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Shape Discrimination Using Fourier Descriptors
ERIC PERSOON, MEMBER, IEEE, AND KING-SUN FU, FELLOW, IEEE

Abstract-Description or discrimination of boundary curves (shapes)
is an important problem in picture processing and pattern recognition.
Fourier descriptors (FD's) have interesting properties in this respect.
First, a critical review is given of two kinds of FD's. Some properties
of the FD's are given and a distance measure is proposed, in terms of
FD's, that measures the difference between two boundary curves. It is
shown how FD's can be used for obtaining skeletons of objects. Finally,
experimental results are given in character recognition and machine
parts recognition.
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I. INTRODUCTION
ONE OF THE PROBLEMS in picture processing is

the classification of objects in a scene. Simple examples
are the classification of each character on the page of a

book or the classification of a chromosome in a cell. Once
the object is isolated in the scene, the goal is to describe or

classify the object. If the main information for description
or classification can be found in the boundary of the object,
it is natural to retain only the boundary for further analysis
of the object. Such situations arise, for example, in the
classification of silhouettes of airplanes, photographed from
the ground [8], classification of silhouettes of satellites, and
in character recognition. We will restrict ourselves in this
paper to the case where an object can be described by its
boundary. This boundary needs not be connected as for
example in the character "o" where the boundary consists
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of two concentric circles. Since each boundary can be
decomposed into a set of closed curves (a character B has
for example three closed curves), we will concentrate upon
the description of closed curves.
There are many techniques available to describe closed

curves, but there is theoretical and experimental evidence
that Fourier Descriptors are a useful set of features [I]-[3].
Other techniques are the chain encoding used by Freeman
[9] and the polygonal approximation proposed by Pavlidis
[12]. They encode the boundary as a sequence of curved or
linear segments. The medial axis transform (MAT) uses
the skeleton to describe a closed curve [4]-[6]. To describe
chromosomes, Widrow [16] uses the length, width, angle,
and curvature of each of the arms of a chromosome. This
last technique shows that the more specific the problem is,
the more efficient one can choose the descriptors of the
boundary.
How do all those techniques compare? Before one can

answer this one has to define the problem of boundary
description and classification clearly. In its most unrestricted
form, it amounts to identifying objects whose boundary
might be only partially known or overlapping with other
boundaries, or both. This amounts to a problem of nonideal
input. Furthermore, the classes of objects might have
different properties. In some cases, one needs many different
prototypes in order to describe the class adequately [12].
For example, if the further processing of the boundaries
does not compensate for different rotations, one might
have to store several "prototypes" corresponding to different
rotations. One should realize that the problem in its most
general form can, so far, only be solved by humans (and
animals) and that they use many and very sophisticated
analysis mechanisms using sometimes every bit of contextual
knowledge to perform this task. The conclusion is that one
can compare those different techniques only in the context
of well-defined (simple) problems.

In this paper we will deal only with nonoverlapping
boundaries that are completely known (ideal input). We
will assume, furthermore, that the classes can be described
by a few fixed prototypes that may be rotated, translated,
scaled, and that can possess some (random) noise on the
boundaries. Such a situation arises, for example, in the
recognition of machine parts in automated assembly [13],
[14]. The other techniques are more useful for other types
of problems as will be discussed at the end of the paper.

First, we will summarize the two techniques using Fourier
Descriptors [1], [2] and point out their advantages and
disadvantages. Next, we give properties of the Fourier
Descriptors and examine an optimal matching procedure
between two closed curves. Finally, we will apply the
results to a character-recognition experiment using Munson's
character data set. Also, an experiment on machine parts
recognition is reported. Many results given in this paper
can be proved easily. For detailed information see [11].

arc length and 0 < 1 < L. Denote the angular direction of
y at point I by the function 0(1). Define then the cumulative
angular function 4(1) as the net amount of angular bend
between starting point 1 = 0 and point 1. So 4(!) = 0(1) -
0(0) except for possible multiples of 27r and +(L) = - 27r.
Note that if y winds in a spiral that 14(1)1 can achieve values
larger than 27t. Finally, we define +*(t) as

+*(t) - (-!) + t
k27r (1)

where t ranges from 0 to 27r. Note that 0*(t) is invariant
under translations, rotations, and changes of the perimeter
L (scale). Note also that 4*(t) = 0 for a circle. 0*(t) is a
periodic function of t if we keep scanning the boundary
in a clockwise sense. Expanding 0*(t) in its Fourier series
gives

00

+*(t) = Po + E Ak cos (kt - a*k)
k = 1

(2)

The set {Ak,ak; k = 1,... , } are the Fourier descriptors
(FD) for curve y.

Let us list some advantages and disadvantages of those
FD's. Among the advantages are that no redundant
information is present in the set {Ak,ak} as will be the case
for the FD's defined in [2]. Therefore, every sequence
{ Akk k = 1,2, . } describes one curve and each curve
has only one sequence {Ak,xk}. Among the disadvantages
we have the following.
Some sequences {Ak,ak} describe not-closed curves.
0*(t) for polygonal curves contains discontinuities, and

therefore, the Ak will decrease rather slowly as k increases.
Reconstruction of y requires numerical integration.
Note that we can define an equivalent set of FD's by the

equation

0*(t) - E Cke
k==-

(3)
where

Ck = 1 f (t)eidt.
27 o

If {Ck}, {Ck'} describe closed curves, then the coefficients
{,ICk + (1 - fl)ck'}, being a linear interpolation between
{Ck} and {Ck'}, do not necessarily describe closed curves.
The FD's given in [2] are defined differently. We have

again that y is a clockwise-oriented simple closed curve with
representation (x(l),y(l)) = Z(l), where I is the arc length
along y. A point moving along the boundary generates the
complex function u(l) = x(l) + jy(l) which is periodic
with period L. The FD's become now

a = -| u(l)e- j(2lL)nl dl
L

and
0(

u(l) = E: anej(f1)
- 00

(4)

(5)
II. REVIEW OF FOURIER DESCRIPTORS

The Fourier descriptors given in [1] are defined as follows:
We assume y is a clockwise-oriented simple closed curve
with parametric representation (x(l),y(l)) = Z(l) where 1 is

We will list some advantages and disadvantages of those
FD's. Among the advantages are:

All sequences {a"} for which the series (5) converges
describe closed curves.
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u(l) contains no discontinuities so we can expect that Ja,j
decreases rather fast as n -* oc.

Reconstruction of y can be done easily.
Among the disadvantages we have the following.
u(t) is a complex function, so an* # a-, as is the case

for real functions.
Due to the definition of u(l), we have that Iduldll 1-

or equivalently that

du du* = 1

dl dl
for 0 < 1 < L. (6)

If we substitute (5) into (6) it follows that there are some
restrictions on the an. Therefore, although every sequence
{an} describes a closed curve using (5), not every sequence
satisfies the conditions (6) and (5).

If a partial sum of (5), let us say,
N

: an jn( 2 /L)l

is considered, then condition (6) is equivalent to an = 0
for all n # 0 except for one value of n :# 0. This shows that
only circles can be described by partial sums if one insists
that (6) is satisfied.

If {an}, {an'} are two sets of FD's that satisfy (6) then the
set {,Ban ± (1 - )an'} either satisfies (6) for all ,B or it
satisfies (6) for no P except ,B = 0, ,B = 1. This means that
the space of the FD's {an} that satisfy (6) and (5) is a
collection of lines. Note that the curve y described by the
set (/3an + (1 - /)an'} is nothing but flu(sL) + (1 -fl)u' -

(sL') where 0 < s < 1 and u(l) correspond to {an} and
u'(l) corresponds to {an'}.

It should be noted that, if a sequence {an} does not satisfy
conditions (6) and (5), this means that the parameter / in
(5) has the meaning of time (instead of arc length) and the
boundary u(l) is described with a varying velocity idu/dll.
So if we allow tracing of the boundary with variable speed
and interpret I as time, then condition (6) is not needed.

III. PROPERTIES OF THE FD's

In this section we will give some more properties of the
FD's. Also, a method for optimal curve matching is given.

A. Calculating FD's for a Polygonal Curve

Zahn and Roskies [1] give a formula for computing the
FD's of (2) in case the curve y is polygonal. We will give
now the formula in case the FD's of (4) are used. Using
the notation of Fig. 1, where VO is the starting point, we have

1
m

a n 2 E (bk- 1 - bk)e jn(2n/L)lk (7)

where k=1

where

and

k

k-= IVi -Vi_ 11

i= 1

b Vk+ -Vk

lVk+l Vkl

for k > 0 and 10 = 0

so ibkl = 1.

Vm -V 1 VI ' V I
V2

V3

1 Vmlrn-I~~~~~~~~~~~
Fig. 1. A polygonal boundary.

I 2 3Em 56Up0
Fig. 2. Example of line patterns.

Fig. 3. Tracing of a line pattern.

12
Fig. 4. Patterns with thickness.

Fig. 5. Normalized starting points.

B. Line Patterns

We will discuss some properties of the FD's in case a
curve is not closed and nonoverlapping. Typical patterns
are given in Fig. 2.

In order to be able to use the FD's, we will trace the line
pattern once and then retrace it so that a closed boundary
curve y is obtained. See, for example, Fig. 3.

It can be shown that the FD's of (4) have the property

a = a -e-- jn(2ltL)i (8)
for some a, and if the path begins (I 0O) at one of the
endpoints of the pattern, then a = 0. Also, if (8) is satisfied
for all n and some a, then any partial sum

M

U.(/) = Eanej(2I)
-M

describes a curve y with the property u(l) = u(L - I + a)
or, in other words, a curve y that is a line pattern. Property
(8) can be used, for example, to obtain skeletons of patterns
as given in Fig. 4. A method of obtaining the skeleton using
property (8) is given in Section IV.

In most applications the patterns will have a certain
thickness as, for example, the numerals in Fig. 4. Consider,
now, the curves y formed by the boundary of the numerals
in Fig. 4. Since the starting point on y does not carry any
information for classifying those numerals, it is useful to

normalize the starting point, for example, at the endpoint of
the numeral (see the x in Fig. 4). This normalization is

needed when we scan the field of the numeral from left to

right and top to bottom and take the first black point as the
starting point of the boundary y, as is shown in Fig. 5.

172



PERSOON AND FU: SHAPE DISCRIMINATION USING FOURIER DESCRIPTORS

and by {b } the FD's of a curve P and only M harmonics
are used, then the distance d(c,fl) becomes

d M - 1/2

d(a,) = YE Ian - bn 12
-n=-M

Fig. 6. Some outer boundaries.

A convenient mathematical model of line patterns that
are not closed, nonoverlapping, and have a certain thick-
ness is (see Figs. 4 and 5)

u(l) = f(l) + f'(l)]c(l) (9)

where u(l) describes y, f(l) describes actually the skeleton
and has the property f(l) = f(L - 1 + a), and c(l) is a
real, positive, and periodic function giving the thickness
of the pattern. For a pattern with constant thickness d,
we have c(l) = d/2. Note that If'(l)1 _ 1. It should be
noted that I is the length of the path along the skeleton and
not along the curve y, and therefore the results obtained
from (9) are only approximate if one insists that (6) is
satisfied.
One can easily show that (for c(l) = constant = C)

an = bn(l - nw0C)
a_ = bnejnwoa(I + nwOC)

where bn are the FD's of f(l), w0 = 27r/L, and a. are the
FD's of u(l).

In order to normalize the starting point, we must have
o = 0 or

an = bn(1 - nwOC)

a-, = bn(l + nwOC). (10)
For small values of C, this means that an and a_n have the
same phase angle. So one can normalize, for example, by
finding / such that a1ejq' and a_ 1e-i have the same phase
angle. This technique is applied in the experiment discussed
at the end of this paper.

In case the curve y cannot be modeled by (9), it becomes
more difficult to normalize with respect to starting point.
This is, for example, the case with the outer boundaries
given in Fig. 6.

For such boundaries, one has to use the optimal curve
matching technique given further in the paper.

C. Optimal Curve Matching

In many applications in pattern recognition, the position,
size, and rotation of an object is not important. If we
describe the object by its (outer) boundary, the starting point
is irrelevant also. In nonparametric classification techniques,
usually a distance is computed between the unknown
sample and the nearest sample in the training set. We will
use the Euclidean metric in the space of the FD's {an} to
compute this distance. Since position, size, rotation, and
difference in the starting point are not relevant, we must
scale, rotate, and adjust the starting point of each sample
in the training set in order to minimize the resulting Eucli-
dean distance. If we denote by {an} the FD's of a curve a

(1 1)

Differences in position are taken out by setting ao = bo
so we have

m - 1/2
d (,fl) = E Ian- bn 2

n= -M
n*0

(12)

Suppose ,B is the curve in the training set so we will scale
(s), rotate (0k, and adjust the starting point (oc) such that
the distance is minimized. We have then to determine s,4,x
such that

M

E a - sej(nx +O)b 12
n.0

(13)

is minimized. Note that the distance d(oc,fl) given in (11)
also equals

I1
d2(ot,,)= u,,(sL,) - up(sL,)j2 ds (14)

where ua(l) is the complex function describing ox and L.
is the length of a. Therefore minimizing d(,,B) corresponds
to minimizing the mean-square deviation between ua(l)
and yu(1).
As is shown in the Appendix, one can find the optimum

values for (s,o4) by solving for the roots of a periodic
function. Since this periodic function has only a finite
number of harmonics, it is possible to construct a numerical
technique that finds the absolute minimum for d(x,f,).
We will use this program in the experiment reported in
Section IV.

Minimization of d(x,fl) (see (14)) in the spatial domain
with respect to position, scale, and rotation is a difficult
task due to the enormous number of combinations. This is
especially true for boundaries that can be described suf-
ficiently by only a few FD's, whereas a polygon or chain
code approximation would require many segments to
encode the boundary. However, if the curve y is expressed
in its FD's, then this problem is easily solved. This is one
of the nice advantages of FD's. A similar matching criterion
was used by Richard and Hemami [15] and was applied
to the identification of airplanes.

D. Computation of the Area of a Surface

The computation of the area of a surface given the FD's
{an} of its outer boundary a is a simple operation. Let us
denote by {x(s),y(s) s E (0,1)} a parametric representation
of the outer boundary as a function of the path length s
along the boundary. S denotes the surface area. We have
then

2S = y dx - x dy = f y(s)x'(s) ds

-(1 x(s) y'(s) ds
=0
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y

(a)

Fig. 7. A point and a boundary curve.

or
00

s = - E a. 12n7r.
n==-

slightly so that m becomes even. Note that S1,S2,. Sm
,..~ are the roots of a periodic function f(s). They can be found

using the same algorithm as mentioned in the Appendix.

IV. EXPERIMENTAL RESULTS

A. Skeleton Finding Using FD's
Ix

In Section III-B, we studied the properties of FD's of
nonoverlapping line patterns. We will use those properties
to obtain the skeleton of such patterns. Using the math-
ematical model of (9) we found that

a.-b,(l - nwOC)

a-n = b_e(nwoI(1 + nwOC).

E. Relative Position of a Point with Respect to a Boundary

Fig. 7(a) gives a boundary curve a and a point zo = xo +
jyo. A useful question to ask is whether the point zo lies
inside or outside the boundary curve cx, since it provides
information about the relative position of objects. If {an}
are the FD's of a, define then the set {b } where bo =
ao - zo and b, = an for n # 0.
The set {b,} describes a curve ,B which is a translation of a

over a distance - zo. The curve ,B is given in Fig. 7(b).
After this transformation, the question can be stated
equivalently as "does the origin lie inside or outside curve
/3." bo is the constant term in the series {b,} and denote by
cy - dx = 0 the equation of the line y passing through the
point bo and the origin. We will determine the intersections
of this line y with the curve /3. The intersections are given
by the roots of the function f(s) where

f(s) = c * Im [E bnejn2,,s] - d Re [Y b,ejn2Xs]
Note that bo = c + dj or bo*= c - dj.

f(s) = Re bo* Im [E bnein27rs] + Im bo* Re [Y bneijn2s]

f(s) = Im [b* E bnej"2]

= Im bO*bO + E bo*bnejn2ns]

f(s) = Im E bo*bnein2ets
n.0

f(s) is the equation of a real periodic function with no
constant term which implies there is always at least one
solution to the equation f(s) = 0. Assume there are m
solutions S1,S2, * ',si corresponding to points P1,P2,.. PM
on curve P. In case of Fig. 7(b), m equals 4. m is an even
number unless y is tangent to /3 at some point. Denote by 0
the origin. If we order the points Pi and the point 0 accord-
ing to their position on the line y, we obtain in case of
Fig. 7(b), OP1P2P3P4. Assume m is even. The position of 0
in this rank with respect to the points Pi tells whether 0
lies inside or outside /3. The rule is very simple: if there are
an even number of points Pi to the left and to the right of
point 0 in this ranking, 0 lies outside /3; otherwise 0 lies
inside /3. If m is not even, the line y might be perturbed

The first step of the skeleton program is to adjust the
starting point such that ae iwo(a/2) and a- e-jwo(,I2) have
the same phase angle. So we obtain the FD's {a"'}

an Cn(l - nwOC) - anejnwo(x/2)
a-n = cn(l + nwOC) = a_ne-inwo(,/2)

where {cn = bneinwo(x/2)} are the FD's of the skeleton of the
line pattern.
The second step in the skeleton program is to find the

coefficients cn by the formula (15)

Cn = C-n = +(an' + a-n'). (15)
Finally, the skeleton is obtained using (5) where an is
replaced by c,.
Some experimental results are given in Fig. 8. The

skeletons are obtained using eight harmonics {a1,a-1,
**. a-8}
This method of finding skeletons is very simple but does

not work, for example, on patterns as given in Fig. 6. For
those patterns, another method should be developed or one
can use the MAT approach as given in [4]-[6].

B. Character Recognition

The experiments reported here are performed on the
Munson data set which is a collection of Fortran symbols
(numerals, characters, and special symbols) written by 49
persons. Many authors have worked with this data set
before [1], [10], [12]. Each character of this set is rep-
resented by a 24 * 24 binary array. We will work only with
the numerals {0,l,... ,9}, but the experiment can easily be
performed on the entire character set.

Using a simple algorithm, the outer boundary of each
numeral is obtained on a digital computer. Then, using
formula (7), the FD's of each numeral are computed. Those
sets of FD's will be used in all the experiments given below.
The average time to find the skeleton per numeral is 12 ms
and the average time to compute the FD's (15 harmonics)
is 530 ms. Those times are obtained on a CDC 6500
computer.
We will give now the results obtained from three different

experiments using the FD's {a,} as features. There are a
total of 49 x 3 x 10 numerals available in the Munson
set. Two training sets were used and one test set. The first
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Fig. 9. Classification result (suboptimal procedure).
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Fig. 8. Skeletons using eight harmonics.
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8 4 _ 31
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w1 original class

Wk class classi-
fied to

error rate 53
50.0

io.6%

Fig. 10. Classification result (optimal procedure).

training set consists of the first 160 numerals (16 samples for
each type). The second training set consists of the next 310
numerals and the test set consists of the leftover 1000
numerals.

1) Suboptimal (Fixed Sample Size): In this experiment,
each numeral is normalized for scaling, rotation, position,
and starting point. In other words, ao = 0 and an is multi-
plied with se (4+ n) for n 0. The parameters s, /, and a
are chosen such that a1 and a_1 become pure imaginary
numbers and such that la1 + a- , = 1. The first feature
xI = la, - a 1I and X2 = Re (a2), X3 = Im (a2), X4 =

Re (a.2), x5 = Im (a_2), x6 = Re (a3), and so on. Since
8 harmonics are used in this experiment, a total of 1 + 4 x

7 = 29 features is available.
In order to classify an unknown numeral, the distance

between that numeral and each numeral in the training set
is computed. The distance used here is

29 11/2
E (xi - xi/)2 (16)

where {xi} and {xi'} are the features corresponding to the
numerals between which the distance is computed. This
distance is equivalent to d(a,f3) given in (12) except for the
first harmonic. The unknown numeral is then given the same
class label as the label of the closest numeral in the training
set.

In the first phase of the experiment, the first training set
(160 samples) was taken and the test set consisted of the
second training set (310 samples). Based upon those results,

a new training set of 160 samples was constructed using
numerals of both training sets. Then the first 500 samples
of the test set were processed and the results are given in
Fig. 9. The total error rate is 15.4 percent. Note that only
500 samples were processed in order to save computer
time. The time required to process one numeral is 150 ms

(CDC 6500).
In Fig. 9 we observe that numerals "4" and "8" are the

most difficult ones to classify. The reason for this is that the
normalization technique that determines s, q, and a is
not good for the numerals "4" and "8" as is shown in
Section III-B and Fig. 6.

2) Optimal Procedure (Fixed Sample Size): In this
experiment we used the same modified training set as in the
previous experiment and also the same 500 test samples.
The only differefce is that the distance of (13) is used in-
stead of the distance of (16). The results of this experiment
are given in Fig. 10. We see that numeral "4" is much
better recognized. Only "8" is misclassified many times.
We may not forget however that only the outer boundary
is used so that "1" and "8" look very similar. The time
required to process one numeral (eight harmonics) is 14 s on

a CDC 6500 and 240 s on a CDC 1700. The total error rate
for this experiment is 10.6 percent.

3) Suboptimal (Variable Sample Size): Since a skeleton
is obtained in 12 ms and the computation of one harmonic
(a,,a-5,) requires 530/15 = 35 ms we conclude that most of
the computation time goes to the computation of the FD's
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500

- 15.4%

4------

I

II
7-

1!
I

I

I

7



1EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, MARCH 1977

.5

.3

.2

. I

I4h

A 12

10

81

2

.I .2 .3 .4 .5 .6

Fig. 11. Error rate as a function of threshold.

{a,}. In order to minimize the computation time, a se-
quential decision algorithm is used in this experiment.
The experiment is identical to the experiment in Sub-

section B-i) except for the following. Each time another
coefficient an of the unknown numeral is computed (using
(7)), one computes the distance (16) between that numeral
and each numeral in the training set. One finds then the
distances {dk k = O, . ,9} where dk is the smallest
distance between the unknown numeral and the 16 numerals
"k" in the training set. Then one computes

Pk =

1 6(dk)M
where M is the number of terms used in (16). Note that Pk
is actually an estimate of the conditional probability
density. One computes then

r =1-max Pi
i E Pk'

This number r is an estimate of the conditional probability
of error for this unknown sample. If r is less than a certain
threshold e* one stops and classifies the numeral to the
class k where pk = maxi pi. If r is larger than e*, one
computes another coefficient a. using (7) and repeats the
process. The threshold e* can be chosen and controls the
error rate.
The results of this experiment are given in Figs. 11 and

12. In this experiment, the entire test set of 1000 samples
was used and three different cases were investigated. In
case A, a maximum of 9 harmonics (33 features) was
allowed. If then the procedure asks for more features (X34),
the procedure stops and classifies the numeral. In cases B
and C, a maximum of 4 (13 features) and 3 (9 features)
harmonics, respectively, were allowed.

Fig. 11 gives the error rate e(e*) as a function of the
threshold e* for case A (the curves for cases B and C fall
very close to the curve for case A and are, therefore, not

e(e*)
. I .2 .3 .4 .5

Fig. 12. Average number of features as a function of error rate.

Fig. 13. Manipulator and television camera.

drawn). It shows that the threshold e* nicely controls the
error rate e(e*).

Fig. 12 gives the average number of features An needed for
classification as a function of the error rate e(e*) for cases
A, B, and C. The three points (marked with x) are obtained
from fixed sample size experiments (see Subsection C-1))
using 5, 9, and 13 features, respectively. Compare now the
top of curve B and the point corresponding to the fixed
sample size procedure using 13 features. Both points have
the same error rate, but the variable sample size procedure
requires only 10.1 features on the average. The same holds
for the top of curve C and the fixed sample size point for 9
features. This shows the usefulness of the variable sample
size approach.

C. Machine Parts Recognition

Recently, much research has been done on visual feed-
back to aid in computer control ofmanipulators (mechanical
arms) [13], [14]. The visual information is usually ob-
tained from one or more television cameras or linear diode
array cameras. The cameras are aimed at a working area
which is a horizontal flat surface (table top or moving belt)
and which is accessible by the manipulator (see Fig. 13).
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Both manipulator and cameras are interfaced to a mini-
computer.
The major applications of using manipulators is either

in assembly tasks [13], [14] or in inspection tasks [14]. In
assembly tasks, the working area contains several (over-
lapping) parts and the manipulator is supposed to assemble
them into a product. In inspection tasks, the computer
examines the parts, using visual feedback, and decides
which ones are defective. The manipulator then separates
good and defective parts. Another application [14] is the
packing or unpacking of parts into boxes.
The visual feedback contains two parts: picture aquisition

and picture recognition. The output of the aquisition part is
a matrix of intensity values representing the input scene.
In the aquisition phase it is important to obtain a digitized
image which makes the recognition task as easy as possible.
Appropriate lighting, viewing angle, color filters, and special
backgrounds are helpful in this aspect. In order to reduce
the number of different views one can obtain from an
object, the working area is a horizontal surface and the
camera is mounted vertically high enough above the work-
ing area. Due to gravity, the object usually has only a
small number of distinct stable positions on such a surface
and, therefore, for a given stable position, the camera
will see always the same scene except for translation, rota-
tion, and scaling (in case a zoom is available). In most
instances, the silhouette of an object is adequate for
recognition. Using dark objects on a white background or
vice versa, backlighting, fluorescent surfaces, and so on,
and also using a good quality television camera, it is
possible to obtain the silhouettes of parts by simple thresh-
olding (see Figs. 14-20). The output of the aquisition part
is then a matrix of binary values.
The picture recognition part is supposed to recognize

the object using the information contained in this binary
matrix. Several factors can make the recognition difficult.
Depending on the value of the threshold, the silhouette
can have a different thickness (see Figs. 18 and 19 which
are obtained from the object shown in Fig. 14). Another
problem is the finite resolution of the aquisition system.
Especially for small objects, this causes significant quantiza-
tion noise at the boundary (see Fig. 16). Those and other
factors make recognition a nontrivial task.

In the experiment reported here we use a commercial
camera mounted vertically above a table (Fig. 13). The
camera is connected to a PDP 11/45 computer using an
interface that digitizes one vertical line of the input scene
in 1/60 s. A vertical line is digitized into 250 pixels with 7
bits of accuracy (128 intensity levels). In the experiment
we use only 60 of the 250 pixels and scan 60 vertical lines
giving a 60 by 60 matrix of pixels. The gray level histogram
of this matrix is computed and used to determine a threshold.
This threshold allows us to convert the matrix into a binary
matrix representing the silhouette of the part. The input
data are now in the same format as the Munson data set.
The recognition part is the same as that used in Section
B-2).

Fig. 14. U-shaped part.

Fig. 15. Silhouette of S-shaped part.

Fig. 16. Silhouette of U-shaped part.

Fig. 17. Silhouette of U-shaped part.
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Fig. 18. Silhouette of U-shaped part.

Fig. 19. Silhouette of U-shaped part.

Fig. 20. Silhouette of pliers.

Fig. 21. Training set.

The recognition scheme, implemented for ten classes as
shown in Fig. 21, requires on the average 11 s per unknown
object of which I s is needed to scan the image with the
television camera. For parts recognition, one also needs
an algorithm that gives the rotation and scale of the object
since those need to be known in order to group the object
with a manipulator. Rotation and scale can be found

using (Al) and (A2) in the Appendix. The training set
consists of the silhouettes of 10 different parts (Fig. 21).
Although some of the parts have more than one stable
position, only one position for each object was recorded
in the training set. The performance of the algorithm was
very good. One could characterize the performance by an
error rate on a test set but this would be meaningless
without publishing the test set also. Therefore, we will give
some examples which give an idea of the variety allowed
in the input patterns. The algorithm classifies the object
in Fig. 15 to class 6, that in Fig. 16 to class 1, those in Figs.
17-19 to class 2, and the object in Fig. 20 to class 10. The
object shown in Fig. 15 has a protrusion at the end not
present in the shape of class 6. The pliers in Fig. 20 are
opened while they are closed in the shape of class 10. This
shows that minor variations of the input patterns are
allowed. Rotation, translation, and scaling of the object
do not influence the performance of the algorithm.
The advantage of this approach to "parts recognition"

is that it is general and does not require human interaction
or special software when other parts have to be recognized.
Also the optimal matching technique is simple and fast in
execution.' The approach taken by Ambler et al. [13] can
work on boundaries of silhouettes in which some segments
are missing. Their algorithms are, however, much more
complex and need more training time. The approach taken
at SRI [14] requires interaction of the operator since
features are extracted from the silhouettes and appropriate
features have to be selected for each new set of parts. In our
experiment, only the outer boundary of the part is taken into
account. The algorithm can be improved, however, by
also considering possible holes that can appear in the part
[13]. Overlapping parts can be detected as follows: either
the boundary obtained from overlapping parts does not
match closely enough with one of the training patterns
(d(a,,B) in (13) is too large) or, in case it matches closely,
the area of the silhouette is not as expected from a single
object. In such a case, the arm will try to separate the parts.
This approach is taken by Ambler et al. [13].

V. DIscUSSION

In this paper, the FD's were computed using (4) or (7).
In (4) one can also interpret the parameter I as time and
scan the boundary with uniform velocity. It is possible then
to study the effect of moving along the boundary with
nonuniform velocity. It is shown in [18] that, when ap-
propriate velocity patterns are chosen, it requires fewer
harmonics to store the boundary curve accurately.
From the experimental results in Section IV, it is evident

that FD's are very useful for the problems defined in the
Introduction mainly because they allow an easy recognition
for rotated and scaled patterns having some noise on their
boundaries. Other techniques, as polygonal approximation,
are not so good for this type of problem since compensation

1 Using (13) with M = 15.
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for rotation is not easy in such a description. Polygonal
approximation and chain encoding should be used in other
types of problems where the patterns are best described in
terms of specific features present in the boundary (e.g.,
number of concave arcs in the boundary). Pavlidis presents
such a list that is useful in character recognition [12].
The main problem with such techniques [12], [13], [15],
[16] is that, due to the state of the art, there are no standard
techniques that allow the user to find the useful features or to
select them. It is typical that in applying such a technique,
the user has to be quite familiar with the problems. This is
not necessarily the case when using the FD's.

APPENDIX

Optimal Curve Matching

Consider two curves a and /3 with FD's {an} and {bn},
respectively. Define the distance d(a,fl) between a and /B
as in (20). One wants to scale (s), rotate ()), and adjust the
starting point (a,) of curve /B such that d(oc,,B) is minimized.
We have then to determine s,sb,oc such that

M

E Ian -se i(na+Obn 12
n=-M
n#O

is minimized. This expression equals

E [a. - se(Ana+4)bn][an* -se- (na+ )bn

= £ a,,an* + s2 , b,,bn* - 2s E Re [an*b,,ei(d'f1+)].
Set an*bn Pne= n Then we have, equivalently,

E anan* + s2 bnb, - 2s E Pn COS (Vn + ncx + 4)).

In order to minimize this expression with respect to s,ax,o
we will compute the partial derivatives.

a = 2s E b,b,,* - 2 EPn cos ( + ni + 4))

as
a

- 2s E Pn sin (Vn + ni + )

=-2s i pnn sin (Vin + na + ).

By setting those derivatives equal to zero we obtain

_ Pn COS (~n + na +S- co( ,bnbn* (Al)

tan _ Pn sin (Vin + na) (A2)
Pn COS (Vin + nct)

tan 4 _ _ Ep,On sin (On + nci) (A3)
pnn cOs (in + nx)

Combining (A2) and (A3) we obtain an equation in aC
f(ai) = p,, sin (V + na) E np,, cos (ii + nX)

- Pn COS (Yin + not) E nPn sin (Vi,n + nax).
The optimum value for a is then a zero of f(ci) and the
corresponding values for 4 and s are obtained from (A2)
and (Al).

Sincef (ci) contains only a finite number (M) ofharmonics,
it is possible to find all the zeros of f(a) using numerical
techniques. A subroutine was written that finds all the roots
up to machine accuracy.
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