theorem 5.5. Let R1, R2 be as in Theorem 5.4. Then

sup
f ∈NH

(R1 ,R2)
q1 ,q2

sm(Jf )  m−R2(1−η1/R1)−1/2, 1 ≤ q1, q2 ≤ ∞.

Theorem 5.6. Let R1 ≥ R2, R2 > η2, R1 > η1(1 − η2/R2)
−1. Then

σm(NH(R1,R2)
q1,q2

,�)2  m−R1(1−η2/R2)+η1−η2 , 1 ≤ q1, q2 ≤ ∞.

Theorem 5.7. Let R1, R2 be as in Theorem 5.6. Then

sup
f ∈NH

(R1 ,R2)
q1 ,q2

sm(Jf )  m−R1(1−η2/R2)+η1−η2−1/2, 1 ≤ q1, q2 ≤ ∞.

We now give some historical remarks on estimating the eigenvalues and singular
numbers of integral operators. We begin with the following theorem that is a
corollary to the Weyl Majorant Theorem (see [32, p. 41]).

Theorem 5.8. Let A be a compact (completely continuous) operator in a Hilbert
space H . Suppose that

sn(A) � n−r , r > 0.

Then

|λn(A)| � n−r .

Fredholm [30] proved that if the kernel f (x, y) is a continuous function and
satisfies the condition

sup
x,y

| f (x, y + t) − f (x, y)| ≤ C |t |α, 0 < α ≤ 1,

then, for an arbitrary ρ > 2/(2α + 1), the series
∞∑

j=1

|λj (Jf )|ρ < ∞

converges.
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Starting with that article, smoothness conditions with respect to one variable
were imposed on the kernel. Weyl [102] proved the estimate

λn(Jf ) = o(n−r−1/2)

under the condition that the kernel f (x, y) is symmetric and continuous and that
∂r f/∂xr is continuous. Let us introduce some more notation. Define NH(R,0)

q1,q2
as

follows: f (x, y) belongs to this class if for all y ∈ T the function f (·, y) of x
belongs to the class H R

q1
B(y), and B(y) is such that ‖B(y)‖q2 ≤ 1. We use here

the following notation. For a function class F and a number B > 0 we define
FB := { f : f/B ∈ F}.

Hille and Tamarkin [33] achieved significant progress. They proved, in partic-
ular, that, for 1 < q ≤ 2 and R ≥ 1,

sup
f ∈NH(R,0)

q,q′

|λn(Jf )| � n−R−1+1/q(log n)R, q ′ = q/(q − 1),

and they conjectured that the extra logarithmic factor can be removed or even
replaced by a logarithmic factor with a negative power.

The next important step was taken by Smithies [70]. He proved the estimate

sup
f ∈NH(R,0)

q,2

sn(Jf ) � n−R−1+1/q , 1 < q ≤ 2, R > 1/q − 1
2 . (5.5)

Of later results we mention those of Gel’fond and M. G. Krein (see [32, Ch. III,
S9.4]), Birman and Solomyak [6], and Cochran [9].

We proved in [82] the following estimate

σm(NH(R,0)
q1,q2

,�)p1,p2  m−R+(1/q1−max(1/2,1/p1),

for 1 ≤ q1 ≤ p1 ≤ ∞, 1 ≤ q2 = p2 ≤ ∞, and R > r(q1, p1). We denote
here r(q, p) := (1/q − 1/p)+ for 1 ≤ q ≤ p ≤ 2 or 1 ≤ p ≤ q ≤ ∞ and
r(q, p) := max( 1

2 , 1/q) otherwise. This inequality implies in particular that (5.5)
also holds for q = 1.

We now discuss an application of bilinear approximation to the theory of widths.
As we know, the starting point of this theory is a function class, say, the function
class W r

q . This function class can be associated with one function, the Bernoulli
kernel Fr (x − y), with

Fr (t) := 2
∞∑

k=1

k−r cos(kt − rπ/2).

We have

W r
q =

{
f : f (x) = f̂ (0) + (2π)−1

∫ 2π

0
Fr (x − y)ϕ(y) dy, ‖ϕ‖q ≤ 1

}
.
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In the development of approximation by trigonometric polynomials it was un-
derstood that the rate of decay of En( f ) of individual functions, say En(Fr ), is
governed by smoothness properties of the function. It turns out that we have similar
phenomena on a much more general level.

For a function g ∈ L1(T
2) define a function class

W g
q :=

{
f : f (x) = (2π)−1

∫ 2π

0
g(x, y)ϕ(y) dy, ‖ϕ‖q ≤ 1

}
.

We proved in [80] that Fρ(x −y) is a typical representative of the following class of
functions. Denote by MHr1,r2

1 B the class of functions g(x, y) such that, ‖g‖1 < ∞,

∫ 2π

0
g(x, y) dx =

∫ 2π

0
g(x, y) dy = 0

(this condition is imposed only for convenience), and

‖�l
t1,t2 g(x, y)‖1 ≤ B|t1|r1 |t2|r2 , r1, r2 > 0, l := max([r1], [r2]) + 1,

where�l
t1,t2 denotes the operator of the mixed difference of order l in each variable

with step t1 in x and step t2 in y. We remark that the function Fρ(x − y) belongs
to MHr1,r2

1 B for any r1, r2 such that r1 + r2 = ρ. We proved in [80] the following
statement:

Theorem 5.9. For all 1 ≤ q, p ≤ ∞, we have

sup
g∈MH

r1 ,r2
1

dm(W
g
q , L p)  dm(W

r1+r2
q , L p)

for r1 > 1, r2 > 1 + max(1/q, 1
2 ) for 2 ≤ q < p ≤ ∞ or 1 ≤ q < 2 < p ≤ ∞

and r2 > 1 otherwise.

Open Problems
5.1. Find the necessary and sufficient conditions on a weakness sequence τ to

guarantee convergence of the WGA with regard to �2 for each f ∈ L2.
5.2. Does the L p-Greedy Algorithm with regard to �p converge for each f ∈

L p, 1 < p < ∞?
5.3. Does the DGA with regard to �p converge for each f ∈ L p, 1 < p < ∞?
5.4. If the answer to Problem 5.3 is “yes” then find the necessary and sufficient

conditions on a weakness sequence τ to guarantee convergence of the WDGA with
regard to �p for each f ∈ L p.

5.5. Find the necessary and sufficient conditions on a weakness sequence τ to
guarantee convergence of the WCGA with regard to �p for each f ∈ L p.

5.6. Let RN be the Rudin–Shapiro polynomials (see Section 8). Prove that

σm(RN (x − y),�)1 � N 1/2.
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5.7. Find the order of the sequence

σm(NH(R1,R2)
1 ,�)p1,∞, m = 1, 2, . . . , (5.6)

in the case R1 < R2, 2 < p1 ≤ ∞.
Comment. In the case R1 ≥ R2 the order of (5.6) is known (see [82]).
5.8. Study the efficiency of the PGA (L2-Greedy Algorithm) with regard to �2

for the approximation of function classes NH(R1,R2)
q1,q2

in the L p1,p2 -norm.

6. Ridge Approximation

This section, similar to Section 5, is devoted to the approximation of functions of
several variables. The results discussed here may be seen as one more (in addi-
tion to Section 5) example in the development of the following general approach
in the multivariate approximation: approximate functions of several variables by
univariate functions. This idea is interesting from a theoretical point of view and
also looks reasonable from a computational point of view. There is a number of
different realizations of this approach in approximation theory. We mention some
of them for illustration. We begin with the simplest one. S. N. Bernstein (see [5])
suggested studying the following type of approximation of a continuous periodic
function f (x, y) of two variables

En,∞( f ) := inf
{ck (y)}

∥∥∥∥∥ f (x, y) −
∑
|k|≤n

ck(y)e
ikx

∥∥∥∥∥ (6.1)

in the uniform norm ‖·‖ := ‖·‖∞. The approximant in (6.1) is a linear combination
of the products of univariate functions. The Bernstein setting of problem (6.1) is
a variant of the classical problem of bilinear approximation which was discussed
in Section 5. The important feature of the problem of bilinear approximation is
that the approximating system {u(x)v(y)}u,v∈L2 is highly redundant. However, as
we have seen in Section 5, the redundancy did not hinder the development of the
nice theory to solve the problem of best bilinear approximation in the L2-norm.
What really allowed us to develop that theory is the structure of the system. In
this section we discuss approximation by a redundant system with a quite different
structure. We approximate by linear combinations of ridge functions, i.e., functions
G(x), x ∈ R

2, which can be represented in the form

G(x) = g((x, e)), (6.2)

where g is a univariate function and its argument (x, e) is the scalar product of
x and a unit vector e ∈ R

2. We denote the set of functions of the form (6.2) by
R and call it the system of ridge functions. The above-mentioned approximation
(approximation by ridge functions) also uses univariate functions, and the system
R of all ridge functions is highly redundant. Unlike the bilinear approximation
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problem we do not have a theory which provides (describes) the solution to the
problem of best ridge approximation. In this section we confine ourselves to the
case of the functions of two variables. We note that approximation by ridge func-
tions received much attention recently for the following two reasons. The first is
that a ridge function can be interpreted as a plane wave. This means that the prob-
lem of ridge approximation can be seen as a problem of representation of a general
wave by plane waves. The second reason is that ridge approximation proved to be
useful in neural networks approximation (see [22]).

Let D := {(x1, x2) : x2
1 + x2

2 ≤ 1} be the unit disk and let L p(D), 1 ≤ p < ∞,
denote the Banach space with the norm

‖ f ‖p := ‖ f ‖L p(D) :=
(

1

π

∫
D

| f (x)|p dx

)1/p

.

From this point on we denote by Rp the dictionary for L p(D) which con-
sists of elements of the system R normalized in L p(D). Similar to the bilinear
approximation we use the notation R instead of Rp when we talk about best
m-term approximations. There are some general results on the approximation by
linear combinations of elements of a redundant system in a Banach space (see
Theorem 5.3). These results are expressed in terms of the Aβ(D)-quasi-norm de-
termined by a dictionary D. In a particular case, X = L p(D), 1 < p < ∞,
D = Rp, Theorem 5.3 gives the estimate

σm( f,R)p ≤ C(p)mmax(1/p,1/2)−1/β | f |Aβ (Rp). (6.3)

This inequality gives the error estimate of best m-term approximation in terms of
| f |Aβ (Rp) which is not well-studied. In order to use this general result we need
to verify that a given function f can be approximated by functions which have
a special representation (see the definition of Aβ(D)), that in turn could be a
nontrivial problem. We will present some results on estimates for σm( f,R)p in
terms of the standard classes of functions. In this section we deal with the function
class which is defined in a way standard for constructive approximation. We define
the class of functions Hr

p (D) using the classical means of approximation, namely,
algebraic polynomials. Let P(n, 2) denote the set of algebraic polynomials∑

k+l≤n−1

ck,l x
k
1 xl

2

of total degree n −1. Denote by Hr
p (D), r > 0, the set of all functions f ∈ L p(D)

which can be represented in the form

f =
∞∑

n=1

pn, pn ∈ P(2n, 2), n = 1, 2, . . . ,

with pn satisfying the inequalities

‖pn‖p ≤ 2−rn.
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The following result (see [52]) gives the upper estimates for σm(Hr
p (D),R)p

automatically.

Theorem 6.1. For any algebraic polynomial p ∈ P(N , 2) there exist N uni-
variate polynomials g j , j = 0, . . . , N − 1, of degree N − 1 with the following
property

p(x) =
N−1∑
j=0

g j ((x, eN
j )), (6.4)

where eN
j := (cos jπ/N , sin jπ/N ).

This gives the estimate

σm(Hr
p (D),R)p ≤ C(r)m−r . (6.5)

It turns out that, in the case p = 2, the estimate (6.5) is sharp:

σm(Hr
2 (D),R)2 ≥ C(r)m−r . (6.6)

The first result in this direction, which is a weaker version of (6.6), was obtained
in [87]. Estimate (6.6) was proved in [55]. Estimate (6.6) also follows from the
relation

σm( f,R)2 ≥ C inf
p∈P(3m,2)

‖ f − p‖2 (6.7)

established in [62] for radial functions f , f (x1, x2) = h((x2
1 + x2

2)
1/2), h is a

univariate function.
We proved recently (see [56]) that estimate (6.5) in the case p = 2 can be

realized by the PGA

sup
f ∈Hr

2

‖ f − Gm( f,R2)‖2 ≤ C(r)m−r . (6.8)

Let us make some comments on (6.8). First of all this estimate shows that the PGA
with regard to R2 is not saturated. Moreover, combining (6.8) with (6.7), we see
that for radial functions f such that

σm( f,R)2 ≤ C(r)m−r (6.9)

we have

‖ f − Gm( f,R2)‖2 ≤ C(r)m−r .

This is a weaker analog of the r -greedy property for R2.

Open Problems
6.1. Find the necessary and sufficient conditions on a weakness sequence τ to

guarantee convergence of the WGA with regard to R2 for each f ∈ L2.
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6.2. Does the L p-Greedy Algorithm with regard to Rp converge for each f ∈
L p, 1 < p < ∞?

6.3. Does the DGA with regard to Rp converge for each f ∈ L p, 1 < p < ∞?
6.4. If the answer to Problem 6.3 is “yes” then find the necessary and sufficient

conditions on a weakness sequence τ to guarantee convergence of the WDGA with
regard to Rp for each f ∈ L p.

6.5. Find the necessary and sufficient conditions on a weakness sequence τ to
guarantee convergence of the WCGA with regard to Rp for each f ∈ L p.

6.6. Find the order of the quantity

sup
f ∈A1(R2)

‖ f − Gm( f,R2)‖L2(D).

6.7. Could estimate (6.5) for 1 < p < ∞ be realized by WCGA with τ = {t},
0 < t ≤ 1?

7. Greedy Approximation with Regard to Bases

7.1. Greedy Bases

We will study the algorithms Gm( f, �, ρ) defined in the Introduction. In order to
understand the efficiency of this algorithm we compare its accuracy with the best
possible σm( f, �) when an approximant is a linear combination of m terms from
�. The best we can achieve with the algorithm Gm is

‖ f − Gm( f, �, ρ)‖ = σm( f, �),

or a little weaker

‖ f − Gm( f, �, ρ)‖ ≤ Gσm( f, �) (7.1)

for all elements f ∈ X with a constant G = C(X, �) independent of f and m.

Definition 7.1. We call a basis � a greedy basis if for every f ∈ X there exists
a permutation ρ ∈ D( f ) such that (7.1) holds.

The following proposition has been proved in [44]:

Proposition 7.1. If � is a greedy basis then (7.1) holds for any permutation
ρ ∈ D( f ).

We will discuss the two most interesting cases of bases �: the Haar basis H
as a representative of wavelet-type bases and the trigonometric system T as a
representative of uniformly bounded orthonormal bases.
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Denote by Hp := {H p
k }∞k=1 the Haar basis on [0, 1) normalized in L p(0, 1):

H p
1 = 1 on [0, 1) and for k = 2n + l, l = 1, 2, . . . , 2n , n = 0, 1, . . . ,

H p
k =




2n/p, x ∈ [(2l − 2)2−n−1, (2l − 1)2−n−1),

−2n/p, x ∈ [(2l − 1)2−n−1, 2l2−n−1),

0, otherwise.

Denote by T := {eikx }k∈Z the univariate trigonometric system in the complex
form and denote by T d := T × · · · × T the multivariate trigonometric system.

The following theorem (see [88]) establishes the existence of greedy bases for
L p(0, 1), 1 < p < ∞.

Theorem 7.1. Let 1 < p < ∞ and let a basis � be L p-equivalent to the Haar
basis Hp. Then, for any f ∈ L p(0, 1) and any ρ ∈ D( f ), we have

‖ f − Gm( f, �, ρ)‖L p ≤ C(p, �)σm( f, �)L p

with a constant C(p, �) independent of f , ρ, and m.

In this theorem we use the following definition of the L p-equivalence. We say
that � = {ψk}∞k=1 is L p-equivalent to Hp = {H p

k }∞k=1 if for any finite set � and
any coefficients ck , k ∈ �, we have

C1(p, �)

∥∥∥∥∥
∑
k∈�

ck H p
k

∥∥∥∥∥
L p

≤
∥∥∥∥∥
∑
k∈�

ckψk

∥∥∥∥∥
L p

≤ C2(p, �)

∥∥∥∥∥
∑
k∈�

ck H p
k

∥∥∥∥∥
L p

with two positive constants C1(p, �),C2(p, �) which may depend on p and �.
For sufficient conditions on � to be L p-equivalent to Hp, see [29] and [21].

Thus each basis � which is L p-equivalent to the univariate Haar basis Hp is a
greedy basis for L p(0, 1), 1 < p < ∞. We note that in the case of a Hilbert space
each orthonormal basis is a greedy basis with a constant G = 1 (see (7.1)).

We now give the definitions of unconditional and democratic bases.

Definition 7.2. A basis � = {ψk}∞k=1 of a Banach space X is said to be uncon-
ditional if for every choice of signs θ = {θk}∞k=1, θk = 1 or −1, k = 1, 2, . . . , the
linear operator Mθ defined by

Mθ

( ∞∑
k=1

akψk

)
=

∞∑
k=1

akθkψk,

is a bounded operator from X into X .
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Definition 7.3. We say that a basis � = {ψk}∞k=1 is a democratic basis if, for any
two finite sets of indices P and Q with the same cardinality #P = #Q, we have∥∥∥∥∥

∑
k∈P

ψk

∥∥∥∥∥ ≤ D

∥∥∥∥∥
∑
k∈Q

ψk

∥∥∥∥∥
with a constant D := D(X, �) independent of P and Q.

We proved in [44] the following theorem:

Theorem 7.2. A basis is greedy if and only if it is unconditional and democratic.

The property of a basis to be a greedy basis for X is a very strong property.
In such a case the greedy approximant Gm( f, �) realizes near best m-term ap-
proximation for any individual function f . There are different ways to weaken the
greedy property of a basis. For instance, we can replace (7.1), that holds for indi-
vidual functions, by its analog for some function classes. The following definition
elaborates the above idea:

Definition 7.4. We call a basis � an r -greedy basis for a Banach space X if for
each f ∈ X such that

σm( f, �)X ≤ m−r , m = 1, 2, . . . ,

we have, for every ρ ∈ D( f ),

‖ f − Gm( f, �, ρ)‖ ≤ C(r, �)m−r , m = 1, 2, . . . .

It is clear that a greedy basis is r -greedy for all r . We now construct an example
showing that the r -greedy property is weaker than the greedy property.

Example 7.1. There exist a Banach space X and a basis � such that � is an
r -greedy basis for X for any r > 0 and � is not an unconditional basis.

Proof. We use the construction from [44]. Let X be the set of all real sequences
x = (x1, x2, . . .) ∈ l2 such that

‖x‖′ = sup
N∈N

∣∣∣∣∣
N∑

n=1

xn/
√

n

∣∣∣∣∣
is finite. Clearly, X , equipped with the norm

‖ · ‖ = max(‖ · ‖l2 , ‖ · ‖′),
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is a Banach space. Let ψk ∈ X , k = 1, 2, . . . , be defined as

(ψk)n =
{

1, n = k,

0, n �= k.

We take any r > 0 and prove that � is the r -greedy basis for X . Indeed, the
assumption σm( f, �)X ≤ m−r implies σm( f, �)l2 ≤ m−r and, therefore,

‖ f − Gm( f, �)‖l2 ≤ m−r .

Let us prove a similar estimate for ‖ · ‖′. Let

Gm( f, �) =
∑

k∈�m

ck( f )ψk .

Denote Qm(N ) := [1, N ]\�m . Then

‖ f − Gm( f, �)‖′ = sup
N

∣∣∣∣∣
∑

k∈Qm (N )

ck( f )k−1/2

∣∣∣∣∣ ≤
∞∑

k=1

k−1/2(m + k)−r−1/2 � m−r .

This proves that � is a r -greedy basis for X . It is proved in [44] that � is not
unconditional.

7.2. The Trigonometric System

Let us consider nonlinear approximation with regard to the trigonometric system
T d . The existence of best m-term trigonometric approximation was proved in
[3] (see also [91]). The method Gm( f ) := Gm( f, T d) has one more advantage
over the traditional approximation by trigonometric polynomials in the case of the
approximation of functions of several variables. In this case (d > 1) there is no
natural order of trigonometric system and the use of Gm allows us to avoid the prob-
lem of finding natural subspaces of trigonometric polynomials for approximation
purposes. We proved in [91] the following inequality:

Theorem 7.3. For each f ∈ L p(T
d) we have

‖ f − Gm( f )‖p ≤ (1 + 3mh(p))σm( f )p, 1 ≤ p ≤ ∞,

where h(p) := | 1
2 − 1/p|.

Remark 7.1. For all 1 ≤ p ≤ ∞,

‖Gm( f )‖p ≤ mh(p)‖ f ‖p.
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Remark 7.2. There is a positive absolute constant C such that for each m and
1 ≤ p ≤ ∞ there exists a function f �= 0 with the property

‖Gm( f )‖p ≥ Cmh(p)‖ f ‖p. (7.2)

The above results show that the trigonometric system is not a greedy basis for
L p, p �= 2. This leads to a natural attempt to consider some other algorithms
that may have some advantages over TGA in the case of T . We discuss here the
performance of WCGA (see Section 4) with regard to T .

Let us compare the rate of approximation of TGA and WCGA for the class
A := A(RT )whereRT denotes the real trigonometric system 1

2 , sin x, cos x, . . . .
We need to switch to this system from the complex trigonometric system because
the algorithm WCGA is defined for the real Banach space. We note that the system
RT is not normalized in L p but quasi-normalized: C1 ≤ ‖t‖p ≤ C2 for any
t ∈ RT with absolute constants C1, C2, 1 ≤ p ≤ ∞. This is sufficient for the
application of the general methods developed in Section 4. For a sequence τ := {tk}
with tk = t , k = 1, 2, . . . , we replace τ by t in the notation. Theorem 4.1 and
(4.6) imply the following result:

Theorem 7.4. Let 0 < t ≤ 1. For f ∈ A we have

‖ f − Gc,t
m ( f,RT )‖p ≤ C(p, t)m−1/2, 2 ≤ p < ∞. (7.3)

This estimate and Theorem 7.3 imply that for f ∈ A we have

‖ f − Gm( f,RT )‖p ≤ C(p, t)m−1/p, 2 ≤ p < ∞, (7.4)

which is weaker than (7.3). It is proved in [23] that (7.4) cannot be improved.
Thus the WCGA works better than the TGA for the class A. We note that the
restriction p < ∞ in (7.3) is important. We now give a lower estimate for m-term
approximation in L∞.

Proposition 7.2. For a given m define

f :=
2m∑

k=0

cos 3k x .

Then we have

σm( f, T )∞ ≥ m/4.

Proof. Consider the Riesz product

!0(x) :=
∏

j∈[0,2m]

(1 + cos 3 j x) − 1.
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This function has nonzero Fourier coefficients only with frequencies of the form

k(s) =
j (s)∑
j=0

sj 3
j , s = (s0, . . . , s2m),

with 0 ≤ j (s) ≤ 2m, sj = −1, 0, 1 for j < j (s), sj (s) = 1, and sj = 0 for
j (s) < j ≤ 2m. It is clear that k(s) is uniquely defined by s. Take any polynomial
of the form

t (x) =
∑
k∈�

ak cos kx, #� = m.

Then for each k ∈ � we look for an s such that k = k(s). If we do not find such
an s we have

〈cos kx,!0〉 = 0.

For those s that were found to satisfy k(s) = k, k ∈ �, we form a set J consisting
of all j (s) and define the new Riesz product

! :=
∏

j∈[0,2m]\J

(1 + cos 3 j x) − 1.

Then we have

〈t,!〉 = 0

and

m ≤ 〈 f − t,!〉 ≤ ‖ f − t‖∞‖!‖1 ≤ 4‖ f − t‖∞.

This implies

σm( f, T )∞ ≥ m/4.

7.3. Greedy Bases. Direct and Inverse Theorems

Theorem 7.1 points out the importance of bases that are L p-equivalent to the Haar
basis. We will now discuss necessary and sufficient conditions for f to have a
prescribed decay of {σm( f, �)p} under the assumption that � is L p-equivalent to
the Haar basis Hp, 1 < p < ∞. We will express these conditions in terms of
coefficients { fn} of the expansion

f =
∞∑

n=1

fnψn.
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The following lemma from [88] plays the key role in this consideration.

Lemma 7.1. Let a basis � be L p-equivalent to Hp, 1 < p < ∞. Then for any
finite � and a ≤ |cn| ≤ b, n ∈ �, we have

C1(p, �)a(#�)1/p ≤
∥∥∥∥∥
∑
n∈�

cnψn

∥∥∥∥∥
p

≤ C2(p, �)b(#�)1/p.

We formulate a general statement and then consider several important partic-
ular examples of the rate of decrease of {σm( f, �)p}. We begin by introducing
some notation. For a monotonically decreasing-to-zero sequence E = {εk}∞k=0 of
positive numbers (we write E ∈ MDP) we define inductively a sequence {Ns}∞s=0
of nonnegative integers: N0 = 0; Ns is the smallest satisfying

εNs < 2−s, ns := max(Ns+1 − Ns, 1). (7.5)

We are going to consider the following examples of sequences:

Example 7.2. Take ε0 = 1 and εk = k−r , r > 0, k = 1, 2, . . . . Then

Ns  2s/r and ns  2s/r .

Example 7.3. Fix 0 < b < 1 and take εk = 2−kb
, k = 0, 1, 2, . . . . Then

Ns = s1/b + O(1) and ns  s1/b−1.

Let f ∈ L p. Rearrange the sequence ‖ fnψn‖p in decreasing order

‖ fn1ψn1‖p ≥ ‖ fn2ψn2‖p ≥ · · ·
and denote

ak( f, p) := ‖ fnkψnk ‖p.

We now give some inequalities for ak( f, p) and σm( f, �)p. We will use the brief
notation σm( f )p := σm( f, �)p and σ0( f )p := ‖ f ‖p.

Lemma 7.2. For any two positive integers N < M we have

aM( f, p) ≤ C(p, �)σN ( f )p(M − N )−1/p.

Lemma 7.3. For any sequence m0 < m1 < m2 < · · · of nonnegative integers
we have

σms ( f )p ≤ C(p, �)

∞∑
l=s

aml ( f, p)(ml+1 − ml)
1/p.
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Theorem 7.5. Assume that a given sequence E ∈ MDP satisfies the conditions

εNs ≥ C12−s, ns+1 ≤ C2ns, s = 0, 1, 2, . . . .

Then we have the equivalence

σn( f )p � εn ⇔ aNs ( f, p) � 2−sn−1/p
s .

Corollary 7.1. Theorem 7.5 applied to Examples 7.2 and 7.3 gives the following
relations:

σm( f )p � (m + 1)−r ⇔ an( f, p) � n−r−1/p, (7.6)

σm( f )p � 2−mb ⇔ an( f, p) � 2−nb
n(1−1/b)/p. (7.7)

Remark 7.3. Making use of Lemmas 7.2 and 7.3 we can prove a version of
Corollary 7.1 with the sign � replaced by .

Theorem 7.5 and Corollary 7.1 are in the spirit of classical Jackson–Bernstein
direct and inverse theorems in linear approximation theory, where conditions on
the corresponding sequences of approximating characteristics are imposed in the
form

En( f )p � εn or ‖En( f )p/εn‖l∞ < ∞. (7.8)

It is well-known (see [14]) that in studying many questions of approximation theory
it is convenient to consider, along with restriction (7.8), the following generaliza-
tion

‖En( f )p/εn‖lq < ∞. (7.9)

Lemmas 7.2 and 7.3 are also useful in considering this more general case. For
instance, in the particular case of Example 7.2 one gets the following statement:

Theorem 7.6. Let 1 < p < ∞ and 0 < q < ∞. Then for any positive r we
have the equivalence relation∑

m

σm( f )q
pmrq−1 < ∞ ⇔

∑
n

an( f, p)qnrq−1+q/p < ∞.

Remark 7.4. The condition∑
n

an( f, p)qnrq−1+q/p < ∞

with q = β := (r + 1/p)−1 takes a very simple form∑
n

an( f, p)β =
∑

n

‖ fnψn‖βp < ∞. (7.10)

In the case � = Hp condition (7.10) is equivalent to f being in the Besov space
Br
β(Lβ).
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Corollary 7.2. Theorem 7.6 implies the following relation∑
m

σm( f,H)βpmrβ−1 < ∞ ⇔ f ∈ Br
β(Lβ),

where β := (r + 1/p)−1.

The statement similar to Corollary 7.2 for free knots spline approximation was
proved by P. Petrushev [64]. Corollary 7.2 and further results in this direction
can be found in [16] and [20]. We want to remark here that conditions in terms of
an( f, p) are convenient in applications. For instance, relation (7.6) can be rewritten
using the idea of thresholding. For a given f ∈ L p denote

T (ε) := #{ak( f, p) : ak( f, p) ≥ ε}.

Then (7.6) is equivalent to

σm( f )p � (m + 1)−r ⇔ T (ε) � ε−(r+1/p)−1
.

For further results in this direction see [14], [10], [63].

7.4. Stability

In this section we assume that a basis � = {ψk}∞k=1 is an unconditional normalized
(‖ψk‖ = 1, k = 1, 2, . . .) basis for X (see Definition 7.2).

The uniform boundedness principle implies that the unconditional constant

K := K (X, �) := sup
θ

‖Mθ‖

is finite.
The following theorem is a well-known fact about unconditional bases (see [49,

p. 19]).

Theorem 7.7. Let � be an unconditional basis for X . Then, for every choice of
bounded scalars {λk}∞k=1, we have∥∥∥∥∥

∞∑
k=1

λkakψk

∥∥∥∥∥ ≤ 2K sup
k

|λk |
∥∥∥∥∥

∞∑
k=1

akψk

∥∥∥∥∥
(in the case of a real Banach space X we can take K instead of 2K ).

In the numerical implementation of nonlinear m-term approximation one usu-
ally prefers to employ the strategy known as thresholding (see [14, S.7.8]) instead
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of a greedy algorithm. We define and study here the soft thresholding (see [27]).
Let a real function v(x) defined for x ≥ 0 satisfy the following relations:

v(x) =
{

1, for x ≥ 1,

0, for 0 ≤ x ≤ 1
2 ,

(7.11)

|v(x)| ≤ A, x ∈ [0, 1], (7.12)

there is a constant CL such that for any x, y ∈ [0,∞) we have

|v(x) − v(y)| ≤ CL |x − y|. (7.13)

Let

f =
∞∑

k=1

ck( f )ψk .

We define a soft thresholding mapping Tε,v as follows. Take ε > 0 and set

Tε,v( f ) :=
∑

k

v(|ck( f )|/ε)ck( f )ψk .

Theorem 7.7 implies that

‖Tε,v( f )‖ ≤ 2KA‖ f ‖. (7.14)

It was proved in [93] that the mapping Tε,v satisfies the Lipschitz condition with a
constant independent of ε.

Theorem 7.8. For any ε and any functions f, g ∈ X we have

‖Tε,v( f ) − Tε,v(g)‖ ≤ (3A + 2CL)2K‖ f − g‖.

Open Problems
7.1. Does the inequality

‖ f − Gc,t
m ( f,RT )‖p ≤ C1(p, t)σn( f,RT )p

hold for any f ∈ L p(T), 1 < p < ∞, with m ≤ C2(p, t)n?
7.2. Does the inequality

‖ f − Gc,t
m ( f,Hp)‖p ≤ C1(p, t)σn( f,Hp)p

hold for any f ∈ L p(0, 1), 1 < p < ∞, with m ≤ C2(p, t)n?
7.3. Find the order of the quantity

sup
f ∈W r

p

‖ f − Gc,t
m ( f,RT )‖p, 1 < p < ∞.

7.4. Find greedy-type algorithms realizing near best approximation in the L p

([0, 1]d), 1 < p < ∞, d ≥ 2, with regard to Hd
p for individual functions.



92 V. N. Temlyakov

8. Some Convergence Results

In Section 7 we discussed greedy bases. That is justified from the point of view of
efficient approximation. It follows from Proposition 7.1 that the inequality

‖Gm( f, �, ρ)‖ ≤ (G + 1)‖ f ‖ (8.1)

holds for all m and all f ∈ X for every ρ ∈ D( f ).

Definition 8.1. We say that a basis � is quasi-greedy if there exists a constant
CQ such that for any f ∈ X and any finite set of indices �, having the property

min
k∈�

|ck( f )| ≥ max
k /∈�

|ck( f )|, (8.2)

we have

‖S�( f, �)‖ =
∥∥∥∥∥
∑
k∈�

ck( f )ψk

∥∥∥∥∥ ≤ CQ‖ f ‖. (8.3)

It is clear that the inequalities (8.1) and (8.3) are equivalent. P. Wojtaszczyk [104]
proved that a basis � is quasi-greedy if and only if the sequence {Gm( f, �, ρ)}
converges to f for all f ∈ X and any ρ ∈ D( f ). We constructed in [44] an
example of a quasi-greedy basis that is not an unconditional basis (and, therefore,
not a greedy basis). We have the following theorem for the trigonometric system.

Theorem 8.1. The trigonometric system T is not a quasi-greedy basis for L p if
p �= 2.

This theorem has been proved in [91] and for p < 2 it has been proved in-
dependently and by a different method in [12]. We mention here that the method
from [91] gives a little more than stated in Theorem 8.1.

Theorem 8.2. There exists a continuous function f such that Gm( f, T ) does not
converge to f in L p for any p > 2.

Theorem 8.3. There exists a function f that belongs to any L p, p < 2, such that
Gm( f, T ) does not converge to f in measure.

The proof of both theorems is based on two examples (one for p > 2 and the
other for p < 2) constructed in [91, pp. 574–575]. We prove here only Theorem 8.3
where we use the example from [91] for p < 2.

Proof of Theorem 8.3. We use the Rudin–Shapiro polynomials (see [41])

RN (x) =
N−1∑
k=0

εkeikx , εk = ±1, x ∈ T,
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that satisfy the inequality

‖RN ‖∞ ≤ CN1/2, (8.4)

with an absolute constant C . Denote, for s = ±1,

�s(N ) := {k : R̂N (k) = s}.
Denote also

D�(x) :=
∑
k∈�

eikx .

Then

RN = D�+1 − D�−1 .

Inequality (8.4) implies

‖RN ‖1 ≥ C1 N 1/2.

Using this inequality we prove that there exist two positive constants c1 and c2

such that for one of s = ±1 we have

m{x : |D�s (N )(x)| ≥ c1 N 1/2} ≥ c2. (8.5)

We define a function f from Theorem 8.3 as follows:

f :=
∞∑
v=1

2−v/2ei2vx (D[0,2v) + s2−v R2v ).

Then for appropriately chosen m1 and m2 we get

Gm1( f, T ) − Gm2( f, T ) = 2−v/2ei2vx (1 + 2−v)D�s (2v)

and, by (8.5),

m{x : |Gm1( f ) − Gm2( f )| ≥ c1} ≥ c2

which shows that {Gm( f, T )} does not converge in measure. Further, for any
1 < p < 2 we have

‖D[0,2v) + s2−v R2v‖p ≤ C2v(1−1/p)

which implies that f ∈ L p.

We also mention two interesting results on convergence almost everywhere.
T. W. Körner answering a question raised by Carleson and Coifman constructed in
[46] a function from L2 and then in [47] a continuous function such that {Gm( f, T )}
diverges almost everywhere. T. Tao [72] proved that for the Haar system we have
convergence: the sequence {Gm( f,Hp)} converges almost everywhere to f for
any f ∈ L p, 1 < p < ∞.
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Open Problems
8.1. Does the L p-Greedy Algorithm with regard to T converge in L p, 1 < p <

∞, for each f ∈ L p(T)?
8.2. Does the DGA with regard to T converge in L p, 1 < p < ∞, for each

f ∈ L p(T)?
8.3. Does the L p-Greedy Algorithm with regard to Hp converge in L p, 1 <

p < ∞, for each f ∈ L p(0, 1)?
8.4. Does the DGA with regard to Hp converge in L p, 1 < p < ∞, for each

f ∈ L p(0, 1)?

9. Nonlinear m-Term Approximation and ε-Entropy

In this section, we want to bring out the connection between approximation from
a dictionary and ε-entropy. We begin with covering numbers Nε(F, �p) for a set
F ⊂ R

n and recall their definition. For each ε > 0,

Nε(F, lp) := min

{
N : F ⊂

N⋃
j=�

Bn
p(y

j , ε)

}

with the minimum taken over all sets {y j }N
j=1 of points from R

n . Here Bn
p(y, ε)

denotes the �p-ball of radius ε with center y. By considering systems D consisting
of the points y j , we find

inf
#D=Nε(F,�p)

σ1(F,D)�p ≤ ε. (9.1)

In other words, the covering numbers immediately give estimates for 1-term ap-
proximation. We can extend the above observation to m-term approximation by
using the concept of metric entropy. Let X be a linear metric space and for a set
D ⊂ X , letLm(D) denote the collection of all linear spaces spanned by m elements
of D. For a linear space L ⊂ X , the ε-neighborhood Uε(L) of L is the set of all
x ∈ X which are at a distance not exceeding ε from L (i.e., those x ∈ X which
can be approximated to an error not exceeding ε by the elements of L). For any
compact set F ⊂ X and any integers N ,m ≥ 1, we define the (N ,m)-entropy
numbers

εN ,m(F, X) := inf
#D=N

inf

{
ε : F ⊂

⋃
L∈Lm (D)

Uε(L)

}
.

We can express σm(F,D) as

σm(F,D) = inf

{
ε : F ⊂

⋃
L∈Lm (D)

Uε(L)

}
.

It follows therefore that

inf
#D=N

σm(F,D) = εN ,m(F, X).
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In other words, finding best dictionaries for the m-term approximation of F is the
same as finding sets D which attain the (N ,m)-entropy numbers εN ,m(F, X). It is
easy to see that εm,m(F, X) = dm(F, X). This establishes a connection between
(N ,m)-entropy numbers and the Kolmogorov widths.

The present section contains an attempt to generalize the concept of the classical
Kolmogorov width in order to be used in estimating the best m-term approximation.
For this purpose we introduce a nonlinear Kolmogorov (N ,m)-width:

dm(F, X, N ) := inf
�N ,#�N ≤N

sup
f ∈F

inf
L∈�N

inf
g∈L

‖ f − g‖X ,

where �N is a set of at most N m-dimensional subspaces L . It is clear that

dm(F, X, 1) = dm(F, X)

and

dm

(
F, X,

(
N

m

))
≤ εN ,m(F, X) ≤ σm(F,D)

for any D with #D = N . The new feature of dm(F, X, N ) is that we allow a choice
of subspace L ∈ �N depending on f ∈ F . It is clear that the larger N is, the more
flexibility we have to approximate f . It turns out that from the point of view of
our applications the following two cases:

(I)

N  K m,

where K > 1 is a constant, and
(II)

N  mam,

where a > 0 is a fixed number,

play an important role.
We intend to use the (N ,m)-widths to estimate from below the best m-term

approximations. There are several general results (see [53], [7]) which give lower
estimates of the Kolmogorov widths dn(F, X) in terms of the entropy numbers
εk(F, X). In [90] we generalized the following inequality due to Carl (see [7]): for
any r > 0, we have

max
1≤k≤n

krεk(F, X) ≤ C(r) max
1≤m≤n

mr dm−1(F, X). (9.2)

We denote here, for any positive integer k,

εk(F, X) := inf

{
ε : ∃ f1, . . . , f2k ∈ X : F ⊂

2k⋃
j=1

( f j + εB(X))

}
,
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where B(X) is the unit ball of Banach space X . For noninteger k we set εk(F, X) :=
ε[k](F, X) where [k] is the integral part of number k. It is clear that

d1(F, X, 2n) ≤ εn(F, X).

In [90] we proved the inequality

max
1≤k≤n

krεk(F, X) ≤ C(r, K ) max
1≤m≤n

mr dm−1(F, X, K m), (9.3)

where we denote

d0(F, X, N ) := sup
f ∈F

‖ f ‖X .

This inequality is a generalization of inequality (9.2). In [90] we also proved the
following inequality

max
1≤k≤n

krε(a+r)k log k(F, X) ≤ C(r, a) max
1≤m≤n

mr dm−1(F, X,mam) (9.4)

and gave an example showing that k log k in this inequality cannot be replaced by
any more slowly growing function of k.

In [90] we applied inequalities (9.3) and (9.4) to estimate the best m-term
trigonometric approximation from below. As a corollary to the following version
of (9.3) (see Theorem 9.1 below) we gave a new proof (see [17]) for the estimate

σm(W
r
∞, T )1 � m−r ,

where W r
∞ is a standard Sobolev class (see Section 2) with the restriction imposed

in the L∞-norm.

Theorem 9.1. For any positive constant K we have

max
1≤k≤n

krεk(F, X) ≤ C(r, K ) max
1≤m≤n

mr dm−1(F, X, (K n/m)m).

We used in [90] a version of (9.4) to get some new lower estimates of m-
term trigonometric approximation in the L1-norm of multivariate classes MW r

∞
of functions with bounded mixed derivative. We proved in [90] that

σm(MWr
∞, T )1 � m−r (log m)r(d−2). (9.5)

Inequality (9.5) gives a new estimate for small r .
The above method can be applied to a general system � instead of to the

trigonometric system T .
Assume a system � := {ψj }∞j=1 of elements in X satisfies the condition:

(VP) There exist three positive constants Ai , i = 1, 2, 3, and a sequence {nk}∞k=1,
nk+1 ≤ A1nk , k = 1, 2, . . . , such that there is a sequence of the de la Vallée-
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Poussin-type operators Vk with the properties

Vk(ψj ) = λk, jψj , (9.6)

λk, j = 1 for j = 1, . . . , nk, λk, j = 0 for j > A2nk,

‖Vk‖X→X ≤ A3, k = 1, 2, . . . . (9.7)

Theorem 9.2. Assume that for some a > 0 and b ∈ R we have

εm(F, X) ≥ C1m−a(log m)b, m = 1, 2, . . . .

Then if a system � satisfies the condition (VP) and also satisfies the following
condition:

En(F, �) := sup
f ∈F

inf
c1,...,cn

∥∥∥∥∥ f −
n∑

j=1

cjψj

∥∥∥∥∥
X

≤ C2n−a(log n)b, n = 1, 2, . . . ,

then we have

σm(F, �)X � m−a(log m)b.

Open Problem
9.1. The correct order of the quantity σm(MWr

∞, T )1 is unknown.

10. Optimal Methods in Nonlinear Approximation

In the widths problem of Linear Approximation we were looking for an optimal
n-dimensional subspace for approximating a given function class. A nonlinear
analog of this setting is the following. Let a function class F and a Banach space
X be given. Assume that on the basis of some additional information we know that
our basis for m-term approximation should satisfy some structural properties, for
instance, it has to be orthogonal. Then, similar to the setting for the widths dn , λn ,
ϕn , we get the optimization problems for m-term nonlinear approximation (see the
Introduction). Let B be a collection of bases satisfying a given property.

I. Define an analog of the Kolmogorov width

σm(F,B)X := inf
�∈B

sup
f ∈F

σm( f, �)X .

II. Define an analog of the orthowidth

γm(F,B)X := inf
�∈B

sup
f ∈F

‖ f − Gm( f, �)‖X .
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We present here some results in the case B = O—the set of orthonormal bases,
F = W r

q , X = L p, 1 ≤ q, p ≤ ∞. First of all we formulate a result (see [42],
[94]) that shows that in the case p < 2 we need some more restrictions on B in
order to obtain meaningful results (lower bounds).

Proposition 10.1. For any 1 ≤ p < 2 there exists a complete in the L2(0, 1)
orthonormal system ! such that for each f ∈ L p(0, 1) we have σ1( f,!)p = 0.

Let us restrict our further discussion to the case p ≥ 2. This case was also more
interesting in the Linear Approximation discussion (see Section 2). Kashin [40]
proved that

σm(W
r
∞,O)2 � m−r . (10.1)

We proved (see [17]) that

σm(W
r
2 , T )∞ � m−r . (10.2)

The estimates (10.1) and (10.2) imply that for 2 ≤ q, p ≤ ∞ we have

σm(W
r
q ,O)p  σm(W

r
q , T )p  m−r . (10.3)

Let us compare this relation with (2.2). We see that the best m-term trigonometric
approximation provides the same accuracy as the best approximation from an
optimal m-dimensional subspace. An advantage of nonlinear approximation here
is that we use a natural basis instead of an existing but nonconstructive subspace.
However, we should note that the estimate (10.2) was proved in [17] as an existence
theorem. We did not give an algorithm to get (10.2) in [17] and still do not know
the algorithm. The TGA does not provide the estimate (10.2). We have (see [91])

sup
f ∈W r

2

‖ f − Gm( f, T )‖∞  m−r+1/2.

It is known from different results (see [20], [14], [93]) that wavelets are well-
designed for nonlinear approximation. We present here one general result in this
direction. We consider a basis � := {ψI }I∈D indexed by dyadic intervals I of
[0, 1]d , I = I1 × · · · × Id , Ij is a dyadic interval of [0, 1], j = 1, . . . , d, which
satisfies certain properties. Let L p := L p(�)with a normalized Lebesgue measure
on �, |�| = 1. First of all we assume that, for all 1 < q, p < ∞, and I ∈ D,
D := D([0, 1]d) is the set of all dyadic intervals of [0, 1]d , we have

‖ψI ‖p  ‖ψI ‖q |I |1/p−1/q , (10.4)

with constants independent of I . This property can easily be checked for a given
basis.
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Next, assume that for any s = (s1, . . . , sd) ∈ Z
d , sj ≥ 0, j = 1, . . . , d, and

any {cI } we have, for 1 < p < ∞,∥∥∥∥∥
∑
I∈Ds

cIψI

∥∥∥∥∥
p

p


∑
I∈Ds

‖cIψI ‖p
p , (10.5)

where

Ds := {I = I1 × · · · × Id ∈ D : |Ij | = 2−sj , j = 1, . . . , d}.
This assumption allows us to estimate the L p-norm of a dyadic block in terms of
Fourier coefficients.

The third assumption is that � is a basis satisfying the Littlewood–Paley in-
equality. This means the following. Let 1 < p < ∞ and f ∈ L p has an expansion

f =
∑

I

f IψI .

We assume that

lim
minj µj →∞

∥∥∥∥∥∥ f −
∑

sj ≤µj , j=1,...,d

∑
I∈Ds

f IψI

∥∥∥∥∥∥
p

= 0, (10.6)

and

‖ f ‖p 

∥∥∥∥∥∥∥

∑

s

∣∣∣∣∣
∑
I∈Ds

f IψI

∣∣∣∣∣
2



1/2
∥∥∥∥∥∥∥

p

. (10.7)

Let µ ∈ Z
d , µj ≥ 0, j = 1, . . . , d. Denote by �(µ) the subspace of polynomials

of the form

ψ =
∑

sj ≤µj , j=1,...,d

∑
I∈Ds

cIψI .

We now define a function class. Let R = (R1, . . . , Rd), Rj > 0, j = 1, . . . , d,
and

g(R) :=
(

d∑
j=1

R−1
j

)−1

.

For natural numbers l denote

�(R, l) := �(µ), µj = [g(R)l/Rj ], j = 1, . . . , d.

We define the class H R
q (�) as the set of functions f ∈ Lq representable in the

form

f =
∞∑

l=1

tl , tl ∈ �(R, l), ‖tl‖q ≤ 2−g(R)l .
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Theorem 10.1. Let 1 < q, p < ∞, and g(R) > (1/q − 1/p)+. Then for �

satisfying (10.4)–(10.7) we have

sup
f ∈H R

q (�)

‖ f − G
L p
m ( f, �)‖p � m−g(R).

In the periodic case the following basis U d := U × · · · × U can be taken in
place of � in Theorem 10.1. We define the system U := {UI } in the univariate
case. Denote

U+
n (x) :=

2n−1∑
k=0

eikx = ei2n x − 1

eix − 1
, n = 0, 1, 2, . . . ,

U+
n,k(x) := ei2n xU+

n (x − 2πk2−n), k = 0, 1, . . . , 2n − 1,

U−
n,k(x) := e−i2n xU+

n (−x + 2πk2−n), k = 0, 1, . . . , 2n − 1.

We normalize the system of functions {U+
n,k,U−

n,k} in L2 and enumerate it by dyadic
intervals. We write

UI (x) := 2−n/2U+
n,k(x) with I = [(k + 1

2 )2
−n, (k + 1)2−n),

UI (x) := 2−n/2U−
n,k(x) with I = [k2−n, (k + 1

2 )2
−n),

and

U[0,1)(x) := 1.

It is well-known that H R
q (U d) is equivalent to the standard anisotropic mul-

tivariate periodic Hölder–Nikol’skii classes NHR
p . We define these classes in the

following way. The class NHR
p , R = (R1, . . . , Rd) and 1 ≤ p ≤ ∞, is the set of pe-

riodic functions f ∈ L p([0, 2π ]d) such that for each lj = [Rj ] + 1, j = 1, . . . , d,
the following relations hold

‖ f ‖p ≤ 1, ‖�lj , j
t f ‖p ≤ |t |Rj , j = 1, . . . , d, (10.8)

where�l, j
t is the lth difference with step t in the variable xj . In the case d = 1, NHR

p

coincides with the standard Hölder class H R
p . Theorem 10.1 gives the following

result:

Theorem 10.2. Let 1 < q, p < ∞; then for R such that g(R) > (1/q − 1/p)+
we have

sup
f ∈NHR

q

‖ f − G
L p
m ( f,U d)‖p � m−g(R).

We also proved in [93] that the basis U d is an optimal orthonormal basis for
the approximation of classes NHR

q in L p:

σm(NHR
q ,O)p  σm(NHR

q ,U d)p  m−g(R) (10.9)
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for 1 < q < ∞, 2 ≤ p < ∞, g(R) > (1/q − 1/p)+. It is important to remark
that Theorem 10.2 guarantees that the estimate in (10.9) can be realized by TGA
with regard to U d .

Open Problem
10.1. Find a constructive proof of (10.2) (provide an algorithm).

11. Universality

In this section we discuss, in the model case of the anisotropic function classes,
a general approach formulated in the Introduction of how to choose a good ba-
sis (dictionary) for approximation. This approach consists of several steps. We
concentrate here on nonlinear approximation and compare realizations of this ap-
proach for linear and nonlinear approximations. The first step in this approach is an
optimization problem. In both cases (linear and nonlinear) we begin with a function
class F in a given Banach space X . A classical example of the optimization prob-
lem in the linear case is the problem of finding (estimating) the Kolmogorov width
dm(F, X). This concept allows us to choose among various Chebyshev methods
(best approximation) having the same dimensions of the approximating subspaces
the one which has the best accuracy. The asymptotic behavior (in the sense of
order) of the sequence {dm(F, X)}∞m=1 is known for a number of function classes
and Banach spaces. It turns out that in many cases, for instance, when F = W r

p
is a standard Sobolev class and X = L p, the optimal (in the sense of order) m-
dimensional subspaces are spanned by m elements from one orthogonal system.
We describe this for the multivariate periodic Hölder–Nikol’skii classes NHR

p . It
is known (see, for instance, [86]) that

dm(NHR
p , L p)  m−g(R), 1 ≤ p ≤ ∞. (11.1)

It is also known that the subspaces of trigonometric polynomials T (R, l) with
frequencies k, satisfying the inequalities

|kj | ≤ 2g(R)l/Rj , j = 1, . . . , d,

can be chosen to realize (11.1). In this case l is set to be the largest integer satisfying
dim T (R, l) ≤ m. We stress here that optimal (in the sense of order) subspaces
T (R, l) are different for different R and formed from the same (trigonometric)
system.

A nonlinear analog of the Kolmogorov m-width setting was discussed in Sec-
tion 10. In this section we consider only the case D = O—the set of all orthogonal
bases on a given domain. In Section 10 we mentioned that

σm(NHR
q ,O)L p  m−g(R) (11.2)

for

1 < q < ∞, 2 ≤ p < ∞, g(R) > (1/q − 1/p)+.
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It is important to remark that the basis U d realizes (11.2) for all R (see the definition
of U d in Section 10).

The second step in our approach is to look for a universal basis (dictionary)
for approximation. The above-mentioned result on the basis U d means that U d

is universal for the pair (Fq([A, B]),O) and the space X = L p([0, 2π ]d) for
A, B ∈ Z

d
+ such that g(A) > (1/q − 1/p)+, 1 < q < ∞, 2 ≤ p < ∞, where

Fq([A, B]) := {NHR
q : 0 < Aj ≤ Rj ≤ Bj < ∞, j = 1, . . . , d}.

It is interesting to compare this result on universal bases in the nonlinear approx-
imation with the corresponding result in the linear setting. We define the index
κ(m,F, X) of universality for a collection F with respect to the Kolmogorov
width in X :

κ(m,F, X) := L(m,F, X)/m,

where L(m,F, X) is the smallest number among those L for which there is a
system of functions {ϕi }L

i=1 such that for each F ∈ F we have

sup
f ∈F

inf
c1,...,cL

∥∥∥∥∥ f −
L∑

i=1

ciϕi

∥∥∥∥∥ ≤ dm(F, X).

It is proved in [79] (see also [86, Ch. 3, S.5]) that for any A, B ∈ Z
d
+ such that

Bj > Aj , j = 1, . . . , d , we have

κ(m,Fp([A, B]), L p) � (log m)d−1, 1 < p < ∞. (11.3)

The estimate (11.3) says that there is no Chebyshev method that is universal for a
nontrivial collection of anisotropic function classes. Thus, from the point of view
of the existence of universal methods the nonlinear setting has an advantage over
the linear setting.

After two steps of realizing our approach in the nonlinear approximation we
get a universal dictionary Du for a collection of function classes F , say, U d for
Fq([A, B]). This means that the dictionaryDu is well-designed for the best m-term
approximation of functions from function classes in the given collection. The third
step is to find an algorithm (theoretical first) to realize the best (near best) m-term
approximation with regard to Du . It turns out that in the model case of Fq([A, B])
and the basis U d there is a simple algorithm which realizes near the best m-term
approximation for classes NHR

q . This is the TGA (see Theorem 10.2).
Thus we have established that in the above model case the basis U d is optimal

for nonlinear m-term approximation in a very strong sense. The following two
features of U d are the most important ones:

(1) U d is the tensor product of the univariate basis U ;
(2) the univariate basis U is a wavelet-type basis.



Nonlinear Methods of Approximation 103

It is known [103] that U is L p-equivalent, 1 < p < ∞, to the Haar basis. Then, by
Theorem 7.1, U is a greedy basis for L p, 1 < p < ∞. The tensor product structure
of U d is important in making U d a universal basis for a collection of anisotropic
Hölder–Nikol’skii classes. It would be ideal if U d was a greedy basis for L p(T

d),
1 < p < ∞. Unfortunately, this is not the case. We have that, for 1 < p < ∞,

sup
f ∈L p

‖ f − G p
m( f,U d)‖p/σm( f,U d)p  (log m)(d−1)|1/2−1/p|. (11.4)

This relation follows from its analog with U d replaced by the multivariate Haar
system Hd := H × · · · × H. The lower estimate in (11.4) for Hd was proved by
R. Hochmuth; the upper estimate in (11.4) for Hd was proved in the case d = 2,
4
3 ≤ p ≤ 4, and was conjectured for all d, 1 < p < ∞, in [89]. The conjecture
was proved in [104].
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