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Abstract— Hyperspectral imaging is an important tool in
various fields, notably geosensing and astronomy, and with the
development of new devices, it is now also being applied also in
medicine. Concepts and tools from signal processing and data
analysis need to be employed to analyze these large and complex
data sets.

In this paper, we present several techniques which generally
apply to hyperspectral data, and we use them to analyze a
particular data set.

With light sources of increasingly broader ranges, spectral
analysis of tissue sections has evolved from 2 wavelength im-
age subtraction techniques to Raman near infra-red micro-
spectroscopic analysis permitting discrimination of cell types and
tissue patterns. We have developed and used a unique tuned light
source based on micro-optoelectromechanical systems (MOEMS)
and applied algorithms for spectral microscopic analysis of
normal and malignant colon tissue. We compare the results to our
previous studies which used a tunable liquid filter light source.

I. INTRODUCTION

Hyperspectral imaging is an important tool in various fields,
notably geosensing and astronomy, and with the development
of new devices, it is now being applied also in medicine. Tools
from signal processing and data analysis need to be employed
to analyze these large and complex data sets.

A first important challenge is to compress and reduce the di-
mensionality of the data available, without discarding relevant
information. Depending on the data and any assumption/model
for it, one can employ different signal processing techniques
in order to efficiently compress the data.

The second challenge is usually a classification or a regres-
sion task. It is important to look for features which enhance
discrimination among different classes or which serve as good
inputs for some regression algorithm.

In this paper we present various techniques from signal
processing, wavelet analysis, spectroscopy and data analysis

in general that we consider to be useful in the study of
hyperspectral data. We then combine these a selection of
these tools to obtain an automated classification algorithm
for a dataset of hyperspectral images of stained normal and
malignant colon tissues.

The application of hyperspectral imaging to medicine, and
pathology in particular, while not new, is becoming more
widespread and powerful. With light sources of increasingly
broader ranges, spectral analysis of tissue sections has evolved
from 2 wavelength image subtraction techniques to hyper-
spectral analysis. A variety of proprietary spectral splitting
devices, including prisms and mirror [1], interferometers [2],
[3], variable interference filter-based monochromometers [4]
and tuned liquid crystals [5], mounted on microscopes in
combination with CCD cameras and computers have been
used to discriminate among cell types, tissue patterns and en-
dogenous and exogenous pigments [6]. The increasing power
of these methods holds promise for developing automatic
diagnostics, though the increased volume of the data collected
requires more efficient algorithms to analyze the data in a
short time. Moreover, in addition to amount of data collected,
the dimensionality of such data has increased dramatically,
which makes the extraction of statistically useful and reliable
information much harder.

We use a unique prototype tuned light source (from Plain
Sight Systems), based on a digital mirror device (DMD), to
collect hyperspectral images of normal and neoplastic samples
from tissue microarrays. Analysis of the data is done with
a combination of algorithms from the fields of spectroscopy,
chemometry and signal processing. The goal is to evaluate the
diagnostic efficiency of hyperspectral microscopic analysis of
normal and neoplastic colon biopsies prepared as microarray
tissue sections [7]–[10].
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II. SIGNAL PROCESSING AND DATA ANALYSIS

We introduce a number of techinques and tools of general
applicability in dealing with hyperspectral data. The specifics
of the algorithm applied in the present situation will be detailed
in a later section.

A. Compression and De-nosing

In many important applications, such as astronomy or
medical imaging, there is a great amount of a priori knowledge
on the type of hyperspectral data at hand. For example there
are good models for each layer Ii(x, y), and for each spectrum
s(x, y) = I·(x, y). Each Ii is an image to which standard
image compression and denoising techniques can be applied.
Among these, wavelet and wavelet packet [11] techniques
are now classical and have been proven to be very effective.
Novel multiscale techniques, especially curvelets and ridgelets
[12]–[14] are also very promising and have been applied to
astronomical imaging [15]. All of these techniques can be
applied to each layer Ii for compression or denoising of the
layer.

On the other hand, each spectrum s(x, y) is naturally
expected to be a smooth function, hence amenable to one-
dimensional compression and denoising techniques. These
could be Fourier-transform based or, better, wavelet based.

Another possibility is to do a full 3-D analysis, by using
for example 3-D wavelet packets, or more recent tools such
as 3-D curvelets. On our dataset, for example, 3-D wavelet
packet based denoising performed very well.

B. Dimensionality reduction

The problem or reducing the dimensionality of the data,
while preserving relevant structures of the data, is extremely
important and has received a great amount of attentionin
the last few years from many researchers across different
disciplines.

To be concrete, let us consider the example of the hyper-
spectral images at hand. Each spectrum is a point in 128-
dimensional space. If we look at the ensemble of all spectra in
a data cube, or even in all data cubes, we do not expect them to
be scattered in 128 dimensions. In fact, we could easily argue
that they should be highly concentrated around a submanifold
of low intrinsic dimension. For example, one parameter may
be the total energy of the spectrum, and two others could the
absorbance of hematoxylin and eosin stains, respectively, at
particular wavelengths. These three parameters already would
contain most of the information about each spectrum, and in
fact this is more or less the only information that a pathologist
has, looking at one of the samples in the microscope. It just
happens that we are measuring 128 numbers, but far fewer
parameters would sufficient to identify a spectrum. The natural
questions are then: how do we discover the parameters and
how many do we really need?

We will describe a few of the many approaches suggested
to solve this problem, broadly subdividing them into linear
and nonlinear techniques. Linear techniques in general project
the data on some low-dimensional subspace, so that impor-
tant features of the data are preserved, where the measure

of importance has to be defined, and is often application-
specific. Linear techniques include random projections, princi-
pal component analysis, partial least squares, several variations
of these, and many others. In the first two techniques, the
important features of the data that one seeks to preserve are
essentially the pairwise distances, in the third a function (e.g.
labels) on the the data is given and is taken into account in
the computation of the subspace.

1) Local Discriminant Bases: Local Discriminant Bases
(LDB) of Coifman and Saito [16], [17] apply naturally to
a family of labeled vectors that represent smoothly varying
functions, for example spectra and sounds. The labels of these
vectors may correspond to more or less well-defined clusters
in the data, though determining those labels via clustering or
other unsupervised non-linear separation methods can be very
expensive, if not unfeasible, due to the high dimensionality
of the vectors. The goal of LDB is to find directions in these
high dimensional spaces such that the data projected onto these
directions are still well-discriminated. Then discriminating the
low dimensional projections of the data should be almost
as good as discriminating in high dimension with all the
advantages and tools available in lower dimensional spaces.
At the same time, while discriminating features are preserved,
confounding features are removed, thus denoising the data
with respect to the discrimination task at hand.

The search for features in high dimensional spaces is
notoriously difficult. One way LDB alleviate some aspects
of the “curse of dimensionality” is by searching sub-optimal
projections among hierarchically well-organized dictionaries
of wavelet or Fourier packets. There are fast algorithms with
which perform such a search and to compute the projections
onto ensembles of these patterns. We use a version of LDB
that uses arbitrary Haar packet decompositions of the phase-
space, but other, even less flexible, wavelet dictionaries would
work as well.

Nonlinear techniques include local linear embeddinge
(LLE) [18], Laplacian Eigenmaps [19], Hessian Eigenmaps
[20] and Diffusion maps [21]–[27], which together have re-
ceived a lot of attention in the last few years. Many of these
techniques are based on the idea that the data lies on some
manifold in a high dimensional space, but with the intrinsic
dimensionality of the manifold actually being quite low due
to constraints in the data allowing for a description by few
parameters.

Here we would like to illustrate the use of Principal Com-
ponent Analysis and Diffusion Maps applied to this particular
dataset. Similar results would be expected in the analysis of
other types of hyperspectral data, for example astronomical
hyperspectral data.

We consider a data cube with the spectra centered around
their mean, and we compute the principal components of the
centered spectra contained in the cube. This is computationally
quite expensive, so in practice we select a random subset of
spectra and we compute the principal components for that
subset. We immediately discover that the top 20 principal
components capture almost 95% of the energy of the data.
In particular, inner products and pair-wise Euclidean distances
could be computed on the projection onto the top few principal
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components with very good precision (and less sensitivity to
noise!). The projection onto the principal components, when
viewed layer by layer, is represented in Figure 1. Despite
eliciting some structure within the data, the projections are
not particularly informative.

If the low-dimensional set on which the spectra actually lie
is quite nonlinear, in general there will not be a linear subspace
onto which the data can be meaningfully projected. So while
the principal components analysis does show that the intrinsic
dimensionality of the spectral data is rather small, it does not
help in extracting good parameters and understanding clusters
in the spectral space.

We adopt a nonlinear technique based on diffusion [26],
[27] in order to better understand the structure of the data.
Instead of looking at the directions of maximum variability,
as principal component analysis does, this technique looks at
each spectrum, and at the connections between each spectrum
with its very closest neighbors. It then looks at how these
connections allow a random walker to explore the data.
The idea is that the connections inside each cluster will be
numerous and strong, and connections across clusters will
be fewer and weaker. It is then possible to construct a map
from spectral space to Euclidean space such that the Euclidean
distance between two points measured in the range is equal
to the “diffusion distance” between those two points on the
original data set. Moreover, this map has the form

s �→ (Φ1(x),Φ2(x), . . . ,Φk(x)) ,

where the functions Φ are defined on the set of spectra, and
are eigenfunctions of a Laplacian defined on the set of spectra
itself, interpreted as a graph. Details and discussion of these
ideas can be found in references [19], [22], [23].

When we apply this technique to the spectra in a data cube,
we get a much more meaningful descriptions of the data, and
in fact various eigenfunctions Φi separate very well between
different tissue types. This is a consequence of the staining,
which we had reasonably expected as being one of the most
important parameters (see Figure 2 and 3).

The parameters discovered with this algorithm allow one to
“virtually stain” the biopsy, and could be mapped from biopsy
to biopsy in order to resolve normalization issues that greatly
affect global distances between points.

This technique can be used effectively for segmentation of
the data cube. Spectral features, together with spatial features
(for example filter responses to various texture or edge filters)
can be clustered using the eigenvectors of the diffusion process
on these features, and effectively find clusters corresponding
to segmentations of the data cube. See for example [28], [29].

C. Classification and Regression Techniques

The goal of the analysis of a set of hyperspectral images
may be classification or regression. Depending on the appli-
cation and/or goal, one may want to classify single spectra,
or groups of spectra around particular locations. For example,
in astronomy one may want to classify galaxy types based on
their spatial configuration and spectral characteristics. In our
example, we want to discriminate between normal nuclei and
abnormal (malignant) nuclei in various regions of the tissue.

In general, seeking features in the full 3-dimensional data
cube can lead to the best results, since the various spatial and
spectral correlations help in denoising the data, and can be
used to define features of local aggregates which can be much
more meaningful than features of a single spectrum.

Without giving a full discussion of all details, we present
here the techniques that will be the building blocks of the final
algorithm.

1) Nearest Neighbor Classifier: Given a set of points {xi}i

with corresponding labels {li}i, and given a test point y, the k-
nearest neighbor classifier assigns the label li∗ to y as follows.
The k closest points {xi1 , . . . , xik

} to y are found. Then the
most frequent label li∗ among {li1 , . . . , lik

} is assigned to y.
Ties are broken randomly. The 1-nearest neighbor classifier has
many good theoretical properties, and performs extremely well
when the number of training points is large. When the number
of points is small for the dimension in which the points are
given, then k-nearest neighbor classifiers with k > 1 may be
preferable since the choice k > 1 corresponds to regularizing
the data in a particular way.

2) Partial Least Squares: Given a set of points {xi}i and a
function f defined on these points, and an integer k > 0, PLS
[30]–[34] computes a set of orthonormal vectors {v 1, . . . , vk},
and a k-dimensional vector w, and then extrapolates f at y by
first computing P (y), the projection of y onto the subspace
spanned by {v1, . . . , vk} and then letting f(y) =< y,w >.
The computation of the vectors v1, . . . , vk is done in the
following way. Once the first i vectors v1, . . . , vi have been
constructed, vi+1 is the vector that solves the problem

max
||v||=1

v⊥{v1,...,vi}
Corr2

(
f,
∑

l

(v)lxl

)
Var

(∑
l

(v)lxl

)

where (v)l denotes the l-th coordinate of v, and where for
i = 0 we consider the maximization over all v of norm 1. Once
the k vectors {vi}i have been found, the data is projected onto
the subspace spanned by these vectors and linear regression is
used in that subspace. The projection has the goal of denoising
the data but in such a way as to preserve directions that have
strong linear correlation with the function to be predicted.

III. EXPERIMENTAL DESIGN

A. Platform

The prototype tuned light source [35] transilluminates
hematoxylin and eosin (H & E) stained micro-array tissue sec-
tions with arbitrary combinations of light frequencies, ranging
from about 440 nm to about 700 nm, through a Nikon Biophot
microscope. To collect the initial data we used the flexibility
of the light source to implement a randomized version of
the standard Hadamard multiplexing for spectra measurement,
in order to reduce noise and biases in the signal-to-noise
ratios of the collected data. Hyperspectral tissue images are
collected with a CCD camera (Sensovation) and are analyzed
mathematically with a PC, using algorithms written in Matlab.
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Fig. 1. Top left: The first few principal components of the spectra of a
sample, top right and bottom are the coefficients of the projection of each
spectrum onto the first, second and third principal components.
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Fig. 2. Moving left to right, top to bottom, the eigenfunctions ϕk of the
diffusion on the data set of spectra, for k = 1, 2, 3, 4, 5, 6 respectively, are
mapped to the colors.
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Fig. 3. The vector (ϕ1(x), ϕ2(x), ϕ3(x)) is normalized and mapped onto
RGB colors.

B. Image source

137 (66 normal, 71 malignant) hyperspectral gray scale
images at 400x magnification are derived from, respectively,
58 and 62 different tissue microarray biopsies.

C. Data Acquisition

Each measurement yields a data cube C, which is a set
{Ii}i=1...128 of images, each of which 495 by 656 pixels. The
intensity of the pixel Ii(x, y) ideally represents the transmitted
light at location (x, y) when the i-th light pattern is shone
through the sample. The measurement of the hyperspectral
image is subject to noise, which is roughly independent of
the intensity of light shown through the sample. In order to
maximize the signal-to-noise ratio of the measurement of each
Ii, given a fixed integration time, one needs to maximize the
amount of light shone through the sample. The flexibility of
the instrument allows for shining arbitrary patterns ψ i of light,
in the form

ψi(ν) =
N∑

j=1

εijδj(ν) (1)

where εi ∈ {0, 1} and δi represents approximately a δ-function
at frequency of index i (and N = 128 in our experiment, but
the instrument would allow up to N = 1024).

Hence we can think of Ii(x, y) as the value of the inner
product

< f(x, y, ν), ψi(ν) >ν ,

where f(x, y, ν) is the transmittance of the sample at location
(x, y) and frequency ν.

A raster scan consists in shining the sequence {ψi} = {δi}.
In this case the energy of light shone through for each I i will
be of the order of

E0

N
,

E0 being the intensity of the light source. Hence, reasonable
signal-to-noise ratios could be obtained only by integrating for
a long time.

Multiplexing allows a much faster scan, for a given signal-
to-noise ratio, and consists in shining a sequence of Hadamard
patterns {ψH

i }i=1,...,N . These patterns have the property that
for each i there are N

2 non-zero εi’s in (1) (so that the energy
of the light shining through the sample is about E0

2 for the
measurement of each Ii), and also these patterns are quite
independent. These patterns have a multiscale structure, in the
sense that the index set {1, . . . , N} can be split into subsets
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Fig. 4. Examples of Hadamard patterns (left), and randomized Hadamard
patterns (right).
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Fig. 5. Example of expansion of a smooth spectrum on standard Hadamard
patterns (left) and on random Hadamard patterns (right).

{J1, . . . , Jlog2 N} such that the patterns in each subsets are
constant on dyadic intervals at a certain scale. However, it
turns out that in this way the signal-to-noise ratio is not
uniformly distributed. This is a consequence of the smoothness
of the spectra to be measured and of the structure of the
system of Hadamard functions, which implies a priori a
decay of | < f, ψH

j > | as a function of j. To spread
the signal-to-noise ratio uniformly among the coefficients, we
consider randomized Hadamard functions, which we obtain by
building a random bijection m : {1, . . . , N} → {1, . . . , N}
and considering ψRH

i (ν) = ψH(m(ν)). We compute this
random bijection once and use the induced shuffling in all
of our measurements. Of course, the change of variable m
simply induces an orthogonal transformation between {ψH

i }
and {ψRH

i }. In Figure 6 we show a collected spectrum and
the corresponding physical spectrum. It is clear how the size
of all the collected coefficients {< f, ψRH

i >} is roughly
constant in i. The indices 2 and 4 are special since the
corresponding mirror patterns are set entirely to 0 in order
to measure background.

IV. ALGORITHM

The algorithm aims at discriminating between normal and
abnormal data cubes. In fact, it would be more useful to be
able to classify normal and abnormal (malignant) regions in
each sample. This would be particularly important in order to
be able to spot abnormal (malignant) regions, which are small
and/or only partially present in the sample in question.

The way a trained pathologist would work in analyzing
these samples is mainly through pattern recognition. He would
look for characteristic structures of large ensembles of cells,
such as the structure of glands, their shape, size, and to smaller
details such as the shape, size, density and granularity of the
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Fig. 6. A typical physical spectrum
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Fig. 7. Two different spectral slices of a normal sample.

nuclei. This kind of pattern analysis is mainly based on rather
large scale features, and it could yield inaccurate results on
smaller regions.

Our algorithm will generate a classifier for square regions,
or patches, with edges of a certain length l which are “admis-
sible”, in the sense that contain a certain density of nuclei, as
specified below. Each data cube or sample will contain several
such “admissible” patches, each of them roughly centered
around a nucleus, and of size about the size of the nucleus.
Each patch can be viewed as a cloud of l2 spectral vectors in
R128. We will then classify a whole slide by voting among
the classifications of the patches in that slide.

We naturally divide the algorithm into the following build-
ing blocks:

(1) Nuclei identification
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Fig. 8. Two different spectral slices of a very malignant sample.
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(2) Collection of admissible patches.
(3) Construction of the classifier based on the mean of the

nuclei spectra in each patch.

Step 1. Nuclei identification The first task is to extract the
nuclei spectra from a data cube. This is essentially a tissue
classification task, and we expect this to be easy since the
H&E stain used for the preparation of the slides differentiates
between nuclei and the other tissue components. We seek
spectral signatures that allow one to discriminate the spectra
of nuclei from all the other spectra. In order to do this, we
selected about 3, 000 spectra from two distinct datacubes,
about one third of which belonged to each of three different
classes: {nuclei, cytoplasm, lamina propria/other}. Let these
samples be denoted by

{{vi,l}i}l∈{nuclei,cytoplasm,lamina propria} ⊂ R128 .

We normalize this set of spectra so that each spectrum has
L2-norm, or energy, equal to 1:

ṽi,l =
vi,l

||vi,l||2 .

We then used LDB on ṽi,l to find features that best
discriminate among the different classes. We found that 4
spectral signatures (see Figure 9) are enough to discriminate
among the various tissue types, in particular they are enough
to discriminate well the nuclei spectra from all the others.
We project our (normalized) training set onto these 4 features,
see Figure 10, and to classify a spectrum from any data cube
we normalize it and project onto these 4 features. On this
projection, we use a 15-nearest-neighbor classifier to identify
to which of the three classes the spectrum belongs. Notice
that the dimensionality reduction has a de-noising effect on
the spectra, thus regularizing the distance computations used
by the nearest-neighbor algorithm used to classify in the ap-
propriate low-dimensional subspace. Let us denote by C tissue

the classifier that computes this projection and classifies into
tissue types as just described. The performance of the classifier
Ctissue is quite good, uniformly over all datacubes. Mistakes
are isolated and can be easily removed by voting among
the spatial (x, y) neighbors. From now on we declare that a
spectrum is a nucleus spectrum if it is classified as a nucleus
spectrum by Ctissue.

It is important to remark at this point that the instrument is
able to directly measure the projection of the spectrum onto
the LDB light patterns by shining exactly these 4 patterns of
light through the sample. The results of these measurements
can be provided immediately to the nearest neighbor classifier.
This saves the millions of CPU operations necessary to project
the data onto these features. The flexibility of the device
essentially allows one to move these computations from the
computer to the instrument itself, essentially performing an ad
hoc experiment that measures exactly the quantities of interest.

Step 2. Collection of admissible patches
Now that the nuclei spectra are identified, we define the

patches we want to classify as follows. A patch is a subset of
a datacube of the form Ql

x0,y0
× S where Ql

x0,y0
is a square

of side l pixels long, centered at (x0, y0) and S denotes the
complete spectral range. A patch is admissible if it contains at
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Fig. 9. Top 4 discriminant vectors for tissue classification found by LDB
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lamina propria.

least 8
10 l

2 nuclei pixels. From now on we will consider each
patch simply as a collection of the nuclei spectra it contains,
hence as a cloud in R|S| (with |S| = 128 in our specific case).

We considered different sets of patches, corresponding to
l = 32, 64, and 128, and the results improved with the patch
size. However, since they are already very good for l = 32
(this size corresponds roughly to the size of a single nucleus),
we present here the results corresponding to l = 32.

The set of patches we consider consists of 2440 patches of
size l = 128, collected randomly, 30 per slide. We denote by
{Ni,k}k∈Ki the set of nuclei spectra in the i-th patch Pi.

Step 3: Construction of the classifier based on the mean of
the nuclei spectra in each patch

For each admissible patch Pi collected, we compute the
mean of the nuclei spectra {Ni,k}k and we normalize it to unit
energy. The label (normal or abnormal) attached to the patch
is transferred to the corresponding mean nucleus spectrum. We
used PLS, keeping k = 15 top vectors, and we ran 50 rounds
of 10-fold cross-validation to make sure we are not overfitting.
The confusion matrices of the classifiers thus obtained are
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Fig. 11. Two examples of tissue classification.
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Fig. 12. Local average of nuclei spectra, with 1-standard deviation bars.
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Fig. 13. Classification of nuclei patches of normal samples: green, blue
and red mean classified respectively as normal, not-classified, abnormal
(malignant).

summarized in table I for classifiers of patches of size 32.
We tried various normalizations of the spectra (energy,

baseline) and various subband selections and wavelet packet
compression techniques for dimensionality reduction before
applying PLS, and to check the stability of the algorithm, but
all these attempts gave very similar results. This is due to
the large number of samples available for training, even under
cross-validation.

V. CLASSIFICATION OF BIOPSIES

To classify biopsies, we collect several admissible random
patches from the biopsy, and classify each of them. A biopsy
is considered normal if the majority of patches are classified
as normal, and the biopsy is deemed malignant if a minimum
number (fixed and validated under cross-validation) of patches
is deemed abnormal. Of course, more conservative choices
could be made, depending on the weight that is chosen for
biopsies classified as false positives or false negative. Since
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Fig. 14. Classification of nuclei patches of abnormal (malignant) samples:
green, blue and red mean classified respectively as normal, not-classified,
abnormal (malignant).

TABLE I

CONFUSION MATRIX OF PREDICTIONS OF CARCINOMA VS. NORMAL

NUCLEI PATCHES OF SIZE 32 BY 32, AVERAGE 10-FOLD CROSS-VALIDATED

ERROR.

TP TN
PP 94.0% 7.3%
PN 6.0% 92.7%

Sensitivity 93.5%
Specificity 93.5%

False Negative 6.6%
False Positive 6.6%
Pred Val Pos 94.1%
Pred Val Neg 92.7%

Diag Eff 93.4%

TABLE II

CONFUSION MATRIX, CROSS-VALIDATED, OF PREDICTIONS OF

CARCINOMA VS. NORMAL ON 136 BIOPSIES, BY MAJORITY VOTE OF THE

CLASSIFIER ON 32 BY 32 NUCLEI PATCHES.

TP TN
PP 100% 0%
PN 0% 100%

Sensitivity 100.0%
Specificity 100.0%

False Negative 0.0%
False Positive 0.0%
Pred Val Pos 100.0%
Pred Val Neg 100.0%

Diag Eff 100.0%
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Fig. 15. Classification result for the various biopsies, represented as mean
classification of the nuclei patches. The separation between normals (left,
around +1) and malignant (right, around −1) is sharp.

the classification of nuclei patches is quite accurate, one
could, for example, conservatively call a slide malignant if a
minimum number m (e.g. 10) of nuclei patches are classified
as malignant. In our dataset this did not make any difference
in the classification of the slides, for most reasonable values
of m (e.g. m ≥ 10). In any case, no matter which criterion of
voting among the classified patches we choose, we have no
errors in classifying each data cube (biopsy).

VI. CONCLUSIONS

Hyperspectral imaging presents many challenges from the
point of view of data and signal analysis due to the large
amount and high-dimensionality of the data. In this paper we
present some tools from statistical data analysis, multiscale
signal processing and nonlinear dimensionality reduction, that
are effective in analyzing hyperspectral data. We demonstrate
a successful (100% diagnostic efficiency) application of a
combination of these techniques to the problem of automati-
cally discriminating between normal and abnormal (malignant)
hyperspectral images of colon biopsies. Further research will
involve abnormal but non-malignant samples, and discrimi-
nating between these and the malignant abnormal samples.
Discriminating between these and the malignant abnormal
samples can permit automatic diagnosis.
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