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Abstract

The Local Trigonometric Transform (LTT) provides a nice tool for localizing

both a signal and its frequency content. But there are certain properties of

this algorithm that make it unattractive for various applications. For example,

instability of the folding process on or near an edge can cause increased edge

effect which translates recursively to all lower levels of the LTT. This can result

in inefficient signal representation, improper segmentation and incorrect analysis

of the signal.

In this thesis, some of these disadvantages of the LTT are examined, and

a new approach to localized trigonometric analysis is proposed, the Continuous

Boundary Local Trigonometric Transform (CBLTT), which attempts to correct

these and other shortcomings. The main difference between the LTT and the

CBLTT is that the former projects the signal onto smooth overlapping basis

functions, whereas the latter decomposes the signal into regions that are assumed

to be independent of one another. Each independent subspace then undergoes an

invertible, nonlinear transformation to reduce edge effect, and it is immediately

projected onto an orthogonal basis; e.g., Fourier basis, Sine/Cosine basis, Wavelet

basis. As a tensor product, it can be applied to multi-dimensional data: signals,

images, video. Since this new approach can be used to efficiently segment the

frequency domain of a signal, it also gives rise to a new version of the Brushlet

Transform.

In order to reduce edge effect and increase numerical stability, many variations

of this new scheme are derived and presented, and their strengths and weaknesses
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are examined and contrasted. In addition, their usefulness in various applications,

ranging from signal segmentation to compression, are also explored.
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Chapter 1

Introduction

It is a well known fact that the visual world is full of textures and struc-

tures which can be described as pseudo-periodic. From man-made objects such

as shingle roofs, brick walls or striped clothing, to natural or biological objects

such as trees, grass or blown sand, these pseudo-periodicities abound at many

scales [9]. It is also well known from Neuroscience that the mammalian visual

system filters visual information in a localized, patch-by-patch manner [17]. The

main benefit of this type of decomposition is that the visual information is more

efficiently represented. Because of this, much recent effort has been devoted to

developing mathematical models and transform algorithms that mimic this type

of behavior [18], since decreasing the representation cost of a dataset can result

in improved analysis and compression. Some of the more successful approaches

have been the Discrete Cosine Transform (DCT) used in JPEG (JPEG-DCT),

the Wavelet Transform (WT), Wavelet Packets (WP), Local Trigonometric Trans-

forms (LTT), and the Brushlet Transform (BT) ([14], [47], [53]).

The main advantage of these methods is that they provide a good tool for

localizing both a signal and its frequency content. In addition, the Local Fourier

Transform (LFT) and Brushlet Transform are equipped with a phase. But all of
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these approaches suffer from a crucial problem; that is, how to effectively treat

the initial signal to provide boundary conditions which match those of bases

associated with each particular transform. Without any information outside of

the original interval, there lacks an effective way to both provide proper boundary

conditions matching the associated transform bases, and also recover the original

signal from the transformed coefficients in a stable manner. Furthermore, many

of these methods operate by folding, or mixing, information between adjacent

intervals. Instability of this folding process on or near an edge can increase edge

effects which translate recursively to all lower levels of the transform. This can

result in inefficient representation, improper segmentation and incorrect analysis

of the signal.

It is with this in mind that a new approach to localized analysis is proposed,

the Continuous Boundary Local Trigonometric Transform (CBLTT). Closely re-

lated to the Local Trigonometric Transform, it attempts to correct these and

other shortcomings of the LTT. The main difference between the LTT and the

CBLTT is that the former projects the signal onto smooth overlapping basis

functions, whereas the latter decomposes the signal into disjoint regions. Each

disjoint subspace then undergoes an invertible, nonlinear transformation to re-

duce edge effect, and it is immediately projected onto an orthonormal basis; e.g.,

Fourier basis, Sine/Cosine basis, Wavelet basis. As a tensor product, it can be

applied to multi-dimensional data: signals, images, video. And since this new

approach can be used to efficiently segment the frequency domain of a signal, it

also gives rise to a new version of the Brushlet Transform.

In order to reduce edge effects and increase numerical stability, many vari-

ations of this new scheme are derived and presented, and their strengths and

weaknesses are examined and contrasted. In addition, their usefulness in various

applications, ranging from signal segmentation to compression, are also explored.

It is shown that for compression, this approach can outperform some of the more

popular approaches such as the LTT, LFT, BT and WP for certain signals. And
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for segmentation, the method shows much promise. The overall goal of this the-

sis is to show that the CBLTT, or some variation of it, is a viable alternative to

signal analysis and compression.

The contents of this thesis are organized as follows. Chapter 2 starts with

a brief introduction to localized analysis, with descriptions of the numerical

methods mentioned above: JPEG-DCT, Wavelets, Wavelet Packets, the Local

Trigonometric Transform and the Brushlet Transform. It contains a review of

the basic concepts and definitions that will be used throughout the remaining

chapters. Chapter 3 illustrates some of the shortcomings of the LTT and BT,

while Chapter 4 introduces the Continuous Boundary Local Trigonometric Trans-

form and all of its variations. Proofs for the existence of solutions, and control of

the balance between spatial and frequency localization are also presented here.

Chapter 5 shows some of the results from segmentation and compression. These

ideas are then extended to higher dimensions in Chapter 6. Lastly, Chapters 7

and 8 offer some concluding remarks and describe further research directions.

Also included are three appendixes which complement the thesis. The first of

these, Appendix A, lists some of the abbreviations, along with their definitions,

which are used throughout the thesis. The second, Appendix B, offers supple-

mentary formulas, definitions and proofs. Lastly, Appendix C, contains image

compression results which are analyzed in Chapter 6.
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Chapter 2

Background Material

In this chapter, some of the more popular methods for localized analysis

are described: the local trigonometric transform, the local Fourier transform,

the brushlet transform, wavelets, wavelet packets and JPEG-DCT. Since the

CBLTT is closely related to these schemes, their descriptions are fundamental in

the development of the CBLTT. The concepts and definitions presented here will

be used throughout the remainder of this thesis.

2.1 Discrete Trigonometric Transforms

This section starts by defining variations of the Discrete Cosine Transform (DCT)

and the Discrete Sine Transform (DST), key components of the LTT, JPEG-DCT

and CBLTT. Following this is a brief description of JPEG-DCT.

2.1.1 Discrete cosine/sine transforms

A key ingredient of the LTT transform is the Discrete Cosine Transform type-IV

(DCT-IV) and the Discrete Sine Transform type-IV (DST-IV). These transforms

are closely related to the standard DST-II and DCT-II (used in JPEG), in that
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they have fast algorithms associated with them, but they differ primarily in the

symmetry of the transform basis functions at the boundaries of their intervals. To

see this, consider the following. The 1D-DCT-II of a function xn for n = 0, . . . , N

is defined as [2]

CII
k =

√

2

N + 1
ck

N∑

n=0

xn cos
(n+ 1

2
)kπ

N + 1
, for k = 0, . . . , N, (2.1)

where

ck =







1√
2
, if k = 0,

1, if k = 1, . . . , N,

0 otherwise.

(2.2)

Its inversion is given by

xn =

√

2

N + 1

N∑

k=0

ckC
II
k cos

(n+ 1
2
)kπ

N + 1
, for n = 0, . . . , N. (2.3)

Similarly, the 1D-DST-II is defined as ([72], p.84)

SIIk =

√

2

N + 1
ck+1

N∑

n=0

xn sin
(n+ 1

2
)(k + 1)π

N + 1
, for k = 0, . . . , N, (2.4)

and its inversion is

xn =

√

2

N + 1

N∑

k=0

ck+1S
II
k sin

(n+ 1
2
)(k + 1)π

N + 1
, for n = 0, . . . , N. (2.5)

Now, replacing k with k+ 1
2
in the argument of the cosine on the right hand side

of Equations (2.1) and (2.3) yields the formulas for DCT-IV. And replacing k+1

with k + 1
2
in the argument of the sine on the right hand side of Equations (2.4)

and (2.5) yields the formulas for DST-IV. They are

CIV
k =

√

2

N + 1

N∑

n=0

xn cos
(n+ 1

2
)(k + 1

2
)π

N + 1
, for k = 0, . . . , N, (2.6)

which has inversion given by

xn =

√

2

N + 1

N∑

k=0

CIV
k cos

(n+ 1
2
)(k + 1

2
)π

N + 1
, for n = 0, . . . , N, (2.7)
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and

SIVk =

√

2

N + 1

N∑

n=0

xn sin
(n+ 1

2
)(k + 1

2
)π

N + 1
, for k = 0, . . . , N, (2.8)

which has the following inverse

xn =

√

2

N + 1

N∑

k=0

SIVk sin
(n+ 1

2
)(k + 1

2
)π

N + 1
, for n = 0, . . . , N. (2.9)

This simple modification completely changes the symmetry behavior of the basis

functions at the boundaries of the range of n. For example, looking at the basis

functions over the expanded range of −N−1 ≤ j ≤ 2N+1 shows that the DCT-II

bases are even with respect to − 1
2
and N + 1

2
(Equation (2.3)), while the DST-II

bases are odd (Equation (2.5)). On the other hand, the DCT-IV bases are even

at the left side with respect to − 1
2
and odd at the right side with respect to N+ 1

2

(Equation (2.7)). DST-IV has the exact opposite polarity as DCT-IV. Its bases

are odd at the left hand side and even on the right (Equation (2.9)). Because of

this property, basis functions which are even at the left boundary and odd at the

right are said to have cosine polarity, whereas basis functions which are odd at

the left boundary and even at the right are said to have sine polarity. Figure 2.1

illustrates these differences with sample basis functions from each transform. For

the 2D versions of these transforms, see Appendix B.1.

2.1.2 JPEG-DCT

One of the most popular image compression schemes has been, and still is, the

JPEG1 standard which was a collaboration between the ISO2 and the CCITT3.

The details of JPEG – as well as its successor, JPEG2000, which is based on

current wavelet technology – can be found at http://www.jpeg.org, although a

brief summary of JPEG is given below.

1Joint Photographic Experts Group
2International Standardization Organization
3Consultative Committee of the International Telephone and Telegraph
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Figure 2.1: Sample basis functions of the (a) DCT-II, (b) DST-II, (c) DCT-IV,
and (d) DST-IV illustrating the various boundary polarities.

JPEG consists of three different coding systems: (1) a lossy baseline coding

system based on the DCT-II; (2) an extended coding system which provides greater

compression, higher precision, or progressive reconstruction; and (3) a lossless

independent coding system. Only the first system will be described here and will

be used for comparison purposes in later chapters.

In this system, the compression is performed in three steps: DCT-II compu-

tation, quantization, and variable-length coding. Again, only the first of these is

of particular interest here since all of the algorithms presented in this paper are

based on transform coding and can also be quantized and variable-length coded

in a similar manner to JPEG. In JPEG, the signal is first subdivided into small

blocks of 8×8 pixels and processed from left to right and top to bottom. The 64

pixels within each subimage are then level shifted from p-bit unsigned integers

in the range [0, 2p − 1] to p− 1-bit signed integers in the range [−2p−1, 2p−1 − 1].

Then the 2D DCT-II of each subimage is taken, quantized, and reordered in a
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zig-zag pattern. Since the DC components – the DCT-II coefficients with zero

frequency – are a measure of the average value of image samples, there is usually

a strong correlation between the DC coefficients of adjacent blocks. Hence, the

resulting DC values are difference coded relative to the previous block’s DC com-

ponent; i.e., rather than storing the value of the DC component for a particular

block, its difference from the DC component of the previous block is stored. This

tends to be a crucial step since the DC coefficient frequently contains a significant

portion of the total image energy. This is also the reason that the original image

is level shifted prior to taking the DCT-II. Finally, the AC coefficients (non-DC

components) are Huffman coded according to a predefined table.

One reason that JPEG is based on DCT-II is because DCT-II is a fast trans-

form, O(M log2(M)) for a signal of length M = 2j, where j ∈ N. Another reason

is that DCT-II provides very good compaction of highly correlated data. This

excellent compression is due, in part, to the fact that DCT-II approximates the

Karhunen-Loève transform of a first-order stationary Markov process (see [40],

p.151-154, for more details). But it is also due to the even boundary polarity

of its basis functions, as was seen in the previous section. This latter property

causes the magnitude of the Fourier coefficients to decay at a rate similar to O( 1
k2 )

rather than O( 1
k
).

2.2 Local Trigonometric Transforms

In this section, the construction of the local trigonometric basis is reviewed using

the notation of Wickerhauser [72] and the organization of Saito [61]. It should be

noted that the local trigonometric basis is not actually a basis, but rather a term

to describe any of the bases associated with the LCT, LST or the LFT, since their

basis functions can be written in terms of sines or cosines. This section starts by

defining the smooth orthogonal projection, which is the foundation upon which
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the local cosine/sine basis and the local Fourier basis are constructed. Following

this is a description of the orthogonal periodization operator, key to the local

Fourier transform. The section concludes by detailing the construction of the

localized dictionary and the best-basis algorithm.

2.2.1 Smooth orthogonal projection

One of the primary objectives of localized analysis is the ability to segment a sig-

nal into localized regions and analyze of each of these regions using some basis.

An immediate obstacle of this approach is the fact that the boundary conditions

within each region do not always coincide with the boundary conditions of the

basis of the particular analyzing operator. For example, suppose a given function

x(t) ∈ L2(R) is to be split into pieces, each of which is supported on an interval

Ik = (αk, αk+1), where
⋃

k∈Z Ik = R, and the Ik’s are disjoint. If each of these

disjoint intervals is projected onto a new basis, such as {1IkCm,k}m∈{0}∪N where

Cm,k(t)
∆
=

√
2

|Ik| cos
[
2m+1
2|Ik| π(t− αk)

]

which has cosine polarity boundary conditions,

there is no guarantee the signal segments supported on each Ik will also have co-

sine polarity boundary conditions. Consequently, this boundary discrepancy will

be perceived as a signal discontinuity causing a large number of transform coeffi-

cients to have significant energy. If quantization errors are introduced into these

transformed coefficients, or if any coefficients are discarded for compression pur-

poses, and signal reconstruction is performed, errors in the reconstructed signal

will appear and will be enhanced at the locations of these false discontinuities;

i.e., at the boundaries of the subspaces. This effect is known as the edge effect or

blocking effect. This same problem can occur when using the LFT or Wavelets

which register an artificial discontinuity at the subspace boundaries if the signals

are not periodic within each interval. Thus, the following operator was devised

to circumvent this problem, allowing analysis of a signal in a localized, patch by

patch manner.
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Figure 2.2: Splitting the constant function into three intervals, by the character-
istic functions (a), and by the smooth orthogonal projections (b).

Suppose again that x(t) is to be split into pieces, but this time each of these

pieces is supported not only on an interval Ik, but also on each of its neighboring

intervals, Ik−1 and Ik+1, where
⋃

k∈Z Ik = R, and the Ik’s are disjoint. Define

a sequence of subspaces Ωk associated with the intervals Ik, and impose orthog-

onality among Ωk, i.e., L
2(R) =

⊕

k∈Z Ωk, To achieve this goal, the following

smooth orthogonal projector from L2(R) into Ωk = PIkL
2(R) was introduced (see

[3]):

PIkx(t)
∆
= U ∗Ik1IkUIkx(t). (2.10)

This operator consists of three operators: UIk (unitary folding operator), 1Ik

(restriction operator, i.e., 1Ikx(t) = x(t) if t ∈ Ik, = 0 otherwise), and U ∗Ik

(unitary unfolding operator, the adjoint of UIk). As will be shown next, PIk is a

smoother version of sharp segmentation 1Ik . Figure 2.2 shows the application of

PIk to the constant function x(t) ≡ 1.

To better understand PIk , the unitary folding operator UIk needs to be defined
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for the interval Ik. Start by letting Ik = (αk, αk+1). Then

UIkx(t)
∆
= U(rk, αk, εk)U(rk+1, αk+1, εk+1)x(t), (2.11)

where U(r, α, ε) is a unitary folding operator associated with the region t ∈
(α− ε, α + ε) and is defined as

U(r, α, ε)x(t)
∆
=







r
(
t−α
ε

)
x(t) + r

(
α−t
ε

)
x(2α− t) if α < t < α + ε,

r
(
α−t
ε

)
x(t)− r

(
t−α
ε

)
x(2α− t) if α− ε < t < α,

x(t) otherwise.

(2.12)

In other words, UIk mixes, or folds, information from (α − ε, α) into (α, α + ε)

and vice-versa. The region of the signal upon which UIk operates, or acts, is

known as the action region. So the action region above is t ∈ (α − ε, α + ε).

In addition, the function r(t) above is called a rising cutoff function, which is

a smooth version (e.g., r ∈ Cd(R) with d ∈ N) of the Heaviside step function

satisfying the following condition:

|r(t)|2 + |r(−t)|2 = 1 for all t ∈ R, and r(t) =

{

0 if t ≤ −1,
1 if t ≥ 1.

(2.13)

A typical example of a Cm(R) rising cutoff function is the following iterated sine

function:

r[m+1](t)
∆
= r[m](sin

π

2
t) (2.14)

where

r[0](t) =







0, if t ≤ −1,
sin[π

4
(1 + t)], if |t| < 1,

1 if t ≥ 1.

(2.15)

Many other possible choices of rising cutoff functions exist, each with varying

properties (see [51]). Figure 2.3 shows a typical folding operator for an interval

in matrix form. As can be seen, the folding operator U(r, α, ε) makes a signal

locally even for the region (α, α + ε) and locally odd for the region (α − ε, α).

Because of this polarity, U is said to be a cosine polarity folding operator.
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Folding Operator
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Figure 2.3: A typical folding operator UI . In this case, I = (31.5, 95.5), and
ε = 16 at both the left and right borders of the interval. The unfolding operator
U∗I is simply a transposition of UI in this case.

The adjoint operator of U(r, α, ε) is called the unitary unfolding operator:

U∗(r, α, ε)x(t)
∆
=







r
(
t−α
ε

)
x(t)− r

(
α−t
ε

)
x(2α− t) if α < t < α + ε,

r
(
α−t
ε

)
x(t) + r

(
t−α
ε

)
x(2α− t) if α− ε < t < α,

x(t) otherwise.

(2.16)

and it makes a signal locally odd for the region (α, α+ ε) and locally even for the

region (α− ε, α). U ∗ is therefore known as a sine polarity operator.

One of the main benefits of this folding operation is now immediately realized.

Applying UIk to a signal has the effect of forcing the boundary conditions to match

those of a cosine polarity basis, such as {1IkCm,k}m∈{0}∪N defined earlier. While

applying U ∗Ik to a signal forces the boundaries to match those of a sine polarity

basis. Thus, edge effect can be reduced if the signal is preprocessed with the

appropriate folding operator. It should be noted that both U = U(r, α, ε) and

U∗ = U ∗(r, α, ε) are unitary isomorphisms of L2(R) since U ∗Ux(t) = UU ∗x(t) =

x(t) for t 6= α, and Ux(t) = U ∗x(t) = x(t) if |t− α| ≥ ε.
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For the operator UIk defined in (2.11), it is necessary that the two action

regions around αk and αk+1 of Ik do not interfere, i.e., αk + εk < αk+1 − εk+1.
The size of the action regions 2εk around the boundary αk, and the rising cutoff

function rk(t), can be either dependent or independent of Ik. If εk is independent

of Ik and is held constant for all k, then U and U ∗ are known as fixed folding

and fixed unfolding operators respectively. If εk is dependent on the Ik, then

U and U ∗ are known as multiple folding and multiple unfolding operators since

multiple rising cutoff functions are used for different Ik. If εk = |Ik|
2
, then the

terms full folding and full unfolding are used to describe U and U ∗. Since the

action regions are required to be disjoint of one another, then the choice of εk

determines the smallest size of the interval partitions; that is, |Ik| ≥ εk+1+εk. This

is important because the choice of εk determines the resolution, or depth, of the

LTT decomposition described later. Some clever choices of εk and rk, dependent

on Ik, have been devised which lead to better time-frequency localization schemes

based on multiple folding [24] and the time-frequency local cosines [69].

With the folding operators well defined, there are some computational issues

that must also be taken into consideration when discrete versions of these opera-

tors are used in practice. First, is the fact that the various rising cutoff functions

with different εk should be precomputed once and stored for later use. Second,

a decision must be made whether to fold at gridpoint locations or between grid-

points; i.e., at midpoints. If midpoint folding is employed, then the rk consist

of discrete points indexed from −R ≤ k ≤ R − 1 where R is the radius of the

rising cutoff function. In this case, cosine polarity folding of a function xn for

n = 0, . . . , R− 1 takes the form

x̃n = rnxn + r−n−1x−n−1, (2.17)

x̃N−n = rnxN−n − r−n−1xN+n+1 (2.18)

where x̃n represents the folded signal.

It is straight forward to implement this version of folding. But if folding



2.2 Local Trigonometric Transforms 14

occurs at gridpoints instead, then an odd number of discrete values indexed from

−R ≤ k ≤ R for rk are used. Some caution must be taken to ensure the existence

of the unfolding operator, U ∗. For example, if cosine folding is employed then

the gridpoint folding operations become

x̃n = rnxn + r−nx−n, (2.19)

x̃N−n = rnxN−n − r−nxN+n. (2.20)

Now if the center rising cutoff value, r0, is used to fold the right hand side

of the interval, Equation (2.20), then x̃N = r0xN − r0xN = 0. Inverting this

yields x0 = r0x̃0 + r0x̃0 = 0 which is incorrect; hence, inversion is undefined.

The solution to this dilemma is to fold the right hand side at the xN+1 location

instead of at xN . With this convention, Equation (2.20) now becomes

x̃N−n = rn+1xN−n − r−n−1xN+n+2, for n = 0, . . . , R− 2, (2.21)

This means that the middle value, xN+1
2
, will never be altered by the gridpoint

folding operation, even if full folding is employed.

With the folding and unfolding operations well defined, they can now be used

to construct the LTT. This is described next.

2.2.2 Local cosine/sine bases

For the local cosines, let Cm,k(t)
∆
=
√

2
|Ik| cos

[

π
(
m+ 1

2

)
t−αk

|Ik|

]

. Then the set

{1IkCm,k}m∈{0}∪N forms an orthonormal basis of L2(Ik). And from this, the local

cosine functions (see [3]) are defined to be φm,k(t)
∆
= U ∗Ik1IkCm,k. It can easily be

shown that the set {φm,k}m∈{0}∪N forms an orthonormal basis of Ωk = PIkL
2(R)

which implies that {φm,k}m∈{0}∪N,k∈Z forms an orthonormal basis of L2(R). Prov-

ing that {φm,k}m∈{0}∪N is an orthonormal basis of Ωk can be accomplished by

using the following facts: 1) Ωk = PIkL
2(R) = U ∗Ik1IkUIkL

2(R) is isomorphic to

U∗Ik1IkL
2(R) = U ∗IkL

2(Ik) because UIk is a unitary isomorphism on L2(R), and 2)

{1IkCm,k}m∈{0}∪N is an orthonormal basis of L2(Ik).
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Figure 2.4: (a) A sample local cosine function along with its window, and (b) a
sample local sine function along with its window.

Using these facts, analysis and synthesis are simple:

x(t) =
∑

k

∑

m

< x,U ∗Ik1IkCm,k > U ∗Ik1IkCm,k(t)

=
∑

k

∑

m

< UIkx,Cm,k > U ∗Ik1IkCm,k(t). (2.22)

In other words, the expansion coefficients can be computed as < UIkx,Cm,k >.

These are simply the expansion coefficients of the smoothly folded cosine po-

larity function UIkx(t) with respect to the orthonormal basis {Cm,k}. For the

discrete case, DCT-IV is employed. For synthesis, applying UIk to both sides of

Equation (2.22) yields

UIkx(t) =
∑

m

< UIkx,Cm,k > 1IkCm,k(t). (2.23)

This is just synthesis using the coefficients< UIkx,Cm,k > and the basis 1IkCm,k(t).

For the discrete case, the inverse DCT-IV is simply applied to these coeffi-

cients, followed by applying U ∗Ik1Ik to give U ∗Ik1UIkx(t) = PIkx(t). And since

L2(R) =
⊕

k∈Z PIkL
2(R), then

x(t) =
∑

k∈Z
PIkx(t). (2.24)
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Replacing Cm,k(t) with Sm,k(t)
∆
=
√

2
|Ik| sin

[

π
(
m+ 1

2

)
t−αk

|Ik|

]

, yields the local

sines, ψm,k(t)
∆
= UIk1IkSm,k. Figure 2.4 shows an example of the local cosine basis

φ4(t) and the local sine basis ψ4(t) when I = [0, 1] and r = r[1] with ε = 0.25,

along with their envelopes, or windows.
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Figure 2.5: Time-frequency localization property of the local cosine function φ4
using (a) r = r[1], and (b) r = r[5]. The magnitude of their corresponding Fourier
transforms (with DC component shifted to the center of each plot) using (c)
r = r[1], and (d) r = r[5] .

One of the immediate benefits of the local cosines and local sines is the fact

that they are well-localized in both time and frequency. In time, their position

uncertainty ∆x is simply the width of the window’s support; i.e., ∆x = |[αk −
εk, αk + εk]| = εk+1 − εk. In frequency, they consists of two modulated bumps

centered at n + 1
2
and −n + 1

2
with frequency uncertainty ∆ξ equal to b̂k, the

Fourier transform of the window bk(t)
∆
= rk

(
t−αk

εk

)

rk+1

(
t−αk+1

εk+1

)

. It should be

noted that both these uncertainties are dependent upon the relative steepness

of the window; that is, ∆x = ∆x(b) and ∆ξ = ∆ξ(b). These two values are

inversely proportional to each other and are related by the following inequality

known as the Heisenberg uncertainty product (see [72], p.122-124)

∆x(b) ·∆ξ(b) ≥ 1√
6
. (2.25)
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Thus, as the window becomes steeper, the time uncertainty decreases but the

frequency uncertainty increases and vice-versa. Figure 2.5 illustrates this using

a local cosine function.

The relatively small value of the right hand side of Inequality (2.25) guaran-

tees that the bases will remain reasonably localized in both time and frequency.

Even so, there still exists the fact that the local cosines and local sines have

two modulated bumps in frequency rather than one bump. This can be a detri-

ment for certain applications such as signal analysis where a specific frequency

often is requested. In addition, the local cosines and local sines lack a phase

factor. Because of this, it is only natural to try to extend the above idea to

build basis functions from windowed exponentials which have the majority of

their energy centered around one frequency. In two dimensions, the phase of the

exponential provides key information about the direction of the pattern when

describing images. Unfortunately, an obstruction stands in the way. According

to the Balian-Low Theorem (see [14], p.108) if G = {g(t − n)e2πimt : n,m ∈ Z}
is an orthonormal basis, then the Heisenberg product of g is infinite. Various

approaches have been derived to circumvent this obstacle. One such idea con-

structs Wilson bases that use cosines and sines rather than exponentials [49]. In

some respect, Wilson bases can be viewed as a special case of the LTT. But since

they reduce blocking effect without the use of folding operators, they are actually

closer to a local DCT. A comparison between Wilson bases and the CBLTT will

be presented in a future paper.

Fortunately, through careful construction of the window, the Balian-Low ob-

struction can be avoided when using complex exponentials, allowing the use of

smooth orthonormal basis functions which have the majority of their energy lo-

calized in the positive part of the frequency spectrum. This idea is described

next.
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2.2.3 Smooth orthogonal periodization

A modification to the smooth orthogonal projection PIk provides a method for

smoothly restricting a function to an interval and periodizing it, thus permitting

it to be expanded into a periodic basis with minimal edge effect; e.g., the local

Fourier or Wavelet basis. This modification, the smooth orthogonal periodization,

is defined as follows:

TIkx(t)
∆
= W ∗

Ik
1IkUIkx(t). (2.26)

In order to understand this operator, first define an I-periodic extension (or I-

periodization) xI of a function x ∈ L2(I) as

xI(t)
∆
=
∑

k∈Z
x(t− k|I|). (2.27)

Then, the operator TIk maps an L2loc(R) function into an Ik-periodic extension

of an L2(Ik) function. Moreover, TIk preserves the smoothness of a function: if

x ∈ Cd(R), then TIkx has an Ik-periodic extension that also belongs to Cd(R).

The periodized unfolding operator W ∗
Ik

in Equation (2.26) is defined as:

W ∗
Ik
x(t) =W ∗(rk, Ik, εk)x(t)

=







rk(
t−α
εk
)x(t)− rk(

αk−t
εk
)x(αk + αk+1 − t) if αk<t<αk+εk,

rk(
αk+1−t

εk
)x(t) + rk(

t−αk+1

εk
)x(αk + αk+1 − t) if αk+1−εk<t<αk+1,

x(t) otherwise.

(2.28)

This is the adjoint operator of the periodized folding operator WIk :

WIkx(t) =W (rk, Ik, εk)x(t)

=







rk(
t−α
εk
)x(t) + rk(

αk−t
εk
)x(αk + αk+1 − t) if αk<t<αk+εk,

rk(
αk+1−t

εk
)x(t)− rk(

t−αk+1

εk
)x(αk + αk+1 − t) if αk+1−εk<t<αk+1,

x(t) otherwise.

(2.29)

It is easy to show that both WI and W ∗
I are isomorphisms of L2(R) as well as

L2(I). It should be noted that the action regions and rising cutoff functions

used in W ∗
Ik

and UIk can be chosen differently. Figure 2.6 shows the periodized
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Periodized Unfolding Operator
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Figure 2.6: The periodized unfolding operator W ∗
I . The size of the action re-

gion is the same as Figure 2.3. The periodized folding operator WI is simply a
transposition of W ∗

I in this case.

unfolding operator W ∗
I for the same interval as Figure 2.3. Figure 2.7 contrasts

TI with PI .

To better clarify the difference between TI and PI , these operators are applied

to a constant function and a linear function, and the results are shown in Fig-

ure 2.8. Mathematically, the exact relationship between TI and PI is summarized

in the following equations:

T ∗I TI = PI , TIT
∗
I = 1I (2.30)

which are easily derived from the definitions (2.10) and (2.26). For an I-periodic

extension of a function supported on I, TI simply restricts such extension to

the interval I, i.e., does the role of 1I , as shown in Figure 2.8. However, its

adjoint T ∗I = U ∗I 1IWI : L
2(I)→ U ∗IL

2(I) ' Ωk, plays a key role for an I-periodic

extension of a function as follows:
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Figure 2.7: (a) The smooth orthogonal periodization operator TI , and (b) the
smooth orthogonal projector PI .

Proposition 2.2.1. Let xI(t) be an I-periodic extension of x ∈ L2(I). Then,

T ∗I xI(t) = PIxI(t).

Proof. Lemma 4.7 of Wickerhauser [72] states that if WI and UI share the same

action regions and the rising cut-off function, then for any x ∈ L2(R) we have

WI1Ix = 1IUI(1Ix)I ,

where (1Ix)I is an I-periodic extension of the restriction 1Ix. Therefore, if we

start with the I-periodized function xI instead of x above, we immediately have

WIxI = UIxI . Using this fact, it is easy to derive

T ∗I xI = U ∗I 1IWIxI = U ∗I 1IUIxI = PIxI .

Now for a general function x ∈ L2(R), using Equation (2.30), the smooth

orthogonal projection is realized in two steps :

PIx = T ∗I TIx. (2.31)

In the first step, TIx makes x(t) smoothly localized and I-periodic, which allows

TIx to be expanded into a periodic basis. Then, in the second step, T ∗I (TIx) is a
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Figure 2.8: The operators in action. (a) TI applied to the constant function 1.
(b) PI applied to the constant function. (c) TI applied to a linear function. (d)
PI applied to the linear function. Note that if the original function is periodic,
TI does simple restriction.

mapping into ΩI = PIL
2(R). This is the primary difference from the construction

of the local cosine functions, which is realized by just one step.

2.2.4 Local Fourier basis

It is now possible to construct smooth, localized, orthonormal bases using the

smooth orthogonal periodization process of the previous subsection. Let R =
⋃

k∈Z Ik where all the Ik’s have disjoint action regions. Let {em,k(t) : m ∈ Z} be a
periodic orthonormal basis of L2(Ik) = 1IkL

2(R) with period |Ik| = αk+1−αk ( a

typical example is the complex exponentials, em,k(t) = (1/
√

|Ik|)e2πim(t−αk)/|Ik|).

Then

Theorem 2.2.2 (Wickerhauser ([72], p.133-134)). The set {T ∗Ikem,k}m∈Z

is an orthonormal basis of Ωk = PIkL
2(R), and the set {T ∗Ikem,k}(m,k)∈Z2 is an

orthonormal basis of L2(R).
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From this theorem, it is easy to do both analysis and synthesis in a manner

similar to that of the local cosines and local sines:

x(t) =
∑

k

∑

m

< x, T ∗Ikem,k > T ∗Ikem,k(t)

=
∑

k

∑

m

< TIkx, em,k > T ∗Ikem,k(t). (2.32)

That is, the expansion coefficients are found using inner products < TIkx, em,k >.

These are simply the expansion coefficients of the smoothly periodized function

TIkx(t) with respect to the periodic orthonormal basis {em,k}. For the discrete

version using the complex exponentials em,k, the FFT algorithm is employed.

For synthesis, applying TIk on both sides of Equation (2.32) with Equation (2.30)

leads to

TIkx(t) =
∑

m

< TIkx, em,k > 1Ikem,k(t). (2.33)

This is just Fourier synthesis using the coefficients < TIkx, em,k > and the basis

1Ikem,k(t). For the discrete setting, the inverse FFT is simply applied to these co-

efficients. This is followed by applying T ∗Ik so that T ∗IkTIkx(t) = PIkx(t). Because

L2(R) =
⊕

k∈Z PIkL
2(R), summing yields

x(t) =
∑

k∈Z
PIkx(t). (2.34)

As was mentioned earlier, the above constructions allows for a smooth or-

thonormal basis which evades the Balian-Low obstruction. To illustrate this, let

I = [−1, 1], ε = 1 and r = r[m]. Apply PI to a complex exponential to get

PIe
2πimt = r(1− t)2r(t+ 1)2

︸ ︷︷ ︸

b+

e2πikt

+[r(t+1)r(−t−1)e−4πim−r(t−1)r(1−t)e4πik]
︸ ︷︷ ︸

b−

e2πi(−k)t (2.35)

(2.36)

It can be shown that ||b+||2 → 2 and ||b−||2 → 0 as m → ∞ (see [72] p.126, or

Section 4.4.1 for the details).
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Now, with the local Fourier functions well defined, it should be noted that

as long as the action regions of the intervals {Ik} do not interfere with each

other, then each split {Ik}k∈Z of the time axis R leads to an orthonormal basis.

This naturally leads to the concept of a dictionary of orthonormal bases or a

time-frequency dictionary.

2.2.5 Local trigonometric and local Fourier dictionaries

Recursively partitioning the time axis into a binary tree structured set of intervals,

a notion of the dictionary of orthonormal bases or time-frequency dictionary is

created (see [13], [72] p.126-130 and p.274-276). Using the same idea, it is easy

to construct the local trigonometric dictionary and the local Fourier dictionary.

Their construction is briefly described below.

Define I0,k = [k, k + 1) so that R =
⋃

k∈Z I0,k. Then recursively split the

intervals at their midpoints. After the jth recursion, each interval is of the form

Ij,k
∆
= [k/2j, (k + 1)/2j), k ∈ Z. Clearly, for each j ∈ Z, R =

⋃

k∈Z Ij,k and

Ij,k = Ij+1,2k ∪ Ij+1,2k+1. For practical purposes, assume that all of the signals

are of compact support and have been mapped to I0,0 = [0, 1); that is, all signals

are in L2(I0,0). In practice, the recursion needs to be stopped at a certain level

J ∈ N. Then, the dyadic intervals {Ij,k}, j = 0, 1, . . . , J , k = 0, 1, . . . , 2j − 1 can

be readily arranged as a binary tree with the root node I0,0. Associated with

each interval Ij,k is a subspace Ωj,k = PIj,kL
2(I0,0) with Ω0,0 = L2(I0,0). This set

of tree-structured subspaces (with the localized orthonormal basis functions at

each subspace) is called the local trigonometric dictionary or the local Fourier

dictionary depending on the basis expansion employed. This dictionary contains

a huge number (more than 22
J−1

) of orthonormal bases since each cover of I0,0 by

a subset of {Ij,k} corresponds to one orthonormal basis.

For discrete and finite dimensional versions of this dictionary, a set of discrete
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signals is sampled on the regular grid in the interval I0,0 with n time samples.

Then, this version of the dictionary consists of a redundant number (e.g., n log n)

of basis vectors with specific characteristics in scale, position, and frequency.

These basis vectors are organized as a binary tree in a hierarchical manner rang-

ing from very localized spikes to global oscillations on I0,0 with different frequen-

cies. Therefore, pattern analysis and interpretation tasks using this dictionary

become more intuitive than using the standard basis or the DCT/DST or discrete

Fourier basis on the interval I0,0. Decomposing or reconstructing a signal using

this dictionary is fast, e.g., O(n[log n]2) for LCT, LST and LFT, thanks to the

efficiency of the FFT algorithm.

In order to select a good basis out of so many possible bases, a numerical

criterion is needed to evaluate its effectiveness for a specific purpose. Once this

is defined, a bottom-up procedure is used to efficiently search for a good basis by

optimizing this criterion. This divide-and-conquer (or split-and-merge) algorithm

is called the best-basis algorithm. Therefore, this dictionary provides a flexible,

hierarchical, and computationally efficient set of feature extractors.

It should be noted that the most straightforward extension of the above con-

struction to higher dimensions can be easily achieved by the appropriate tensor

products, which is described in Chapter 6. The local Fourier dictionary for im-

ages is particularly attractive because it contains the basis vectors with oblique

oscillations, which the usual wavelet packets and local cosine/sine dictionaries do

not have. In addition, as was seen in the previous section, the local Fourier bases

can have the majority of their energy localized around one frequency. To achieve

better frequency localization properties, the local Fourier transform can be used

to segment the frequency domain instead of the space domain. If this is the case,

then the dual of the LFT arises and is know as the brushlet transform (see [53]).

The brushlet bases are efficient for capturing oriented textured patterns, and its

details are discussed next using the description of Meyer and Coifman [53].
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2.3 Brushlets

The Brushlet dictionary contains a large number of reasonably localized complex

exponential functions which contain only one peak in frequency. The decom-

position is accomplished by applying the local Fourier transform directly to the

Fourier domain. Representations of a function using this dictionary are similar

to wavelet decompositions, with the added benefit of a phase. Since brushlets are

derived from successive applications of the Fourier transform and the local Fourier

transform, the phase of the two-dimensional brushlet is similar to the phase of

the two-dimensional Fourier transform, providing key information about the ori-

entation of the corresponding brushlet. This orientation capability, coupled with

the hierarchical decomposition of the brushlet transform, means that brushlets

are well suited for textured analysis by providing very precise representation of

an image using a dictionary containing bases with all possible directions, scales,

frequencies and locations. In this section, we review the construction of the stan-

dard one and two dimensional brushlet dictionary as described by Meyer and

Coifman [53], and compare and contrast alternate versions of the algorithm.

2.3.1 One-dimensional brushlets

As mentioned in the previous paragraph, the standard brushlet dictionary is

obtained by simply applying the local Fourier transform to the frequency domain.

That is, if x(t) ∈ L2(R), x̂ is the Fourier transform of x, and um,k = T ∗Ikem,k(ξ)

are the local Fourier bases functions, then the brushlet coefficients x̂m,k are given

by

x̂(ξ) =
∑

m,k∈Z2

x̂m,kum,k(ξ). (2.37)

Now since the Fourier transform is a unitary isomorphism of L2(R), a new or-

thonormal basis {wm,k}(m,k)∈Z2 of this space can be derived by taking the inverse
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Fourier transform of the above equation:

x(t) =
∑

m,k∈Z2

x̂m,kwm,k(t). (2.38)

Thus the brushlet basis, {wm,k}(m,k)∈Z2 , is defined to be the inverse Fourier trans-

form of {um,k}(m,k)∈Z2 ; i.e., wm,k(t) = ǔm,k(t).

To better understand the structure of these brushlet bases, the following con-

struction of {um,k}(m,k)∈Z2 is useful. Although different rising cutoff functions can

be used at the end of each interval, for simplicity assume that the bump functions

and windowing functions are symmetric about the origin; that is, let v be the

bump function supported on [−ε, ε]

v(ξ) = r

(
ξ

ε

)

r

(

−ξ
ε

)

(2.39)

and let bn be the windowing function supported on [−|Ik|/2− ε, |Ik|/2 + ε]

bk(ξ) =







r2( ξ−|Ik|/2
ε

) if ξ ∈ [−|Ik|/2− ε,−|Ik|/2 + ε],

1 if ξ ∈ [−|Ik|/2 + ε, |Ik|/2− ε],
r2( |Ik|/2−ξ

ε
) if ξ ∈ [|Ik|/2− ε, |Ik|/2 + ε].

(2.40)

It can then be shown that each um,k supported in [αk−ε, αk+1+ε] can be expressed

as

um,k(ξ) = bk(ξ − ck)em,k(ξ)

+ v(ξ − αk)em,k(2αk − ξ)− v(ξ − αk+1)em,k(2αk+1 − ξ)(2.41)

where ck is the midpoint of the interval Ik. Taking the inverse Fourier transform

of this yields

wm,k(t) =
1

√

|Ik|
e2iπckt

{

(−1)mb̌k
(

t− m

|Ik|

)

−2i sin(π|Ik|t)v̌
(

t+
m

|Ik|

)}

. (2.42)

Now as the support of v decreases, the tails of bk(ξ) become shorter and steeper;

i.e., limε→0 bk(ξ) = χIk . Introducing notation illustrating the window’s depen-

dence on ε yields

vσ(ξ) = v(|Ik|ξ) (2.43)
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and

bσ(ξ) = bk(|Ik|ξ) (2.44)

where σ = ε/|Ik|. With this notation, Equation (2.42) becomes

wm,k(t) =
√

|Ik|e2iπαkteiπ|Ik|t

·
{
(−1)mb̌σ(|Ik|t−m)− 2i sin(π|Ik|t)v̌σ(|Ik|t+m)

}
. (2.45)

From this expression it is evident that wm,k is very similar to a wavelet,

with Ik and m acting as the scaling factor and translation index respectively.

The major difference, though, is that the wm,k are complex valued functions

with a phase. More precisely, the brushlet is composed of two terms, local-

ized about m/Ik and −m/Ik, each oscillating at the frequency ck. But since

|v̌σ(t))| = |v̌(t/Ik)/|Ik|| ≤ σ, then the second term in Equation (2.45) can be

made arbitrarily small. However, as σ tends to zero, the first term no longer

remains localized (the curse of the Balian-Low Theorem (see [72], p.122-126)).

2.3.2 Two-dimensional brushlets

The bi-dimensional brushlet transform is a powerful tool for analysis because

its phase provides valuable information about the orientation of the brushlet.

Constructing this orthonormal windowed basis of L2(R2) is a very straightforward

task. Simply define two partitions of R: ∪k=∞k=−∞Ik and ∪l=∞l=−∞Jl where Ik =

[αk, αk+1[ and Jl = [βl, βl+1[. If these are used to create rectangular partitions

of R2, Ik ⊗ Jl, then the separable tensor products of wm,k and wn,l form an

orthonormal basis of L2(R2):

wm,k(t1)⊗ wn,l(t2) =
√

|Ik||Jl|e2iπ(ckt1+dlt2)

·
{
(−1)mb̌σ(Ikt1 −m)− 2i sin(πIkt1)v̌σ(Ikt1 +m)

}

·
{
(−1)nb̌σ(Jlt2 − n)− 2i sin(πJlt2)v̌σ(Jlt2 + n)

}
.(2.46)
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Real part of brushlet basis Imaginary part of brushlet basis

Figure 2.9: Some standard brushlet basis functions created with a sharp rising
cutoff function (ε = 0). Although there is only one bump in frequency, the sharp
window produces a ringing effect which causes the bases to have global support.
Notice, though, how the brushlets behave like oriented wavelets; i.e., they are
shifted versions of the same pattern.

This tensor product is an oriented pattern oscillating with the frequency

(ck, dl) at two spatial locations: (m/|Ik|, n/|Jl|) and (−m/|Ik|,−n/|Jl|). Here

ck is the center of Ik, and dl is the center of Jl. But like the one-dimensional

brushlet, the steepness of the rising cutoff functions can be chosen in order to lo-

calize the two-dimensional brushlet around one spatial location, (m/|Ik|, n/|Jl|)
as can be seen in Figure 2.9. It should be noted that biorthogonal brushlets,

which allow better time-frequency localization, are also possible using a different

folding procedure (see [51]).

2.3.3 The brushlet dictionary

The brushlet dictionary is constructed in the same manner described in Sec-

tion 2.2.5. Using the best basis algorithm, the Fourier space, with DC component

shifted to the center, is recursively split into dyadic subspaces, and the brushlet

coefficients are computed for each subspace. Based on this set of coefficients, a

cost is assigned to each node of the resulting tree, and the child nodes of the tree

are pruned if their cost is greater than the cost of their immediate parent. This

process is repeated, starting at the bottom of the tree and working up to the top
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level, resulting in a globally optimal tree.

Performing a level one brushlet decomposition of the surf image, Figure 2.10,

results in the coefficient table shown in Figure 2.11. For illustrative purposes, only

the imaginary part is shown. From this table, the orientation analysis capabilities

of the brushlet are clearly exhibited. As can be seen, the upper left quadrant

of the Fourier plane contains textures whose structure is oriented along the π
4

direction: the surfers going right on the wave, the upper rightmost surfer behind

the wave. In the upper right window, textures oriented along the 3π
4

direction

are present: the surfers going left, the bottom surfer paddling up the wave.

2.3.4 Real-valued brushlets

For certain applications, such as compression, it is beneficial to decompose real-

valued data sets into purely real basis functions. For example, if a real-valued

signal is decomposed using the standard complex brushlet transform, at least

two complex transform coefficients will be needed to represent the signal. If a

real-valued brushlet transform can be used instead, it is possible to represent

the same signal using only one real-valued transform coefficient. It is therefore

important to have real versions of the brushlet transform. There are many ways

to accomplish this, two of which are described below.

The first involves simply using a real-valued Fourier transform (FFTR) in

place of the complex Fourier transform at each step of the brushlet decomposition.

That is, first apply FFTR to the global signal and then use a real-valued local

Fourier transform (LFTR) to segment the frequency domain (let this method

be denoted by FFTR→LFTR). For inversion, the transformed coefficients are

first inverted via the inverse LFTR to get the global frequency content, and

then inverse FFTR is performed to retrieve the spatial coefficients. The only

consideration is the ordering of the coefficients in the frequency space. The
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Original

Figure 2.10: Original surf image.
Imaginary part of level 1 brushlet coefficient table

Figure 2.11: Imaginary part of the level 1 brushlet coefficient table. The anti-
symmetry comes from the fact that the input image is purely real. The upper
left and bottom right quadrants contain textures oriented along the π

4
direction.

The upper right and lower left quadrants have textures oriented along the 3π
4

direction.
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following conversion between the complex Fourier transform and the real Fourier

transform makes for a natural ordering of the Fourier coefficients.

In one dimension, start with the unitary discrete Fourier transform of a signal

x of length M :

√
Mxk =

M−1∑

m=0

x̂me
2πimk

M

=
M−1∑

m=0

x̂m

[

cos

(

2π
mk

M

)

+ i sin

(

2π
mk

M

)]

= x̂0 +

M
2
−1
∑

m=1

x̂m

[

cos

(

2π
mk

M

)

+ i sin

(

2π
mk

M

)]

+ (−1)kx̂M
2
+

M−1∑

m=M
2
+1

x̂m

[

cos

(

2π
mk

M

)

+ i sin

(

2π
mk

M

)]

= x̂0 +

M
2
−1
∑

m=1

(x̂m + x̂M−m) cos

(

2π
mk

M

)

+ (−1)kx̂M
2
+ i

M−1∑

m=M
2
+1

(x̂m − x̂M−m) sin
(

2π
mk

M

)

=

M
2∑

m=0

√
2Re(x̂m)·

√
2 cos

(

2π
mk

M

)

−
M−1∑

m=M
2
+1

√
2Im(x̂m)·

√
2 sin

(

2π
mk

M

)

(∗)

It should be noted that in (∗), every
√
2 should be replaced by 1 when m = 0 and

m =M/2. With this form, the coefficients can be easily organized as follows:
{

x̂0,
√
2Re(x̂1), . . . ,

√
2Re(x̂M

2
−1), x̂M

2
,−
√
2Im(x̂M

2
+1), . . . ,−

√
2Im(x̂M−1)

}

. (2.47)

The corresponding basis functions are
√

1

M
,

{√

2

M
cos

(

2π
(1)k

M

)}M−1

k=0

, . . . ,

{√

2

M
cos

(

2π
(M
2
− 1)k

M

)}M−1

k=0

,
(−1)k√
M

,

{√

2

M
sin

(

2π
(M
2
+1)k

M

)}M−1

k=0

, . . . ,

{√

2

M
sin

(

2π
(M−1)k
M

)}M−1

k=0

.(2.48)
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In two dimensions, the same procedure can be repeated for a M ×N matrix

x. The details are provided in Appendix B.2, but the results are as follows:

√
MNxk,l =

M−1∑

m=0

N−1∑

n=0

x̂m,ne
2πi(mk

M
+nl

N )

=

M
2∑

m=0

N
2∑

n=0

√
2Re(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 cos

[

2π

(
mk

M
+
nl

N

)]

(?)

+

M
2
−1
∑

m=1

N−1∑

n=N
2
+1

√
2Re(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 cos

[

2π

(
mk

M
+
nl

N

)]

−
M−1∑

m=M
2
+1

N
2∑

n=0

√
2Im(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 sin

[

2π

(
mk

M
+
nl

N

)]

−
M∑

m=M
2

N−1∑

n=N
2
+1

√
2Im(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 sin

[

2π

(
mk

M
+
nl

N

)]

(??)

As in the one dimensional case, every
√
2 in (?) should be replaced by 1 when

(m,n) equals (0, 0), (M
2
, 0), (0, N

2
), or (M

2
, N
2
). Also, when m =M in (??), m = 0

should be used instead. With this indexing, the coefficients (†) associated with

the basis functions (‡) can easily be organized in a manner similar to the standard

complex FFT coefficients. This ordering is illustrated in Figure 2.12 with the DC

component located in the upper left corner and the Nyquist frequency located in

the center.

Although it is not necessary, it may be desirable to shift the DC component

to the center of the Fourier coefficient table so that it is surrounded by circu-

lar frequency bands of increasing frequency as they move away from the DC

component. This ordering is shown in Figure 2.13. With this arrangement, the
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(a) Real fft basis functions (b) Real fft coefficient table

Figure 2.12: (a) Basis functions of the real-valued FFT transform. The DC
component is located in the upper left corner (marked with a ◦ in (b)), and the
Nyquist component is in the center (marked with a x in (b)). (b) The shaded
region corresponds to the coefficients associated with the cosine basis, and the
non shaded region corresponds to the location of the coefficients of the sine basis.

(a) Real fft basis functions (b) Real fft coefficient table

Figure 2.13: (a) Basis functions of the real-valued FFT transform. The DC
component has been shifted to the center (marked with a ◦ in (b)) and the
Nyquist component has been shifted to the upper left corner (marked with a x

in (b)). (b) The shaded region corresponds to the coefficients associated with
the cosine basis, and the non shaded region corresponds to the location of the
coefficients of the sine basis. Notice the circular bands of increasing frequency as
the distance from the DC component increases.
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(a) (b)

Figure 2.14: (a) Partition patterns in the 2D Fourier domain (with the DC com-
ponent shifted to the center) associated with the real-valued brushlet transform
of the image shown in (b).

underlying structure of a signal can be very easily recognized from the brushlet

partition pattern that arises from a best basis approach. For example, looking at

Figure 2.14(a), the small partitions lying along the diagonals correspond to large

scale patterns that are oriented along the π
4
and 3π

4
directions in the spatial do-

main. And the large partitions that lie along the edge of Figure 2.14(a) are part

of a high frequency band, which correspond to small scale patterns such as circles

at all positions within the spatial domain. As can be seen, these observations

correspond exactly with the original textured image shown in Figure 2.14(b).

In addition, this arrangement of real-valued brushlet coefficients allows for easy

comparison with the standard complex brushlet decomposition.

Another version of the real-valued brushlet is one that uses local cosines (LCT)

or local sines (LST) to segment the frequency domain of the FFTR; this method

shall be denoted by FFTR→LCT/LST. It should be noted that it is also possible

to use the LCT/LST to segment the frequency domain of the DCT or DST (de-

noted as DCT/DST→LCT/LST), but since none of the methods based on this

approach (i.e., DCT/DST→LCT/LST) have a phase factor, this defeats one of

the main purposes for creating brushlets in the first place; brushlets were orig-

inally created to have good frequency localization and oblique oscillations. But

since the real-valued FFT and the LCT/LST both are orthogonal transforma-
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(a) (b)

Figure 2.15: Sample basis functions of the real brushlet transform. (a)
the FFTR→LFTR version with two localized, oriented bumps, and (b) the
FFTR→LCT/LST version with four localized, oriented bumps.

tions, then FFTR→LCT/LST can simply be viewed as two successive rotations

of the data. And since the LCT/LST does not have any phase, then its rota-

tion does not destroy the phase produced by the real-valued FFT. Hence, the

FFTR→LCT/LST version preserves the two most desirable properties of the

original brushlet transform.

The real-valued brushlet bases differ from the standard brushlet bases in that

they have four oriented, oscillating patterns located symmetrically about the

center of the signal rather than two complex patterns. But in the FFTR→LFTR

version of the real brushlet transform, two of these bumps can be suppressed if

a steep rising cutoff function is employed (see Equation (2.45)). However, this

is not true for the FFTR→LCT/LST brushlet bases (see Figure 2.15). In this

case, the absence of a phase in the LCT/LST causes four oriented and localized

bumps to always be present.

But for real signals and images, the real valued brushlet can often be a more

useful tool than the standard brushlet. For example, in terms of representation

cost, any real signal will require a minimum of two standard brushlet coefficients

to code it because of its complex basis functions, whereas it is possible to only

require one real valued brushlet coefficient to code the same signal.
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2.4 Wavelets

The wavelet transform (WT) (see [14] p.167-185, [47] p.241-262, [62] and [11] ch.2)

is similar to the brushlet transform in that it smoothly segments the frequency

domain. The main difference, though is that it lacks a phase, causing poor angular

resolution. In this respect, it is often considered the dual of the LCT/LST.

The mechanics of the discrete transform are as follows. First, a pair of finite

length (L) lowpass filters ({hk}L−1k=0 ) and highpass filters ({gk}L−1k=0 ) decompose

the time axis into low and high frequency parts by simultaneously performing

convolution and subsampling. Letting H and G be the operators associated with

these filters, they are constructed so as to satisfy the following orthogonality

conditions for perfect reconstruction:

HG∗ = GH∗ = 0,

H∗H = G∗G = I, (2.49)

gk = (−1)khL−1−k

Here, H∗ and G∗, are the adjoint operators of H and G respectively, and I is the

identity. The filter pairs that satisfy Equations (2.49) are known as quadrature

mirror filters. After decomposing the top level, the high frequency coefficients

are saved and the process is iterated on the low frequency components until the

bottom level is reached. At this point, both the high and low frequency compo-

nents are stored. In essence, this algorithm dyadically segments the frequency

domain into finer and finer low frequency regions.

For example, if x ∈ `2(N), then the above process will first split x into two

subsequences, Hx and Gx, both of length N/2. Then, the low frequency part,

Hx will be split dyadically again into two subsequences, H2x and GHx each

of length N/4. Repeating this process J = log2(N) times yields the N dis-

crete wavelet coefficients (Gx,GHx,GH2x, . . . , GHJx,HJ+1x). The correspond-

ing bases functions, wj,k, at scale j and position k are constructed by substituting
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(GHjx)l = δl,k, where δl,k is the Kronecker delta function, in the following synthe-

sis algorithm. Starting with the coarsest scale components, HJ+1x and GHJx,

compute

HJx = (H∗HJ+1 +G∗GHJ)x (2.50)

and iterate until x is reconstructed. If (GH jx)l = δl,k is used instead, then the

wavelet transform can be expressed simply as

(1) vanishing moments:
∑N−1

l=0 lmwj,k(l) = 0 for m = 0, . . . ,M − 1,
(2) regularity: ‖wj,k(l + 1)− wj,k(l)‖ ≤ c2−jα, for some α > 0
(3) compact support: wj,k(l) = 0 for l 6∈ [2jk, 2jk+(2j−1)(L−1)].

(2.51)

In first of these conditions (1), the size of M determines the level of compression

of the smooth parts of the signal. In second condition (2), the larger α > 0

is, the smoother the basis functions become. The last condition (3), is needed

for efficient numerical computation. As for the computational complexity, both

analysis and synthesis require O(N) operations.

A result similar to the Balian-Low theorem also exists for Wavelets; it states

roughly that a wavelet constituting orthonormal bases cannot have exponential

decay in both time and frequency [5]. As an example, take the following two well

known wavelet bases: the Shannon wavelets, which are the difference between

two sinc functions, and the Haar wavelets, which have the shortest possible fil-

ter length (L = 2). The two transforms associated with these bases clearly lie

at opposite ends of the time-frequency plane; i.e., Shannon wavelets have good

frequency localization but poor spatial localization, whereas the Haar wavelets

have poor frequency localization but good spatial localization.

2.5 Wavelet Packets

There are many instances where the wavelet transform does not provide an effi-

cient representation of a dataset because of its inability to adequately partition
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the high frequency axis. With this in mind, wavelet packets (see [72] chapter 7,

and [13]) were devised. The decomposition begins in the same manner as the

wavelet transform by splitting the frequency domain into low and high frequency

components, Hx and Gx, respectively. But, then the high frequency components

are further segmented so that the second level becomes, H2x,GHx,HGx,G2x.

Repeating this process J times produces an overcomplete set of JN expansion co-

efficients giving rise to more than 22
J−1

possible orthonormal bases. Choosing an

efficient basis from this dictionary is done via the best basis algorithm described

in Section 2.2.5 and Section 2.3.3 along with an appropriate information crite-

rion. It should be noted that the computational cost of the best-basis algorithm

is O(N log2N), for both analysis and synthesis.
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Chapter 3

Problems With The LTT

In this chapter, some of the problems and shortcomings of the local trigono-

metric transform, the brushlet transform and the wavelet transforms from Chap-

ter 2 are presented. These descriptions provide motivation for the Continuous

Boundary Local Trigonometric Transform which is introduced in Chapter 4 and

described in detail.

3.1 Inconsistencies

Some of the shortcomings of the methods named above first presented them-

selves to the author while working on a particular problem: the statistics of

natural scenes. This type of analysis has gained recent popularity in the field of

neuroscience ([6], [34], [25], [26], [54], [55], [56]), where the main focus is in better

understanding the driving force behind the evolution of the mammalian primary

visual cortex; that is, immersed in a natural environment, whether or not the

receptive fields of simple cells of mammals self-organize into edge detectors. The

basic approach in studying this has been to search overcomplete sets of bases to

find ones that provide the sparsest or least statistically dependent representation.

The main drawback, though, is the use of neural nets which are cost prohibitive
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Figure 3.1: Sample of 64x64 pixel random patches drawn from natural scenes. A
whitening filter was applied to each scene to mimic a process that occurs at the
retinal level of the mammalian visual system. The natural scenes dataset was
provided by Dr. Bruno Olshausen.

for large scale experiments. Thus, most of the experiments have been constrained

to small 16x16 pixel image patches randomly drawn from a set of natural scenes

(see Figure 3.1)

To overcome this problem, and to further analyze a class of similar images,

the above experiments were repeated by Saito and the author [63] using fast

algorithms which have finite basis dictionaries: local cosines and sines, local

Fourier, brushlets and wavelet packets. The hope was to add insight and better

understand the effects of image patch size, orthonormality, overcompleteness,

basis orientation, sparsity and statistical independence in the formation of edge

detectors. More details can be found in Saito [60] and Bénichou-Saito [7]. In
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mathematical terms, the approach is defined as follows.

Let X be a vector representing an image patch drawn randomly from a set of

natural scenes, and let Y be the vector of expansion coefficients relative to a basis

Φ, i.e., Y = Φ−1X. Then the following rule is used to search for the optimum

basis via the joint best basis algorithm ([13])

min
Φ∈D

EX{S(Y )} (3.1)

where EX is the expectation operator, and S(Y ) measures either sparsity or

statistical independence; i.e., S(y) = ||Y ||p with 0 < p ≤ 1 for sparsity, and

S(Y ) =
∑

iH(Yi) for statistical dependence among the Yi, where H(Yi) is the dif-

ferential entropy of Yi. It should be noted that limp↓0 = ||Y ||pp = limp↓0
∑

i |Yi|p =
||Y ||0 = #{i : Yi 6= 0}. Hence, the sparsity measure `p with 0 < p ≤ 1 is a more

stable approximation of true sparsity. In addition, the reason S(Y ) =
∑

iH(Yi)

measures statistical dependence among the Yi is because the mutual information

of Y is

I(Y )=

∫

fY (y1, . . . , yn) log
fy(y1, . . . , yn)
∏n

i=1 fYi(yi)
dy1 · · · dyn = −H(Y )+

n∑

i=1

H(Yi), (3.2)

where fY is a joint probability density function of Y , and fYi is a marginal pdf

found by integration the joint pdf with respect to all but Yi. Thus, the more

dependent the Yi’s are, the larger I(Y ) becomes. And as long as the basis, Φ

belongs to the set of volume preserving, linear invertible transformation, then

H(Y ) = H(X); i.e, joint entropy is preserved. The computational cost of this

approach is only O(n[log n]2), much faster than the neural net approach.

Now, as stated above, some of the shortcomings of these localized transforms

first presented themselves while working on this project. One of the main prob-

lems was the lack of any consistent results upon which to draw conclusions.

Thousands of tests were performed using patch sizes ranging from 16 × 16 to

128× 128. Variable rising cutoff function widths were tested in fixed folding and

multiple folding schemes. Many different entropy estimates were tried, as well as
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l0.01 for 64x64 natural image patches (even extension)

l0.
01

 JPEG    LCT   LCTM   LFTRC LFTRMC  D02C   C06C  BLFTRC BLFTRMC

1.584

1.586

1.588

1.59

1.592

1.594

x 10
7

Figure 3.2: Representation cost using the sparsity measure, `0.01, of various meth-
ods. Notice the wide range for the brushlet transform. With a sharp window
(BLFTRC) the method achieved one of the sparsest representations, while a
smooth windowed brushlet (BLFTRMC) was the least sparse.

many different `p norms. And throughout it all, no stable results were readily ob-

served when using LFT, LCT, LST or brushlets. The partition patterns changed

drastically for the different rising cutoff functions tested. And the overall repre-

sentation costs varied wildly as well. As can be seen in Figure 3.2, there was a

wide range in the representation cost of the real-valued brushlet transform when

a sharp window was used (BLFTRC) versus a smooth window (BLFTRMC).

The window width caused the method to range between the highest cost among

the other methods, to one of the lowest costs. This type of behavior, along with

the unpredictable test results, illustrated the impact that the folding operation

had on the data. The folding operation itself, rather than the dataset, seemed

to be the dominating factor in the optimum basis partition pattern and overall

representation cost.
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3.2 Instability Of The Folding Process

One of the main drawbacks of the LTT derives from the instability of the folding

procedure on or near a jump in the signal. Discontinuities at folding locations

cause improper boundary conditions within a subspace, often times resulting in

increased representation cost. Furthermore, once a subspace fails to achieve the

proper boundary conditions, the problem repeats itself recursively in children

subspaces, resulting in improper or unpredictable partitioning (see Figure 3.3).

In other words, it is the folding operation itself, rather than the dataset, that is

the dominating factor in the resulting basis partition pattern and overall repre-

sentation cost. In addition, since there does not exist an attractive, invertible

folding process for the top level, then this problem is present in every level of the

decomposition.

−3 −2 −1 0 1 2 3 4 5
1

2

3

4

5
Poorly periodized parent space

−3 −2 −1 0 1 2 3 4 5
2

3

4

5

6
Poorly periodized children subspaces

Figure 3.3: If the parent space is not properly periodized (top figure), then
the children subspaces will not properly periodize (bottom figure). This error
propagates recursively to lower levels of the decomposition.

Evidence of this behavior can also be seen when switching between cosine

and sine polarities. Using the same dataset, completely different basis partition

patterns arise when the polarity is switched. Figure 3.4 illustrates this fact. The

folding operation seems to be the determining factor in the choice of basis (or
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partitioning), rather than the underlying structure in the image.

(a) (b)

Figure 3.4: Basis partition patterns of the same image using the real valued local
Fourier transform with (a) sine polarity and (b) cosine polarity.

A more drastic illustration is found by applying the LTT to the image in

Figures 3.5 and 3.6. The partition pattern chosen is not based on the underlying

structure in the image. As the image is shifted and rotated, and different `p

norms are employed, the resulting segmentations are not consistent with the

image details. The discrepancies are even worse when the LFT is used.

The better understand the cause of this behavior, the following lemmas are

needed:

Lemma 3.2.1 (Wickerhauser ([72], p.110)). Suppose r ∈ Cd(R) for some

0 ≤ d ≤ ∞. If x ∈ Cd(R), then Ux has d continuous derivatives in R\{0}, and
for all 0 ≤ n ≤ d there exist limits [Ux](n)(0+) and [Ux](n)(0−) which satisfy the

following conditions:

limt→0+[Ux]
(n)(t) = 0 if n is odd,

limt→0−[Ux]
(n)(t) = 0 if n is even.

(3.3)

For I = (α0, α1)

Lemma 3.2.2 (Wickerhauser ([72], p.120)). If x ∈ Cd(R) then WIx ∈
Cd(R\{α0, α1}), has one-sided limits [WIx]

(n)(α0+) and [WIx]
(n)(α1−) for all
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p=0.1 p=0.01

p=0.1 p=0.01

Shift Invariance and Lp Invariance (LCTM) 

Figure 3.5: Comparing the left two plots to the right two plots shows the insta-
bility of the partition pattern under two different sparsity measures (`0.1 versus
`0.01) using LCT with multiple folding (LCTM). Comparing the top two plots to
the bottom two plots shows the lack of robust partitioning under a shift using
LCTM.

0 ≤ n ≤ d, and satisfies the following conditions:

limt→α0+[WIx]
(n)(t) = 0 if n is odd;

limt→α1−[WIx]
(n)(t) = 0 if n is even.

(3.4)

Conversely, if x ∈ Cd(I) with one-sided limits x(n)(α0+) and x(n)(α1−) for all

0 ≤ n ≤ d which satisfy

limt→α0+ x
(n)(t) = 0 if n is odd;

limt→α1− x
(n)(t) = 0 if n is even,

(3.5)

then W ∗
I x satisfies the equation

limt→α0+[W
∗
I x]

(n)(t) = limt→α1−[W
∗
I x]

(n)(t), for all 0 ≤ n ≤ d. (3.6)
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Rotation Invariance (LCTM, p = 0.1) 

Figure 3.6: Non robust partition patterns under a rotation of the image using
LCTM.

Thus W ∗
I 1Ix has a continuous periodic extension in Cd(R).

So suppose that x ∈ Cd([0, 1]) and x(0) 6= x(1); that is, x does not have a

continuous periodic extension. Assume that full cosine polarity folding is used

along with LCT or LFT. Now the mechanics of the these transforms are as

follows. At the top level of the decomposition, periodic folding is first applied

to the boundary of the signal; i.e., W[0,1]x. But since x does not satisfy the

condition of Lemma 3.2.2, namely x /∈ Cd(R) for any d, Equations (3.4) will

not hold true for any d. In the next step of the process, folding is performed

at the midpoint of the signal; x̃LCT[0,1] = U 1
2
W[0,1]x. According to Lemma 3.2.1,

Equations (3.3) will be valid for all d. What this means is that the left half

interval will have boundary conditions matching those of the LCT basis functions
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for level 1, but the right half interval will not. Similarly, if LFT is used instead

of LCT, then periodized unfolding is needed to periodize the two half intervals;

i.e., x̃LFT
[0, 1

2
]
= W ∗

[0, 1
2
]
U 1

2
W[0,1]x and x̃LFT

[ 1
2
,1]

= W ∗
[ 1
2
,1]
U 1

2
W[0,1]x. But after applying

this final step, it is clear that conditions (3.5) are only satisfied for d = 0 on

x̃LFT
[0, 1

2
]
. On x̃LFT

[ 1
2
,1]
, they will not be satisfied for any d. In other words, regardless of

the method used, LCT or LFT, if the parent interval does not have the proper

boundary conditions, then the left child interval will have the proper boundary

conditions, but the right child interval will not.
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2.8

(a)

20 40 60 80 100 120
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2.4

2.6

2.8

(b)

Figure 3.7: Basis partition patterns of the same signal using the real-valued local
Fourier transform. The patterns were chosen using (a) cosine polarity and (b)
sine polarity.

Repeating the process in a recursive manner yields the same results for the

right child subspace for either method, LCT or LFT. Since x̃[ 1
2
,1] does not have

the proper boundary conditions, then just like its parent interval, its left child

interval will have the proper boundary conditions while its right child interval

will not. On the other hand, since x̃[0, 1
2
] has the proper boundary conditions

for d = 0, then its two children will also have continuous extensions in C0.

This pattern repeats itself recursively for all children intervals so that at each

level of the decomposition, every interval has the proper boundary conditions
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except for the one farthest to the right. Hence, when the best basis algorithm is

employed, it tries to minimize the effect of this rightmost discontinuous interval

by confining it to the smallest subspace possible: the one at the bottom level of

the decomposition. This leads to partition patterns like those of figure 3.7(a). If,

instead, sine polarity is used, then similar results appear, but in reverse order;

that is, all of the children intervals have the proper boundary conditions in C0

except for the one farthest to the left. This gives rise to partition patterns like

those seen in figure 3.7(b).

LCTM, p = 0.3

Figure 3.8: Basis partition patterns of an image using the local Cosine transform.
Notice that the partition pattern found in Figure 3.4(b) appears in many locations
throughout the image.

Since this problem can occur whenever folding takes place at a discontinuity,

then these same patterns can appear at any level and location within the de-
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composition. Figure 3.8 illustrates this. Notice that the partition pattern found

in Figure 3.4(b) appears in many locations throughout the image. It is there-

fore very important to try to reduce this artifact, thus allowing the underlying

structure within the signal to dictate the partitioning, rather than the folding

procedure.

3.3 Mixing Information Across Boundaries

Another problem arises because information within subspaces is folded across

boundaries; that is, basis functions have global support. Although this can pro-

duce a desirable effect when reconstructing compressed signals by reducing the

blocking effect between subspace boundaries, it also can be a detriment to vari-

ous applications such as texture segmentation and signal analysis. This becomes

particularly problematic for the LFT and BT since they require the additional

“periodized unfolding” operations (equation (2.28)) which are not needed for the

LCT.

20 40 60 80 100 120

2.2

2.4

2.6

2.8

Original signal

20 40 60 80 100 120

2.2

2.4

2.6

2.8

3

LFT periodization (level 1)

20 40 60 80 100 120
2

2.5

3

LFT periodization (level 5)

Figure 3.9: LFT periodization causes the sharp bump in the parent space to be
mixed into many locations of the children subspaces.

As can be seen in Figure 3.9, a structure such as the sharp bump which is
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localized to one region of the parent space, is mixed within all children subspaces

when using LFT periodization. By the time the bottom level of the decomposition

is reached, the bump is mixed to every region of the signal; in essence, almost

all recognizable structure has been lost due to the mixing of information across

subspace boundaries.

In response to the problems described above, an approach was devised to

remedy these and other shortcomings. In particular, the algorithm satisfies the

following constraints:

• It is invertible;

• It operates on all subspaces including the top level;

• It is stable, preserving continuity at the subspace boundaries;

• It is computationally efficient;

• It is an isometry for use in the best basis algorithm.

One possible solution is presented in the next section.
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Chapter 4

The Continuous Boundary Local
Trigonometric Transform

In this chapter, the Continuous Boundary Local Trigonometric Transform is

presented. The derivation includes the earliest approaches, and illustrates how

their shortcomings led to the much improved later versions, which will be de-

scribed in Chapter 5. Many alternate approaches are described in Appendix B.4.

4.1 Reduction of Edge Effect

The main goal of the CBLTT is to stabilize the folding process by forcing con-

tinuity at the location of folding; i.e., at the boundaries of the subspaces in the

hierarchy of the LTT decomposition. To achieve this goal, each subspace is con-

sidered to be disjoint of one another so that no information is mixed between

adjacent intervals during the folding procedure, and an artificial extension is cre-

ated in a continuous fashion at the boundary of each subspace. It is because

of this forced continuity at the boundary that this algorithm derives its name

(CBLTT). Although there exists an infinite number of possible continuous ex-

tensions, the minimum requirement is to create one with certain properties that
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make for stable inversion. The reason for this requirement is that after folding is

performed in the forward direction, for compression purposes the folded extension

is discarded. Thus, inverse folding cannot be performed unless an inverse formula

can be derived from the structure of the artificial extension. As will be seen in

the remainder of the thesis, finding a stable inverse is not a simple manner.

To begin with, an inverse does not always exist in the continuous case. To

see this, and for simplicity, start with an even extension; that is, let the artificial

extension be created by reflecting the data within the subspace about the sub-

space boundaries. Folding is then performed at each subspace boundary, and the

folded extensions are discarded. The result is a windowed signal which has the

proper boundary conditions for the LCT or LST, depending on the polarity. If

the subspace is to be periodized instead (as a preprocessing step for LFT), then

periodized unfolding, W ∗, should be applied to the result.

Mathematically this approach is formulated as follows. Let x(t) ∈ Cd[0, 1]

for some d. Let x(0) 6= x(1); i.e., there is a discontinuity at the boundary if the

function is periodized. Let 0 ≤ ε ≤ 1
2
where ε is the radius of the rising cutoff

function. Then the even extension is defines as x(t) = x(−t) for t ∈ [−ε, 0], and
x(t) = x(2− t) for t ∈ [1, 1 + ε]. Using Equation (2.12), folding becomes

x̃(t) =







r
(
t
ε

)
x(t) + r

(−t
ε

)
x(−t) if 0 < t < ε,

x(t) if ε ≤ t ≤ 1− ε,
r
(
1−t
ε

)
x(t)− r

(
t−1
ε

)
x(2− t) if 1− ε < t < 1,

=







[
r
(
t
ε

)
+ r

(−t
ε

)]
x(t) if 0 < t < ε,

x(t) if ε ≤ t ≤ 1− ε,
[
r
(
1−t
ε

)
− r

(
t−1
ε

)]
x(t) if 1− ε < t < 1,

(4.1)

where x̃ denotes the folded function. From Equation (4.1), the formula for inver-

sion becomes

x(t) =







x̃(t)

r( t
ε)+r(

−t
ε )

if 0 < t < ε,

x̃(t) if ε ≤ t ≤ 1− ε,
x̃(t)

r( 1−t
ε )−r( t−1

ε )
if 1− ε < t < 1.

(4.2)
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As can be seen by Equation (4.2), when t = 1, x(1) = x̃(1)
r(0)−r(0) which is undefined.

Thus, inversion is impossible unless the value of the right hand boundary is stored.

Luckily, though, this obstacle can be circumvented when the problem is cast in a

discrete setting. Not only does it become possible to find an inverse, but is it is

also possible to find stable inverse formulas. Because of this fact, the formulation

of the CBLTT is continued in a discrete setting, referring to the continuous case

only when it adds insight into the understanding of the algorithm.

−4 −2 0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

n

x n

Even 1

Figure 4.1: Example of an even extension of a linear function with midpoint
folding. In this example, N = 7.

Repeating the above derivation with discrete variables produces the following.

Let xn be a function of N+1 discrete points indexed from 0 to N (see Figure 4.1).

Let x0 6= xN , i.e., there is a discontinuity at the boundary if the function is simply

periodized. For simplicity, let R be the radius of the rising cutoff function such

that R ≤ N+1
2

, and let n = 0, . . . , R− 1 in all of the following formulas.

Then one version of the discrete continuous even extension can be constructed

according to Figure 4.1 using midpoint folding. With this arrangement, the values

of the extension to the left of x0 are given by

x−n−1 = xn (4.3)
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and the values of the extension to the right of xN are

xN+n+1 = xN−n. (4.4)

Using Equation (2.12), folding at the left hand edge is defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1xn

= (rn + r−n−1)xn (4.5)

and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1xN−n
= (rn − r−n−1)xN−n. (4.6)

For inversion, simply solve for xn in Equation (4.5) to get

xn =
x̃n

rn + r−n−1
(4.7)

and for xN−n in Equation (4.6) to get

xN−n =
x̃N−n

rn − r−n−1
. (4.8)

For future reference, CBLFT methods based on even extensions will be denoted

as CELFT. If the letter M or G is included, this denotes midpoint folding or

gridpoint folding respectively. For example, CEMLFT stands for the Continuous

Even extension Midpoint folding Local Fourier Transform.

One of the first problems that arises is that this is not a unitary transfor-

mation. To see this, let UE be the even extension folding operation defined by
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Equations (4.5) and (4.6); that is x̃ = UEx where

UE =



















r0 + r−1 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0

0 0 rR−1 + r−R 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 rR−1 − r−R 0 0

0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 r0 − r−1



















.

Now, since UE is diagonal, it will be an unitary transformation as long as its

diagonal entries lie on the unit circle. Clearly this is not the case for the above

matrix. Hence, it is not a unitary transformation; in particular, it is not an

isometry. This latter condition is necessary for use in the best basis algorithm

to facilitate a comparison between parent and children subspaces. Now, the

folding operation, U , is itself unitary, preserving energy of the original signal.

But when artificial extensions are introduced at the boundary, energy is added

to, or removed from, the subspace. After folding, there is no guarantee that the

change in energy of the left and right parts of the subspace cancel each other out.

Consequently, the following simple idea is proposed to guarantee an isometry.

• Starting with one half of the subspace, extend the signal as an even reflec-

tion about the boundary and perform odd polarity folding;

• Discard the folded extension;

• At the other boundary, extend the signal as an even reflection and add a

certain amount, say s, to the signal and extension;

• Perform even polarity folding at this location;

• Subtract s from the signal and extension so that continuity is preserved

throughout the interval;
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• Discard the folded extension;

• Perform periodized unfolding if required (for CBLFT).

Figure 4.2 illustrates this idea.
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Figure 4.2: Isometric folding with an even extension.

Mathematically, the generalized isometric folding formula for the left half

interval can be found using Equation (4.5) with the addition and subtraction of

s = s(xn) to get

x̃s,n = rn(xn + s) + r−n−1(x−n−1 + s)− s

= rnxn + r−n−1x−n−1 + s(rn + r−n−1 − 1)

= (rn + r−n−1)xn
︸ ︷︷ ︸

x̃n

+s (rn + r−n−1 − 1)
︸ ︷︷ ︸

λn

. (4.9)
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where x̃s,n stands for the folded result with amplitude shift. Thus, this is just the

standard folding operation, with the added term, sλn. The fact that s must be

computed from xn in order to guarantee the isometry is addressed in section 4.3.

For inversion, solving for xn in the previous formula yields the generalized

isometric inversion formula for the left half interval. It is

xn =
x̃s,n

rn + r−n−1
︸ ︷︷ ︸

zn

−s λn
rn + r−n−1
︸ ︷︷ ︸

αn

. (4.10)

Notice that this is just the standard inversion operation of Equation (4.7) applied

to x̃s,n with the added term −sαn.

4.2 Initial Drawbacks of the CBLTT

One of the first noticeable drawbacks of the CBLTT is the lack of C1 continuity

at the subspace boundaries between the signal and the even extension. This

translates into a cusp at the boundary when viewed as a periodic function (see

the bottom plot in Figure 4.2). As was mentioned in Section 2.2.3, the amount

of smoothness the function has at the folding location is preserved by the folding

and periodization operators. So it would be better to design C1 extensions.

Another problem is that a real-valued constant, s, does not always exist.

Although complex constants are possible, there are many times when it is not

desirable to allow complex shifts to occur. For all of the examples and experiments

in this paper, only real-valued signals are used; hence, only real-valued shifts make

sense.

A third drawback is that this method is not linear. To see this, consider the

following proposition. For simplicity, the proposition has been generalized for the

continuum case, although the results hold true for the discrete version as well.

Proposition 4.2.1. Let sx = s(x) ∈ R and let U be the unitary folding operator
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defined by Equation (2.16). Then Usxx(t)
∆
= U [x(t) + sx] − sx is not a linear

operator.

Proof. Let z(t) = ax(t) + by(t) where x(t) ∈ L2(R) and y(t) ∈ L2(R), and a ∈ R
and b ∈ R are scalars. Then

Uszz(t) = Usz [ax(t) + by(t)]

= U [ax(t) + by(t) + sz]− sz
= aUx(t) + bUy(t) + Usz − sz
= [aUx(t)+aUsz−asz]+[bUy(t)+bUsz−bsz]+(1−a−b)(Usz−sz)

= a {U [x(t)+sz]−sz}+b {U [y(t)+sz]−sz}+(1− a− b)(Usz−sz)

= aUszx(t) + bUszy(t) + (1− a− b)Usz0

6= aUszx(t) + bUszy(t) for all sz.

To see why Usz0 6= 0 for every sz, simply combine Equations (4.9) and (2.12) to

get

Usz(r, α, ε)x(t)
∆
=







[
r
(
t−α
ε

)
+ r

(
α−t
ε

)]
x(t)

+sz
[
r
(
t−α
ε

)
+ r

(
α−t
ε

)
− 1
]

if α < t < α + ε,
[
r
(
α−t
ε

)
− r

(
t−α
ε

)]
x(2α− t) if α− ε < t < α,

x(t) otherwise.

Thus if x(t) ≡ 0, then

Usz(r, α, ε)0 =

{

sz
[
r
(
t−α
ε

)
+ r

(
α−t
ε

)
− 1
]

if α < t < α + ε

0 otherwise

6= 0 unless sz = 0.

This makes it difficult to analyze and construct basis functions.

Another problem is the instability of the inversion formula. According to

Equation (4.8), the reconstructed signal depends on values divided by small num-

bers near the odd parity boundary; recall that 0 < rn− r−n−1 ¿ 1 for values of n
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near 0. So reconstruction errors due to thresholding or quantization are enhanced.

This can be seen in Figure 4.3 which shows a subspace being compressed at the

rate of 4:1 while using CBLFT. Compression was achieved by simple threshold-

ing; that is, only the most energetic 25 percent of the transformed coefficients

were retained for this example.
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Figure 4.3: (a) Original signal. (b) Compression results of 4:1 using just the
top level CBLFT. Notice that the left half interval exhibits stable reconstruction,
whereas the right half interval is unstable.

The last issue involves the computation of the constant, s. One method of

evaluation involves searching for the shift via some rootfinding scheme such as

the Bisection Method. But this can be a costly operation with potentially slow

convergence; for example, the Bisection Method has only a linear convergence

rate. It would therefore be better to derive an explicit formula for the constant,

s. Each of these issues is addressed in the next sections, starting with this last

issue of finding an explicit formula for s.
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4.3 An Explicit Shift Formula

With isometric folding well defined, a formula for finding an explicit value of s

can be easily derived by using the notation from the previous section along with

the definition of an isometry:

0 =
∑R−1

n=0

[

(x̃n + sλn)
2 + x̃2N−n

]

−∑R−1
n=0

(
x2n + x2N−n

)

⇔ 0 =
∑R−1

n=0

(
x̃2n + 2sx̃nλn + s2λ2n + x̃2N−n − x2n − x2N−n

)

⇔ 0 = s2
∑R−1

n=0 λ
2
n + 2s

∑R−1
n=0 x̃nλn +

∑R−1
n=0

(
x̃2n + x̃2N−n − x2n − x2N−n

)

⇔ s =
−∑R−1

n=0 x̃nλn±
√

(
∑R−1

n=0 x̃nλn)
2−∑R−1

n=0 λ
2
n·

∑R−1
n=0 (̃x2

n+x̃
2
N−n−x2

n−x2
N−n)

∑R−1
n=0 λ2

n

. (4.11)

In a similar fashion, the formula for isometric inversion can be easily computed

to give

s =
∑R−1

n=0 αnzn±
√

(
∑R−1

n=0 αnzn)
2−

∑R−1
n=0 α

2
n·
∑R−1

n=0 (z2
n+z

2
N−n−x̃2

s,n−x̃2
s,N−n)

∑R−1
n=0 α

2
n

. (4.12)

where zn and αn are given by Equation (4.10), and zN−n is simply the results of

applying Equation (4.8) to x̃s,n.

It should be noted that most of the values in Equations (4.11) and (4.12)

are constants that can be precomputed only once for each interval; hence, there

is little computational overhead involved with these isometric operators. To be

exact, notice that λn and
∑R−1

n=0 λ
2
n can both be precomputed once and stored for

use in all subsequent calls to the folding and unfolding operators. Therefore, the

computational cost is found from the remaining terms to be:

R−1∑

n=0

x̃nλn : R mults + R− 1 adds = 2R− 1 flops

R−1∑

n=0

(x̃2n + x̃2N−n + x2n + x2n) : 4R mults + 4R− 1 adds = 8R− 1 flops

Adding these together along with 6 additional flops needed to compute Equa-

tion (4.11) yields a total cost of 10R + 4 flops for each interval. Even if full



4.4 The Continuous Odd Extension 61

folding is employed, where R = N
2
, this is still an O(N) operation. Thus DCT,

DST and FFT are still the most costly parts of the procedure.

4.4 The Continuous Odd Extension

In response to the cusp problem described in Section 4.2, the idea of adding

C1 continuity is natural. One obvious choice of an extension is to use an odd

function which is shifted to force continuity. Mechanically, the procedure operates

in exactly the same manner as the even extension, simply with the new continuous

odd extension substituted. See Figure 4.4. Mathematically, things become a bit
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Figure 4.4: Isometric folding with a continuous odd extension.

more challenging, though, especially for the inversion formulas. To start with,

let n = 0, . . . , R− 1 in all of the formulas in this section. Then the values for the
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extension to the left of x0 are given by

x−n−1 = x0 − (xn − x0)

= 2x0 − xn (4.13)

and the values of the extension to the right of xN are

xN+n+1 = xN + (xN − xN−n)

= 2xN − xN−n. (4.14)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1(2x0 − xn)

= (rn − r−n−1)xn + 2r−n−1x0 (4.15)

and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1(2xN − xN−n)

= (rn + r−n−1)xN−n − 2r−n−1xN . (4.16)

Now, for the isometric version, the isometric folding formula for the left half

interval, x̃s,n, can be found using Equation (4.11) with the following values of x̃n

and λn

x̃s,n = rn(xn + s) + r−n−1(x−n−1 + s)− s

= rnxn + r−n−1x−n−1 + s(rn + r−n−1 − 1)

= rnxn + r−n−1(2x0 − xn)
︸ ︷︷ ︸

x̃n

+s (rn + r−n−1 − 1)
︸ ︷︷ ︸

λn

. (4.17)

where x̃s,n stands for the folded result with shift. Thus, this is just the standard

folding operation, with the added term, sλn.
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Solving for x in Equations (4.15) and (4.16) yields the following formula for

inverse folding on the left half interval

xn =
x̃n − 2r−n−1x0
rn − r−n−1

(4.18)

and on the right half interval

xN−n =
x̃N−n + 2r−n−1xN

rn + r−n−1
. (4.19)
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Figure 4.5: Periodization comparison. (a) Original signal, (b) CELFT periodiza-
tion, (c) COLFT periodization.

Now this approach yields implicit inversion formulas dependent on x0 and xN .

Luckily explicit formulas can be easily found for x0 and xN and they are

x0 =
x̃0

r0 + r−1
(4.20)

and

xN =
x̃N

r0 − r−1
. (4.21)

Substituting these results into Equations (4.18) and (4.19) produces the following

generalized inversion formulas for the left half interval

xn =
x̃n − 2r−n−1x̃0

r0+r−1

rn − r−n−1
(4.22)
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and for the right half interval

xN−n =
x̃N−n +

2r−n−1x̃N
r0−r−1

rn + r−n−1
. (4.23)
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Figure 4.6: Spectrum of the functions in Figure 4.5.
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Figure 4.7: 4:1 compression using (a) CELFT and (b) COLFT.

For the isometry, the generalized isometric inversion formula for the left half

interval is found using Equation (4.17) to be

xn =
x̃s,n − 2r−n−1x̃s,0

r0+r−1

rn − r−n−1
︸ ︷︷ ︸

zn

+s
λn

rn − r−n−1
︸ ︷︷ ︸

αn

. (4.24)
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Using both zn and αn in Equation (4.12) will give the value of the isometric shift.

So, once again, inversion is obtained by simply applying the standard unfolding

operation of Equation (4.22) to x̃s,n, and adding the term, sαn.

For simplicity, let the CBLFT based on this continuous odd folding scheme

be called COLFT. Figure 4.5 shows the results of periodizing the function x(t) =
cos(t)+1

2
+ 2 for −2 ≤ t ≤ 5 using the COLFT and the CELFT with r = r[1].

Clearly, the continuous odd extension does a much nicer job of periodizing the

signal by eliminating the cusp. And looking at Figure 4.6, use of the continuous

odd extension provides better frequency localization than use of the continuous

even extension. As a matter of fact, the sparsity measure with `1-norm is 37.02 for

the original, 36.17 for CELFT periodization and 33.26 for COLFT periodization.

But when the signals are compressed, the COLFT doesn’t perform better than

CELFT as can be seen in Figure 4.7. Errors at both boundaries are enhanced

in the COLFT due to the fact that both boundary values are divided by small

numbers in the inversion formulas (see Equations (4.22) and (4.23)).
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Figure 4.8: Rising cutoff functions of various steepness. From top to bottom,
m = 1 to 5 using Equation (2.14).

Thus, higher stability could be achieved if the distance between rn and r−n−1

could be increased when n is near 0. One simple method is to use a steeper
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Figure 4.9: The value of r0 − r−1 for various m in Equation (2.14).
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Figure 4.10: 4:1 compression using Equation (2.14) and (a) CELFT with m = 3,
(b) COLFT with m = 5. Notice the improvement over the results in Figure 4.7

rising cutoff function (rcf); that is, to choose an rcf that has higher degrees of

continuous derivatives near its boundaries. One possibility is to increase m in

Equation (2.14). Some plots of Equation (2.14) with various values of m are

shown in Figure 4.8. The corresponding distance between r0 and r−1 are shown

in Figure 4.9. Figure 4.10 shows the improvement in compression when using

these different rcfs.

Another method is to multiply a taper function and the extension in order

to increase the difference between rn and r−n−1. To do this, define a function

τ(t) ∈ Cd(R) with d ≥ 0 such that τ(0) = 1, τ(1) = 0 and τ ′(0) = τ ′(1) =
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0. Simple examples are polynomials fitted with these boundary conditions, or

functions similar to the rcfs of Equation (2.14):

τ(t)
∆
= r[m+1](y) = r[m](sin

π

2
y) (4.25)

where

r[0](y) =







1, if y ≤ −1,
sin[π

4
(1− y)], if |y| < 1,

0 if y ≥ 1

(4.26)

and

y(t) = 2t− 1. (4.27)

Mathematically, the folding procedure becomes

U(r, τ, ε)x(t)
∆
=







r
(
t
ε

)
x(t) + r

(−t
ε

)
[τ( t

ε
)x(−t)] if 0 < t < ε,

r
(
1−t
ε

)
x(t)− r

(
t−1
ε

)
[τ(1−t

ε
)x(2− t)] if 1− ε < t < 1,

x(t) otherwise

=







r
(
t
ε

)
x(t) + r̃

(−t
ε

)
x(−t) if 0 < t < ε,

r
(
1−t
ε

)
x(t)− r̃

(
t−1
ε

)
x(2− t) if 1− ε < t < 1,

x(t) otherwise.

(4.28)

This is equivalent to using the standard folding function along with the following

modified rising cutoff function

r̃(t) =







0, if t ≤ −1,
τ(−t)r(t), if −1 < t ≤ 0,

r(t), if 0 < t < 1,

1 if t ≥ 1.

(4.29)

A plot of r̃ with a certain τ is shown in Figure 4.11. Figure 4.12 illustrates

the improvement in compression achieved when using a taper function along

with r = r[5] and COLFT. The `2 error between the original signal and the

reconstructed signal was 0.024 when using a taper function for this example, and

0.088 without one.



4.4 The Continuous Odd Extension 68

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

(c)

Figure 4.11: Example of how a taper function, τ , affects a rising cutoff function.
(a) A typical RCF, (b) τ and (c) r̃.

4.4.1 Mixing of Information

Another issue is the amount of information that is mixed within each subspace

because of CBLTT windowing. Recall Figure 3.9 which shows the sharp bump

mixed within the subspace. This mixing can affect the frequency localization

properties of the CBLFT. To better understand this, consider the continuous odd

extension as an example. This type of extension can be split into two parts; that

is, the sum of an odd extension and a piecewise constant function. Figure 4.13

illustrates the idea. To be more precise, let I = [0, 1], let r[m] be the rising cutoff

function defined by Equation 2.14, let x(t) ∈ L2(I) be a function with continuous

odd extensions (top plot in Figure 4.13), let f(t) be the same function with odd

extension (middle plot in Figure 4.13), and let g(t) be the piecewise constant

function (bottom plot in Figure 4.13). That is, x(t) = f(t) + g(t). Now, due to

linearity of the periodization operator, TIx(t) = TIf(t) + TIg(t), evaluating each
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Figure 4.12: Results of 4:1 compression using a continuous odd extension along
with the taper function, τ , shown in Figure 4.11(b). The solid line shows the
results when no taper function was employed, and the dotted line shows the
results when a taper function was used.

of these parts independently yields

UIg(t) =







r[m]
(
t
ε

)
g(t) + r[m]

(−t
ε

)
g(−t) if 0 < t < ε

g(t) if ε < t < 1− ε

r[m]
(
1−t
ε

)
g(t)− r[m]

(
t−1
ε

)
g(2− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

)
(0) + r[m]

(−t
ε

)
[2x(0)] if 0 < t < ε

0 if ε < t < 1− ε

r[m]
(
1−t
ε

)
(0)− r[m]

(
t−1
ε

)
[2x(1)] if 1− ε < t < 1

,

=







2r[m]
(−t
ε

)
x(0) if 0 < t < ε

0 if ε < t < 1− ε

−2r[m]
(
t−1
ε

)
x(1) if 1− ε < t < 1

. (4.30)
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Figure 4.13: The continuous odd extension (top figure) split into the sum of an
odd extension (middle figure) and a piecewise constant function (bottom figure).

Therefore,

TIg(t) = W ?
I 1IUIg(t)

=







r[m]
(
t
ε

)
UIg(t)− r[m]

(−t
ε

)
UIg(1− t) if 0 < t < ε

0 if ε < t < 1− ε

r[m]
(
1−t
ε

)
UIg(t) + r[m]

(
t−1
ε

)
UIg(1− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

) [
2r[m]

(−t
ε

)
x(0)

]

−r[m]
(−t
ε

) [
−2r[m]

(−t
ε

)
x(1)

]
if 0 < t < ε

0 if ε < t < 1− ε

r[m]
(
1−t
ε

) [
−2r[m]

(
t−1
ε

)
x(1)

]

+r[m]
(
t−1
ε

) [
2r[m]

(
t−1
ε

)
x(0)

]
if 1− ε < t < 1

,

=







2r[m]
(−t
ε

) [
r[m]

(
t
ε

)
x(0) + r[m]

(−t
ε

)
x(1)

]
if 0 < t < ε

0 if ε < t < 1−ε
2r[m]

(
t−1
ε

) [
r[m]

(
t−1
ε

)
x(0)− r[m]

(
1−t
ε

)
x(1)

]
if 1− ε < t < 1

.(4.31)
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In a similar fashion,

UIf(t) =







r[m]
(
t
ε

)
f(t) + r[m]

(−t
ε

)
f(−t) if 0 < t < ε

f(t) if ε < t < 1− ε

r[m]
(
1−t
ε

)
f(t)− r[m]

(
t−1
ε

)
f(2− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

)
x(t) + r[m]

(−t
ε

)
[−x(t)] if 0 < t < ε

x(t) if ε < t < 1− ε,

r[m]
(
1−t
ε

)
x(t)− r[m]

(
t−1
ε

)
[−x(t)] if 1− ε < t < 1

=







[
r[m]

(
t
ε

)
− r[m]

(−t
ε

)]
x(t) if 0 < t < ε

x(t) if ε < t < 1− ε
[
r[m]

(
1−t
ε

)
+ r[m]

(
t−1
ε

)]
x(t) if 1− ε < t < 1

. (4.32)

Therefore,

TIf(t) = W ?
I 1IUIf(t)

=







r[m]
(
t
ε

)
UIf(t)− r[m]

(−t
ε

)
UIf(1− t) if 0 < t < ε

f(t) if ε < t < 1− ε

r[m]
(
1−t
ε

)
UIf(t) + r[m]

(
t−1
ε

)
UIf(1− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

) [
r[m]

(
t
ε

)
− r[m]

(−t
ε

)]
x(t)

−r[m]
(−t
ε

) [
r[m]

(
t
ε

)
+ r[m]

(−t
ε

)]
x(1− t) if 0 < t < ε

x(t) if ε < t < 1−ε
r[m]

(
1−t
ε

) [
r[m]

(
1−t
ε

)
+ r[m]

(
t−1
ε

)]
x(t)

+r[m]
(
t−1
ε

)[
r[m]

(
1−t
ε

)
− r[m]

(
t−1
ε

)]
x(1− t) if 1− ε < t < 1

.(4.33)

Now to see the effects of this folding procedure, let x(t) = e2πibt where b > 0.

Then Equations (4.31) and (4.33) become

TIg(t) =







2r[m]
(−t
ε

)
r[m]

(
t
ε

)
+ 2r2[m](−t)e2πib if 0 < t < ε

0 if ε < t < 1− ε

2r2[m](t− 1)− 2r[m]
(
t−1
ε

)
r[m]

(
1−t
ε

)
e2πib if 1− ε < t < 1

(4.34)

= a1(t)
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and

TIf(t) =







r[m]
(
t
ε

) [
r[m]

(
t
ε

)
− r[m]

(−t
ε

)]
e2πibt

−r[m]
(−t
ε

) [
r[m]

(
t
ε

)
+r[m]

(−t
ε

)]
e2πibe2πi(−b)t if 0 < t < ε

e2πibt if ε < t < 1−ε
r[m]

(
1−t
ε

) [
r[m]

(
1−t
ε

)
+ r[m]

(
t−1
ε

)]
e2πibt

+r[m]
(
t−1
ε

)[
r[m]

(
1−t
ε

)
−r[m]

(
t−1
ε

)]
e2πibe2πi(−b)t if 1−ε < t < 1

(4.35)

= a2(t)e
2πibt + a3(t)e

2πi(−b)t.

The energy of the coefficient function, a2(t), in front of e2πibt in Equation (4.35)

indicates the relative strength of the positive frequency components of TIx(t).

Similarly, the energy of the coefficient function, a3(t), in front of e2πi(−b)t in Equa-

tion (4.35) indicates the relative strength of the negative frequency components of

TIx(t). The function a1(t) is the part that actually performs the periodization by

forcing the endpoints of x(t) to meet in a continuous fashion; for example, check-

ing the endpoints in Equations (4.34) and (4.35) shows that TIx(0) = TIx(1) = 1

for all m. a1(t) is analyzed in depth in the next chapter.

To see the effect that the rising cutoff function has on this process, take limits

as m → ∞ of Equations (4.34) and (4.35). To do this, first notice that every

term in these two equations is a combination of terms r[m]
(
t
ε

)
and r[m]

(−t
ε

)
on

0 < t < ε (note that r[m]
(
1−t
ε

)
|t∈(1−ε,1) = r[m]

(
t
ε

)
|t∈(0,ε) and r[m]

(
t−1
ε

)
|t∈(1−ε,1) =

r[m]
(−t

ε

)
|t∈(0,ε)). So start by analyzing the following:

lim
m→∞

r[m](t) = lim
m→∞

sin







π

4






1 + sin

(π

2
sin
(π

2

(

· · ·
(

sin
(π

2
t
)))))

︸ ︷︷ ︸

m times













= sin





π

4




1 + lim

m→∞
sin
(π

2
sin
(π

2

(

· · ·
(

sin
(π

2
t
)))))

︸ ︷︷ ︸

∗









 .

Now (∗) in the previous equation can be written as

t[m+1] = sin
(π

2
t[m]

)

(4.36)
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where t[0] ∈ (0, ε). To find its limit as m → ∞, first note that sin
(
π
2
t
)
≤ 1.

Second, let h(t) = sin
(
π
2
t
)
− t. Then h(t) has three roots, namely t = 0, and

t = ±1. Picking any point, t∗ in the interval (0, 1) reveals that h(t∗) > 0 which

means that h(t) > 0 for all t ∈ (0, 1). Thus, Equation (4.36) is monotonically

increasing in the interval (0, 1). Consequently, limm→∞ t[m] = 1 for all t[0] ∈ (0, 1)

since any monotonically increasing bounded function converges to its least upper

bound. Therefore,

lim
m→∞

r[m]

(
t

ε

)

= sin
[π

4
(1 + 1)

]

= 1 for all t ∈ (0, ε) (4.37)

and

lim
m→∞

r[m]

(−t
ε

)

= sin
[π

4
(1− 1)

]

= 0 for all t ∈ (0, ε). (4.38)

Plugging Equations (4.37) and (4.38) into Equations (4.34) and (4.35) gives the

following results

TIg(t) =







2r[m]

(−t
ε

)

r[m]

(
t

ε

)

︸ ︷︷ ︸

→0 as m→∞

+ 2r2[m](−t)
︸ ︷︷ ︸

→0 as m→∞

e2πib if 0 < t < ε

0 if ε < t < 1− ε

2r2[m](t− 1)
︸ ︷︷ ︸

→0 as m→∞

− 2r[m]
(
t− 1
ε

)

r[m]

(
1− t

ε

)

︸ ︷︷ ︸

→0 as m→∞

e2πib if 1− ε < t < 1

= 0 as m→∞ (4.39)
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and

TIf(t) =







r[m]

(
t

ε

)[

r[m]

(
t

ε

)

− r[m]

(−t
ε

)]

︸ ︷︷ ︸

→1 as m→∞

e2πibt

− r[m]

(−t
ε

)[

r[m]

(
t

ε

)

+ r[m]

(−t
ε

)]

e2πib

︸ ︷︷ ︸

→0 as m→∞

e2πi(−b)t if 0 < t < ε

e2πibt if ε < t < 1−ε

r[m]

(
1− t

ε

)[

r[m]

(
1− t

ε

)

+ r[m]

(
t− 1
ε

)]

︸ ︷︷ ︸

→1 as m→∞

e2πibt

+r[m]

(
t− 1
ε

)[

r[m]

(
1− t

ε

)

−r[m]
(
t− 1
ε

)]

e2πib

︸ ︷︷ ︸

→0 as m→∞

e2πi(−b)t if 1−ε < t < 1

= e2πibt as m→∞. (4.40)

As can be seen by these equations, folding with a continuous odd extension has

the effect of adding an extra bump in frequency. But luckily, the amount of

energy associated with the bump at −b can be suppressed by increasing the

steepness of the rising cutoff function. Table 4.1 shows the amounts of energy

in a1(t), a2(t) and a3(t) associated with the six rising cutoff functions r[m] for

m = 0, . . . , 5. Thus, as m increases, energy becomes localized around the single

positive frequency, b. It should be noted that the energy of a3(t) is much smaller

than that of a1(t), indicating that the energy associated with the bump at −b
can be suppressed without compromising the effects of periodization. Of course,

m should not be too large, or else the effects of periodization will be eliminated

altogether; hence, there is a tradeoff in the choice of m. This result reinforces the

use of steeper rising cutoff functions that was proposed in the last section. But,

if possible, the amount of mixing should be eliminated all together. One solution

is derived next.
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Table 4.1: Energies of a1, a2 and a3 associated with r[m] for m = 0, . . . , 5.

m ||a1||2 for r[m] ||a2||2 for r[m] ||a3||2 for r[m]
0 0.7267 0.8183 0.1817
1 0.4968 0.8758 0.1242
2 0.3271 0.9182 0.0818
3 0.2112 0.9472 0.0528
4 0.1352 0.9662 0.0338
5 0.0861 0.9785 0.0215

4.5 The Continuous Periodic Extension

The following scheme was devised to satisfy the conditions outlined in Section 3.3,

focusing on the information mixing problem. The basic idea is to use a periodic

extension of each subspace, while also forcing continuity at the boundary. Fig-

ure 4.14 illustrates the approach. In a similar manner as before, the right half of

the signal is extended in a continuous periodic fashion, and folding is performed

at the right hand boundary. The extension is discarded and the energy of the

folded right half is computed to find how much energy has been lost or gained.

This is then repeated for the opposite half, but with a temporary amplitude shift

in both the signal and extension prior to folding. The value of the shift, which

depends on the signal, can be precomputed and is used to preserve the isometry.

Immediately afterwards, periodized unfolding is performed to periodize the signal

on that interval, as well as undo any mixing which occurred during the folding

procedure. In other words, a slightly modified version of periodized folding (Ws)

is first applied which folds, or mixes, information between the left and right halves

of the folded signal in a manner similar to regular periodized folding W . When

periodized unfolding is then applied, W ∗, it has the effect of reversing the mixing

effect while periodizing the signal at the same time. The motivation for this idea

comes from the fact that W ∗W = 1; hence, W ∗Ws ≈ 1. Figure 4.15 shows the

results of this periodization process. Notice that the continuous periodic exten-

sion successfully periodizes the two children subspaces, while also minimizing the
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Figure 4.14: Isometric folding using a continuous periodic extension. Notice that
both the left and right half intervals are extended in a continuous periodic manner,
but the left half is temporarily shifted prior to folding in order to preserve the
isometry.

mixing of information.

Mathematically, the approach for folding can be formulated as follows. Using

the arrangement shown in Figure 4.16 the values of the extension to the left of

x0 are given by

x−n−1 = xN−n + x0 − xN (4.41)

and the values of the extension to the right of xN are

xN+n+1 = xn + xN − x0. (4.42)
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Figure 4.15: A comparison of various methods of periodization. The top figure
shows the original function with a sharp bump at one location. The second figure
shows the effects of splitting the space into two children via the conventional local
Fourier transform. The third figure shows splitting via an even extension. The
fourth figure shows the results of splitting the space using the continuous periodic
extension.

Using Equation (2.12), folding at the left hand edge is then defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1(xN−n + x0 − xN) (4.43)

and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1(xn + xN − x0). (4.44)

Now, for the isometric version, the folding formula for the left half interval, x̃s,n,

can be found using Equation (4.11) along with the following values of x̃n and λn

x̃s,n = rn(xn + s) + r−n−1(x−n−1 + s)− s

= rnxn + r−n−1x−n−1 + s(rn + r−n−1 − 1)

= rnxn + r−n−1(xN−n + x0 − xN)
︸ ︷︷ ︸

x̃n

+s (rn + r−n−1 − 1)
︸ ︷︷ ︸

λn

. (4.45)
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Figure 4.16: Example of a continuous periodic extension of a linear function with
midpoint folding[72]. In this example, N = 7.

where x̃s,n stands for the folded result with shift. Thus, this is just the standard

folding operation, with the added term, sλn.

Solving for x in Equations (4.43) and (4.44) yields the following formula for

inverse folding on the left half interval

xn = [x̃n − r−n−1(xN−n + x0 − xN)] /rn (4.46)

and on the right half

xN−n = [x̃N−n + r−n−1(xn + xN − x0)] /rn. (4.47)

Now, similar to many of the methods described in Appendix B.4, this ap-

proach yields implicit inversion formulas. Represented as a linear system, it can

be written as















r0 + r−1 0 0 0 0 0 0 0
r−2 r1 0 0 0 0 r−2 −r−2
↓ 0 ↘ 0 0 ↙ 0 ↓

r−N+1
2

0 0 rN−1
2

r−N+1
2

0 0 −r−N+1
2

r−N+1
2

0 0 −rN+1
2

rN−1
2

0 0 −r−N+1
2

↓ 0 ↙ 0 0 ↘ 0 ↓
r−2 −r−2 0 0 0 0 r1 −r−2
0 0 0 0 0 0 0 r0 − r−1
















x = x̃. (4.48)
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In this system, it is assumed that R = N+1
2

, although this is not necessary.

In order to invert this, sparse matrix routines can be employed, but for com-

putational speed it is better to exploit the structure of the array and find an

explicit solution. To do this, it is necessary to recover x0 and xN (see Equa-

tions (4.43) and (4.44)). They are easily found from the first and last rows of

Equation (4.48) to be

x0 =
x̃0

r0 + r−1
(4.49)

and

xN =
x̃N

r0 − r−1
. (4.50)

Using these results, and exploiting the symmetry in Equation (4.48), generalized

inversion formulas for x1, . . . , xN−1 are found by simultaneously solving a system

of equations derived from rows n andN−n for n = 1, . . . , R−2 in Equation (4.48).

These two equations have two unknowns, and so the unique solution is found to

be

xn = [x̃n − r−n−1(xN−n + x0 − xN)]/rn
= (x̃n − r−n−1{[x̃N−n + r−n−1(xn + xN − x0)]/rn + x0 − xN})/rn
= [rnx̃n−r−n−1x̃N−n+r−n−1(r−n−1−rn)(x0−xN)]/ (r2n+r2−n−1)

︸ ︷︷ ︸

=1

(4.51)

and

xN−n = [x̃N−n + r−n−1(xn + xN − x0)]/rn
= (x̃N−n + r−n−1{[x̃n − r−n−1(xN−n + x0 − xN)]/rn + xN − x0})/rn
= [rnx̃N−n+r−n−1x̃n−r−n−1(r−n−1+rn)(x0−xN)]/ (r2n+r2−n−1)

︸ ︷︷ ︸

=1

. (4.52)

For the isometry, the generalized isometric inversion formula for the left half

interval is found using Equation (4.45) to be

xn = [x̃s,n − r−n−1(xN−n + x0 − xN)] /rn − sλn/rn. (4.53)
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Adding this to Equations (4.49) , (4.50) (4.51) and (4.52) yields the following

isometric inversion formulas

x0 =
x̃s,0

r0 + r−1
︸ ︷︷ ︸

z0

−s λ0
r0 + r−1
︸ ︷︷ ︸

α0

(4.54)

xn = rnx̃s,n − r−n−1x̃s,N−n + r−n−1(r−n−1 − rn)

(
x̃s,0

r0 + r−1
− x̃s,N

r0 − r−1

)

︸ ︷︷ ︸

zn

−s
(

rnλn + r−n−1(r−n−1 − rn)
λ0

r0 + r−1

)

︸ ︷︷ ︸

αn

(4.55)

and

xN−n = rnx̃s,N−n + r−n−1x̃s,n − r−n−1(r−n−1 + rn)

(
x̃s,0

r0 + r−1
− x̃s,N

r0 − r−1

)

︸ ︷︷ ︸

zN−n

−s
[

r−n−1

(

λn + (r−n−1 − rn)
λ0

r0 + r−1

)]

︸ ︷︷ ︸

βn

(4.56)

for n = 1, . . . , R − 1. Notice that this is just the standard inversion operation

of Equations (4.51) and (4.52) applied to x̃s,n, with the added terms αn and βn

(also note that β0 = 0 since Equation (4.50) is unaffected by the constant s).

Now that the inversion formulas are well defined, they too need to be used in

a formula for finding an explicit shift value, s. Using the above notation along

with the definition of an isometry yields a formula similar to Equation (4.12)

s =
∑R−1

n=0 (αnzn+βnzN−n)
∑R−1

n=0 (α
2
n+β

2
n)

±
√

(
∑R−1

n=0 (αnzn+βnzN−n))
2−∑R−1

n=0 (α
2
n+β

2
n)·

∑R−1
n=0 (z2n+z2N−n−x̃2

s,n−x̃2
s,N−n)

∑R−1
n=0 (α

2
n+β

2
n)

.(4.57)

As shown in the analysis following Equation (4.12), most of the values in

Equation (4.57) are constants that can be precomputed only once; hence, there

is little computational overhead involved with this isometric operator (it is an

O(N) operation).
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4.5.1 Mixing of Information

One of the primary motivations for the continuous periodic extension is minimiz-

ing the mixing of information within each interval due to folding and unfolding.

To see the benefit achieved with this extension, simply repeat the analysis per-

formed in Section 4.4.1, but for this new extension.

Start by splitting the extension into two parts, the sum of a periodic extension

and a piecewise constant function. Figure 4.17 illustrates this. As before, let

−1 −0.5 0 0.5 1 1.5 2
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0

1
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3
(a)

−1 −0.5 0 0.5 1 1.5 2
−1

0
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0

1
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(c)

Figure 4.17: (a) The continuous periodic extension split into the sum of (b) a
periodic extension and (c) a piecewise constant function.

I = [0, 1], let r[m] be the rising cutoff function defined by Equation 2.14, let x(t) ∈
L2(I) be a function with continuous periodic extensions (top plot in Figure 4.17),

let f(t) be the same function with periodic extension (middle plot in Figure 4.17),

and let g(t) be the piecewise constant function (bottom plot in Figure 4.17).

That is, x(t) = f(t) + g(t). Also, define ∆x
∆
= x(1)− x(0). Now, since TIx(t) =
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TIf(t) + TIg(t) then each of the parts can be analyzed independently

UIg(t) =







r[m]
(
t
ε

)
g(t) + r[m]

(−t
ε

)
g(−t) if 0 < t < ε

g(t) if ε < t < 1− ε

r[m]
(
1−t
ε

)
g(t)− r[m]

(
t−1
ε

)
g(2− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

)
(0) + r[m]

(−t
ε

)
[−∆x] if 0 < t < ε

0 if ε < t < 1− ε

r[m]
(
1−t
ε

)
(0)− r[m]

(
t−1
ε

)
[∆x] if 1− ε < t < 1

,

=







−∆xr[m]
(−t
ε

)
if 0 < t < ε

0 if ε < t < 1− ε

−∆xr[m]
(
t−1
ε

)
if 1− ε < t < 1

. (4.58)

Therefore,

TIg(t) = W ?
I 1IUIg(t)

=







r[m]
(
t
ε

)
UIg(t)− r[m]

(−t
ε

)
UIg(1− t) if 0 < t < ε

0 if ε < t < 1− ε

r[m]
(
1−t
ε

)
UIg(t) + r[m]

(
t−1
ε

)
UIg(1− t) if 1− ε < t < 1

,

=







r[m]
(
t
ε

)[
−∆xr[m]

(−t
ε

)]
−r[m]

(−t
ε

)[
−∆xr[m]

(−t
ε

)]
if 0 < t < ε

0 if ε < t < 1−ε
r[m]

(
1−t
ε

)[
−∆xr[m]

(
t−1
ε

)]
+r[m]

(
t−1
ε

)[
−∆xr[m]

(
t−1
ε

)]
if 1−ε < t < 1

,

=







∆xr[m]
(−t
ε

) [
r[m]

(−t
ε

)
− r[m]

(
t
ε

)]
if 0 < t < ε

0 if ε < t < 1− ε

−∆xr[m]
(
t−1
ε

) [
r[m]

(
1−t
ε

)
+ r[m]

(
t−1
ε

)]
if 1− ε < t < 1

. (4.59)

As for the other term, TIf(t) = WIW
∗
I f(t) = f(t). Thus one of the immediate

benefits of using the continuous periodic extension is realized; unlike the contin-

uous odd extension, no extra bump in frequency will be introduced when using

the continuous periodic extension.

This result also illustrates the manner in which the CBLFT periodizes a signal.

In essence, CPLFT simply adds a scalar multiple of the function h(t) = TIg(t)

to the input signal x(t). A plot of this function is shown in Figure 4.18. Under-

standing the effects of h(t) is the subject of the next section.
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Figure 4.18: The function h(t) = TIg(t) from Equation (4.59) which periodizes a
signal using a continuous periodic extension.

4.5.2 Effects of Continuous Periodization on the Fourier
Coefficient Decay Rate

As defined in the previous section, the addition of a scalar multiple of h(t) =

TIg(t) to a function has the effect of periodizing that function. The manner in

which it achieves this can be illustrated by simply taking the Fourier transform

of h(t). Although similar analysis for the COLFT is possible, the fact that the

periodization process for the COLFT cannot be split nicely into two parts like

the CPLFT makes Fourier analysis too cumbersome to be included in this thesis.

Consequently, the following analysis is only performed for the CPLFT case.

For illustrative simplicity, let r(t) = r[0](t) = sin
[
π
4
(1 + t)

]
and x(t) = tn.

If Fb(x), b ∈ Z, is the bth Fourier coefficient of a function x, then Fb[TIx(t)] =

Fb[f(t)] + ∆xFb[h(t)] where

F0[h(t)] = −2ε
∫ 1

0

r(t)r(−t)dt

= −2ε
∫ 1

0

cos
(π

2
t
)

dt

= −4ε

π
(4.60)
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and

Fb[h(t)] =

∫ 1

0

h(t)e−2πibtdt

=
2ε cos(2πbε)

π(16b2ε2 − 1)
− i

2πb

[

1 +
cos(2πbε)

b(16b2ε2 − 1)

]

. (4.61)

Repeating this for f(t) = tn gives

Fb,n[f(t)] =

∫ 1

0

tne−2πibtdt

= −e
−2πibt

2πib
tn
∣
∣
∣
∣

1

0

+
n

2πib

∫ 1

0

tn−1e−2πibtdt

=
1

2πib
{nFb,n−1[f(t)]− 1}

=
n

2πib

(
n− 1

2πib

(
n− 2

2πib

(

. . .

(
Fb,0[f(t)]

2πib

− 1

2πib

)

. . .

)

− 1

2πib

)

− 1

2πib

)

− 1

2πib

= − n!

1!(2πib)n
− n!

2!(2πib)n−1
− . . .− n!

(n− 1)!(2πib)2
− 1

2πib

= −
n∑

k=1

n!

(n− k + 1)!(2πib)k

= i

bn2 c∑

k=0

(−1)kn!
(n− 2k)!(2πb)2k+1

−
bn2 c∑

k=1

(−1)kn!
(n− 2k + 1)!(2πb)2k

(4.62)

where Fb,0[f(t)] = 0 for b 6= 0. As can be seen, for any n, the dominant fac-

tor in Equation (4.62) is i
2πb

= O(1
b
). Similarly, the dominant factor in Equa-

tion (4.61) is − i
2πb

. Therefore, these two terms will cancel each other out causing

Fb,n[TIx(t)] = O
[(

1
b

)2
]

. The details of Equation (4.61) can be found in Ap-

pendix B.3

A side note that arises from this example is the fact that a linear function

can also be used to periodize a signal. For example, if h(t) = t, then according

to Equation (4.62), its Fourier decay is dominated by the factor i
2πb

. So this

too would cancel out the dominating term for Fb,n[f(t)] causing Fb,n[TIx(t)] =
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O
[(

1
b

)2
]

. But there are some drawbacks to this approach. First is the fact

that this linear method lacks the flexibility of the varying action region widths

associated with the CBLTT; it cannot be implemented in a method similar to

fixed folding. Second is the fact that it lacks the diversity of all of the different

extensions of CBLTT, including all of the different rising cutoff functions. Conti-

nuity at the boundary after application is always limited to C0, whereas CBLTT

has the potential of increasing the smoothness at the boundary after folding by

using different extensions and different rising cutoff functions. Third is the fact

that it also cannot be used to provide LCT and LST boundary conditions. But

most important is the fact that the inverse is highly unstable. For example,

the transformed values are given by x̃n = xn − (xN − x0) n
N+1

and the inverse is

xn = x̃n + [(N + 1)x̃N − (n + 1)x̃0]
n

N+1
. So if errors, en, are introduced into the

x̃n, for example by compression, letting ỹn = x̃n + en gives the following

yn = ỹn + [(N + 1)ỹN − (n+ 1)ỹ0]
n

N + 1

= x̃n + en + [(N + 1)(x̃N + eN)− (n+ 1)x̃0]
n

N + 1

= x̃n + [(N + 1)x̃N − (n+ 1)x̃0]
n

N + 1
+ en + neN

= xn + en + neN . (4.63)

Hence, as n increases, the error also increases. As will be seen in the following

chapter, this instability can be decreased when using CBLTT.

It should be noted that numerous other approaches to reduce edge effect for

the Fourier transform have been devised in the past; for example, the Blackman-

Harris window [33], the multitaper method ([58], p.331-374), and the Webber

window1[71]. The basic idea behind these methods is that they simply multiply

the signal by a window which has enough decay at the boundary to cause the

windowed signal to have boundary values near zero. In doing this, the windowed

1The image amplitude of a NxN pixel square is rolled off softly to zero over a range of 1
10
N

pixels, by modulation with a circular window boundary of diameter roughly 9
10
N pixels. As a

function of the 2D pixel coordinate, i, the modulation function is erf
[

2
10

(
9
10
N − 2|i|

)]
.
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signal can become periodic with C0 continuity. Caveats to this approach are the

inability to stably invert this transform, as well as the loss of information near

the boundary. This loss of boundary information is especially profound in the

two dimensional case near the diagonals (see Figure 4.19). In addition to this,

there also is the fact that these approaches are not isometric and therefore cannot

be used in a best basis setting.
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Figure 4.19: (a) Original 2D signal (b) 2D Webber window, (b) Application of the
2D Webber window. Notice the loss of information at the boundaries, especially
near the diagonals.

4.6 Existence of a Real-Valued Constant for Iso-

metric Folding and Unfolding

In light of these isometric formulas (Equations (4.11), (4.12) and (4.57)), it is

important to know whether a real-valued constant, s, always exists. The answer

is no, even for nonnegative functions. To illustrate this, take Equation (4.11).

A simple counterexample is x = (1, 0, . . . , 0) where N = 15 and R = 8. The

problem arises because the right half interval extension is nonpositive, causing

the energy of the folded right half to increase; that is,
∑R−1

n=0

(
x̃2N−n − x2N−n

)
≥ 0.

In response to this result, it is natural to wonder whether it is possible to place a

condition on x to cause Equation (4.11) to always be satisfied with a real-valued

s. The following theorem answers this question.

Theorem 4.6.1. For all real-valued functions x ∈ [0, 1] and rising cutoff func-

tions (2.14), there exists a value C ∈ R such that for y = x + C and C ≥ 0, a

solution to Equation (4.11) can always be found for some s = s(y) ∈ R.
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Proof. (i)
∑R

n=0 λ
2
n 6= 0; i.e., the denominator of Equation (4.11) is nonzero. For

this to be true, the following equivalent relationships need to be satisfied.

∑R−1
n=0 λ

2
n 6= 0

⇔ λn 6= 0 for some n ∈ [0, R− 1]
⇔ rn + rN−n 6= 1 for some n ∈ [0, R− 1]

⇔ rn +
√

1− r2n 6= 1 for some n ∈ [0, R− 1]

⇔
√

1− r2n 6= 1− rn for some n ∈ [0, R− 1]
⇔ 1− r2n 6= 1− 2rn + r2n for some n ∈ [0, R− 1]
⇔ 2r2n − 2rn 6= 0 for some n ∈ [0, R− 1]
⇔ rn(rn − 1) 6= 0 for some n ∈ [0, R− 1](?)

Now, using the fact that 1√
2
< rn < 1 ,∀ n ∈ [0, R − 1] (recall that r0 >

1√
2
for

midpoint folding), then rn(rn − 1) < 0, ∀ n ∈ [0, R− 1] and (?) is satisfied;

(ii)
(
∑R−1

n=0 ỹnλn

)2

−∑R−1
n=0 λ

2
n ·
∑R−1

n=0

(
ỹ2n + ỹ2N−n − y2n − y2N−n

)
≥ 0 (∗); i.e.,

the discriminant in Equation (4.11) is nonnegative.

Without loss of generality, assume that cosine polarity folding is used. Then,

as stated above, the main problem arises if the energy of the right half inter-

val increases after folding, instead of decreasing. But there is another way for

Equation (4.11) to fail; even if the energy of the right half interval decreases

with folding, if the energy of the left half interval increases too much, then it

may not be possible to amplitude shift the left half enough to cause the pre-

folded and post-folded signal to be isometric. So it is necessary to find out if
∑R−1

n=0 (ỹ
2
N−n − y2N−n) = 0 and

∑R−1
n=0 (ỹ

2
n − y2n) = 0. If these can both be satisfied

for some D, then choosing C ≥ D will cause
∑R−1

n=0

(
ỹ2n + ỹ2N−n − y2n − y2N−n

)
≤ 0,

satisfying (∗).

Starting with the right half, notice that
∑R−1

n=0

(
ỹ2N−n − y2N−n

)
will be maxi-

mized when y2N−n is a minimum, and the right hand extension is also minimized.

This occurs when y0 = D + 1, yn = D for n = 1, . . . , R − 1, and yN−n = D for
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n = 0, . . . , R− 1, where D ≥ 0 and D ∈ R. Using this yields

0 =
R−1∑

n=0

(
ỹ2N−n − y2N−n

)

⇔ 0 =
R−1∑

n=0

[rnyN−n − r−n−1(yn + yN − y0)]2 −
R−1∑

n=0

y2N−n

⇔ 0 = D2(r0 − r−1)2 +
R−1∑

n=1

[Drn − (D − 1)r−n−1]
2 −D2R

⇔ 0 = D2

R−1∑

n=0

[
(rn − r−n−1)2 − 1

]
+ 2D

R−1∑

n=1

[r−n−1(rn − r−n−1)] +
R−1∑

n=1

r2−n−1

⇔ D =

∑R−1
n=1 r−n−1(rn − r−n−1)
2
∑R−1

n=0 rnr−n−1
±

√
[
∑R−1

n=1 r−n−1(rn − r−n−1)
]2

+ 2
∑R−1

n=0 rnr−n−1 ·
∑R−1

n=1 r
2
−n−1

2
∑R−1

n=0 rnr−n−1

=

∑R−1
n=1 r−n−1(rn − r−n−1)
2
∑R−1

n=0 rnr−n−1
±

√
(
∑R−1

n=1 rnr−n−1

)2

+
(
∑R−1

n=1 r
2
−n−1

)2

+2r0r−1 ·
∑R−1

n=1 r
2
−n−1

2
∑R−1

n=0 rnr−n−1
. (4.64)

Since the denominator and everything within the square root of Equation (4.64)

is positive, then a real value for D exists. An upper bound for D can be found

by rearranging Equation (4.64)

D ≤ 1

2







1−
∑R−1

n=1 r
2
−n−1

∑R−1
n=0 rnr−n−1

+

√
√
√
√

(

1−
∑R−1

n=1 r
2
−n−1

∑R−1
n=0 rnr−n−1

)2

+2

∑R−1
n=1 r

2
−n−1

∑R−1
n=0 rnr−n−1







=
1− A+

√
1 + A2

2
(4.65)

where

A =

∑R−1
n=1 r

2
−n−1

∑R−1
n=0 rnr−n−1

. (4.66)

Now, since rn > r−n−1 > 0 for all n ∈ [0, R − 1], then 0 ≤ A ≤ 1. This
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implies that D ≤ 1. Thus, for any x ∈ [0, 1], and for all values of C ≥ 1,
∑R−1

n=0

(
ỹ2N−n − y2N−n

)
< 0.

In a similar manner, the above argument can be repeated for the left half

interval, but using the function that maximizes
∑R−1

n=0 (ỹ
2
n − y2n), namely yn =

D+1 for n = 0, . . . , R− 1, yN−n = D+1 for n = 1, . . . , R− 1, and yN = D. The

results are

D = −
∑R−1

n=1 r−n−1(rn + r−n−1)

2
∑R−1

n=0 rnr−n−1
±

√
[
∑R−1

n=1 r−n−1(rn+r−n−1)
]2

−2
∑R−1

n=0 rnr−n−1 ·
∑R−1

n=1 r
2
−n−1

2
∑R−1

n=0 rnr−n−1
− 1

= −
∑R−1

n=1 r−n−1(rn + r−n−1)

2
∑R−1

n=0 rnr−n−1
±

√
(
∑R−1

n=1 rnr−n−1

)2

+
(
∑R−1

n=1 r
2
−n−1

)2

−2r0r−1 ·
∑R−1

n=1 r
2
−n−1

2
∑R−1

n=0 rnr−n−1
− 1.(4.67)

As before, the denominator is positive. And since the quantity within the

square root of Equation (4.67) is positive because of the following relationship

(
R−1∑

n=1

rnr−n−1

)2

+

(
R−1∑

n=1

r2−n−1

)2

−2r0r−1 ·
R−1∑

n=1

r2−n−1

≥
(
R−1∑

n=1

rnr−n−1

)2

+

(
R−1∑

n=1

r2−n−1

)2

−2
R−1∑

n=1

rnr−n−1 ·
R−1∑

n=1

r2−n−1

=

(
R−1∑

n=1

rnr−n−1−
R−1∑

n=1

r2−n−1

)2

≥ 0 (4.68)

then a real value for D exists. Using this result in Equation (4.67) yields a lower
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Figure 4.20: Values of D found using Equation (4.67) with 20 ≤ R ≤ 220 and
0 ≤ m ≤ 20.

bound for the larger of the two roots

D ≥ −

∑R−1
n=1 r−n−1(rn + r−n−1)+

√
(
∑R−1

n=1 rnr−n−1−
∑R−1

n=1 r
2
−n−1

)2

2
∑R−1

n=0 rnr−n−1
−1

= −
∑R−1

n=1 r
2
−n−1

∑R−1
n=0 rnr−n−1

− 1

= −A− 1. (4.69)

Thus the larger of the two roots can be bounded below by D ≥ −2. What this

means is that the left half can always be shifted so that its energy before and

after folding can be the same.

Thus, as long as C > 1, then s = s(y) will always exist. And the lowest value

that the left half will ever be shifted is −2.

In practice, different bounds on D can be found. For instance, some values of

D computed from Equations (4.64) and (4.67) are shown in Figures 4.21 and 4.20

respectively. As can be seen in Figure 4.21, as R and m increase, D converges

to a number close to 0.8144. And according to Figure 4.20, D converges to a
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Figure 4.21: Values of D found using Equation (4.64) with 20 ≤ R ≤ 220 and
0 ≤ m ≤ 20.

value close to −1.2097. Since these values are for large R and m, then choosing

C > 0.8144 will be adequate for most practical purposes.
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Chapter 5

Basis and Scaling

To better understand the dynamics of the CBLTT, and to design extensions

that give better results, it would be nice to be able to physically construct the

bases. But, as was shown in Section 4.2, these isometric folding and unfolding

operators are not linear. This makes analysis difficult. The complexity of the

isometric operators, and the fact that a real-valued amplitude shift does not

always exist without pretreating the data by the addition of a constant, motivates

a different approach.

5.1 Isometry and Scaling

In designing a new isometric folding approach, the biggest constraint, besides

minimizing the complexity of the inversion formulas, is maintaining the odd po-

larity boundary condition after folding. Recall that for cosine folding, the right

hand boundary is the case in point. After folding occurs, and the extension is

discarded, no operation should be applied that moves this boundary off of zero.

One possible way to circumvent this problem while still providing the isometry

is to globally scale the data instead of adding a constant to it. That is,
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• Extend both sides of each subspace in a continuous fashion,

• Perform standard folding at each boundary,

• Discard the extensions,

• Globally scale the result by a value, p, to preserve the isometry,

• Periodize (if specified).

See Figure 5.1.
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Figure 5.1: Isometric folding via scaling.

One of the immediate benefits of this new approach is the simplification of

the isometric operators. Instead of adding the constant into the equations, all

that must be done is to take the original signal, xn, along with the folded or
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periodized signal, x̃n, and use the following formula to find a value, p, by which

to multiply or scale x̃n

0 =
N∑

n=0

(x̃2p,n − x2n)

⇔ 0 =
N∑

n=0

(p2x̃2n − x2n)

⇔ p =

√
∑N

n=0 x
2
n

∑N
n=0 x̃

2
n

. (5.1)

The inverse is just as simple:

0 =
N∑

n=0

(x̃2p,n − x2n)

⇔ 0 =
N∑

n=0

(x̃2p,n − p2z2n)

⇔ p =

√
√
√
√

∑N
n=0 x̃

2
p,n

∑N
n=0 z

2
n

(5.2)

where zn is the result of applying the standard continuous unfolding routines to

x̃p,n; see Equations (4.10), (4.24), (4.55), (4.56) as well as those in Appendix B.4.

The second benefit is that, even though the process is not linear, the re-

lationship between the transform coefficients and the basis functions can be

easily computed. To see this, consider the following. Let px = p[T̃ (x)] ∈ R,

p̃x = p̃[T̃−1(x)] ∈ R and define F (x)
∆
= pxW

∗Ũx where Ũ and T̃ = W ∗Ũ are the

folding and periodization operators associated with CBLFT respectively. Let B

be a matrix whose columns, bn, are the real-valued Fourier basis vectors, and

let c be the corresponding real-valued Fourier coefficient vector associated with
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F (x). Then b̃n = F−1(bn) = p̃bn
Ũ−1Wbn are the CBLFT basis vectors and

F (x) = Bc

⇒ pxW
∗Ũx = Bc

⇒ pxx = Ũ−1WBc

⇒ pxx = c0Ũ
−1Wb0 + . . .+ cN Ũ

−1WbN
⇒ pxx = c0

p̃b0

F−1(b0) + . . .+ cN
p̃bN

F−1(bN)

⇒ x = c0
pxp̃b0

b̃0 + . . .+ cN
pxp̃bN

b̃N .

(5.3)

This new realization adds much insight into the performance of the methods when
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Figure 5.2: Some top level CELFT basis functions. Notice how the right hand
side behaves wildly as the frequency increases.

used for compression. For example, several top level CELFT basis vectors for a

particular function are seen in Figure 5.2. Notice how the right hand side of some

of these basis vectors behave in an erratic manner. If the coefficients associated

with these basis vectors are altered or discarded for any reason, reconstruction

errors become amplified near the right hand boundary. The reason for this is

related to the instability of the CELFT inverse periodization formula for the

right hand boundary

xN−n =
rnx̃N−n − r−n−1x̃n

rn − r−n−1
. (5.4)

Clearly, values near the boundary will be amplified since rn − r−n−1 ≈ 0 for

n = 0, as was discussed in Section 4.2. In particular, the larger the difference
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between xN−n and xn, the larger the numerator in Equation (5.4) will be. This

result, in turn, will be amplified by the denominator. Now, for the real-valued

discrete Fourier basis, the cosine terms will have nearly equal boundary values

for low frequencies; e.g., for the DC component, b0(0) = b0(N). But as the

frequency increases, the distance between left and right endpoints also increase;

e.g., for the Nyquist frequency, bN
2
(0) = −bN

2
(N). Because of this, values near the

right hand boundary of the CELFT basis vectors will increase as the frequency

increases. As a consequence of this added energy to the right hand side of the

higher frequency basis vectors, they must be scaled more in order to preserve

the isometry. Thus, p̃b is larger for higher frequency CELFT basis functions (see

Figure 5.3). Note that the sine bases have boundary values that are near zero

for both low and high frequencies, but not for the middle frequencies. Hence, p̃b

is larger for middle frequency CELFT basis functions. This result has a direct
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Figure 5.3: (a) xN − x0 for the real-valued DFT basis vectors, and (b) p̃b for the
CELFT basis vectors, where the values associated with the DC component have
been shifted to the center, and the Fourier cosine components are on the right
half, whereas the Fourier sine components are on the left half. Notice that the
two graphs are directly related to one another.

effect on the reconstruction of a signal. For example, from Equation (5.3) and

Figure 5.3 it is clear that the coefficients associated with high frequency cosine

basis vectors are weighted higher than the low frequency ones. Thus, thresholding
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these coefficients has a more drastic effect on the signal reconstruction since these

high frequency basis vectors have the large bump at the right boundary. Since

the high frequency Fourier coefficients tend to be smaller than the low frequency

ones, they are the ones that are usually thresholded first, thus leading to increased

edge effect when using CELFT. It should be noted that reconstruction errors also

occur from thresholding sine basis coefficients, but the effect is not as strong since

the high frequency sine basis vectors do not exhibit the erratic behavior near the

right boundary.

With this in mind, it makes sense to design methods which do not exhibit this

type of behavior. Some simple modifications to the extensions can be derived by

using different sampling points and modified extensions. See Figure 5.4. Each of

these methods can also be used with gridpoint folding, thus doubling the number

of possible approaches. The details of each method is described in Appendix B.4.

Although these changes are minor, the resulting schemes can have drastically

different attributes. As an example, take the Even1 extension shown in Figure 5.4,

but apply gridpoint folding (see Figure 5.5). With this arrangement, the values

for the extension to the left of x0 are given by

x−n−1 = xn (5.5)

and the values of the extension to the right of xN are

xN+n+1 = xN−n. (5.6)

Thus folding at the left boundary is defined as

x̃n = rnxn + r−nx−n

= rnxn + r−nxn−1 (5.7)

and at the right boundary as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1xN−n−1. (5.8)
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Examples of Invertible Extensions 

Figure 5.4: Some simple variations to the extensions applied to a linear function,
x(t) = t as an example. The vertical lines show the midpoint folding locations. It
should be noted that both midpoint and gridpoint folding can be applied to each
of these extensions. Although these are minor changes, the resulting methods
can be drastically different.

Using these results along with Equation (5.1) provides the isometry.

Solving for x in Equations (5.7) and (5.8) yields the following formula for

inverse folding at the left boundary

xn =
x̃n − r−nxn−1

rn
(5.9)

and at the right boundary

xN−n =
x̃N−n + r−n−1xN−n−1

rn+1
. (5.10)
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Figure 5.5: The Even1 gridpoint extension. Notice that an odd number of points
are used for folding, compared to an even number used for midpoint folding.
Thus, as was stated in Section 2.2.1, even for full folding, there remains one value
that is untouched by the gridpoint folding procedure (denoted by an ∗ in the
above figure).

Now this approach yields implicit inversion formulas. In particular, the xn−1

term in Equation (5.9) does not exist when n = 0. But luckily, the structure

of the even extension can be exploited to yield x−1 = x0 so that the inversion

formula for n = 0 becomes x0 =
x̃0

2r0
. This can then be used to compute x1, which

can then be used to compute x2, and so on in a recursive manner.

In a similar fashion, when n = 0 the xN−n−1 term in Equation (5.10) al-

ways exists since it is never touched by the gridpoint folding procedure (the ∗ in
Figure 5.5). Hence, all values of xN−n can be recovered in a recursive manner.

But it is this very fact that the two boundary values of the subspace, x0 and

xN , are recovered in a stable manner, and the fact that both inversion formulas

do not involve division by small values, that this method achieves much better

results. To be more specific, repeating the error analysis of Section 4.5.2 yields
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the following for CE1MLFT (Even1 Midpoint)

yN−n =
ỹN−n

rn − r−n−1
=

x̃N−n
rn − r−n−1

+
eN−n

rn − r−n−1
= xN−n +

eN−n
rn − r−n−1

(5.11)

and the following for CE1GLFT (Even1 Gridpoint)

yN−n =
ỹN−n + r−n−1yN−n−1

rn+1

=
x̃N−n + eN−n + r−n−1(xN−n−1 + eN−n−1)

rn+1

=
x̃N−n + r−n−1xN−n−1

rn+1
+
eN−n + r−n−1eN−n−1

rn+1

= xN−n +
eN−n + r−n−1eN−n−1

rn+1
. (5.12)

Only the analysis of the right half interval is shown since the instability is only
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Figure 5.6: Sampling of top level CE1GFLT basis vectors. Notice how the right
hand side does not explode as was seen in the CE1MLFT bases.

associated with this boundary. Looking at Equation (5.11) reveals the instability

of the method; as n decreases, rn − r−n−1 also decreases causing the error to

increase near the right boundary. Although this problem is similar to that of
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the periodization scheme based on linear component subtraction described in

Section 4.5.2, the CBLTT is more stable because the reconstruction error at xn

is only dependent upon en, whereas the former’s error at xn is a combination

of en and neN . Furthermore, Equation (5.12) shows the improved stability of

the Even1 Gridpoint method. As can be seen, the error is always divided by

large numbers, rn+1. And since the error at each step is dependent on error

at all previous steps, and since the error at each step can be either positive or

negative, then these errors can cancel each other out causing the overall error to

be suppressed near the boundary. Furthermore, since r−n−1 is small, then the

error from each previous location is suppressed.
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Figure 5.7: pb for the CELFT (Even1 Gridpoint) basis functions, b, where the
value associated with the DC component has been shifted to the center. Notice
the difference in magnitudes of these values versus those associated with the
CELFT (Even1 Midpoint) shown in Figure 5.3(b).

As shown in Figure 5.6, the resulting basis vectors do not exhibit unstable

behavior near the boundaries like those of the Even1 midpoint method. In ad-

dition, for this method, the values of pb from Equation (5.3) are not very large

(see Figure 5.7), especially when compared with those of CE1MLFT plotted in

Figure 5.3. As a matter of fact, many of the values are less than 1 indicating

that they actually suppress the effects of thresholding the corresponding basis
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Figure 5.8: 4:1 compression results. (a) Original function, (b) CE1LFT Midpoint
folding, (c) CE1LFT Gridpoint folding

coefficients.

In terms of compression, compare the two methods for the top level recon-

struction in Figure 5.8. It is apparent that the search for new extensions which

give rise to stable inversion formulas is needed. As stated before, a host of pos-

sibilities are derived in Appendix B.4.

5.2 Comparison Criteria

In order to facilitate a fair comparison of these methods, and to help design future

schemes, some comparison criteria need to be established. As will be shown, the

following three criteria provide much insight into the performance of a particular

approach, and allow for a fair ranking of the various methods. They are

• the level of continuity at the subspace boundaries;

• the condition number of the folding matrix;

• the envelope, or window, of the basis functions; that is, do the bases become
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unstable near the boundaries?

5.2.1 Sparsity criterion

The first bullet, the level of continuity, is mainly concerned with the effects of the

periodization operator and its ability to remove boundary effect while minimizing

the introduction of artificial structure. The primary measure for this is sparsity of

the CBLTT coefficients. For example, the Even1 Midpoint and Even2 Gridpoint

extensions both produce periodic functions, but clearly the Even1 Midpoint ex-

tension is smoother than the Even2 Gridpoint because it produces less of a jump

at the boundary as can be seen in Figure 5.9. The resulting sparsity estimates
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Figure 5.9: Periodization of the function shown in Figure 5.8(a) using (a)
CE1MLFT folding and (c) CE2GLFT folding. (c) and (d) are their correspond-
ing Fourier coefficients. Notice that (c) has a larger jump at its boundary than
(a) when viewed as a periodic functions. This translates into faster decaying tails
in the frequency domain as illustrated in (b) and (d).

are `0.1CE1MLFT (x) = 69.82 and `0.1CE2GLFT (x) = 76.87. Table 5.1 lists the sparsity
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values for many of the methods described so far, as well as those appearing in

Appendix B.4.

Table 5.1: Sparsity estimates (`0.1) of various CBLFT methods for the function
in Figure 5.8 when R = 64. Note that CO and CP stand for the Continuous Odd
Extension and Continuous Periodic Extension, respectively.

Method `0.1

No folding 89.33
Even1 Mid 69.82
Even1 Grid 71.28
Even2 Mid 69.39
Even2 Grid 76.87
CO1 Mid 70.37
CO1 Grid 70.30
CO2 Mid 48.39
CO2 Grid 44.27
CP1 Mid 69.96
CP1 Grid 69.95
CP2 Mid 55.00
CP2 Grid 55.96

5.2.2 Condition Numbers

The second means of comparison, the condition number of the folding procedure,

is a measure of the numerical stability of the inverse operator. Even if the forward

direction periodizes a signal well, unpredictable and often erroneous results are

possible if a large condition number is detected. The condition number can be

calculated separately for the left and right half intervals in the following manner.

Folding and unfolding for each side of the interval can be written as a matrix,

and its condition number can be calculated. It should be noted that the only

difference between the standard folding and unfolding operators, Equations (2.12)

and (2.16), and the corresponding isometric ones defined by Equations (5.1) and
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(5.2) is the scaling. Multiplication of a matrix by a scalar does not affect the

condition number of the matrix; hence, for simplicity, only the nonscaled folding

matrix is shown and is used in the calculation.

For example, the folding matrix for the Even1 Midpoint extension for N = 8

is














r0+r−1 0 0 0 0 0 0 0
0 r1+r−2 0 0 0 0 0 0
0 0 r2+r−3 0 0 0 0 0
0 0 0 r3+r−4 0 0 0 0
0 0 0 0 r3−r−4 0 0 0
0 0 0 0 0 r2−r−3 0 0
0 0 0 0 0 0 r1−r−2 0
0 0 0 0 0 0 0 r0−r−1















x=x̃.

(5.13)

For the Even1 Gridpoint method, its folding matrix is














2r0 0 0 0 0 0 0 0
r−1 r1 0 0 0 0 0 0
0 r−2 r2 0 0 0 0 0
0 0 r−3 r3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −r−3 r3 0 0
0 0 0 0 0 −r−2 r2 0
0 0 0 0 0 0 −r−1 r1















x = x̃. (5.14)

The condition numbers of each matrix for N = 128 are listed in Table 5.2. It

should be noted that when computing the condition number for one side, the

other side is assumed to be known. For example, for the left half interval of the

above method, the condition number of the following matrix was computed














2r0 0 0 0 0 0 0 0
r−1 r1 0 0 0 0 0 0
0 r−2 r2 0 0 0 0 0
0 0 r−3 r3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















.
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For the right half interval, the following matrix was used














1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −r−3 r3 0 0
0 0 0 0 0 −r−2 r2 0
0 0 0 0 0 0 −r−1 r1















.

And for the condition number of both sides, the matrix in Equation (5.14) was

used. As can be seen, the condition number for the right half interval of the

Even1 Midpoint folding is much larger than for the left half interval. This causes

the overall condition number to also be large. This means that inversion of the

right hand side is less stable than inversion of the left hand side. But the Even1

Gridpoint method does not suffer from this same problem. The condition number

of each of its sides, as well as the overall condition number are all relatively small.

Consequently, this results in improved compression performance over the Even1

Midpoint method. This is consistent with the basis vectors shown in Figures 5.2

and 5.6, as well as the compression results seen in Figure 5.8.

Table 5.2: Condition number of the folding matrices for the left half interval
(Left), right half interval (Right), and both intervals together (Both). Notice
that the Even1 Midpoint right hand boundary has a much higher value than the
boundaries. This causes unfavorable reconstruction results.

Even1 Left Right Both

Midpoint 1.41 73.36 103.75
Gridpoint 8.12 7.18 8.34

Table 5.3 lists some of these values for many of the methods described so far,

as well as those appearing in Appendix B.4. For the most part, these results are

in line with what was predicted. For instance, upon inspection of the inversion

formulas for the Even1 Midpoint method, Equations (4.7) and (4.8), it is clear



5.2 Comparison Criteria 107

Table 5.3: Condition number of the folding matrices for the left half interval
(Left), right half interval (Right), and both sides together (Both) when N = 128
and R = 64. Note that CO and CP stand for the Continuous Odd Extension and
Continuous Periodic Extension, respectively.

Method Left Right Both

Even1 Mid 1.41 73.36 103.75
Even1 Grid 8.12 7.18 8.34
Even2 Mid 7.60 7.60 7.60
Even2 Grid 1.41 5.49 5.58
CO1 Mid 217.69 1718.80 1726.70
CO1 Grid 81.54 6761.20 6800.80
CO2 Mid 24.44 1.16 · 1017 3.55 · 1016
CO2 Grid 316.95 4.18 · 1016 6.10 · 1016
CP1 Mid 18.16 1021.70 1651.50
CP1 Grid 17.77 702.61 1371.70
CP2 Mid 15.84 1455.00 4.21 · 1016
CP2 Grid 18.77 702.61 6.90 · 1016

that the large condition number associated with folding at the right boundary

is a direct result of the 1
r0−r−1

term associated with xN . When looking at the

inversion formulas for the other Even extension folding methods (Equations (5.7)

and (5.8) for the Even1 Gridpoint, Equations (B.16) and (B.17) for the Even2

Midpoint, and Equations (B.25) and (B.17) for the Even2 Gridpoint), they are all

devoid of small denominators, even for the xN term. This causes their condition

numbers to be smaller, reflecting their stable inversion formulas.

But even though inspection of inversion formulas can indicate whether a

method will work or not, it will not tell how well it will work, or how well it

compares to other approaches. Case in point, take the Continuous Odd1 Mid-

point inversion formulas given by Equations (4.22) and (4.23). As can be seen,

both formulas contain 1
r0−r−1

terms. It is unclear from inspection which is more

stable. But as can be seen by their condition numbers in Table 5.3, folding at the

left boundary is much more stable. Similarly, comparing the remaining Continu-



5.2 Comparison Criteria 108

ous Odd schemes (Equation (B.35) for the Odd1 Gridpoint, Equations (B.43) and

(B.44) for the Odd2 Midpoint, and Equation (B.52) for the Odd2 Gridpoint), it

is clear that the denominator is potentially small (b ≈ r1 − 2r−1(
1
2
) for the Odd1

Gridpoint, b ≈ r0 − 2r−1(
1
2
) for the Odd2 Midpoint, b ≈ r1 − 2r−1(

1
2
) for the

Odd2 Gridpoint). But it is uncertain which one is best, or even if any of them

are practical. Luckily the condition number answers this question and reveals

that the Odd1 methods are much more stable than the Odd2 methods, which are

ill-conditioned and impractical for use. It also reveals that the Odd1 Midpoint

folding for the left hand boundary is fairly stable and might be practical for use

with a different folding scheme at the right hand boundary. This idea is explored

in Section 5.3.1.

The same results hold true for the Continuous Periodic schemes. Comparing

Equation (4.50) for the CP1 Midpoint method and Equation (B.62) for the CP1

Gridpoint approach, hints that the Gridpoint method is more stable than the

Midpoint method because its denominator is larger than the Midpoint denomi-

nator; i.e., rgrid1 − rgrid−1 > rmid
0 − rmid

−1 . The condition numbers corroborate this

notion. But the main benefit in this case is how the stability associated with the

left and right interval folding schemes affects the overall stability of the method

when combined. Since the Continuous Periodic methods have their left and right

folding schemes dependent on each other, it is difficult to determine the stability

from their inversion formulas (see Equation (B.72)). But according to Table 5.3,

the two CP2 methods are completely unstable, even though their individual con-

dition numbers for their left and right halves are almost identical to those of CP1.

Therefore the condition number is a quick and reliable means for measuring the

stability of a method.
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5.2.3 Basis vector shapes near boundaries

The third comparison criteria listed above deals with the shape of the basis

functions; in particular, their shape at their boundaries. Since compression often

involves thresholding transform coefficients of small magnitude, it is important to

know the structure of the associated basis functions. As the celebrated Riemann-

Lebesgue Lemma shows, the magnitude of the Fourier coefficients generally tend

to decrease as the frequency increases. Thus it is the high frequency basis func-

tions that are usually the first to be eliminated. If these basis functions have most

of their energy near their boundaries, then thresholding will tend to increase the

error near the boundaries of the reconstructed signal. This was exhibited in

Figures 5.3 and 5.7.
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Figure 5.10: ai and
1
p̃bi

and ai
p̃bi

for the four CELFT methods. Note that the DC

component has been shifted to the center of each graph.

One of the items of interest is therefore the magnitude of the boundary val-

ues of each CBLFT basis vector, b̃i. So let ai =
|b̃i(0)|+|b̃i(N)|

2
be the average of
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the magnitudes of the boundary values of basis vector b̃i of length N + 1. In

general, a method will exhibit less boundary effect due to compression if this

number decreases as the frequency increases. Therefore, the second centralized

moment of this vector, with DC component shifted to the center, should be small

for methods which exhibit minimal boundary effect. This statistic is not quite

accurate, though, when taken by itself. The reason is that all of the CBLFT coef-

ficients are weighted by the values 1
pb̃i

as was shown in Equation (5.3). Therefore,

variance of this vector should also be small for methods which minimize bound-

ary effect. Figure 5.10 shows these values for the four CELFT versions. Notice

that the CELFT1 Gridpoint values decrease when the frequency increases. This

indicates that this method will probably have smaller reconstruction error near

its boundaries than the other methods. Therefore, combining these two results

into one statistic gives a means for rating a method’s ability to reconstruct its

boundary. So let EBASIS be the variance of ai
p̃bi

; i.e., EBASIS =
∑N

n=0(n− N
2
)2 an

p̃bn
.

Table 5.4 lists these boundary effect values for all of the methods of the previous

two charts.

Table 5.4: Boundary effect measure, EBASIS, for various CBLFT methods when
N = 128. Note that this statistic is independent of the input signal.

Method EBASIS Method EBASIS

Even1 Mid 6.30 · 105 CO2 Mid 1.13 · 1020
Even1 Grid 8.50 · 103 CO2 Grid 2.88 · 1019
Even2 Mid 3.29 · 104 CP1 Mid 6.30 · 105
Even2 Grid 1.90 · 104 CP1 Grid 6.15 · 105
CO1 Mid 6.30 · 105 CP2 Mid 4.05 · 1019
CO1 Grid 2.08 · 106 CP2 Grid 2.77 · 1019
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5.2.4 Summary of comparison criteria

The smaller that each of the three criteria is, the better the method. Thus,

sorting the geometric mean of all three statistics results in a ranking of the best

methods. These values are listed in Table 5.5. As can be seen, the CE1LFT

Table 5.5: Geometric mean of the three comparison criteria. Sorting these gives
a ranking of the performance of each method.

Method (`0.1 ∗ cond# ∗ EBASIS)
1
3 Ranking

Even1 Mid 1.66 · 103 4
Even1 Grid 1.72 · 102 1
Even2 Mid 2.59 · 102 3
Even2 Grid 2.01 · 102 2
CO1 Mid 4.25 · 103 7
CO1 Grid 9.98 · 103 8
CO2 Mid 5.79 · 1012 12
CO2 Grid 4.41 · 1012 9
CP1 Mid 4.17 · 103 6
CP1 Grid 3.89 · 103 5
CP2 Mid 4.54 · 1012 10
CP2 Grid 3.74 · 1012 11

Gridpoint ranks the best of all of the methods. In general, the CELFT rate

better than all of the other methods, followed closely by the CPLFT and then

the COLFT.

5.3 Various Improvements

Since not all approaches give rise to methods which have stable left and right hand

inversion formulas, yet there exist good left and right hand inversion formulas

independently, it makes sense to combine the best of both worlds. This gives rise

to new hybrid schemes.
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5.3.1 Hybrid Schemes

One example uses the Even2 Midpoint extension at the right hand side, and the

Continuous Odd2 Midpoint folding for the left hand side (CO2M-CE2MLFT).

The results are shown in Figure 5.11. As can be seen, it periodizes the signal,

adding C1 continuity, while still maintaining stable reconstruction. Using a taper

function or steeper rising cutoff function improves the results even more.
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Figure 5.11: (a) Hybrid periodization (Continuous Odd2 Midpoint for the left
hand side, and Even2 Midpoint for the right hand side), (b) 4:1 compression
using this method.

Still another method involves eliminating the odd parity side altogether, and

folding both edges of the subspace with even polarity. This type of boundary

condition is associated with DCT-II. An example of the method is shown in Fig-

ure 5.12 where a Continuous Odd2 Midpoint method is employed at each bound-

ary (CO2MLCT2). This method performs so well that 20:1 compression is used.

Comparing it to the standard DCT-II compression hints that this new method

will outperform JPEG-DCT. Another advantage about this approach is the fact

that no information is mixed within the subspace because the periodic unfolding

operator is not applied; hence no extra bumps are amplified in frequency. In
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Figure 5.12: (a) Original signal, (b) Signal folded with the Continuous Odd2
Midpoint for the both sides, (c) 20:1 compression of original signal using DCT-II
without any folding, (d) 20:1 compression of folded signal using DCT-II.

addition, looking at the window over the bases associated with this, it is clear

that the basis vectors will not become unstable near the subspace boundaries. As

a matter of fact, reconstruction errors will actually be suppressed. Figure 5.13

shows some sample basis vectors. Notice that both sides of each basis vector

taper to zero. This makes for good frequency localization properties, especially

when this method is cast in a best basis setting. As a comparison to the previous

methods, Table 5.6 shows some the comparison criteria values for these two new

schemes. Comparing the values to those of Table 5.5 shows that the CO2M-

CE2MLFT method ranks fourth, while the CO2MLCT2 scheme ranks number 1.

Table 5.6: Comparison criteria for a couple of hybrid methods.

Method `0.1 cond # EBASIS (`0.1 ∗ cond# ∗ EBASIS)
1
3

CO2M-CE2MLFT 71.60 31.80 8.43 · 103 2.68 · 102
CO2MLCT2 47.36 24.44 1.69 · 101 2.69 · 101
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Figure 5.13: Sample bases for DCT-II style folding using the Continuous Odd2
Midpoint for both sides.

5.3.2 An Application To Brushlets

In addition to all of these methods, they can also be used to segment the frequency

domain, giving rise to many new versions of the brushlet transform. Since they

are operating on the frequency side with a sharp window, then this results in over-

lapping bases of infinite support. Compare the results of using the CO2MLCT2

brushlet (CO2MBT2) versus the standard brushlet shown in Figure 5.14.
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Figure 5.14: 4:1 compression using (b) the BT, and (c) the CO2MBT2.
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One interesting result is shown in Figure 5.15. As can be seen, when using

CO2MLBT2, the basis vector has most of its energy centered around one location.

This is in direct contrast with the BT bass vectors which have their energy

centered around two bumps. This improved time-frequency localization property

of the CO2MBT2 translates into the improved signal representation.
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Figure 5.15: A sample basis vector for (a) the BT, and (b) CO2MBT2.

5.3.3 Storing Boundary Values

Another possible improvement is the retention of the exact boundary values for

each subspace; that is, storing x0 and/or xN for use in the inversion formulas.

Since many of the inversion formulas suffer from division by small numbers, the

original boundary values for each subspace could be saved and coded in a lossless

manner. Then, when reconstruction is needed, these exact values would greatly

minimize the edge effect. As an example, consider storing only the right hand

boundary value for the CO2 Midpoint scheme. The results are shown in Table 5.7.

If this method is employed in a best basis setting, only the rightmost boundary

value would need to be stored since using it to restore the rightmost interval would

supply the adjacent interval with its rightmost value. This could be repeated for

each interval working from right to left until the signal is restored. One drawback,
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though, is that reconstruction errors in any given interval could propagate to the

adjacent interval on its left in a recursive manner.

Table 5.7: Condition number of the folding matrices for the left half interval
(Left), right half interval (Right), and both sides together (Both). Notice that
the condition number for the right half is drastically reduced by storing the
original boundary value of the signal for use in reconstruction. This also reduces
the overall condition number of the matrix (BOTH).

CO2 Midpoint Left Right Both

Discard Right Boundary 24.44 1.16 · 1017 3.55 · 1017
Store Right Boundary 24.44 27.90 28.66

5.4 Comparison with Other Basis Dictionaries

With all of these methods now defined, it remains to add them to a best-basis

algorithm for comparison with some of the more popular compression techniques

such as LCT, LFT, WPT, and BT. Figure 5.16 and Table 5.8 illustrate the re-

sults. All of the methods shown in the left column are ones that operate by

segmenting the spatial domain, whereas all of the methods in the right column

operate by segmenting the frequency domain. Also, the six plots in the upper half

of the figure illustrate results when using some of the well known methods such as

JPEG-DCT, LTT, WP and BT, while the bottom six plots were all made by em-

ploying different versions of the CBLTT. For the wavelet packet transform, D02

(the Haar-Walsh wavelet packet utilizing Daubechies’ 2-tap quadrature mirror fil-

ter) and C06 (6-tap coiflet with 2 vanishing moments) were used for comparison.

Some things to note are that all three Continuous Boundary Brushlet Transform

(CBBT) methods produced lower reconstruction errors than the BT, LCT and

LFT. And all three CBLTT methods outperformed all but C06. But most im-

portantly is the fact that the CO2MLCT2 outperformed every method including
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Figure 5.16: 4:1 compression using various methods: (a) JPEG-DCT, (b) D02,
(c) LCT, (d) C06, (e) LFT, (f) BT, (g) CE1GLFT, (h) CE1GBT, (i) CO2M-
CE2MLFT, (j) CO2M-CE2MBT, (k) CO2MLCT2, (l) CO2MBT2. Multiple fold-
ing was employed in all cases where applicable.

C06. As a matter of fact, the reconstruction error for C06 was 24 times higher

than the CO2MLCT2.

But this test is not the fairest comparison. Since the original signal was based

on smooth trigonometric functions, it is not surprising that methods whose basis

functions are trigonometric functions performed so well, some even outperforming

the wavelet packet transforms. D02 is better suited for representing piecewise

constant functions, and C06 is better suited for noisy signals with a lot of sharp

edges. Therefore, the following test provides a better means for comparison.

The above tests were repeated using a more complicated signal, the scanline
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Table 5.8: Relative `2 error of the compressed signals shown in Figure 5.16 (4:1
compression ratio).

Method Rel `2 error Method Rel `2 error

JPEG-DCT 2.67 · 10−5 D02 1.60 · 10−5
LCT 7.95 · 10−5 C06 3.80 · 10−6
LFT 1.23 · 10−4 BT 5.52 · 10−4
CE1GLFT 8.36 · 10−6 CE1GBT 3.94 · 10−5
CO2M-CE2MLFT 4.13 · 10−6 CO2M-CE2MBT 2.59 · 10−5
CO2MLCT2 1.58 · 10−7 CO2MBT2 3.11 · 10−5
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Figure 5.17: Sample signal taken from Lenna.

from Lenna shown in Figure 5.17, and also a higher level of compression. The

results are shown in Figure 5.18 where 10:1 compression was used for all of the

methods. Table 5.9 shows the corresponding relative `2 error associated with

their reconstruction. In this case, all three CBLTT methods outperform all of

the other methods.

A side note is that these periodization routines could also be used to treat the

global signal prior to applying a wavelet transform. Since wavelet transforms,

like the Fourier transform, suffer from edge effect problems for aperiodic signals,

the addition of a Continuous Boundary periodization step could improve wavelet

performance quite a bit.
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Figure 5.18: 10:1 compression using various methods: (a) JPEG-DCT, (b) D02,
(c) LCT, (d) C06, (e) LFT, (f) BT, (g) CE1GLFT, (h) CE1GBT, (i) CO2M-
CE2MLFT, (j) CO2M-CE2MLFT, (k) CO2MLCT2, (l) BCO2MLCT2 (DCT2
version). Multiple folding was employed in all cases where applicable.

5.4.1 Segmentation

One of the reasons that CBLTT performs well is that it does a good job of iso-

lating structure into homogeneous regions. For example, looking at Figure 5.19,

compare the partition patterns for a few of the methods for the test signal used

in Figure 5.16. Notice how CBLTT does a nice job of isolating the sharp bump.

This property greatly enhances the performance of the method. To better un-

Table 5.9: Relative `2 error of the compressed signals shown in Figure 5.18 (10:1
compression ratio).

Method Rel `2 error Method Rel `2 error

JPEG 2.20 · 10−2 D02 9.12 · 10−3
LCT 8.99 · 10−3 C06 8.72 · 10−3
LFT 8.70 · 10−3 BT 2.83 · 10−2
CE1GLFT 5.39 · 10−3 CE1GBT 2.20 · 10−2
CO2M-CE2MLFT 4.48 · 10−3 CO2M-CE2MBT 1.80 · 10−2
CO2MLCT2 4.17 · 10−3 CO2MBT2 2.18 · 10−2
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Figure 5.19: Basis partition patterns when using (a) LFT, (b) CE1GLFT, (c)
CO2M-CE2MLFT, and (d) CO2MLCT2.

derstand the segmentation differences between LFT and CBLFT, consider the

simple case shown in Figures 5.20 and 5.21 where x is a standard basis vector;

i.e., x = 0 everywhere except at one location where it is equal to 1

xn =

{

1 if n = k,

0 otherwise
(5.15)

for 0 ≤ n < M . For illustrative purposes, CPLFT is used, although any CBLFT

variation could be employed. In addition, complex-valued versions of both meth-

ods were chosen in order to lighten the notational burden and make the analysis

less cumbersome.

Proposition 5.4.1. If x is defined according to Equation (5.15), and analyzed

with the complex-valued LFT using `1 and full folding, then the bottom level of

the decomposition will always be chosen, regardless of the choice of k. If, on

the other hand, x is analyzed using the complex-valued CPLFT with `1 and full

folding, then the smallest interval containing the bump will always be chosen,

while the largest intervals will be chosen for the regions which have zero energy.

See Appendix B.5 for the proof. This leads to very natural partition patterns

when using the CPLFT. Figure 5.22 illustrates these results
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Figure 5.20: Hierarchical tree decomposition by LFT periodization. (a) Original
signal, (b) Level 1 periodization, (c) Level 2 periodization.

In addition, CPLFT tends choose partition patterns in a more stable manner

than LFT. For example, as was seen in Equation (B.99), CPLFT chooses the

smallest interval surrounding the bump, regardless of the value of p ∈ (0, 1].

Hence, the partition pattern is always the same for this signal. But when using

LFT, as p → 0, the sparsity estimate for each parent subspace becomes less

than its children. This causes LFT to choose larger subspaces as p decreases (see

Figure 5.23).
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Figure 5.21: Hierarchical tree decomposition by CPLFT periodization. (a) Orig-
inal signal, (b) Level 1 periodization, (c) Level 2 periodization.
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Figure 5.22: (a) Original signal, (b) LFT partition pattern, (c) CPLFT partition
pattern.
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Figure 5.23: Best basis partition patterns using (a) LFT with p = 1 (b) LFT
with p = 0.1, (c) LFT with p = 0.01, (a) CPLFT with p = 1 (b) CPLFT with
p = 0.1, (c) CPLFT with p = 0.01
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Chapter 6

CBLTT In Two Dimensions

All of these ideas can be extended to higher dimensions in the following man-

ner. The non-isometric folding and unfolding procedures are applied as a tensor

product; that is, they are first applied to the rows and then to the columns.

Following this, the periodized signal is then scaled to preserve the isometry. For
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Figure 6.1: Two dimensional periodization. (a) Original image, (b) CE1M, (c)
CO1M, (d) CP1M.

the even and continuous periodic extensions, it is straight forward to apply the

folding operators as can be seen in Figure 6.1. Notice how the continuous periodic
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operations nicely periodize the subspace without mixing too much information

or introducing any extra structure in frequency (Figure 6.2).
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Figure 6.2: Fourier transform of the images in Figure 6.1: (a) Original image,
(b) CE1M, (c) CO1M, (d) CP1M. Notice that CP1M reduces the edge effect, but
doesn’t introduce extra structure in frequency.

For the continuous odd periodization, though, artificial edges are introduced

into the signal. As is illustrated in Figure 6.1(c) and Figure 6.2(c), vertical and

horizontal stripes appear in the folded function because of the lack of continuity

between the rows or columns of the extended parts. To be more specific, consider

the following example. Assume the following two signals represent adjacent rows

in an image

xn =

{
1
2

if n = 0, 1,

−1
2

if 1 < n < M,
(6.1)

and yn = −xn for 0 ≤ n < M . These signals, along with their continuous odd

extensions, are plotted in Figure 6.3 for M = 16. Even though both signals are

similar in value for each point in the interval 0 ≤ n < M , the distance between

their extensions is sometimes much greater; i.e., ‖x−y‖`∞ = 1 for 0 ≤ n < 16, and

‖x−y‖`∞ = 3 for −8 ≤ n < 24. This larger discrepancy between the two signal’s

extensions is folded back into the intervals, increasing the distance between the
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two folded signals; i.e., ‖x̃ − ỹ‖`∞ ≈ 1.6 for 0 ≤ n < 16 (see Figure 6.4). When

viewed as two rows in an image, this procedure has the effect of producing an

artificial horizontal edge in the image. Since the 2D Fourier Transform is applied

as a tensor product of the 1D Fourier Transform, then the artificial edge will

produce a sinc function in the Fourier domain.

−5 0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

n

x
y

Figure 6.3: Two signals and their Continuous Odd extensions (CO1M). Notice
that the difference between the two signal’s extensions is larger than the distance
between the two signals.
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Figure 6.4: Results of periodizing the two signals shown in Figure 6.3. Notice
that at certain locations the distance between the two periodized signals has
increased over the distance between the original signals.

One possible way to decrease this artifact, is to use a trick introduced in the

previous chapter. It is the idea of using steeper rising cutoff functions as well

as a taper function to suppress and smooth the extension (see Section 4.4). The
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results are shown in Figure 6.5. As can be seen, the taper function decreases
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Figure 6.5: CO1 Midpoint periodization. (a) using r1 without taper function, (b)
using r3with a taper function. Plots of their corresponding spectrum are shown
in (c) and (d).

(a) (b)

Figure 6.6: Partition pattern of a two-dimensional spike image using (a) CPLFT,
and (b) LFT.

the striped effect. Also, the use of a taper function improves the reconstruction

properties by decreasing the condition number as was seen in the last chapter.

Because of this, all of the properties exhibited in the one-dimensional case

are also extended to two-dimensions. For example, if a two-dimensional spike

image is partitioned using CBLFT and LFT, results similar to those of the last

chapter for the one-dimensional case are observed (see Figure 6.6). In addition,



CBLTT In Two Dimensions 128

the partition pattern of the CBLFT is more stable than the LCT and the LFT

p=0.1 p=0.01

p=0.1 p=0.01

Figure 6.7: Comparing the left two plots to the right two plots shows the robust-
ness and stability of the partition pattern under two different sparsity measures
(`0.1 versus `0.01) using CBLFT. Comparing the top two plots to the bottom two
plots shows the robust and stable partition pattern under a shift using CBLFT.

p=0.1 p=0.01

p=0.1 p=0.01

Figure 6.8: This is the same test as shown in Figure 6.7 but with LFT.

as can be seen in Figures 6.7 and 6.8. As the image is shifted, and as various

values of `p are applied, the partitioning is more robust for CBLFT. Similarly,

as Figures 6.9 and 6.10 illustrate, the CBLFT isolates edges better than the

LCT/LST or the LFT as the image is rotated. All of these properties translate

into improved compression which is illustrated next.
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Figure 6.9: Robust partition patterns under a rotation of the image using CBLFT.

Figure 6.10: This is the same test as shown in Figure 6.9 but with LCT.

6.1 Image Compression

When it comes to image compression, a method’s quality cannot always be ascer-

tained by simply calculating the difference between a reconstructed image and its

original. Quantifying error using a measure such as the `2-norm is less pertinent

when analyzing images since the human visual system is more acute to certain

types of error1 ([38],pp.67-76). As an example, consider the two images shown in

1This is also true for 1-D audio signals, where the human audio system is more sensitive to
certain types of error such as artificial signal discontinuities.
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Figures 6.11 and 6.12.
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Figure 6.11: Although this image has smaller `2-error than the following image,
aligned discontinuities in the error produce a blocking effect which is less pleasing
to the human observer.

Each was compressed using a different method at the rate of 20:1. The `2-

error associated with the first one is smaller than the second, indicating that the

first one is a closer representation of the original image than the second. But even

though the overall error is less for the first image, the error does not vary in a

continuous fashion like it does in the second image. These discontinuities happen

to align themselves in horizontal and vertical bands which are easily detected by

the human eye. This unpleasant artifact is not present in the second image and

the second image is therefore classified as the better reconstruction. Because of

this subjective nature of rating image compression algorithms, the following tests

were performed to gauge the performance of the some of the variations of the

CBLTT algorithm.

The test consisted of compressing three different types of images using twelve

different compression algorithms: six CBLTT variations were tested against six
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Figure 6.12: Although this and the previous image were compressed at the same
rate (20:1), the lack of blocking artifact present in this image is more pleasing to
the human observer than Figure 6.11.

well known methods. The three images were chosen to represent three different

classes of images: line drawing, textural, and photo. Twenty five people were

asked to rank the twelve images from each category separately, by sequentially

eliminating the worst image from the set. They were allowed to view the original

image at all times for comparison. The order in which they eliminated the images

was recorded, and the tabulated results are presented in Tables 6.1, 6.2 and 6.3.

Also included in each table is the method’s name, an average ranking value,

and the overall ranking of each method. As an example, take the eighth row

of Table 6.1 which corresponds to the Continuous Even1 Gridpoint Brushlet

Transform (CE1GBT). According to the chart, 21 people felt that this algorithm

produced the highest quality compressed image and should therefore be ranked

number 1. Four people felt that there were two other images of better quality;

they therefore ranked this method third. The second column from the right

contains a weighted average which was calculated by awarding the best method

a value of 12, the second best a value of 11, methods chosen third a value of 10,
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Table 6.1: Subjective rankings for 20:1 compression of the surfer image C.1

Method\Rank 1 2 3 4 5 6 7 8 9 10 11 12 Mean Rank

JPEG-DCT 4 5 16 5.84 7

D02 12 8 5 5.28 8

LCT 10 15 7.40 6

C06 18 3 4 8.40 4

LFT 4 11 10 7.92 5

BT 1 16 8 3.72 9

CE1GLFT 25 2.00 11

CE1GBT 21 4 11.68 1

CO2M-CE2MLFT 4 4 17 3.64 10

CO2M-CE2MBT 25 11.00 2

CO2MLCT2 25 1.00 12

CO2MBT2 4 17 3 1 10.12 3

etc. Methods ranked last were given a value of 1. So the CE1GBT weighted

mean is 21∗12+4∗10
25

= 11.68. Repeating this for each other row gives an overall

score, which when ordered was used to rank each method against the others. This

overall ranking is shown in the final column of each table.

For the compression, full folding was employed for every applicable method,

and the steepness of the rising cutoff function was set to m = 5 for all of the

CBLTT methods and it was set to 1 for the others. These conditions were chosen

to achieve a high level of performance for each method; for example, fixed folding,

or a steeper rising cutoff function, produced less pleasing results for LCT, LFT

and BT. Conversely, the CBLTT methods perform better with steeper rising

cutoff functions as was shown in the last chapter. For all cases, a compression

rate of 20:1 was used. The full set of test images can be seen in Appendix C.

As can be seen in each table, a definite trend is easily observed. Clearly, all

of the methods which exhibit a blocking effect (JPEG-DCT, D02, CE1GLFT,

CO2M-CE2MLFT, CO2MLCT2) were evaluated poorly as was predicted. But
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Table 6.2: Subjective rankings for 20:1 compression of the tile image C.14

Method\Rank 1 2 3 4 5 6 7 8 9 10 11 12 Mean Rank

JPEG-DCT 3 1 21 1.60 12

D02 3 19 2 1 4.96 8

LCT 3 22 6.12 7

C06 10 12 3 7.56 6

LFT 4 16 5 8.12 5

BT 3 18 4 3.80 9

CE1GLFT 11 11 3 2.32 11

CE1GBT 22 3 11.68 1

CO2M-CE2MLFT 5 10 9 1 2.76 10

CO2M-CE2MBT 3 16 6 10.96 2

CO2MLCT2 11 9 5 8.24 4

CO2MBT2 9 12 4 10.20 3

all three of the Continuous Boundary Brushlet Transform (CBBT) methods per-

formed well, consistently out ranking all of the other methods for all three classes

of images. It should be noted that it may be possible to find particular im-

ages which cause the rankings to change. For instance, in the surfer image, the

dominant lines are oriented along the 45 degree angle. This orientation is less

conducive to certain transforms such as C06 which lack orientation capabilities.

If the dominant lines were closer to 20 degrees, for example, the results from C06

might show improvement. But overall, the fact that the three CBBT methods

performed so well on three different classes of images which were comprised of

many different textures and patterns at various orientations and scales, hints at

their superior performance.

There are three primary reasons why the CBBT methods perform so well.

First is the fact that any energy from blocking effects which occur in the fre-

quency domain is distributed evenly throughout the entire space domain. Since

the human visual system is less acute to this type of error, then these methods

produce results which are less disturbing to a human observer. Second is the
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Table 6.3: Subjective rankings for 20:1 compression of the barbara image C.27

Method\Rank 1 2 3 4 5 6 7 8 9 10 11 12 Mean Rank

JPEG-DCT 4 21 5.16 8

D02 25 4.00 9

LCT 2 3 10 10 7.88 6

C06 14 7 4 9.92 3

LFT 4 7 9 5 8.40 5

BT 1 3 17 4 6.04 7

CE1GLFT 13 12 2.52 10

CE1GBT 11 5 9 11.08 1

CO2M-CE2MLFT 12 13 2.48 11

CO2M-CE2MBT 19 6 10.76 2

CO2MLCT2 25 1.00 12

CO2MBT2 1 4 15 5 9.04 4

orientation capabilities associated with the CBBT. And third is the fact that the

CBBT segments the frequency domain in a very natural manner. This means

that the scale of the CBBT basis functions will closely match the scale of the

underlying structure in the space domain.

Combining the results from all three charts gives overall means and rankings

which are displayed in Table 6.4. As is shown, the three CBBT methods rank

the highest.
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Table 6.4: Overall ranking of the 12 methods for the three images.

Method Mean Rank

CE1GBT 11.48 1
CO2M-CE2MBT 10.91 2
CO2MBT2 9.79 3
C06 8.63 4
LFT 8.15 5
LCT 7.13 6
D02 4.75 7
BT 4.52 8
JPEG-DCT 4.20 9
CO2MLCT2 3.41 10
CO2M-CE2MLFT 2.96 11
CE1GLFT 2.28 12
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Chapter 7

Conclusion

The Continuous Boundary Local Trigonometric Transform was shown to be

a powerful tool for both signal analysis and signal synthesis. Many variations of

this method were proposed and analyzed, and in the end the CBLTT was shown

to be as good, in some cases better, than many of the conventional tools currently

available. In particular, the LCT, LFT, BT, JPEG-DCT and WP were used for

comparison since they all possess the ability to concentrate the signal energy in

the space and frequency domain. Their primary drawback lies in the fact that

they lack an effective way to periodize an initial signal. Without any information

outside of the original signal, they are unable to both treat the boundary, as well

as stably recover the original signal from the transformed coefficients. In addition,

it was shown that as signals are decomposed into the hierarchical tree structure

common to many of these approaches, instability of the folding process on or near

a subspace boundary can cause increased edge effect for that subspace. Since

children subspaces inherit some of their boundaries from their parents, the edge

effect can translates recursively to lower levels of the decomposition. This often

results in inefficient representation, improper segmentation and incorrect analysis

of the signal. Consequently, signal compression and synthesis are negatively

affected.
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The CBLTT overcomes all of this by forcing continuity at the boundaries of

the original signal, as well as at the boundaries of each subspace, by creating arti-

ficial extensions which are then used to periodize each interval. Many variations

of this method were proposed and analyzed, and it was found that the CBLTT’s

ability to minimize the mixing of information between subspaces, as well as within

subpspaces for some versions such as the CPLFT, while still reducing edge effect,

caused improved analysis capabilities over the standard methods. It was shown

that the stability of the algorithm under various sparsity measures, as well as the

robustness under shifts and rotations, indicates that CBLTT is well suited for

certain applications such as texture segmentation.

In addition, the CBLTT was found to have a stable inverse transform, and

also possess the ability to minimize reconstruction edge effects due to quantization

or thresholding errors. All of these properties result in improved compression.

To be more specific, for one dimensional signals, three versions of CBLTT out-

performed many of the other methods at varying levels of compression. They

were the CE1GLFT which is based on the use of even boundary extensions and

gridpoint folding operations, the CO2M-CE2MLFT which combines both even

and continuous odd extensions along with midpoint folding operations, and the

CO2MLCT2 which uses continuous odd extensions along with the DCT-II trans-

form. If these three CBLTT versions are applied to the frequency domain of a

signal, brushlet versions of the CBLTT result. When it came to image compres-

sion, these three CBBTs consistently outperformed all of the other methods on

a wide variety of image types: line drawings, textures, and photos.

Overall, the CBLTT was found to excel at both analysis and synthesis and

therefore shows great potential for use in a wide variety of signal processing appli-

cations. With all of the numerous variations of the CBLTT, it has the flexibility

to be customized for specific purposes; for example, the CPLFT can be used for

image segmentation, and the CE1GBT can be used for image compression. As

added improvements and new versions of the algorithm are continually discov-
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ered, the CBLTT will hopefully become a common signal processing tool with a

wide variety of uses.
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Chapter 8

Further Research

One of the primary future goals is to devise methods which satisfy all three of

the ranking constraints defined in Section 5.2. The main problem is that methods

created to satisfy one constraint, may not satisfy another. The following ideas

represent only a small sample of the possible approaches to circumventing these

problems.

8.1 Increasing Stability of Existing Methods

Take the CO2LFT, both midpoint and gridpoint folding, for example. They

were devised to increase the level of continuity at the boundary, thus increasing

the sparsity of the transformed coefficients. Thus they satisfy the first of the

ranking conditions. But their condition numbers are so large that they cannot be

inverted in a stable manner for practical use. So one idea is to try to increase the

stability of the method, without destroying the continuity at the boundary. One

possible solution is to use more signal values when defining an extension. Under

the current CO2LFT construction, the extension is made by reflecting the signal

about the points x0 and xN . This resulted in the formulas of Equations B.36 and

B.37 for midpoint folding, and Equations B.45 and B.46 for gridpoint folding.
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In other words, each extension point is dependent on two signal values. Instead,

an extension could be made by reflecting the signal about x− 1
2
and xN+ 1

2
. This

results in the following formulas

x−n−1 = x0 − (xn − x0)− (x1 − x0)

= 3x0 − xn − x1

and

xN+n+1 = xN + (xN − xN−n) + (xN − xN−1)

= 3xN − xN−n − xN−1.

Hence, the values of the extension are now dependent on three signal values rather

than just two. This translates into a more stable inversion formula. Using this

extension results in the following formulas for midpoint folding

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1(3x0 − x1 − xn) (8.1)

and

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1(3xN − xN−1 − xN−n). (8.2)

For gridpoint folding, the formulas are

x̃n = rnxn + r−nx−n

= rnxn + r−n(3x0 − x1 − xn−1) (8.3)

and

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1(3xN − xN−1 − xN−n−1). (8.4)



8.1 Increasing Stability of Existing Methods 141

In matrix notation they become















r0+2r−1 r−1 0 0 0 0 0 0
3r−2 r1+2r−2 0 0 0 0 0 0
3r−3 −r−3 r2−r−3 0 0 0 0 0
3r−4 −r−4 0 r3−r−4 0 0 0 0
0 0 0 0 r3+r−4 0 r−4 −3r−4
0 0 0 0 0 r2+r−3 r−3 −3r−3
0 0 0 0 0 0 r1+2r−2 −3r−2
0 0 0 0 0 0 r−1 r0−2r−1















x= x̃ (8.5)

for midpoint folding, and















2r0 0 0 0 0 0 0 0
2r−1 r1 − r−1 0 0 0 0 0 0
2r−2 −2r−2 r2 0 0 0 0 0
2r−3 −r−3 −r−3 r3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 r−3 r3 r−3 −3r−3
0 0 0 0 0 r−2 r2 + r−2 −3r−2
0 0 0 0 0 0 2r−1 r1 − 3r−1















x = x̃. (8.6)

for gridpoint folding. When applied to the same test signal of Section 5.2, the

sparsity values remain low, but the condition numbers are drastically reduced.

Table 8.1 shows these values. Although the condition numbers are still too large

to make these methods practical, it illustrates the basic approach for finding

new schemes. It may be possible to attain additional stability by using different

Table 8.1: Sparsity and condition numbers of the folding matrices for the left half
interval (Left), right half interval (Right), and both sides together (Both).

CO3 `0.1 Left Right Both

Midpoint 47.59 406.51 6.12 · 107 6.13 · 107
Gridpoint 48.39 4810.50 2.82 · 108 2.82 · 108

signal values to define each extension point, but this is yet to be determined. Of

course, the number of signal values used to define each extension point should be

limited, since using most of the signal to compensate for boundary effects would



8.2 Adding C1 Continuity to the CPLFT 142

be counterproductive. Hence, there is a trade-off. It should be noted that this

approach could also be used to improve the condition number for the CP2LFT.

8.2 Adding C1 Continuity to the CPLFT

A different approach to increasing continuity at the boundaries, and subsequently

increasing sparsity is to exploit the results of Section 4.5.1 which showed that the

CPLFT simply adds a scalar multiple of the function h(t) to the input signal

x(t) in order to periodize it. Now, the function h(t) makes the signal continuous

when viewed as a periodic signal, but it does not make the derivative continuous.

So the idea is to try to find a variation of h(t) that adds C1 continuity to the

boundary of the signal when viewed in a periodic manner. Figure 8.1 illustrates

the idea. Once this variant of h(t) is determined, the periodization process shown

in Equations (4.58) and (4.59) can be inverted to determine the corresponding

extension, g(t), and consequently the resultant CPLFT equations which are used

in practice.

To better illustrate the idea, assume that h(t) is the result of using a contin-

uous odd periodization operator. An example is shown in Figure 8.1(e) which

was found by subtracting the original signal from the periodized signal; i.e.,

h(t) = W ∗1ŨCOx − x where ŨCO is the continuous odd folding operator. Now,

inverting the process shown in Equations (4.58) and (4.59) to recover g(t) en-

tails applying periodic folding, W , followed by the inverse of the following folding

routine

Ug(t) =







r
(
t
ε

)
g(t) + r

(−t
ε

)
g(−t) if 0 < t < ε,

r
(
1−t
ε

)
g(t)− r

(
t−1
ε

)
g(2− t) if 1− ε < t < 1,

0 otherwise

=







r
(−t

ε

)
g(−t) if 0 < t < ε,

−r
(
t−1
ε

)
g(2− t) if 1− ε < t < 1,

0 otherwise.
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Figure 8.1: Adding the function shown in (b) to the original signal (a) results
in the C0-periodic signal shown in (c). On the other hand, adding the function
shown in (e) to the original signal (d) results in the C1-periodic signal shown in
(f).

This will define the function g(t) (Figure 8.2(c)), whose extensions can then be

added to the periodic extension of the original signal (Figure 8.2(b)) to reveal

the proper extensions to be used (Figure 8.2(a)). From these extensions, the

underlying formulas for C1-periodization can be found. It should be noted that

the resulting extensions shown in Figure 8.2(a) match those of the continuous

odd extension. The reason for this is because continuous odd extensions were

originally used to define h(t) for this example. In practice, different h(t) functions

should be used.
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Figure 8.2: (a) A variation of the continuous periodic extension split into the
sum of (b) a periodic extension, and (c) a piecewise function.

8.3 Improving the Thresholding Scheme and the

Best Basis Criteria

Another idea which shows great potential is that of incorporating the p̃b values,

defined in Section 5.2, with a new thresholding scheme. For example, given a

set of transformed CBLFT coefficients, the current approach for compression is

simply to threshold the smallest values. But because of the nonuniform weights,

1
pxp̃b

, applied to these coefficients, throwing away a small transform coefficient

may actually have a more severe effect than throwing away a larger one. In

addition, since one of the primary goals of these methods is to minimize edge

effect, then it makes sense to threshold those coefficients which will have minimal

effect on the edges. Thus, if c is the vector of CBLFT coefficients, and b̃i are the

CBLFT basis functions, then thresholding the values c̃i =
ci

pxp̃bi
will reduce error.

Figure 8.3 shows a comparison of the two thresholding approaches.
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Figure 8.3: (a) Original signal, (b) 4:1 compression when thresholding ci, (c) 4:1
compression when thresholding c̃i.

Although this approach works well when applied to the entire signal, it cannot

be used to threshold coefficients chosen with a best basis algorithm. It also cannot

be used to choose the coefficients in a best basis algorithm. The reason is that

it is not an isometric operation. Since the energy is not preserved between a

parent subspace and its children, comparing them becomes a bit tricky. But the

significant improvement in performance begs further attention.
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Appendix A

Abbreviations

This appendix lists some of the Continuous Boundary abbreviations and def-

initions which are used throughout the thesis.

A.1 Continuous Boundary Abbreviations

Abbreviation Definition

BLFTRC The Brushlet Transform based on the Real-valued Cosine
polarity Local Fourier Transform.

BLFTRMC The Brushlet Transform based on the Real-valued Cosine
polarity Local Fourier Transform with Multiple folding.

BT The Brushlet Transform.
C06 6-tap coiflet with 2 vanishing moments.
CBBT The Continuous Boundary Brushlet Transform.
CBLFT The Continuous Boundary Local Fourier Transform.
CBLTT The Continuous Boundary Local Trigonometric Transform.
CE1G The Continuous Even1 Gridpoint folding scheme.
CE1GLFT The Continuous Even1 Gridpoint Local Fourier Transform.
CE1M The Continuous Even1 Midpoint folding scheme.
CE1MLFT The Continuous Even1 Midpoint Local Fourier Transform.
CE2G The Continuous Even2 Gridpoint folding scheme.
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Abbreviation Definition

CE2GLFT The Continuous Even2 Gridpoint Local Fourier
Transform.

CE2M The Continuous Even2 Midpoint folding scheme.
CE2MLFT The Continuous Even2 Midpoint Local Fourier

Transform.
COLFT The Continuous Odd Local Fourier Transform.
CO1G The Continuous Odd1 Gridpoint folding scheme.
CO1GLFT The Continuous Odd1 Gridpoint Local Fourier

Transform.
CO1M The Continuous Odd1 Midpoint folding scheme.
CO1MLFT The Continuous Odd1 Midpoint Local Fourier

Transform.
CO2G The Continuous Odd2 Gridpoint folding scheme.
CO2GLFT The Continuous Odd2 Gridpoint Local Fourier

Transform.
CO2M The Continuous Odd2 Midpoint folding scheme.
CO2M-CE2MBT The Continuous Odd2 Midpoint folding scheme used for

the even polarity boundary, and the Continuous Even2
Midpoint folding scheme used for the odd polarity
boundary Brushlet Transform.

CO2M-CE2MLFT The Continuous Odd2 Midpoint folding scheme used for
the even polarity boundary, and the Continuous Even2
Midpoint folding scheme used for the odd polarity
boundary Local Fourier Transform.

CO2MBT2 The Continuous Odd2 Midpoint Brushlet Transform.
based on DCT-II.

CO2MLCT2 The Continuous Odd2 Midpoint Local Cosine Transform
based on DCT-II.

CO2MLFT The Continuous Odd2 Midpoint Local Fourier
Transform.

COLFT The Continuous Odd Local Fourier Transform.
CP1G The Continuous Periodic1 Gridpoint folding scheme.
CP1GLFT The Continuous Periodic1 Gridpoint Local Fourier

Transform.
CP1M The Continuous Periodic1 Midpoint folding scheme.
CP1MLFT The Continuous Periodic1 Midpoint Local Fourier

Transform.
CP2G The Continuous Periodic2 Gridpoint folding scheme.
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Abbreviation Definition

CP2GLFT The Continuous Periodic2 Gridpoint Local Fourier
Transform.

CP2M The Continuous Periodic2 Midpoint folding
scheme.

CP2MLFT The Continuous Periodic2 Midpoint Local Fourier
Transform.

CPLFT The Continuous Periodic Local Fourier Transform.
DCT The Discrete Cosine Transform.
DCT-II The Discrete Cosine Transform (type II

boundary conditions).
DCT-IV The Discrete Cosine Transform (type IV

boundary conditions).
DCT2-II The 2D Discrete Cosine Transform (type II

boundary conditions).
DCT2-IV The 2D Discrete Cosine Transform (type IV

boundary conditions).
DCT/DST→ LCT/LST Real-valued brushlet transform based

on the global Discrete Cosine (Sine) Transform
followed by the Local Cosine (Sine) Transform.

DST The Discrete Sine Transform.
DST-II The Discrete Sine Transform (type II

boundary conditions).
DST-IV The Discrete Sine Transform (type IV

boundary conditions).
DST2-II The 2D Discrete Sine Transform (type II

boundary conditions).
DST2-IV The 2D Discrete Sine Transform (type IV

boundary conditions).
DFT The Discrete Fourier Transform.
D02 The Haar-Walsh Wavelet packet transform

utilizing Daubechies’ 2-tap quadrature
mirror filter.

FFT The Fast Fourier Transform.
FFTR The Real-valued Fast Fourier Transform.
FFTR→ LCT/LST Real-valued brushlet transform based

on the global Real-valued Fast Fourier Transform
followed by the Local Cosine (Sine) Transform.

DST The Discrete Sine Transform.
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Abbreviation Definition

FFTR→ LFTR Real-valued brushlet transform based
on the global Real-valued Fast Fourier Transform
followed by the real-valued Local Fourier
Transform.

JPEG The Joint Photographic Experts Group transform.
JPEG2000 The Joint Photographic Experts Group transform

based on Wavelet technology.
JPEG-DCT The Joint Photographic Experts Group transform

based on the Discrete Cosine Transform (same
as JPEG).

LCT The Local Cosine Transform.
LCTM The Local Cosine Transform using

multiple folding.
LFT The standard complex-valued Local Fourier

Transform.
LFTR The Real-valued Local Fourier Transform
LST The Local Sine Transform.
LTT The Local Trigonometric Transform.
WP Wavelet Packets.
WT The Wavelet Transform.
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Appendix B

Supplemental Formulas,
Definitions and Proofs

This chapter contains supplemental definitions, analysis and proofs, as well as

other supporting material which was referenced within the thesis. The inclusion

here will hopefully aid in the understanding of key elements of the CBLTT.

B.1 The 2D Discrete Cosine/Sine Transform

A key ingredient of the 2D LTT transform is the 2D Discrete Cosine Transform

type-IV (DCT2-IV) and the Discrete Sine Transform type-IV (DST2-IV). These

transforms are closely related to the standard DCT2-II and DST2-II in that they

are orthogonal transform and have fast FFT based algorithms associated with

them, but they differ primarily in the symmetry of the transform basis functions

at the boundaries of their intervals. In the derivation of the DCT (DST), the basis

functions are found by numerically solving the differential equation −u′′ = λu

on [0, π] using boundary conditions that produce cosines (sines). In particular,

u
′

(0) = 0 (u
′

(π) = 0) along with Neumann boundary conditions, u
′

(π) = 0

(u
′

(0) = 0), or Dirichlet boundary conditions, u(π) = 0 (u(π) = 0). Since the
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discrete solution can be approximated in two primary ways, either centered at

midpoints or at gridpoints, four cosine (sine) transforms arise; actually there are

more choices if separate centering is allowed at each boundary. But if midpoint

centering is employed, then the Dirichlet boundary conditions give rise to the

DCT-II (DST-II) basis, whereas the Neumann boundary conditions give rise to

the DCT-IV (DST-IV) basis [68]. It should be noted that, in practice, the 2D

transforms are applied as a tensor product of their corresponding 1D version;

i.e., the 1D version is first applied to the rows, and then to the columns. To be

precise, the 2D versions of the DCT2-II (DST2-II) and DCT2-IV (DST2-IV) are

provided next.

The DCT2-II of a function xm,n form = (0, . . . ,M and n = 0, . . . , N is defined

as [2]

CII
j,k =

2

N + 1
cjck

M∑

m=0

N∑

n=0

xm,n cos
(m+ 1

2
)jπ

M + 1
cos

(n+ 1
2
)kπ

N + 1
,

for j = 0, . . . ,M, and k = 0, . . . , N, (B.1)

where

ck =







1√
2
, if k = 0,

1, if k = 1, . . . , N,

0 otherwise.

(B.2)

Its inversion is given by

xm,n =
2

N + 1

M∑

j=0

N∑

k=0

cjckC
II
j,k cos

(m+ 1
2
)jπ

M + 1
cos

(n+ 1
2
)kπ

N + 1
,

for m = 0, . . . ,M, and n = 0, . . . , N. (B.3)

Similarly, the DST2-II is defined as [72]

SIIj,k =
2

N + 1
cj+1ck+1

M∑

m=0

N∑

n=0

xm,n sin
(m+ 1

2
)(j + 1)π

M + 1
sin

(n+ 1
2
)(k + 1)π

N + 1
,

for j = 0, . . . ,M, and k = 0, . . . , N, (B.4)
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and its inversion is

xm,n =
2

N + 1

M∑

j=0

N∑

k=0

cj+1ck+1S
II
j,k sin

(m+ 1
2
)(j + 1)π

M + 1
sin

(n+ 1
2
)(k + 1)π

N + 1
,

for m = 0, . . . ,M, and n = 0, . . . , N. (B.5)

Now, replacing j with j+ 1
2
and k with k+ 1

2
in the arguments of the cosines on

the right hand side of Equations (B.1) and (B.3) yields the formulas for DCT2-

IV. Now, replacing j +1 with j + 1
2
and k+1 with k+ 1

2
in the arguments of the

sines on the right hand side of Equations (B.4) and (B.5) yields the formulas for

DST2-IV. They are

CIV
j,k =

2

N + 1

M∑

m=0

N∑

n=0

xm,n cos
(m+ 1

2
)(j + 1

2
)π

M + 1
cos

(n+ 1
2
)(k + 1

2
)π

N + 1
,

for j = 0, . . . ,M, and k = 0, . . . , N (B.6)

which has inversion given by

xm,n =
2

N + 1

M∑

j=0

N∑

k=0

CIV
j,k cos

(m+ 1
2
)(j + 1

2
)π

M + 1
cos

(n+ 1
2
)(k + 1

2
)π

N + 1
,

for m = 0, . . . ,M, and n = 0, . . . , N, (B.7)

and

SIVj,k =
2

N + 1

M∑

m=0

N∑

n=0

xn sin
(m+ 1

2
)(j + 1

2
)π

M + 1
sin

(n+ 1
2
)(k + 1

2
)π

N + 1
,

for j = 0, . . . ,M, and k = 0, . . . , N, (B.8)

with the following inverse

xm,n =
2

N + 1

M∑

j=0

N∑

k=0

SIIj,k sin
(m+ 1

2
)(j + 1

2
)π

M + 1
sin

(n+ 1
2
)(k + 1

2
)π

N + 1
,

for m = 0, . . . ,M, and n = 0, . . . , N. (B.9)
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B.2 Real-Valued FFT in Two Dimensions

The relationship between complex-valued 2D FFT coefficients and real valued

coefficients is derived below.

√
MNxk,l =

M−1∑

m=0

N−1∑

n=0

x̂m,ne
2πi(mk

M
+nl

N )

=
M−1∑

m=0

e2πi
mk
M



x̂m,0 +

N
2
−1
∑

n=1

x̂m,ne
2πinl

N + (−1)lx̂m,N
2
+

N−1∑

n=N
2
+1

x̂m,ne
2πinl

N





=
M−1∑

m=0

x̂m,0e
2πimk

M +

N
2
−1
∑

n=1

e2πi
nl
N

M−1∑

m=0

x̂m,ne
2πimk

M + (−1)l
M−1∑

m=0

x̂m,N
2
e2πi

mk
M

+
N−1∑

n=N
2
+1

e2πi
nl
N

M−1∑

m=0

x̂m,ne
2πimk

M

= x̂0,0 + 2

M
2
−1
∑

m=1

Re(x̂m,0) cos

(

2π
mk

M

)

+ (−1)kx̂M
2
,0

− 2
M−1∑

m=M
2
+1

Im(x̂m,0) sin

(

2π
mk

M

)

+

N
2
−1
∑

n=1

x̂0,ne
2πinl

N
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+

N
2
−1
∑

n=1

e2πi
nl
N

M
2
−1
∑

m=1

x̂m,ne
2πimk

M + (−1)k
N
2
−1
∑

n=1

x̂M
2
,ne

2πinl
N

+

N
2
−1
∑

n=1

e2πi
nl
N

M−1∑

m=M
2
+1

x̂m,ne
2πimk

M + (−1)lx̂0,N
2

+ 2(−1)l
M
2
−1
∑

m=1

Re(x̂m,N
2
) cos

(

2π
mk

M

)

+ (−1)k+lx̂M
2
,N
2

− 2(−1)l
M−1∑

m=M
2
+1

Im(x̂m,N
2
) sin

(

2π
mk

M

)

+
N−1∑

n=N
2
+1

x̂0,ne
2πinl

N

+
N−1∑

n=N
2
+1

e2πi
nl
N

M
2
−1
∑

m=1

x̂m,ne
2πimk

M + (−1)k
N−1∑

n=N
2
+1

x̂M
2
,ne

2πinl
N

+
N−1∑

n=N
2
+1

e2πi
nl
N

M−1∑

m=M
2
+1

x̂m,ne
2πimk

M

= x̂0,0 + (−1)kx̂M
2
,0 + (−1)lx̂0,N

2
+ (−1)k+lx̂M

2
,N
2

+ 2

M
2
−1
∑

m=1

Re(x̂m,0) cos

(

2π
mk

M

)

− 2
M−1∑

m=M
2
+1

Im(x̂m,0) sin

(

2π
mk

M

)

+2(−1)l
M
2
−1
∑

m=1

Re(x̂m,N
2
)cos

(

2π
mk

M

)

−2(−1)l
M−1∑

m=M
2
+1

Im(x̂m,N
2
)sin

(

2π
mk

M

)

+ 2

N
2
−1
∑

n=1

Re(x̂0,n) cos

(

2π
nl

N

)

− 2
N−1∑

n=N
2
+1

Im(x̂0,n) + sin

(

2π
nl

N

)

+2(−1)k
N
2
−1
∑

n=1

Re(x̂M
2
,n)cos

(

2π
nl

N

)

−2(−1)k
N−1∑

n=N
2
+1

Im(x̂M
2
,n)sin

(

2π
nl

N

)

+2

M
2
−1
∑

m=1

N
2
−1
∑

n=1

Re(x̂m,n)

[

cos

(

2π
mk

M

)

cos

(

2π
nl

N

)

−sin
(

2π
mk

M

)

sin

(

2π
nl

N

)]
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+2

M
2
−1
∑

m=1

N−1∑

n=N
2
+1

Re(x̂m,n)

[

cos

(

2π
mk

M

)

cos

(

2π
nl

N

)

−sin
(

2π
mk

M

)

sin

(

2π
nl

N

)]

+2
M−1∑

m=M
2
+1

N
2
−1
∑

n=1

Im(x̂m,n)

[

cos

(

2π
mk

M

)

sin

(

2π
nl

N

)

+sin

(

2π
mk

M

)

cos

(

2π
nl

N

)]

+2
M−1∑

m=M
2
+1

N−1∑

n=N
2
+1

Im(x̂m,n)

[

cos

(

2π
mk

M

)

sin

(

2π
nl

N

)

+sin

(

2π
mk

M

)

cos

(

2π
nl

N

)]

=

M
2∑

m=0

N
2∑

n=0

√
2Re(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 cos

[

2π

(
mk

M
+
nl

N

)]

(?)

+

M
2
−1
∑

m=1

N−1∑

n=N
2
+1

√
2Re(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 cos

[

2π

(
mk

M
+
nl

N

)]

−
M−1∑

m=M
2
+1

N
2∑

n=0

√
2Im(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 sin

[

2π

(
mk

M
+
nl

N

)]

−
M∑

m=M
2

N−1∑

n=N
2
+1

√
2Im(x̂m,n)

︸ ︷︷ ︸

†

·

‡
︷ ︸︸ ︷
√
2 sin

[

2π

(
mk

M
+
nl

N

)]

(??)

It should be noted that every
√
2 in (?) should be replaced by a 1 when (m,n)

equals (0, 0), (M
2
, 0), (0, N

2
), or (M

2
, N
2
). Also, when m =M in (??), m = 0 should

be used instead.

In this form, it is easy to see the relationship between the complex and real

FFT coefficients. The real-valued coefficients denoted by †, and their corre-

sponding basis function is marked with a ‡. This form also gives rise to a natural

ordering of the coefficient table that is similar to the ordering of the complex

FFT coefficients (Figure 2.12 and Figure 2.13).
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B.3 Fourier Coefficient Rate of Decay for the

CPLFT

As defined in section 4.5.1, the addition of a scalar multiple of h(t) = TIg(t) to

a function has the effect of periodizing that function. The manner in which it

achieves this can be illustrated by simply taking the Fourier transform of h(t).

For illustrative simplicity, let r(t) = r[0](t) = sin
[
π
4
(1 + t)

]
and x(t) = tn. Then if

Fb(x), b ∈ Z, is the bth Fourier coefficient of a function x, Fb[TIx(t)] = Fb[f(t)] +

∆xFb[h(t)] where

F0[h(t)] = −2ε
∫ 1

0

r(t)r(−t)dt

= −2ε
∫ 1

0

cos
(π

2
t
)

dt

= −4ε

π
. (B.10)
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and

Fb[h(t)] =

∫ 1

0

h(t)e−2πibtdt

=

∫ ε

0

r

(−t
ε

)[

r

(−t
ε

)

− r
(
t

ε

)]

e−2πibtdt

−
∫ 1

1−ε
r

(
t− 1

ε

)[

r

(
1− t
ε

)

− r
(
t− 1

ε

)]

e−2πibtdt

= ε

∫ 1

0

r(−t)[r(−t)−r(t)]e−2πibεtdt+ε
∫ 0

1

r(−t)[r(t)+r(−t)]e−2πib(1−εt)dt

= ε

∫ 1

0

r(−t)[r(−t)− r(t)]e−2πibεtdt− ε
∫ 1

0

r(−t)[r(t) + r(−t)]e2πibεtdt

= ε

∫ 1

0

r2(−t)
(
e−2πibεt−e2πibεt

)
dt−ε

∫ 1

0

r(−t)r(t)
(
e−2πibεt+e2πibεt

)
dt

= −2ε
∫ 1

0

r(−t)r(t) cos(2πibεt)dt− 2iε

∫ 1

0

r2(−t) sin(2πibεt)dt

= −2ε
∫ 1

0

sin
[π

4
(1− t)

]

sin
[π

4
(1 + t)

]

cos(2πibεt)dt

− 2iε

∫ 1

0

sin2
[π

4
(1− t)

]

sin(2πibεt)dt

= −ε
∫ 1

0

cos
(π

2
t
)

cos(2πibεt)dt− iε
∫ 1

0

[

1− sin
(π

2
t
)]

sin(2πibεt)dt

= − ε
2

∫ 1

0

cos

[

π

(
1

2
− 2bε

)

t

]

+ cos

[

π

(
1

2
− 2bε

)

t

]

dt

− iε

2

∫ 1

0

2 sin(2πbεt)− cos

[

π

(
1

2
− 2bε

)

t

]

+ cos

[

π

(
1

2
− 2bε

)

t

]

dt

= − ε
2

{

sin
[
π
(
1
2
− 2bε

)]

π
(
1
2
− 2bε

) +
sin
[
π
(
1
2
+ 2bε

)]

π
(
1
2
+ 2bε

)

}

+
iε

2

{

2 cos (2πbε)

2πbε
+

sin
[
π
(
1
2
− 2bε

)]

π
(
1
2
− 2bε

) − sin
[
π
(
1
2
+ 2bε

)]

π
(
1
2
+ 2bε

)

}

=
ε cos(2πbε)

π

(
1

4bε− 1
− 1

4bε+ 1

)

+ i

[
cos(2πbε)− 1

2πb
− ε cos(2πbε)

π

(
1

4bε− 1
+

1

4bε+ 1

)]

=
2ε cos(2πbε)

π(16b2ε2 − 1)
− i

2πb

[

1 +
cos(2πbε)

b(16b2ε2 − 1)

]

. (B.11)



B.4 Alternate Versions of the CBLTT 158

B.4 Alternate Versions of the CBLTT

This section lists a few of the alternate versions of the CBLTT that have been

derived and analyzed the earlier chapters. They constitute only a small sample of

all of the possible extensions that can be used. Only the formulas for folding and

unfolding are derived here. Equations (5.1) and (5.2) must be used in conjunction

with them in order to achieve the isometry.

B.4.1 The Even2 Midpoint Extension

−4 −2 0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

n

x n

Even 2 Midpoint

Figure B.1: Example of the Even2 Midpoint extension with N = 7.

Using Figure B.1, the values for the extension to the left of x0 are given by

x−n = xn (B.12)

and the values of the extension to the right of xN are

xN+n = xN−n. (B.13)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1xn+1 (B.14)
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and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1xN−n−1. (B.15)

Solving for x in Equations (B.14) and (B.15) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − r−n−1xn+1

rn
(B.16)

and at the right hand side

xN−n =
x̃N−n + r−n−1xN−n−1

rn
. (B.17)

Graphically, this can be represented as a matrix with the following structure














r0 r−1 0 0 0 0 0 0
0 r1 r−2 0 0 0 0 0
0 0 r2 r−3 0 0 0 0
0 0 0 r3 r−4 0 0 0
0 0 0 −r−4 r3 0 0 0
0 0 0 0 −r−3 r2 0 0
0 0 0 0 0 −r−2 r1 0
0 0 0 0 0 0 −r−1 r0















x = x̃. (B.18)

Now this approach yields implicit inversion formulas when full folding is em-

ployed. And as with all of these methods, the above matrix should not be

inverted, but rather an explicit equation should be derived for computational

efficiency. This can be achieved by noticing that the middle two equations in

Equation (B.18) have two unknowns. So simply solving for the middle two values

xN−1
2

and xN+1
2

in these two equations yields the following explicit formulas

xN−1
2

= rN−1
2
x̃N−1

2
− r−N+1

2
x̃N+1

2
(B.19)

and

xN+1
2

= rN−1
2
x̃N+1

2
+ r−N+1

2
x̃N−1

2
(B.20)

Once these values are computed, they can simply be used in Equations (B.16)

and (B.17) in a recursive manner.
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B.4.2 The Even2 Gridpoint Extension
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Figure B.2: Example of the Even2 Gridpoint extension with N = 7.

As can be seen in Figure B.2, the values for the extension to the left of x0 are

given by

x−n = xn (B.21)

and the values of the extension to the right of xN are

xN+n = xN−n. (B.22)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−nx−n

= (rn + r−n−1)xn (B.23)

and at the right hand edge as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1xN−n−2. (B.24)

Solving for x in Equations (B.23) and (B.24) yields the following formula for

inverse folding at the left hand side

xn =
x̃n

rn + r−n
(B.25)
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and at the right hand side

xN−n =
x̃N−n + r−n−1xN−n−2

rn+1
. (B.26)

Graphically, this can be represented as a matrix with the following structure















2r0 0 0 0 0 0 0 0
0 r1 + r−1 0 0 0 0 0 0
0 0 r2 + r−2 0 0 0 0 0
0 0 0 r3 + r−3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −r−3 0 r3 0 0
0 0 0 0 −r−2 0 r2 0
0 0 0 0 0 −r−1 0 r1















x = x̃. (B.27)

Since full folding yields implicit inversion formulas, an explicit equation should

be derived for computational efficiency. This can be achieved by noticing that

the left hand side can be inverted. So as long as this side is unfolded first, then

the right hand side is defined and Equation (B.26) can be explicitly solved in a

recursive manner.

B.4.3 The Continuous Odd1 Gridpoint Extension
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Figure B.3: Example of the Continuous Odd1 Gridpoint extension with N = 7.
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As Figure B.3 shows, the values for the extension to the left of x0 are given

by

x−n−1 = 2x0 − xn (B.28)

and the values of the extension to the right of xN are

xN+n+1 = 2xN − xN−n. (B.29)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−nx−n

= rnxn + r−n(2x0 − xn−1) (B.30)

and at the right hand edge as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1(2xN − xN−n−1). (B.31)

Solving for x in Equations (B.30) and (B.31) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − 2r−nx0 + r−nxn−1

rn
(B.32)

and at the right hand side

xN−n =
x̃N−n + 2r−n−1xN − r−n−1xN−n−1

rn+1
. (B.33)

Graphically, this can be represented as a matrix with the following structure














2r0 0 0 0 0 0 0 0
r−1 r1 0 0 0 0 0 0
2r−2 −r−2 r2 0 0 0 0 0
2r−3 0 −r−3 r3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 r−3 r3 0 −2r−3
0 0 0 0 0 r−2 r2 −2r−2
0 0 0 0 0 0 r−1 r1 − 2r−1















x = x̃. (B.34)
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The inversion formulas are implicit for the right hand side. But by simply apply-

ing Gaussian Elimination, an explicit formula for xN is found to be

a = x̃N− r−1

r2

(

x̃N−1− r−2

r3

(

. . .
(

x̃N−R+3− r−R+2

rR−1
(x̃N−R+2−r−R+1xN−R+1)

)

. . .
))

b = r1 − 2r−1
(

1− r−2

r2

(

1− r−3

r3

(

. . .
(

1− r−R+2

rR−2

(

1− r−R+1

rR−1

))

. . .
)))

xN = a
b . (B.35)

With this defined, it can be used in Equation (B.33) in a recursive manner to

give an explicit solution.

B.4.4 The Continuous Odd2 Midpoint Extension
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Figure B.4: Example of the Continuous Odd2 Midpoint extension with N = 7.

According to Figure B.4, the values for the extension to the left of x0 are

given by

x−n = 2x0 − xn (B.36)

and the values of the extension to the right of xN are

xN+n = 2xN − xN−n. (B.37)
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Thus folding at the left hand edge is defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n(2x0 − xn+1) (B.38)

and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1(2xN − xN−n−1). (B.39)

Solving for x in Equations (B.38) and (B.39) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − r−n−1(2x0 − xn+1)

rn
(B.40)

and at the right hand side

xN−n =
x̃N−n + r−n−1(2xN − xN−n−1)

rn
. (B.41)

Graphically, this can be represented as a matrix with the following structure















r0 + 2r−1 −r−1 0 0 0 0 0 0
2r−2 r1 −r−2 0 0 0 0 0
2r−3 0 r2 −r−3 0 0 0 0
2r−4 0 0 r3 −r−4 0 0 0
0 0 0 r−4 r3 0 0 −2r−4
0 0 0 0 r−3 r2 0 −2r−3
0 0 0 0 0 r−2 r1 −2r−2
0 0 0 0 0 0 r−1 r0 − 2r−1















x = x̃. (B.42)

Applying Gaussian Elimination to this matrix yields an explicit formula for x0

a = x̃0+
r−1

r1

(

x̃a+
r−2

r2

(

. . .
(

x̃R−2+
r−R+1

rR−1
(x̃R−1+r−RxR)

)

. . .
))

b = r0 + 2r−1
(

1 + r−2

r1

(

1 + r−3

r2

(

. . .
(

1 +
r−R+1

rR−2

(

1 +
r−R

rR−1

))

. . .
)))

x0 =
a
b . (B.43)
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and for xN

a = x̃N− r−1

r1

(

x̃N−1− r−2

r2

(

. . .
(

x̃N−R+2− r−R+1

rR−1
(x̃N−R+1−r−RxN−R)

)

. . .
))

b = r0 − 2r−1
(

1− r−2

r1

(

1− r−3

r2

(

. . .
(

1− r−R+1

rR−2

(

1− r−R

rR−1

))

. . .
)))

xN = a
b . (B.44)

These can then be used recursively in Equation (B.41) to give an explicit solution.

B.4.5 The Continuous Odd2 Gridpoint Extension
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Figure B.5: Example of the Continuous Odd2 Gridpoint extension with N = 7.

From Figure B.5, the values for the extension to the left of x0 are given by

x−n = 2x0 − xn (B.45)

and the values of the extension to the right of xN are

xN+n = 2xN − xN−n. (B.46)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−nx−n

= (rn − r−n)xn + 2r−nx0 (B.47)
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and at the right hand edge as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1(2xN − xN−n−2). (B.48)

Solving for x in Equations (B.47) and (B.48) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − 2r−nx0
rn − r−n

(B.49)

and at the right hand side

xN−n =
x̃N−n + 2r−n−1xN − r−n−1xN−n−2

rn+1
. (B.50)

Graphically, this can be represented as a matrix with the following structure















2r0 0 0 0 0 0 0 0
2r−1 r1 − r−1 0 0 0 0 0 0
2r−2 0 r2 − r−2 0 0 0 0 0
2r−3 0 0 r3 − r−3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 r−3 0 r3 0 −2r−3
0 0 0 0 r−2 0 r2 −2r−2
0 0 0 0 0 r−1 0 r1 − 2r−1















x = x̃.

(B.51)

For computational efficiency, applying Gaussian Elimination to the right hand

side yields But by simply applying Gaussian Elimination, an explicit formula for

xN is found to be

a = x̃N− r−1

r3

(

x̃N−1− r−3

r5

(

. . .
(

x̃N−R+4− r−R+3

rR−1
(x̃N−R+2−r−R+1xN−R)

)

. . .
))

b = r1 − 2r−1
(

1− r−3

r3

(

1− r−5

r5

(

. . .
(

1− r−R+3

rR−3

(

1− r−R+1

rR−1

))

. . .
)))

xN = a
b . (B.52)

Using this in Equation (B.50) in a recursive manner gives an explicit solution.
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Figure B.6: Example of the Continuous Periodic1 Gridpoint extension with N =
7.

B.4.6 The Continuous Periodic1 Gridpoint Extension

If a signal is extended according to Figure B.6, then the values of the extension

to the left of x0 are given by

x−n−1 = xN−n + x0 − xN (B.53)

and the values of the extension to the right of xN are

xN+n+1 = xn + xN − x0. (B.54)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−nx−n

= rnxn + r−n(xN−n+1 + x0 − xN) (B.55)

and at the right hand edge as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1(xn+1 + xN − x0). (B.56)
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Solving for x in Equations (B.55) and (B.56) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − r−n(xN−n+1 + x0 − xN)

rn
(B.57)

and at the right hand side

xN−n =
x̃N−n + r−n−1(xn+1 + xN − x0)

rn+1
. (B.58)

Graphically, this can be represented as a matrix with the following structure















2r0 0 0 0 0 0 0 0
r−1 r1 0 0 0 0 0 0
r−2 0 r2 0 0 0 r−2 −r−2
r−3 0 0 r3 0 r−3 0 −r−3
0 0 0 0 1 0 0 0
r−3 0 0 −r−3 0 r3 0 −r−3
r−2 0 −r−2 0 0 0 r2 −r−2
r−1 −r−1 0 0 0 0 0 r1 − r−1















x = x̃. (B.59)

In order to invert this, first note that it is easy to recover x0, x1 and xN

x0 =
x̃0
2r0

, (B.60)

x1 =
x̃1 − r−1x0

r1

=
2r0x̃1 − r−1x̃0

2r0r1
(B.61)

and

xN =
x̃N − r−1x0 + r−1x1

r1 − r−1
=

2r0r1x̃n − r−1[(r1 + r−1)x̃0 − 2r0x̃1
2r0(r1 − r−1)

. (B.62)

Using these results, and exploiting the symmetry in Equation (B.59), generalized

inversion formulas for x2, . . . , xN−1 are found by simultaneously solving a system

of equations derived from rows n andN−n+1 for n = 2, . . . , R in Equation (4.48).
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These two equations have two unknowns, and so the unique solution is found to

be

xn = rnx̃n − r−nx̃N−n+1 − r−n[rn − r−n][x0 − xN)] (B.63)

and

xN−n+1 = r−nx̃n + r−nx̃N−n+1 − r−n[rn + r−n][x0 − xN)]. (B.64)

B.4.7 The Continuous Periodic2 Midpoint Extension
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Figure B.7: Example of the Continuous Periodic2 Midpoint extension with N =
7.

As Figure B.7 illustrates, the values for the extension to the left of x0 are

given by

x−n−1 = xN−n−1 + x0 − xN (B.65)

and the values of the extension to the right of xN are

xN+n+1 = xn+1 + xN − x0. (B.66)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−n−1x−n−1

= rnxn + r−n−1(xN−n+1 + x0 − xN) (B.67)
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and at the right hand edge as

x̃N−n = rnxN−n − r−n−1xN+n+1
= rnxN−n − r−n−1(xn+1 + xN − x0). (B.68)

Solving for x in Equations (B.67) and (B.68) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − r−n−1(xN−n+1 + x0 − xN)

rn
(B.69)

and at the right hand side

xN−n =
x̃N−n + r−n−1(xn+1 + xN − x0)

rn
. (B.70)

Graphically, this can be represented as a matrix with the following structure















r−1 + r0 0 0 0 0 0 r−1 −r−1
r−2 r1 0 0 0 r−2 0 −r−2
r−3 0 r2 0 r−3 0 0 −r−3
r−4 0 0 r3 + r−4 0 0 0 −r−4
r−4 0 0 0 r3 − r−4 0 0 −r−4
r−3 0 0 −r−3 0 r2 0 −r−3
r−2 0 −r−2 0 0 0 r1 −r−2
r−1 −r−1 0 0 0 0 0 r0 − r−1















x = x̃.

(B.71)

This matrix can be inverted via gaussian elimination in the following manner.

For a general version of this matrix of size N , multiply the first row by − r1
r−1

and

add it to row N − 1 to eliminate the r1 term in row N − 1. Then multiply this

modified row by r2
r−2

and add it to row 3 in order to eliminate the r2 term from

row 3. Repeat this process in the following order for rows 5 → N − 3 → 7 →
N − 5 → . . . → N

2
+ 1. This will cause all entries in row N

2
+ 1, except for the

first and last entry, to be eliminated. Now, repeat this process again, but start

with row N and proceed according to the following order, N → 2 → N − 2 →
4 → N − 4 → . . . → N

2
. This will eliminate all entries in row N

2
except for the
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first and last. In other words, if R is the radius of the rising cutoff function, then

rows N
2
and N

2
+ 1 become

[
a 0 . . . 0 b
c 0 . . . 0 d

]

(B.72)

where

a =
rR−1 + r−R
r−R+1

(

− rR−2
r−R+2

(
rR−3
r−R+3

(

. . .

(

− r2
r−2

(r1 + r−2) + r−3

)

. . .) + r−R+2) + r−R+1) + r−R

b =
rR−1 − r−R
r−R+1

(

− rR−2
r−R+2

(
rR−3
r−R+3

(

. . .

(

− r2
r−2

(

−r1
r−1 − r0
r−1

− r−2
)

− r−3
)

. . .)− r−R+2)− r−R+1)− r−R

c = −rR−1 + r−R
r−R+1

(
rR−2
r−R+2

(

− rR−3
r−R+3

(

. . .

(
r2
r−2

(

−r1
r−1 + r0
r−1

+ r−2

)

+ r−3

)

. . .) + r−R+2) + r−R+1) + r−R

d = −rR−1 − r−R
r−R+1

(
rR−2
r−R+2

(

− rR−3
r−R+3

(

. . .

(
r2
r−2

(r1 − r−2)− r−3
)

. . .)− r−R+2)− r−R+1)− r−R.

Thus, solving this system of two equations in two unknowns will yield x0 and

xN which can be used to recover the remainder of the signal. Unfortunately, a

problem arises. Upon inspection of a, b, c, and d, it is clear that the first term

in each number (the term which is the product of ri−1

r−i
) will dominate for large

N . Since ri
r−i−1

> 1 for all 0 ≤ i < R, then this term grows exponentially with

N . For example, for N = 128, a, b, c and d are all greater than 1.79 · 10308, the
largest number representable using IEEE double precision arithmetic. So overflow

destroys the determinant calculation and causes this system to become singular.

Even without this problem, though, it is clear that for large N , a ≈ −c and

b ≈ −d causing the determinant to equal 0; i.e., ad− bc→ 0 as N →∞ causing

the matrix to become singular.

Since the condition number of this matrix is so large (see Table 5.3), the

method is not practical for use. An interesting side note, though, is that the fold-

ing procedure for each half interval is not singular when taken alone. Therefore
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it might be possible to use one of them in a hybrid scheme, in combination with

another method.

B.4.8 The Continuous Periodic2 Gridpoint Extension
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Figure B.8: Example of the Continuous Periodic2 Gridpoint extension with N =
7.

As can be seen in Figure B.8, the values for the extension to the left of x0 are

given by

x−n−1 = xN−n−1 + x0 − xN (B.73)

and the values of the extension to the right of xN are

xN+n+1 = xn+1 + xN − x0. (B.74)

Thus folding at the left hand edge is defined as

x̃n = rnxn + r−nx−n

= rnxn + r−n(xN−n + x0 − xN) (B.75)

and at the right hand edge as

x̃N−n = rn+1xN−n − r−n−1xN+n+2
= rn+1xN−n − r−n−1(xn+2 + xN − x0). (B.76)
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Solving for x in Equations (B.75) and (B.76) yields the following formula for

inverse folding at the left hand side

xn =
x̃n − r−n(xN−n + x0 − xN)

rn
(B.77)

and at the right hand side

xN−n =
x̃N−n + r−n−1(xn+2 + xN − x0)

rn+1
. (B.78)

Graphically, this can be represented as a matrix with the following structure















2r0 0 0 0 0 0 0 0
r−1 r1 0 0 0 0 r−1 −r−1
r−2 0 r2 0 0 r−2 0 −r−2
r−3 0 0 r3 r−3 0 0 −r−3
0 0 0 0 1 0 0 0
r−3 0 0 0 −r−3 r3 0 −r−3
r−2 0 0 −r−2 0 0 r2 −r−2
r−1 0 −r−1 0 0 0 0 r1 − r−1















x = x̃. (B.79)

As calculated in Section 5.2, the condition number is too large to make this

method usable. Hence, the explicit inversion formula is not derived.

B.5 Segmentation of a Standard Basis Function

Using CPLFT and LFT

To better understand the segmentation differences between LFT and CBLFT,

the following simple case was presented in Section 5.4.1. Segmenting a standard

basis function

xn =

{

1 if n = k,

0 otherwise
(B.80)

for 0 ≤ n < M , using the complex-valued LFT and the complex valued CPLFT

results in the partition patterns shown in Figures 5.20 and 5.21. For illustrative

purposes, CPLFT was used, although any CBLFT variation could be employed.
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In addition, complex-valued versions of both methods were chosen in order to

lighten the notational burden and simplify the analysis. The following proposition

and subsequent analysis illustrate and quantify the differences between the two

methods.

Proposition B.5.1. (i) If x is defined according to Equation (B.80), and ana-

lyzed with the complex-valued LFT using `1 and full folding, then the bottom level

of the decomposition will always be chosen, regardless of the choice of k. (ii) If,

on the other hand, x is analyzed using the complex-valued CPLFT with `1 and

full folding, then the smallest interval containing the bump will always be chosen,

while the largest intervals will be chosen for the regions which have zero energy.

Proof. (i) For LFT, the coefficients for level 0 are found by periodizing level 0

and then taking a FFT. That is

x̂(0,0)m =
1√
M

M−1∑

n=0

xne
−2πimn

M

=
1√
M
e−2πi

mk
M . (B.81)

The superscript, (i, j), indicates the level of the decomposition, i, and the sub-

space index, j, when counting from the left; that is, (2, 3) is the rightmost sub-

space of the level 2 decomposition. From Equation (B.81), the sparsity estimate

for level 0, using `1 for simplicity, is

‖x̂(0,0)m ‖`p =

(
M−1∑

m=0

∣
∣
∣
∣

1√
M
e−2πi

mk
M

∣
∣
∣
∣

p
) 1

p

=

[

M

(
1√
M

)p] 1
p

= M
2−p
2p

=
√
M for p = 1. (B.82)
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For level 1, folding yields

Uxn =







r− if n = k,

r+ if n =M − k − 1,

0 otherwise

(B.83)

where r− = r−k and r+ = rk−1 are used for simplicity. It should be noted that full

folding is employed so that the rising cutoff function for this level has a radius of

M
4
. Periodized unfolding gives

Txn =







r+r− if n = k,

r2− if n = M
2
− k − 1,

−r+r− if n = M
2
+ k,

r2+ if n =M − k − 1.

(B.84)

Again, for simplicity, let a = r+r−, b = r2−, c = −r+r− and d = r2+. Then on

0 ≤ n < M
2

x̂(1,0)m =

√

2

M

M−1∑

n=0

xne
−2πimn

M

=

√

2

M

[

ae−2πi
2mk
M + be−2πi

2m(M
2 −k−1)
M

]

=

√

2

M

({

a cos

(

−4πmk
M

)

+ b cos

[

−4πm
(
M
2
− k − 1

)

M

]}

+ i

{

a sin

(

−4πmk
M

)

+ b sin

[

−4πm
(
M
2
− k − 1

)

M

]})

(B.85)
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and

∣
∣x̂(1,0)m

∣
∣
2

=
2

M

{

a2 cos2
(

−4πmk
M

)

+ a2 sin2
(

−4πmk
M

)

+ 2ab cos

(

−4πmk
M

)

cos

[

−4πm
(
M
2
− k − 1

)

M

]

+ 2ab sin

(

−4πmk
M

)

sin

[

−4πm
(
M
2
− k − 1

)

M

]

+b2 cos

[

−4πm
(
M
2
− k − 1

)

M

]

+ b2 sin

[

−4πm
(
M
2
− k − 1

)

M

]}

=
2

M

(

a2 + b2 + 2ab

{

cos

(

−4πmk
M

)

cos

[

−4πm
(
M
2
− k − 1

)

M

]

+sin

(

−4πmk
M

)

sin

[

−4πm
(
M
2
− k − 1

)

M

]})

=
2

M

{

a2 + b2 + 2ab cos

[

−4π + 4π
m
(
M
2
− k − 1

)

M

]}

=
2

M

{

a2 + b2 + 2ab cos

[

−2π2m(2k − 1)

M

]}

=
2r2−
M

{

1 + 2r+r− cos

[

−2π2m(2k − 1)

M

]}

(B.86)

Repeating this for M
2
≤ n < M yields

∣
∣x̂(1,1)m

∣
∣
2

=
2r2+
M

{

1− 2r+r− cos

[

−2π2m(2k − 1)

M

]}

(B.87)
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so that the sparsity estimate is given by

‖x̂m‖`1 =

M
2
−1
∑

m=0

(√

2r2−
M

{

1 + 2r+r− cos

[

−2π2m(2k − 1)

M

]}

+

√

2r2+
M

{

1− 2r+r− cos

[

−2π2m(2k − 1)

M

]})

=

√

2

M
(r+ + r−)

M
2
−1
∑

m=0

√

1 + 2r+r− cos

[

−2π2m(2k − 1)

M

]

≤
√

M

2
(r+ + r−)

≤
√
M. (B.88)

Recall from Equation (B.82) that the sparsity estimate for level 0 is
√
M ; hence,

in a best basis algorithm, level 1 will always be chosen over level 0.

This can be repeated for level 2 to give similar results. That is, folding the

left half of level 2 yields

Ulevel 2Tlevel 1xn =







R+a+R−b if n = k,

R+b−R−a if n = M
2
− k − 1,

0 otherwise

(B.89)

where R− = R−k and R+ = Rk−1 are values for the level 2 rising cutoff function

with radius of M
8
. Periodized unfolding gives

Tlevel 2Tlevel 1xn =







R2+a+R+R−b if n = k,

R+R−a+R2− if n = M
4
− k − 1,

R2− −R+R−b if n = M
4
+ k,

R2+b−R+R−a if n = M
2
− k − 1.

(B.90)
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Using this, the sparsity estimate for the left half of level 2 is

‖x̂(2,0&1)m ‖`1 =

M
4
−1
∑

m=0

(√

4(R+a+R−b)2

M

{

1 + 2R+R− cos

[

−2π4m(2k − 1)

M

]}

+

√

4(R+b−R−a)2
M

{

1− 2R+R− cos

[

−2π4m(2k − 1)

M

]})

=
2√
M

[R+(a+ b)−R−(a− b)]

·
M
4
−1
∑

m=0

√

1 + 2R+R− cos

[

−2π4m(2k − 1)

M

]

=
r−[R+(r+ + r−)−R−(r+ − r−)]√

M

·
M
2
−1
∑

m=0

√

1 + 2R+R− cos

[

−2π2m(2k − 1)

M

]

(B.91)

To get an upper bound on Equation (B.91), first bound R+(r++r−)−R−(r+−r−).
To do this, let

R̃[m](t) = R[m](t)
[
r[m](t) + r[m](−t)

]
−R[m](−t)

[
r[m](t)− r[m](−t)

]

= R[m](t)

[

R[m]

(
t

2

)

+R[m]

(

− t
2

)]

−R[m](−t)
[

R[m]

(
t

2

)

−R[m]
(

− t
2

)]

. (B.92)

for −1 ≤ t ≤ 1. Note that as m → ∞, R̃[m] ↘ 1; that is, M̃ will be maximized
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when m = 0. Letting R(t) = R[m](t) results in the following

R̃′(t) = R′(t)

[

R

(
t

2

)

+R

(

− t
2

)]

+
R(t)

2

[

R′
(
t

2

)

−R′
(

− t
2

)]

+R′(−t)
[

R

(
t

2

)

−R
(

− t
2

)]

− R(−t)
2

[

R′
(
t

2

)

+R′
(

− t
2

)]

=
π
√
2

8

[

cos
(π

4
t
)

− sin
(π

4
t
)]
{√

2

2

[

cos
(π

8
t
)

+ sin
(π

8
t
)]

+

√
2

2

[

cos
(π

8
t
)

− sin
(π

8
t
)]
}

+

√
2

4

[

cos
(π

4
t
)

+ sin
(π

4
t
)]

·
{

π
√
2

8

[

cos
(π

8
t
)

− sin
(π

8
t
)]

− π
√
2

8

[

cos
(π

8
t
)

+ sin
(π

8
t
)]
}

+
π
√
2

8

[

cos
(π

4
t
)

+ sin
(π

4
t
)]
{√

2

2

[

cos
(π

8
t
)

+ sin
(π

8
t
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Thus, R̃′(t) = 0 when t = 8
π
tan−1(1) = . . . ,−14,−6, 2, 10, . . .. Therefore, on

−1 ≤ t ≤ 1, the max occurs at the boundary t = 1; i.e., R̃(t) ≤ R̃(1) =
√
2 cos

(
π
8

)
. Plugging this into Equation (B.94) yields
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M
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Using Equation (B.87), the sparsity estimate for the left half of level 1 is found
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to be
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Comparing these two values reveals that they almost identical except for the cos π
8

term and the radius of the rising cutoff function. The summation term will be

increase as R+R− decreases. And since R+R− ≤ r+r−, then

M
2
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∑
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M
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This inequality becomes even larger if the rising cutoff function becomes less

steep; i.e., if m = 0 for R(t) = r[m](t). So, fixing m = 0, the left hand side

of Equation (B.96) will become maximized when R(t)R(−t) = 0; that is, when

t = 1. Similarly, the right hand side of Equation (B.96) will become minimized

when t = 1. But because of the cos
(
π
8

)
term, the following question arises
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≤
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To verify Inequality (B.97), rearrange the terms to get
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Since, cos
(
π
8

)
≈ 0.92 and

∫ 1

0

√

1 +
√
2
2
cos(2πt)dt ≈ 0.96, then the above inequal-

ity is always true. What this means, is that the left two level 2 subspaces will

always be chosen over the left half of level 1 regardless of the choice of k in the

original signal x. Repeating this analysis in a recursive manner results in the

bottom subspaces always being chosen. This is shown in Figure 5.22(b).

(ii) In contrast to LFT, is the partition pattern chosen by CPLFT. As was

shown in Equation (B.82), the sparsity estimate for level 0 is
√
M . Since all of

the subspaces in the CPLFT decomposition are independent of each other, the

sparsity estimate for every subspace on each level is 0 except for the interval

containing the bump. Thus, the sparsity estimate for level 1 is given by
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The sparsity estimate for level L is
(

M
L+1

) 2−p
2p . Therefore the smallest interval

containing the bump will always be chosen, while the largest intervals will be

chosen for the regions which are zero. This leads to a very natural partition

pattern shown in Figure 5.22(c).
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Appendix C

Image Set Used For Chapter 6
Algorithm Comparison

The following images were used to make the subjective evaluation of the

compression quality in tables 6.1, 6.2, and 6.3. There are three original images

representing 4 different classes of images: the line drawing of a surfer shown in

Figure C.1, the textured image a sandstone seen in Figure C.14 and the digital

photograph of Barbara shown in Figure C.27. Each image was compressed at a

rate of 20-to-1 using twelve different algorithms. As was mentioned in section 4.2,

Compression was achieved by simple thresholding; that is, only the most energetic

5 percent of the transformed coefficients were retained for these experiments. The

method employed is listed in the title above each image. Full folding was employed

for every applicable method, and the steepness of the rising cutoff function was

5 for all of the CBLTT methods and 1 for the others.

C.1 The Surfer Image Set
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Figure C.1: Original surfer image.
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Figure C.2: 20:1 compression of Figure C.1 using JPEG-DCT.
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Figure C.3: 20:1 compression of Figure C.1 using D02.

LCT

20 40 60 80 100 120

20

40

60

80

100

120

Figure C.4: 20:1 compression of Figure C.1 using LCT.
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Figure C.5: 20:1 compression of Figure C.1 using C06.
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Figure C.6: 20:1 compression of Figure C.1 using LFT.
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Figure C.7: 20:1 compression of Figure C.1 using BT.
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Figure C.8: 20:1 compression of Figure C.1 using CE1GLFT.
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Figure C.9: 20:1 compression of Figure C.1 using CE1GBT.
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Figure C.10: 20:1 compression of Figure C.1 using CO2M-CE2MLFT.
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Figure C.11: 20:1 compression of Figure C.1 using CO2M-CE2MBT.
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Figure C.12: 20:1 compression of Figure C.1 using CO2MLCT2.
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Figure C.13: 20:1 compression of Figure C.1 using CO2MBT2.

C.2 The Tile Image Set
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Original

20 40 60 80 100 120

20

40

60

80

100

120

Figure C.14: Original tile image.
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Figure C.15: 20:1 compression of Figure C.14 using JPEG-DCT.
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Figure C.16: 20:1 compression of Figure C.14 using D02.
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Figure C.17: 20:1 compression of Figure C.14 using LCT.
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Figure C.18: 20:1 compression of Figure C.14 using C06.
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Figure C.19: 20:1 compression of Figure C.14 using LFT.
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Figure C.20: 20:1 compression of Figure C.14 using BT.
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Figure C.21: 20:1 compression of Figure C.14 using CE1GLFT.
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Figure C.22: 20:1 compression of Figure C.14 using CE1GBT.
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Figure C.23: 20:1 compression of Figure C.14 using CO2M-CE2MLFT.
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Figure C.24: 20:1 compression of Figure C.14 using CO2M-CE2MBT.
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Figure C.25: 20:1 compression of Figure C.14 using CO2MLCT2.
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Figure C.26: 20:1 compression of Figure C.14 using CO2MBT2.

C.3 The Barbara Image Set
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Figure C.27: Original barbara image.
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Figure C.28: 20:1 compression of Figure C.27 using JPEG-DCT.
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Figure C.29: 20:1 compression of Figure C.27 using D02.
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Figure C.30: 20:1 compression of Figure C.27 using LCT.
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Figure C.31: 20:1 compression of Figure C.27 using C06.
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Figure C.32: 20:1 compression of Figure C.27 using LFT.
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Figure C.33: 20:1 compression of Figure C.27 using BT.
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Figure C.34: 20:1 compression of Figure C.27 using CE1GLFT.
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Figure C.35: 20:1 compression of Figure C.27 using CE1GBT.



C.3 The Barbara Image Set 206

CO2M−CE2MLFT

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure C.36: 20:1 compression of Figure C.27 using CO2M-CE2MLFT.
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Figure C.37: 20:1 compression of Figure C.27 using CO2M-CE2MBT.
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Figure C.38: 20:1 compression of Figure C.27 using CO2MLCT2.
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Figure C.39: 20:1 compression of Figure C.27 using CO2MBT2.
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Borel, UMS 839 CNRS-UPMC, 1-29.

[5] Battle, G. Wavelets & Renormalization. World Scientific Pub Co, 1999.

[6] Bell, A. and Sejnowski, T. The ‘Independent Components’ of Natural Scenes

are Edge Filters. Submitted to Vision Research.

[7] Bénichou, B. and Saito, N. ”Sparsity versus statistical independence in adap-

tive signal representations: A case study of the spike process”.

[8] Briggs, W. and Henson, V. The DFT. SIAM, Philadelphia, 1995.



BIBLIOGRAPHY 211

[9] Brodatz, P. (1966) “Textures: A Photographic Album for Artists and De-

signers”, Dover Publ.

[10] Cover, T. and Thomas, J. (1985) “Elements of Information Theory”, John

Wiley & Sons, Inc.

[11] Chan, Y. Wavelet Basics. Kluwer Academic Publishers, 1995.

[12] Coifman, R. and Donoho, D. (1998). Translation-Invariant De-Noising Tech.

Rep., Yale University and Stanford University, 1-26.

[13] Coifman, R. and Wickerhauser, M. (1992). Entropy-based algorithms for

best basis selection IEEE Trans. Inform. Theory, Vol. 38, 713-719.

[14] Daubechies, I. (1992). Ten lectures on wavelets. SIAM, Philadelphia, PA.

[15] Day, M. (1940). The spaces Lp with 0 < p < 1. Bull. Amer. Math. Soc., Vol.

46, 816-823.

[16] Deng, B. and Jawerth, B. and Peters, G. and Sweldens, W. (1993). Wavelet

probing for compression based segmentation. Mathematical Imaging, Vol.

2034, 266-276.

[17] DeValois, R. L. and DeValois, K. K. (1991) “Spatial Vision”, Oxford Psy-

chology Series.

[18] Donoho, D. (1994). On Minimum Entropy segmentation. Technical Report

450, Department of Statistics, Stanford University.

[19] Donoho, D. (1998). Sparse components of images and optimal atomic de-

compositions. Tech. Rep., Department of Statistics, Stanford University.

[20] Donoho, D. (1993). Nonlinear Wavelet Methods for Recovery of Signals,

Densities, and Spectra from Indirect and Noisy Data. American Mathemat-

ical Society, Vol. 47, 173-205.



BIBLIOGRAPHY 212

[21] Donoho, D. (1998). Data Compression and Harmonic Analysis. IEEE Trans-

actions of Information Theory, Vol. 44, No. 6, 2435-2476.

[22] Donoho, D. L. and Candès, E. J. (2000). Curvelets - A Surprisingly Effective

Nonadaptive Representation For Objects With Edges. Saint-Malo Proceed-

ings, Vanderbilt University Press, 1-10.

[23] Donoho, D. and Vetterli, M. and DeVore, R. and Daubechies, I. (1998). Data

compression and harmonic analysis. IEEE Trans. Inform. Theory, 44(6),

2435-2476.
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